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Abstract 
 

Unsteady travelling-wave similarity solution describing the flow of a slender symmetric rivulet of non-Newtonian power-law fluid down 

an inclined plane is obtained. The flow is driven by gravity with strong surface-tension effect. The solution predicts that at any time 𝑡 and 

position 𝑥, the rivulet widens or narrows according to (𝑥 − 𝑐𝑡)1/4, where 𝑐 is velocity of a rivulet, and the film thickens or thins according 

to a free parameter 𝐹0, independent of power-law index 𝑁. The rivulet also has a quartic transverse profile which always has a global 

maximum at its symmetrical axis. 
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1. Introduction 

Rivulet flows occur in a wide range of practical situations ranging 

from industrial situation such as coating processes to geophysical 

situation such as lava flow. There is therefore a considerable litera-

ture of both steady and unsteady flows of thin and slender rivulets. 

Following the approach of Smith1 for gravity-driven rivulet of a 

Newtonian fluid, Duffy and Moffat2 obtained a steady similarity so-

lution for gravity-driven rivulet of a Newtonian fluid with strong 

surface-tension effect down a near-vertical plane. The similarity so-

lution predicts that the width and the height of rivulet obtained by 

Smith1 is modified to  𝑥3/13  and 𝑥−1/13 , where 𝑥 is the distance 

down the plane. Wilson and Burgess3 obtained a steady similarity 

solution for gravity-driven rivulet of a non-Newtonian power-law 

fluid down an inclined plane. The similarity solution indicates that 

the width and the height of rivulet vary according to 𝑥(2𝑁+1)/(5𝑁+2) 

and 𝑥−𝑁/(5𝑁+2), where 𝑁 is a power-law index. Wilson et. al4 ob-

tained the steady similarity solutions for rivulet of a non-Newtonian 

power-law fluid driven by either gravity or constant surface shear 

stress down an inclined plane, for both weak and strong surface-

tension effects. They found that, despite the rather different physi-

cal mechanisms driving the flow, the similarity solutions for grav-

ity-driven and shear-stress-driven rivulets are qualitatively similar. 

Particularly, the solution for gravity-driven flow recovers the solu-

tions of Wilson and Burgess3, while for shear-stress-driven flow, 

the width and the height of rivulet vary according to 𝑥−1/3  and 

𝑥−1/6, respectively, independent of power-law index 𝑁. 

The unsteady similarity solution for gravity-driven rivulet of a non-

Newtonian power-law fluid on an inclined plane has been studied 

by Yatim et. al5, both for converging sessile rivulet and diverging 

pendent rivulet. The solution predicts that the evolution of the width 

and the height of rivulets at any time 𝑡  vary according to 

|𝑥|(2𝑁+1)/2(𝑁+1) and  |𝑥|𝑁/(𝑁+1), respectively, while at any posi-

tion 𝑥  vary according to |𝑡|−𝑁/2(2𝑁+1)  and |𝑡|−𝑁/(𝑁+1) , 

respectively, with cross-sectional profiles that are either single-

humped or double-humped. More recently, Abas et. al6 obtained a 

different type similarity solution namely a travelling-wave similar-

ity solution for the unsteady gravity-driven rivulet of a Newtonian 

fluid down an inclined plane, with strong surface-tension effect. In 

this study, the approach of Abas et. al6 is used to obtain travelling-

wave similarity solution describing unsteady gravity-driven rivulet 

of a non-Newtonian power-law fluid down an inclined plane, with 

strong surface-tension effect. 

2. Problem Formulation 

Consider the unsteady flow of a thin slender rivulet of a non-New-

tonian power-law fluid with constant density 𝜌 and viscosity 𝜇 =
𝜇0𝛾𝑁−1, where 𝜇0 is the consistency coefficient, 𝛾 is the shear rate 

and 𝑁(> 0) is the power-law index on a plane inclined at an angle 

𝛼(0 < 𝛼 < 𝜋/2) to the horizontal subject to gravitational acceler-

ation 𝑔 with strong surface-tension effect 𝜎. The power-law fluid is 

characterized as a shear thinning when 0 < 𝑁 < 1  and a shear 

thickening when 𝑁 > 1; when 𝑁 = 1, the special case of a Newto-

nian fluid with constant viscosity 𝜇0 is recovered. 

Cartesian coordinates 𝑂𝑥𝑦𝑧 with the 𝑥-axis down the line of great-

est slope and the 𝑧-axis normal to the substrate, with the substrate 

at 𝑧 = 0 are adopted. The (unknown) free surface of the rivulet is 

denoted by 𝑧 = ℎ(𝑥, 𝑦, 𝑡), where 𝑡 is time. The rivulet is considered 

symmetric about 𝑦 = 0 (i.e. for which ℎ is even in 𝑦) with (un-

known) semi-width 𝑎 = 𝑎(𝑥, 𝑡), so that ℎ = 0 at the contact lines 

𝑦 = ±𝑎. The geometry of the problem is sketched in Figure 1. 
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Fig.1: Sketch of rivulet 

 
Making the familiar lubrication approximation, the velocity 
(𝑢, 𝑣, 𝑤) and pressure 𝑝 satisfy the governing equations  

𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 0, (1) 

(𝜇𝑢𝑧)𝑧 + 𝜌𝑔 sin 𝛼 = 0, (2) 
(𝜇𝑣𝑧)𝑧 − 𝑝𝑦 = 0, (3) 

−𝑝𝑧 − 𝜌𝑔 cos 𝛼 = 0, (4) 

subject to the boundary conditions of no slip and no penetration on 

the substrate 𝑧 = 0: 

𝑢 = 𝑣 = 𝑤 = 0      (5) 

and balances of normal and tangential stresses on the free surface 

𝑧 = ℎ: 

𝑝 = 𝑝𝑎 − 𝜎ℎ𝑦𝑦,   𝜇𝑢𝑧 = 𝜇𝑣𝑧 = 0,      (6) 

where 𝑝𝑎 is atmospheric pressure, together with the kinematic con-

dition on  𝑧 = ℎ: 

ℎ𝑡 + �̅�𝑥 + �̅�𝑦 = 0,     (7) 

where �̅� = �̅�(𝑥, 𝑦, 𝑡) and �̅� = �̅�(𝑥, 𝑦, 𝑡) are the local fluxes of the 

flow in the longitudinal (𝑥-axis) and in the transverse (𝑦-axis) di-

rection, respectively, defined by  

�̅� = ∫ 𝑢
ℎ

0

𝑑𝑧, �̅� = ∫ 𝑣
ℎ

0

𝑑𝑧 
 

  (8) 

and the zero-mass-flux condition at the contact lines 𝑦 = ±𝑎(𝑥, 𝑡): 

�̅� = ±𝑎𝑥�̅�. (9) 

Equations (1) – (4) can readily be solved to yield  

𝑝 = 𝑝𝑎 + 𝜌𝑔 cos 𝛼 (ℎ − 𝑧) − 𝜎ℎ𝑦𝑦,   (10) 

𝑢 =
𝑁

𝑁 + 1
(

𝜌𝑔 sin 𝛼

𝜇0
)

1
𝑁

[ℎ
𝑁+1

𝑁 − (ℎ − 𝑧)
𝑁+1

𝑁 ] , 

 

(11) 

𝑣 = −
𝑁

𝑁 + 1
(𝜌𝑔 cos 𝛼 ℎ − 𝜎ℎ𝑦𝑦) 

[
(𝜌𝑔 sin 𝛼)1−𝑁

𝜇0
]

1
𝑁

[ℎ
𝑁+1

𝑁 − (ℎ − 𝑧)
𝑁+1

𝑁 ] 

 

 

 

(12) 

and substitution of (11) and (12) into (8) gives 

�̅� =
𝑁

2𝑁 + 1
(

𝜌𝑔 sin 𝛼

𝜇0
)

1
𝑁

ℎ
2𝑁+1

𝑁 , 

(13) 

�̅�

= −
𝑁

2𝑁 + 1
(𝜌𝑔 cos 𝛼 ℎ

− 𝜎ℎ𝑦𝑦)
𝑦

[
(𝜌𝑔 sin 𝛼)1−𝑁

𝜇0
]

1
𝑁

ℎ
2𝑁+1

𝑁 , 

     

(14) 

respectively. Therefore, the kinematic condition (7) yields the gov-

erning partial differential equation for ℎ: 

2𝑁 + 1

𝑁
𝜇0 (

𝜌𝑔 sin 𝛼

𝜇0
)

𝑁−1
𝑁

ℎ𝑡 = −𝜎 (ℎ
2𝑁+1

𝑁 ℎ𝑦𝑦𝑦)
𝑦

 

−𝜌𝑔 sin 𝛼 (ℎ
2𝑁+1

𝑁 )
𝑥
, 

 

 

 

(15) 

with ℎ satisfies the contact-line condition  

ℎ = 0 at 𝑦 = ±𝑎,  ℎ
2𝑁+1

𝑁 ℎ𝑦𝑦𝑦 → 0 as 𝑦 → ±𝑎, 
 (16) 

where the fluid occupies |𝑦| ≤ 𝑎. Once ℎ is determined from (15), 

the complete solution for 𝑝, 𝑢 and 𝑣 is given by (10) – (12). Note 

that, in the special case of 𝑁 = 1, equation (15) reduces to the 

familiar equation describing the unsteady gravity-driven flow of a 

thin slender rivulet of Newtonian fluid studied by Abas et. al6. The 

draining down the plane driven by gravity is negligible in compar-

ison with the flow down caused by surface tension; this is justified 

provided that  

𝜌𝑔 cos 𝛼 ℎ ≪ 𝜎ℎ𝑦𝑦. (17) 

Consider the unsteady travelling-wave similarity solution of (15) in 

the form  

ℎ = 𝑏𝐹(𝜂), 𝜂 =
𝑦

[ℓ(𝑥 − 𝑐𝑡)]
1
4

, (18) 

where the velocity of rivulet 𝑐 (up or down the substrate) and the 

dimensionless function 𝐹 = 𝐹(𝜂)(≥ 0) of the dimensionless simi-

larity variable 𝜂 are to be determined, and 𝑏(> 0) and ℓ are con-

stants, which, without loss of generality, can be written as  ℓ =
4𝜎𝑏𝑆ℓ 𝜌𝑔 sin 𝛼⁄ , where 𝑆ℓ = ±1 . The rivulet lies in the region 

where ℓ(𝑥 − 𝑐𝑡) ≥ 0; along 𝑥 = 𝑐𝑡, the fluid thickness ℎ and its 

derivative ℎ𝑦 are continuous (i.e. so that 𝑢, 𝑣 and 𝑝 are also contin-

uous there), except at the apex of a rivulet, 𝑥 = 𝑐𝑡, 𝑦 = 0. 

For simplicity in plotting results, the variables are scaled according 

to  

𝑥 = 𝑋𝑥∗, ℎ = 𝑏ℎ∗, 𝑧 = 𝑏𝑧∗,  

𝑦 = (ℓ𝑋)
1
4𝑦∗, 𝑡 =

𝑋

𝑈
𝑡∗, 𝑎 = (ℓ𝑋)

1
4𝑎∗, 

(19) 

ℎ𝑚 = 𝑏ℎ𝑚
∗
, 𝑐 = 𝑈𝑐∗,   

where 𝑋 is a length scale in the 𝑥-direction which may be chosen 

arbitrarily and 𝑈 is a velocity scale given by  

𝑈 =
𝑁

2𝑁 + 1
(

𝜌𝑔 sin 𝛼

𝜇0
)

1
𝑁
. 

(20) 

Then, with asterisks dropped for clarity, the solution (18) takes the 

simpler form  

ℎ = 𝐹(𝜂), 𝜂 =
𝑦

(𝑥 − 𝑐𝑡)
1
4

  (21) 

and hence (15) reduces to a fourth-order ordinary differential equa-

tion for 𝐹, namely  

(𝐹
2𝑁+1

𝑁 𝐹′′′)
′

− 𝑆ℓ𝜂 (𝐹
2𝑁+1

𝑁 − 𝑐𝐹)
′

= 0, 
(22) 

where a prime denotes differentiation with respect to 𝜂. For a sym-

metric rivulet, regular at 𝑦 = 0, appropriate boundary conditions 

are   

𝐹 = 𝐹0, 𝐹′ = 0, 𝐹′′ = 𝐹2, 𝐹′′′ = 0 at 𝜂 = 0,   (23) 

where 𝐹0(≥ 0) and 𝐹2 are the free parameters. The position where 

𝐹 = 0 is 𝜂 = 𝜂0 (corresponding to the contact-line position 𝑦 = 𝑎), 

so that  

𝐹 = 0  at  𝜂 = 𝜂0,  𝐹
2𝑁+1

𝑁 𝐹′′′ → 0  as   𝜂 → 𝜂0, 
(24) 

where the fluid now lies in |𝜂| ≤ 𝜂0. The semi-width of the rivulet 

varies with 𝑥 and 𝑡 according to  

𝑎 = (𝑥 − 𝑐𝑡)
1
4 𝜂0. 

   

(25) 

In order to satisfy the assumption of thin and slender rivulet, the 

length scales in 𝑥, 𝑦 and 𝑧 directions (namely 𝑋, 𝑎 and ℎ𝑚, respec-

tively) must satisfy ℎ𝑚 ≪ 𝑎 ≪ 𝑋, which requires that 
𝜎𝑋𝑆ℓ

𝑏3𝜌𝑔 sin 𝛼
≫ 1, 

𝑋3𝜌𝑔 sin 𝛼 𝑆ℓ

𝜎𝑏
≫ 1, 

 (26) 

Respectively, showing that 𝑋 must be sufficiently large and that 𝛼 

cannot be close to 0.  

3. Results and Conclusion 

Since a closed-form solution of (22) is not available, so it must be 

solved numerically for 𝐹 subject to the boundary conditions (23) 

and (24), where 𝑐 and 𝜂0 are parameters to be determined. There 

are four cases to consider, namely case 1: 𝑆ℓ = 1, 𝑐 > 0, 0 < 𝑁 <
1, case 2: 𝑆ℓ = −1, 𝑐 < 0, 0 < 𝑁 < 1, case 3: 𝑆ℓ = −1, 𝑐 > 0, 

𝑁 > 1 and case 4: 𝑆ℓ = 1, 𝑐 < 0, 𝑁 > 1 however, it turns out that 

the system (22) – (24) has solutions only in case 1, case 3 and case 
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4. Therefore, from now on only these three cases shall be consid-

ered. 

Equation (22) was solved numerically for 𝐹 subject to (23) for a 

given value of  𝐹0 and 𝐹2(< 0) by using a shooting technique via 

Mathematica 9.0 software, the value of 𝑐 and 𝜂0 being determined 

as the point where 𝐹 = 0. It was found that there are solutions when 

0 < 𝑐 ≤ 𝑐𝑚𝑎𝑥 for case 1, 𝑐 ≥ 𝑐𝑚𝑖𝑛 for case 3 and 𝑐 < 0 for case 4, 

where the value of  𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 vary according to 𝐹0 and 𝐹2. 

In case 1, the relation between 𝐹0  and 𝜂0  is monotonic; for any 

value of 𝐹0(≥ 𝐹0𝑐) there is a corresponding unique solution of 𝜂0, 

but for any value of 𝜂0, there is no solution when 𝜂0 <  𝜂0𝑐  while 

there is a unique solution of 𝐹0 when  𝜂0 ≥ 𝜂0𝑐 . In case 3 and case 

4, the relation between 𝐹0  and 𝜂0 is also monotonic; with a unique 

solution occurs for any choice of 𝐹0(> 0) and 𝜂0.    

Also, it is found that 𝐹 satisfies  

𝐹 = 𝐹0 +
𝐹2

2
𝜂2 +

𝐹2𝑆ℓ

360𝐹0

2𝑁+1
𝑁

[
(2𝑁 + 1)

𝑁
𝐹0

𝑁+1
𝑁

− 𝑐] 𝜂6 + 𝑂(𝜂8) 

 (27) 

near 𝜂 → 0 and  

𝐹~ [−
(2𝑁 + 1)3

3𝑁(𝑁 − 1)(𝑁 + 2)
𝑆ℓ𝑐𝜂0(𝜂0 − 𝜂)3]

𝑁
2𝑁+1

 

(28) 

if either 𝑆ℓ𝑐 > 0, 0 < 𝑁 < 1 or 𝑆ℓ𝑐 < 0, 𝑁 > 1  

at the leading order, as 𝜂 → 𝜂0. Therefore, so far, the family of so-

lutions of (22) parameterized by 𝐹0 and 𝐹2 are obtained, with 𝑐 and 

𝜂0 are determined in terms of 𝐹0 and 𝐹2. Figure 2 shows a plot of 

𝜂0 as a function of 𝐹0, together with 𝐹0𝑐 and 𝜂0𝑐  (shown as dots), 

while Figure 3 shows three-dimensional plots of the free-surface 

profile 𝑧 = ℎ at different times 𝑡 which demonstrate that the rivu-

lets become narrower as time elapse while maintaining their cross-

sectional shapes and their thickness. 

 
Fig. 2: Plot of 𝜂0 as a function of 𝐹0 for 𝐹2 = −1, 𝑐 = 1 and 𝑁 =
1/5, 2/5, 3/5 and 4/5, together with 𝐹0𝑐 (shown as dots). 

 
(a)  

 
(b) 

 

Fig. 3: Three-dimensional plots for 𝐹0 = 2 , 𝐹2 = −1 , 𝑐 = 1  at 

times (a) 𝑡 = 1 and (b) 𝑡 = 5 with 𝑁 = 1/2. 

 

The travelling-wave similarity solutions describing the unsteady 

gravity-driven flow of a thin slender rivulet of a non-Newtonian 

power-law fluid down an inclined plane are obtained. The velocity 

and pressure are given by (10) – (12) in terms of free surface profile 

ℎ, where ℎ is given by (21). There were four cases to consider (la-

belled as case 1, case 2, case 3 and case 4), but there is no solution 

found in case 2. Numerical analysis showed that the rivulet has a 

quartic shape which always has a maximum thickness at 𝑦 = 0. 

This work also generalized the work of Abas et. al6 when 𝑁 = 1. 

Acknowledgement 

The authors gratefully acknowledged the financial support of Fun-

damental Research Grant Scheme (FRGS) account no: 

203/PMATHS/6711432 and Research management, Innovation 

and Commercialization Centre (RMIC), UniSZA. 

References  

[1] P. C. Smith. A similarity solution for slow viscous flow down an 

inclined plane. Journal of Fluid Mechanics, 58 (1973) 275-288. 

[2] B. R. Duffy, H. K. Moffatt. A similarity solution for viscous 
source flow on a vertical plane. European Journal of Applied 

Mathematics, 8 (1997) 37-47. 

[3] S. D. R. Wilson, S. L. Burgess. The steady, spreading flow of a 
rivulet of mud. Journal of Non-Newtonian Fluid Mechanics, 79 

(1998) 77-85. 

[4] S. K. Wilson, B. R. Duffy, R. Hunt. A slender rivulet of a power-

law fluid driven by either gravity or a constant shear stress at the 

free surface. The Quarterly Journal of Mechanics and Applied 

Mathematics, 55 (2002) 385-408. 
[5] Y. M. Yatim, S. K. Wilson, B. R. Duffy. Unsteady gravity-driven 

slender rivulets of a power-law fluid. Journal of Non-Newtonian 

Fluid Mechanics, 165 (2010) 1423-1430. 
[6] S. S. Abas, Y. M. Yatim. Travelling-wave similarity solution for 

gravity-driven rivulet of a Newtonian fluid with strong surface-

tension effect. AIP Conference Proceedings, 1870 (2017) 40037-
1-40037-7. 

 


