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ABSTRACT. - We consider the two-dimensional nonlinear Schrodinger
equation with repulsion ivt = Ov + v(1 - Iv12) subject to the boundary
condition ~2014~1, We establish the existence of travelling wave
solutions v(x, t) = ct, x2 ), c &#x3E; 0, for sufficiently small values of c
and exhibit their vortex structure. @ Elsevier, Paris
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I. INTRODUCTION

1.1. Statement of the results

In this paper, we will focus on the following non-linear Schrodinger
equation, for a complex valued function defined on 1R2 x R (x stands
for the spatial variable, t being time)

where A == L a 2. Here x1 and x2 denote cartesian coordinates on 1R2,
i=1 ~

~ =(~1,~2).
This equation is often termed Gross-Pitaevskii equation and appears in

various areas of Physics : non linear optics, fluid dynamics, superfluidity,
Bose condensation ... (see for instance the pioneering papers [GR], [JR],
[JPR] and also [KRl], [KR2] for references).
At least on a formal level, equation ( 1 ) is hamiltonian. The conserved

hamiltonian is a "Ginzburg-Landau type" energy, namely

We will only be interested in finite energy solutions here. In view of

the form of E, and the potential V(?;) = (1 - ~v~z)~, natural boundary
condition at infinity on 1R2 are

It is easy to prove (see Appendix A) that the Cauchy problem for ( 1 )
supplemented by (2) is globally well-posed.
The question we are going to investigate in this paper is the existence

problem for travelling wave solutions to ( 1 ). Let c &#x3E; 0 be some positive
number. We are looking for solutions v to ( 1 ) of the form

where v is a function defined on 1R2. The parameter c &#x3E; 0 represents the

speed of the travelling wave. If v is a solution to ( 1 ), then the equation
for v is

and 0 conversely any solution to (4) yields a travelling j wave ~ solution to ( 1 ).

Annales de l’Institut Henri Poincare - Physique " theorique "



149TRAVELLING WAVES FOR THE GROSS-PITAEVSKII EQUATION I

Equation (4) has been studied in a number of places, where the existence
problem and the dynamical stability of finite energy solutions to (4) was
addressed both on a numerical and a formal level (see the works of Roberts
and coworkers ([GR], [JR], [JPR], Pismen and Rubinstein [PR], Pismen
and Nepomnyashchy [PN], Kuznetsov and Rasmussen [KRl], [KR2]). They
established (at least formally) that travelling waves with finite energy should
exist for small values of the parameter c, whereas for large values, they
should not. More precisely, the velocity c of the "soliton" should lie
between 0 and the minimum phase velocity, coinciding with the sound
velocity ( cs == V2 in our scaled version). In the limit one gets
formally two widely separated parallel vortex filaments with opposite
circulation while for c closed to cs the travelling wave solutions should be,
after scaling, close to the 2D lumps of the Kadomtsev-Petviashvili (KPl)
equation. Our aim in this paper, is to give a rigourous proof of the first part
of the previous statement. More precisely, we will establish the following
THEOREM 1. - There exists some constant Co &#x3E; 0, such that, for 0  c  co,

equation (4) non-constant finite energy solution v. Moreover, there
exist constants Ao and 111 such that

The above quoted papers actually tell us more about the structure of the
solutions which are constructed. The solutions are expected to have two
vortices, i.e. two points where v(x) = 0. Around each of the vortices the
winding number should be +1 and -1 respectively. The distance between
the two vortices should be of order c-1 in the asymptotic limit We

will show in the course of the paper how much can be proved in this
direction (see Proposition VI.7 for a precise statement).
Most of this paper will be devoted to the proof of Theorem 1.

Subsections 1.2 to 1.7 are devoted to explaining the strategy of the proof of
Theorem 1. The precise content of the rest of the paper will be presented
in subsection I. 8.

The nonexistence of travelling waves when c &#x3E; Cs == V2 seems to be
linked to the absence of embedded eigenvalues for the linearization of (4)
around v = 1. More precisely, setting v = V + 1, V == f+z~, (4) writes

where

Vol. 70, n° 2-1999.



150 F. BETHUEL AND J.-C. SAUT

It is easily checked that the continuous spectrum of Lo (viewed as an
unbounded operator in L2 ( I~ 2 ) 2 ) is [0, oo) if c  V2 and [ - ~~2 4 2 ~ 2 , +00)
if c &#x3E; ~/2. The continuous spectrum of L is the same, if f , g decay
sufficiently fast as 

Hence, when c &#x3E; ~/2, the existence of a non trivial solution of (4) would
imply that L has the eigenvalue 0 embedded in the continuous spectrum,
which is unlikely to occur, if V decays sufficiently fast as 
On the other hand another argument in favor of nonexistence of travelling

waves when c &#x3E; V2 is that the mountain pass argument used in the proof
of Theorem 1 clearly does not work in this case.
As we will see below, equation (4) is variational. We shall use a

mountain-pass theorem to establish Theorem 1.

In order to define the variational formulation, it will be convenient

to introduce a change of scale. This will allow us to make use of

technics introduced in the study of asymptotic limits of solutions to the
Ginzburg-Landau equation (see, for instance [BBH], and references therein).

1.2. A resealing

In Theorem 1, the small parameter is the speed c. In order to be consistent
with works on Ginzburg-Landau functionals (for instance [BBH], we will
change the notation and set

Next, we change variables and set

In the new variables, equation (4) reads

In the sequel, we will drop the tilda on the coordinates, i. e. write

The hamiltonian is now

Annales de l’Institut Henri Poincaré - Physique - theorique



151TRAVELLING WAVES FOR THE GROSS-PITAEVSKII EQUATION I

which is precisely the energy studied in [BBH] (see also Struwe [Str], Lin
[L] ) . Note that

As we will show in the course of the proof (see Proposition 5) the solution
we will obtain satisfies a bound of the form

for some absolute constant AI. Following the analysis of [BBH], [BR], [Str],
we have the following useful result, which we will use in many places.

PROPOSITION 1. - Let C0 be any arbitrary constant, and let 0  /3  1.

Let / E L2(R2), 03C5 E 1R2 to 1R2 such that

continuous on R2, and ’ there ’ exist constants N &#x3E; 0, and À &#x3E; 0,
depending only on Co and al, ... , 1R2, such that

We will term the points the vortices of our map : in their

neighborhood, might be small, or even might vanish. Since Ivl is larger
than one-half on the boundary the map 2014 has some winding
number on A~). We will call it the degree of v at ai .

Note that for any solution to (6) satisfying the bound (7), Proposition 1

applies and we may define its vortices. Actually (7) is more precise than (9),
and in this case, we may prove that v has at most two vortices with winding
number +1 or 20141, all other vortices having degree zero. In order to do so,
we have however to redefine slightly the notion of vortices, and enlarge the
radius around them. More precisely, we have

PROPOSITION 2. - Let A, Co be arbitrary constants, and let 0  /3  1.

Assume that f satisfy the conditions of Proposition 1, that is (8), (9)
and (10). Assume moreover that

Vol. 70, n° 2-1999.



152 F. BETHUEL AND J.-C. SAUT

Then there exist constants M and ~c in (0,1), a number N E 1B1, depending
only on {3, A and Co, such that there exist p &#x3E; 0, ~c &#x3E; 0, £ points al, ... , a~
in 1R2 such that

There exist at most two vortices in the ..., such that

Call al and a2 these vortices. Then we have

Finally we have also

where depends only on 6, and as 

The proof is essentially the same as the proof of Theorem 5 in [AB]
(relying on a construction introduced in a preliminary version of [BBH]).
For sake of completeness we will give a proof in Appendix B.

As a consequence of Proposition 2, in view of the bound (5), the solution
we construct in Theorem 1 will essentially have two vortices. An important
question is to determine the distance of these vortices. We will turn to this
question later. (See Proposition VI.7).

Annales de l’Institut Henri Poincaré - Physique theorique
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1.3. Variational formulation

As already noticed in the references quoted above, equation (6) is

variational. To be more specific, let us introduce the space V of maps
definined by

V is an affine space modelled on the Hilbert space equipped with
the standard norm

Next, for v E V set

and

Note that by the embedding C L4 ( (~ 2 ) , E~ is well defined on

Then, we have

PROPOSITION 3. - The functionals EE’ L are C1 on V. Moreover

any critical point of solution to (4).
The proof of Proposition 3 is rather standard and we omit it.

Note that the space V has been introduced for the convenience of

the variational formulation. By no means do we claim that the solution
constructed in Theorem 1 belongs to V (actually it is conjectured that it does
not). However, the space V is well-fitted for implementing our mountain-
pass argument. This will yields us so called Palais-Smale sequences (i. e.
approximate solutions to (4)). We will then prove convergence to a solution
to (4) on compact sets.

The variational formulation we introduced above is still not very

satisfactory for our purposes. One important flaw is that F is not bounded
below (see the construction in Section 1.5) : this gives serious troubles in
order to make Palais-Smale sequences converge. In order to overcome this

difficulty, we modify slightly the functional, introducing a cut-off for L.

Vol. 70, n 2-1999.



154 F. BETHUEL AND J.-C. SAUT

Let K &#x3E; 0 be some large number, to be determined later (and remaining
fixed troughout the paper). Consider a function smooth from IR to IR

having the following properties

and finally

Our perturbed functional will then be given by

(We will simply write F~ or F and cp, when no confusion is possible). We
then verify that F is of class C1 on V and that

so that critical points for F verify

Therefore a solution to (21) is a critical point of F provided = 1,
which is in particular the case if

Actually, our choice for K will be

where dl is another constant, which will be introduced in Section 1.6 (the
mountain-pass argument), and which will be determined later.
With this choice, we may work with F~ instead of and still obtain

solutions for our initial problem.

1.4. Geometrical interpretation of L

As we will see for maps having nice vortices, the functional L is very
simply related to the location of the vortices. To get a feeling for that

l’Institut Henri Poincaré - Physique theorique
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property, consider a very simple model situation of a smooth map v having
two nice vortices, of degree +1 and -1 respectively, denoted P and ~V
respectively. In coordinates, we write

We assume moreover that v satisfies the following five properties
- v is smooth on 1R2,
- Iv I = 1 outside B(P, E) n B(~V~), ~~P - NI &#x3E; c],
- = 1, deg(v, ~B(N, ~)) _ -1,
-  ~
- v = 1, outside some large ball B(R)..
Though very special, the above situation bears some resemblance with

the result of Proposition 2. Next, we estimate L ( v ) . We have, by Fubini’ s
theorem

By our assumption |03C5l = 1 on the line x2 = s provided s ~ [P2 - E,
P2 + c] U [~2 - ~ N2 + c]. In that case, the integral

is a topological number, equal to -27r if s E ~N2 ~ E, P2 - E] and to
zero if s E] - oo, N2 - E] U ~P2 + ~ +00[. Going back to (23), a simple
computation shows that

so that L is approximately ~r (P2 - ~2). In view of our later analysis we
will present next a slightly more canonical way of constructing a map with
two vortices (in the spirit of [BBH]). This will in particular be useful for
our mountain-pass argument.

Let f be any smooth function from R to such that

and ~  4.

Vol. 70, n 2-1999.
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Let d &#x3E; 0, and set P = (0, -d 2), N = (0,+d 2). Let ~ &#x3E; 0, and define
the map vd from 1R2 to R2 by

Clearly the map vd has two vortices (provided d &#x3E; 2é) of opposite
degree +1 and -1, located at P and N, and I = 1, provided

and dist(z, N) &#x3E; c. Similar estimates as above yield

LEMMA 1. - We have, for fixed d &#x3E; 0, vd E V, and for 0  é  1

where ~ ~~ ~ ~ ! ~ I, R~ ~  C e provided d &#x3E; 8e, and Co is some constant.
In order to use calculus of variation, we need next to extend the notion

of vortices to arbitrary maps in V. This is the aim of the next Section.

1.5. vortices for maps in V

The argument is borrowed from [AB] and is of a slightly indirect nature.
Starting from a map v in V, we wish to show that v has "essential"

vortices, as described in the previous sections. In order to do so, we have
to impose an E~-energy bound on v, as ( 13). However this is not enough
to avoid dipole configuration on a small scale. To get rid of these, basically
unnecessary, details on a small scale, we introduce a regularization. Set

which represents the scale of regularization. Consider next the functional
Gh defined on V, by

Clearly Gh is well defined, and C1 on V. We have

LEMMA 2.

de l’Institut Henri Poincaré - Physique theorique
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is achieved, by some ’ map vh E V, which satisfies the equation

Moreover

and

The proof of Lemma 2 will be given in Appendix C.
Note that as in [AB], we do not claim uniqueness for ~. However, most

of the information carried by the vortices of v will be preserved for ~,
provided the bound (13) holds. Therefore assume that

and set

In view of (26) we have for small c,

Hence we may apply Proposition 2 to v~, f h with /3 = 4 . Thus, we deduce .

LEMMA 3. - There ’ exist constants M (0,1), and a constant
~ N E only on A such that there points 1R2,
P &#x3E; 0, /7 &#x3E; 0, such that

Vol. 70, n ° 2-1999.
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and such that 18 19 and 20 i I; d. = 2 ) hold. Moreover we have

where depends only on A and 

In Lemma 3, we have used the notation

in coordinates.

Of course, the map vh might well have no vortices (i.e. ,may well
have no vortices of degree +1 or 20141, that is only vortices of degree zero,
or not vortices at all : take for instance v = 1, so that vh == 1). In this
case we have made the following convention : a1 = a2 are arbitrary points
and we set deg ai = (-1)i 2 by pure convention. Note however, that if vh
has a vortex of degree 1, it has to have another vortex of opposite degree,
since is finite.

The only point in Lemma 3 which is not a consequence of Proposition 2
is (28). The proof will be given in Appendix C. An important consequence
of (28) and (26) is

LEMMA 4.

where depends only on 11. and ~, and as 

To conclude this Section, an important problem is to determine some
continuity properties of the map which assigns to v its vortices al and a2.
This problem has already been considered in [AB]. Since we cannot expect
continuity (the vortices are only defined modulo a certain regularization,
i.e. introducing a lengthscale), the notion of ~-almost continuity was
introduced in [A.B]. We recall it.

DEFINITION 1. - Let F and G be two metric spaces and r~ 2: 0 be a given
constant. Let f be a map from F to G. We say that f is ~-almost continuous
at a point uo E F if and only if, foY any 8 &#x3E; 0, there exists 8 &#x3E; 0, such
that if d( u, ::; 8, then

Annales de l’Institut Henri Poincaré - Physique theorique
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Next consider for given A E IR

and the map ’ljJ from V to jR2 x 1R2 defined by

considered as a configuration space " of charged particles (see [AB] for more
precision). Then we have 

PROPOSITION 4. - The map ’lj; is continuous for

where c is a positive constant.

L6. The mountain-pass argument

Here we will describe how to obtain critical point for F. The first step
will be to establish the existence of Palais-Smale sequences vn for F, with
a lower bound on The later estimate will be crucial in order to

prove that the sequence does not converge to a trivial (u - 1 ) solution. In
order to obtain such a bound, we will use a variant of the mountain-pass
theorem (Ambrosetti and Rabinowitz), due to Ghoussoub and Preiss ([GP]),
based on Ekeland’s variational principle ([E]). Let us recall that Theorem.

, 

THEOREM 2 ([GP]). - Let X be a Banach space, and 03C6 be a Cl functional
on X. Let co and cl be two non-empty closed and disjoint subsets of X,
and consider the set 7~ of paths joining Co and Cl i.e.

Set

Assume that there exists a closed subset M of X such that

. separates Co and Cl, that is Co and Cl are included in two disjoint connected
components M~. there exists a , sequence ~c~ such that

Vol. 70, n° 2-1999.
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Note that the usual mountain-pass theorem corresponds to the case

M = X. Recall that a sequence xn satisfying (PS) is called a Palais-Smale
sequence for at the level c.

We will apply Theorem 2 to our problem. We take

(which is an affine space : this obviously makes no difference), and

Next we have to define the sets Co and Cl. We set for 0  c  1

and

where c!i &#x3E; 4, A and Â are three constants which will be fixed, throughout
the paper, but determined later.

We have

LEMMA 5. - Có and Cf closed subsets. which are disjoint. C~1 is

provided Â 2:: Ac. 0 is some absolute constant, and
o  é  ~.

The first assertion is obvious. For the second assertion we have,
assuming di 2:: 4,

and by Lemma 1

so that

Annales de l’Institut Henri Poincare - Physique theorique
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provided A &#x3E; 110 = Co + sup R(c).
0~~

This cnmnletes the proof of the Lemma.

We will actually determine the values of Â and A as follows. We set

Here 111 is an absolute constant appearing in Proposition 5 (see Lemma 11.1).
Similarly is an absolute constant, introduced in [BBH], p.43 and

appearing in Lemma 11.2.
With this choice of 11 and 11, we determine the value of dl. For v E C;

we observe that

We determine dl so that dl 2:: 4 and

The choices of A, A, and dl ensure us that

if ~ is sufficiently small.

Finally, we set

and

PROPOSITION 5. - There ’ are two constants Ao and 1 such that, if
0  ~  1, then

This fact already shows that if dl is choosen sufficiently large, then
V B separates Co and and provides us, thanks to Theorem 2 (with

Vol. 70, n° 2-1999.
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M = ~), a Palais-Smale sequence for FE:. In order to prove that we may
choose a Palais-Smale sequence which does not converge (weakly) to a
constant solution, we define M as

where do and do are fixed numbers, such that

Then we have

PROPOSITION 6. - There exists ~1 &#x3E; 0 depending on do and do, such that

separates Co and Cl, 1 0  é  él.

As a consequence of Theorem 2, Propositions 5 and ’ 6, we finally may
assert the following j

PROPOSITION 7. - There exists a , sequence of maps un in V such that

where ’ as n-~ + oo and

L7. End of the proof of Theorem 1

In order to complete the proof of Theorem 1, we need to show that the

sequence u~ converges to a non trivial solution (6). Since the functional Fe
is invariant under translations, we first have to get rid of this invariance.
We have

PROPOSITION 8. - Let A 2 0 constant, and let vn a sequence of
maps in V such that

Then, there exists ~ &#x3E; 0, depending only on A, such that if 0  é  ~, there
exists a sequence of points (bn)n~N in R2 such that a subsequence the

Annales de l’Institut Henri Poincare - Physique theorique
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sequence n = 03C5n( . - converges strongly in for any compact
c map v, which is not constant.

Combining Proposition 7 and Proposition 8, Theorem 1 follows easily.
More precise properties of the solution u will be given at the end of the
paper (see Section VI).

This paper is organized as follows. The background analysis in

Sections 1.2 to 1.5 (and which are adaptations from [BBH] and [AB]), will
be exposed in a separate Appendix. In the next Section (Section II) we will
prove Proposition 5. Section III is devoted to the proof of Proposition 6. The
key ingredients are Lemma III.4 and 111.5, which deal with constructions of
continuous paths in Section IV is devoted to the proof of Proposition 8.
The proof of Theorem 1 will be completed in Section V. Further properties
of the solution will be given in Section VI, in particular the fact that

as + oo . The global well-posedness of the Cauchy problem
is established in Appendix A while Appendix B is devoted to the technical
proofs of Propositions 1 and 2. Finally, Lemmas 2 and 3 are proved in
Appendix C. We postpone to a subsequent paper the study of the three-
dimensional case as well of further properties of the travelling waves. After
this work was completed we have been aware of the paper [CJ] where the
dynamics of vortices as is studied, for the space-periodic problem
associated to ( 1 ).

II. PROOF OF PROPOSITION 5

Since Proposition 5 contains both an upper bound and a lower bound
for we are going to divide the proof into two separate parts. We start
with the easy one.

LEMMA 11.1. - There exists an absolute constant Al E R, such that for
0  c  2 , we have

Proof of Lemma //.7. - It suffices to exhibit a path on which the maximal
value of F~ is less than 203C0 |log~| + Ai. Take for that purpose po E P~.
defined by, for s E [0,1]

= ~ with d = (recall that d1  4, see Section 1.6)

Vol. 70, n° 2-1999.
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(since vo E Co and v~d1 E po is a path in where the map vd was
constructed in Section 1.4. From Lemma 1, we then deduce that, for s &#x3E; 8~

Hence,

Consider the one variable function ~ from R+ to R defined by

This function achieves its maximum at the point

so that we obtain the estimate

Choosing K in the definition of F such that

we obtain similarly

which yields the conclusion (11.1).
The lower bound for and actually a much more precise asymptotic

analysis, will be a consequence of our next result. First we introduce some
notation. Set (as in [BBH], p.42), for R &#x3E; 0, DR = {z E 1R2, |z|  jR},
HR = ~u E u(z) _ ~j on and, for E &#x3E; 0,

Set also

Annales de l’Institut Henri Poincaré - Physique theorique
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Note that, by scaling

It follows from the analysis in [BBH], that the function + 71- log t
is increasing and has a limit as Set

We shall need 0 the following § result

LEMMA 11.2. - Let 1 &#x3E; p &#x3E; eM, and ’ let w be a map from B (p) to 1R2
such that

where T denotes a unit tangent to ~B ( p), oriented properly, and where
as Assume also

Then we have ,

where depends only on ~ and as 

We postpone the proof of Lemma II.2, and turn to the central result
of this section.

PROPOSITION II.2. - Let A E IR be a given constant, and let v be a map
in Tl such that

Let vh be the regularized map obtained from v by Lemma 2. Let al and a2 be
the vortices of vh of degree ( -1 ) i given by Lemma 3 and set d = ( a 1 - a2|.
Assume d ~ 0, so that

Vol. 70, n ° 2-1999.
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Then we have

~~ A ~~ E, ~~ 

Proof of Proposition 11.2. - The proof goes back to techniques introduced
in [BBH] and [AB]. Let 03C1, ai,  and /7 be as in Lemma 3. Set

We are going to bound first Jo then J~2Bo 
Step 1. - Estimates for Jo 
Since we may consider on f~ the map

?7 = ,2014- (the bar is not a complex conjugation !)

Clearly 03C5 : 03A903C1 ~S1. Moreover

Let us estimate first We claim that

where as 

Proof of the claim (11.4). - Following [BBH], chap. 1, we have, by
Hodge-de-Rham decomposition

where

so that

Annales de l’Institut Henri Poincaré - Physique theorique
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and where H is a function defined (up to an additive constant) on We

deduce from (11.5) that

We observe that the last term is the integral of a Jacobian, i. e.

so that

where again T denotes a unit tangent to oriented properly. We
have, for any constant I&#x3E; i :

so that

Choose next

so that, since

On the other hand, we have

Vol. 70, n ° 2-1999.
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where C is some constant, independent of e. For the last inequality, we may
invoke (19) and (20). Combining (11.8), (11.9) and (11.10), we deduce that

Hence, by (II.6)

We clearly have

On the other hand, for i ~ 1, 2

so that the claim (11.4) follows. Next, using (11.4) we are going to show that

where K2 (~)-~0 as 

Proof of (II.14). - Set

Then, we have

and hence

Annales de l’Institut Henri Poincare - Physique " theorique "
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where

In view of the definition we have

Hence

Similarly, we have

Inequality (11.14) then follows, combining (11.15), (11.16), (11.17) and (11.12),
(11.13).

Step 2. - Estimates for ~’~ 
For i == 1, 2, we have

and

by ( 19). Moreover

Hence we may invoke Lemma 11.2 to assert that

Vol. 70, n° 2-1999.
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where I~3(~)-~0 as 

Step 3. Proof of Proposition 11.2 completed. - Combining (11.14) and
(11.18) we easily complete the proof of Proposition 11.2.

Next, we give the proof of Lemma II.2, which has been postponed until
now.

Proof of Lemma 11.2. - On ~B ( p), we may write, assuming for instance
+1,

where 03C6 E H1([0,203C0]), with cp(0) = 03C6(203C0). Set

We have

On the other hand, we have

where M == Since M &#x3E; 1 - on c~B ( p) . We deduce ~ that

where Therefore, since

we deduce from (11.19), (11.20), (11.21) that

where I~2 (~) ~0 as 
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We consider next the ball B(2p). We claim that we may construct a
map zi~ on B(2p) such that

and

where K3 (~) ~0 I as 

Proof of the claim. - Set

where w(z) is 81- valued defined by

and where r~(z) is real-valued, defined by

so that w verifies the boundary conditions (11.22) and (11.23). We have

Since

we verify that

where K4(~)~0 as Similar estimates for ~ yield the conclusion
(11.24).
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Proof of Lemma 11.2 completed. - In view of the definition of I we have

so that by (11.24)

The result follows from (11.3).
As a consequence of Proposition 11.2 and the 7~2014almost continuity, we

obtain the following

PROPOSITION 11.3. - We have

where depends only and as 

Proof of Proposition 11.3. - First note, that for any map v in V, verifying
a bound of the form (7), we have

where, throughout the lemma o ( 1 ) denotes some function depending only
on c, such that o(l)2014~0 as Here d(v) represents the distance between
the vortices of the map Inequality (11.26) is then an easy consequence
of Lemma 3 of the introduction.

In view of the ~2014almost continuity of the map ~, it clearly turns out
that the function d : is also ~2014almost continuous (for the same ~
given by Proposition 4 of the Introduction). Consider next a path p E 7~
that is a continuous map p from [0,1] to V such that

Recall that the value of dl is determined by (34) ; in particular

We claim that there is some so E [0,1] such that (if c is sufficiently small)
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Indeed, by Proposition IV. 1 of [AB] there exists some continuous map f
from [0,1] to R such that

On the other hand, we have

so that

It then follows by the intermediate value theorem that there is some

[0,1] such that

and (11.28) then can be deduced from (11.29).

Applying Proposition 11.2, we obtain

By (11.28), this yields

On the other hand, by (11.26), we have

Hence, by (11.28) again

which yields (11.25).

Proof of Proposition 5 completed. - It suffices to combine Proposition 11.1
and Proposition 11.2. Actually, with slightly more work, we may prove the

following

PROPOSITION 5 bis. - We have

where as 

The proof of Proposition 5 bis relies on a slight refinement of

Proposition 11.1.
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III. PROOF OF PROPOSITION 6

The proof of Proposition 6, is the key ingredient in the proof of
Theorem 1 : it is also the most technical part of this paper. The proof
will be split into two parts, Proposition III.1 and Proposition III.2, which
describe paths in the level set

for c  joining C1 and These paths will be constructed using
(partially) heat-flow techniques. This will first be described in the next
subsection.

111.1. Heat-flows for F~

Let v E V. We consider the heat-flow for FE, defined by .

where v( t, x) is defined for t, E IR+ and x E 1R2, and where

In the sequence, we will often make use of the notation

so that (111.3) can be rephrased as

The following existence ~ result can be established.

LEMMA 111.1. - Let v E V. Then there ’ solution ~( ,’) to (7//.2,)
and f77/.~~ which is smooth for all t &#x3E; 0, and such that we have vt E Y,
(Vt &#x3E; 0). Moreover, we have the inequality

The proof of Lemma O 111.1 is standard and 0 we will omit it..
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Next we assume that v E V, and verifies a bound of the form

where A is fixed and given by

for instance. We have "

LEMMA 111.2. - V, and assume ’ that v satisfies Then for
0  c  2 , and any t E [0, c~], we have

and

Proof - Write for x e R

so that

and inequality (III.7) follows by integration. Inequality (III.B) can be derived
as was inequality (26) in Lemma 2. Nexta we have

LEMMA III.2. - Let v be in Y, and assume that v satisfies (IIL 5). Thenfor
0  c  2, there exists tl E [0, cl/4] such that

where C is some absolute constant.

Vol. 70, nO 2-1999.



176 F. BETHUEL AND J.-C. SAUT

Proof. - Applying (111.4) for T = ~1~4, we have

From the definition of we deduce (with our choice .K =: 403C0 d1) that

Therefore

The conclusion then follows easily applying Fubini’s theorem.
Observe next that satisfies the equation

where

Hence, we verify that, for 0  c  ~

Hence, we may apply Proposition 2 to vl. This yields
LEMMA 111.3. - There are constants  and /1 in (0, 1), N in 1B1*, independent

o, f ’ ~, and £ points a 1, ... , a.~ in 1R2, and p &#x3E; 0, ~c &#x3E; 0, such that

and
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where as 

.e
Set SZP = 1R2 B . .U B(ai, p) . We may consider on SZP the map

2=1

which is 6~2014valued. As in the proof of Proposition 11.2, we may write

where

Arguing as in the proof of Lemma 11.4, inequality (11.21), we may prove,
using (111.17) and (111.18)

LEMMA 111.4. - We have

where ’ depends only on é, and as 

Similarly, arguing £ as in the proof of Proposition 11.2, we have ’

LEMMA 111.5. - We have

where K(~)~0 as 

Our next aim will be to construct a deformation of which decrease F~
together with H1.

111.2. A deformation for the phase term H

Since H1 is defined up to an additive constant, we may always ajust
this constant so that

so that .Hi represents somehow a phase term. We are going to construct,
on f2p a flow for based on deforming only the phase term HI, but
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not the location of the vortices, nor the modulus VI, and keeping Hl fixed
on For that purpose, we notice that

where

and

The function H enters only in the last two terms 13 and 14. Similarly
we may write

where I5 does not depend on We therefore consider the functional, for
real valued maps H on SZ p

In order to define a well-posed evolution equation for H which decreases
both Wand the L2-norm of the gradient of H, we will restrict ourselves
to a bounded domain. Therefore, we choose some R &#x3E; 0, such that
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For (111.26), we may argue as in the proof of Proposition 2, using the coarea
formula. We consider the bounded domain

and the functional

Next, we define the functional space for H. Set

(note that the constant value of 03C6 on is not prescribed) and

~ will be the functional space on which we will consider the functional W.

Set

The variational formulation for the heat flow for W on 03A3 writes :

E C~(]0, such that E ~, Vt E We supplement
this equation with initial and boundary conditions

We have the following existence result.
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LEMMA 111.6. - There ’ exists a solution H(.,.) on x 03A9 to (III.27).
(III. 29), which satisfies : VT &#x3E; 0

Moreover, as t~ + oo, ~(~, -) converges strongly in ’ H2, where ’

H 2 is the unique solution in variational form to ’

The proof of Lemma III.6, is standard and will be omitted. The main

property of the solution H2, which will be of interest for us is the following

LEMMA 111.7. - We have

where as 

Proof. - Set, for z = 1,...,~

the mean value of H2 on 9.B(~,~). Consider the solution H2 to

Since

we deduce from Lemma 111.4 that

and

where depends only on E, and We have
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so that we may use 03C8 == H2 - H2 as a test function in (111.31). This yields

We have from the definition of h,

From the Jacobian property, and since ~ = Cte on p) we see that

Hence

and, since I B7 I&#x3E; I :S ~

Therefore

Going back to (111.35), we obtain

From the fact that (by (III.30))

we deduce that

which combined with (111.36) yields (111.32), and completes the proof of
the Lemma.
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For t E [0, +oo [, we will define the map wt E V, by

and

where

(which is a number by definition of ~). We easily verify that wt is a

continuous path in V, and in view of the definition of W, we clearly have

Moreover as t~ + oo, wt converges strongly in to the map v2
defined by

where 82 = ~ 2014 H2 on 

Finally, since the vortices do not move during the flow

LEMMA 111.7. - We have &#x3E; 0,

where depends only and as 

The proof is similar to the proof of Lemma 3. Therefore, we omit it.

111.3. Deformation for the modulus

Our next purpose is to deform 7y so that this decreases F and, at the end
of the deformation, we obtain a function r~3 such that

where ’ This fact will be crucial in the proofs of

Propositions 111.1 and 0 III.2. The ideas are similar to that developped 0 in the
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previous subsection. In view of the form of we define the functional .~

for real valued function 03BE on 

where 7)2 = on n.

By Cauchy-Schwarz inequality, we verify that

where C is some universal constant independent of and ~.
The deformation will be performed in two steps.

Step 1. - We deform to a map T]l such that

Step 2. - Using (111.39), we are able to deform T]l to a map r~3 having
the desired property.
Note that the first step has only a technical purpose. For t E [0,1], we

define the map ~t in the following way. Set

On one easily verifies, thanks to (111.20), (111.25), that

so that

Next we have to verify that

To that aim, we note that

so that (III.40) follows easily. Finally we notice that ~1 satisfies (111.39),
and this completes the first step.
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Turning to the second step of our construction, we introduce the flow
for Z which writes

equation (111.41) with initial value (for t = 1 ) and boundary conditions

We have 

LEMMA 111.8. - There , solution 7/(’,’) to f///.~7~ (II1.42)
and (II1.43), defined on such that

Moreover as t-~ + oo (up to a converges strongly in H
to a solution T/3 to

The proof is standard and therefore we omit it. Next, studying 7/3 we

obtain

LEMMA 111.9. - We have

where depends only and as 

Proof - Arguing as in the proof of Lemma II.2, we may construct some
function 7~3 on H such that
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and

where as 

Multiplying (111.46) by T/3 - 7~3 we obtain, after integration by parts

so that

where

and

For h , we write

For ~2, we write, by the definition of v2

where

and
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For we note that, since

that !!V~ ~ ~, so that

For J2, we write, since

For Js, we write

Hence, combining the previous estimates, we see that

where i 

For 13 we write

so that by (III.48)

Combining (111.52), (111.53) and (111.54) we obtain

where as 

de l’Institut Henri Poincaré - Physique theorique



187TRAVELLING WAVES FOR THE GROSS-PITAEVSKII EQUATION I

We deduce from (III.53) that

where as 

We are going to show that

which clearly yields the conclusion. Since 7/3 verifies equation (111.46),
which is of the form (8), we have by Lemma B3 of Appendix B

for some universal constants C &#x3E; 0, ’r E (0,1). Next assume that (III.55)
is not true. Then, by continuity, there is some such that

then

on the ball so that

contradicting (III.55) for small c. This completes the proof of the Lemma.

III.4. Path in Fc~
At this stage, let us sum up the results of the previous subsections in

the following Lemma.

LEMMA IIL9. - Let v E Y, and assume that v verifies 5). Then there
exists a continuous path p from [0,1] to V, such that

and is non increasing. Moreover, we have
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where ’ K(c) depends only on é and The map v3 == p(l)
has the following properties : there exist .~ points in ’ a2, ... , a~, and

p &#x3E; 0 such that

Remark. - The constructions of subsections III.2 and III.3 have mainly
been introduced to obtain (111.61).

Next, we will try to construct a path connecting v3 to Co or on which
the energy F~ is decreasing. However, when c is less than the mountain-pass
value c~, we cannot connect indifferently to Co or Roughly speaking if

L(v)  27r we may connect to Co
L(v) &#x3E; 27r we may connect to Ci .

A more precise statement is given in the two following propositions.
PROPOSITION 111.1. - Let 03B4 be a number such that
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and v be a map in V, satisfying ’ 

and

Then there , exists ~0 &#x3E; 0 depending only on , such that for ~  , there ,
continuous path p : [0, 1]2014~V such that

and moreover decreasing on [0,1], and

where as 

Similarly, we have

PROPOSITION III.2. - Let 8 be a number such that

and v be a map satisfying d 

and

Then there exists a continuous path p : 0,1~V such that

and moreover Fe (p( s)) is non-increasing on 1 and

where ’ as 
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The proofs are based on scaling arguments. For instance, for

Proposition III.2, we scaled up the map v3 on 03A9 by a factor A &#x3E; 1.
However the region p) is just translated, and the technical part of the
proof consists in joining the two regions. Let us now be more precise.

Proof of Proposition 111.1. - In view of Lemma III.9 it suffices to

construct a deformation of v3 to a map in C~ . For that purpose let A &#x3E; 1,
and consider the sets

and

Note that the sets 03A903BBj are disjoint and 0 that 1R2 = U On nî we define 
a map 0 03C903BB, scaling ’ up v3, that is

On SZ2 we deduce w~ from v3 by a translation

and finally on SZ3 we define wa as a radial extension of the previous
boundary values, that is

In view of the definition of wa, wa belongs to V for any a &#x3E; 1, and

Moreover, the function is continuous from [1, +oo[ to V. Our next
task will be to show that F~(~) is non increasing.
To that aim, set for j = 1,2,3
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where we have used the notation

For 7jB we have by scaling

Since on is deduced from v3 by translation, we have

On 03A903BB3 we have

Similarly

and

Combining the previous identities, we are led to

where
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We are going to estimate each of these terms separately. For I~1 we write,
since 0  IV31 ~ 2,

Hence

For R2(~), we use (111.62) so that

For R3, we use (111.63) so that

For R4, we have, since 0  |03C53|  2, ~i == 1,2,... ,l

where C is some constant which is independent the last inequality
is a consequence of Cauchy-Schwarz inequality together with (111.62). This
yields

Finally, for R5, we have by (111.62)

where K2 ( ~ ) -~ 0 as c-tO. Going back to (111.71) and combining our previous
estimates we obtain, VA &#x3E; 1

where as For we have similarly

In view of the definition of Cf and (111.73) choose Ai E IR, so that
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(clearly Ai &#x3E; 1 since 8  3 and d1 &#x3E; 4). Recall that dl is a constant

entering in the definition of Ci and is determined by (34). Since

and since 8 &#x3E; 2, we see that if ~ is sufficiently small

so that

Hence, we deduce from (111.72), that if ~ is sufficiently small, then

hence F~ (wa ) is non increasing.
Next we are going to verify that wal E By (111.73) we have

Hence in order to prove that 03C903BB1 E it suffices to show that

To establish (111.75), note that by (111.72)

where Hence

In view of Proposition 5 bis, we deduce that

where Hence, since À18 == di, and 03B4 &#x3E; 2
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In view of the definition of 11, we have

so that

if ~ is sufficiently small. Hence E Cr.
We are able to define now the path p. Set, for s E [0, ~]

It is then easy to see that the path p has the desired properties.

Proof of Proposition 111.2. - The proof follows basically similar ideas.
We will construct a deformation of v3 to a map in Co. We set

and

In view of the definition of v3, we have

Hence, we deduce from Lemma 111.7 and Lemma 111.8 that

where Kl depends only on c, and and where

We set, as in Proposition 111.1, for 0  a  1

Annales de l’Institut Henri Poincnre - Physique theorique



195TRAVELLING WAVES FOR THE GROSS-PITAEVSKII EQUATION I

For 0  ~  1, we construct a map in the following way. On 
we set

On ~, we set

Finally, on n~, we set

Here the is a diffeomorphism of ,,4i onto = 

defined by

where fa interpolates linearily,

so that

with

and

Next, we compare ~(~;B) with ~(~3). As in the proof of Proposition 111.1,
we set, for j = 1, 2, 3

so that 7~.
j=l
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For 7jB using similar arguments as in the proof of Proposition 111.1 we
may verify that

where ’ For I~ we have 

The computation of I3 is a little more involved. For i = 1,...,~, let

(ri, 8i) (resp. r~i , 0~) be polar coordinates associated to the origin ai (resp.
~a2). We have

Set

and

We are going to estimate each of these terms. Note that, for J~

so that, by change of variables in the integrals, we have

so that, by (111.76)
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similar computations show that

where as Here we use for Lemma , 111.9.

For 1 we set for r E

so that, in view of (111.77) and Lemmas III.7 and 111.8, we may write

with

where ~3(c)2014~0 as A simple computation then shows that

with

Hence we have

From (111.82), we deduce that

where On the other hand
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Hence since ~~ ~1 ~ P , we deduce

Combining estimates (111.78), (111.79), (111.80), (111.81), (111.83), (111.84)
and (111.85), we deduce

where as Since 8  2, we have

so that F~(03C903BB) is increasing on [312’ l], if ~ is sufficiently small, i. e.

On the other hand, we easily verify that

where as In particular

if ~ is sufficiently small. In order to prove that 03C91 32 belongs to Co it suffices
to show that

We have, since

that
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by the definition of 11.

We complete the proof of Proposition III.2 as the proof of

Proposition III.1. We construct the path p : [0,1]~V by setting

It is then easy to see that p has the desired properties.
Using Propositions III.1 and III.2, we may now proceed to the proof

of Proposition 6.

III.6. Proof of Proposition 6 completed

Recall that do and do are two numbers such that

and that

with

In order to prove Proposition 6 we will argue by contradiction, and assume
that N~ does not separate Co and Cl. That means that we will assume that
there exists a continuous path p : [0,1]2014~V such that

Since L is continuous on V and since p is a continuous path in V, the
function ~ defined by

is continuous from [0,1] to R. On the other hand, since p(0) E Có (resp.
p(l) E Cf) we see that
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Now let 7/ &#x3E; 0 be a positive number such that

In view of (111.91), we see that the sets

are not empty (0 E fé, 1 E /C), and closed by the continuity of Set

so that

and

Moreover, we have

Since p(s) E Nl U 7V~ E ~s, s~, and since by (111.92), p(s) ~ 7V~ we
deduce that p( s) E E ~s, s~, that is

Set v = (resp. v = p(s)). We have

Therefore, we may apply Proposition III.1 to , and Proposition III.2 to v.
Hence, if ~ is sufficiently small, there exists a continuous path p from

~s,1~ to V such that
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and

Similarly, if ~ is sufficiently small, there exists a path p : [0, ]~Y such that

Define now the continuous path p (for c small enough) by

We verify that

and that

This contradicts the definition of c~ and completes the proof, by
contradiction, of Proposition 6.

IV. WEAK CONVERGENCE PROPERTIES

This section is mainly devoted to the proof of Proposition 8. Hence, we
consider a sequence vn in V, with the following properties

and

where A is some absolute constant, independent of c. Fo n E N, we denote
by vn the regularized map associated to vn, i.e. a minimizing map for
Gh defined by
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We also denote the number of vortices for ~ and for z = 1,..., .~n
the vortices ai of ~ defined by Lemma 3. We denote pn the corresponding
radius, verifying in particular

In view of assumption (IV.2), and Lemma 3, we see that ~ must have
two vortices a 1 and c~2 with degree -1 and 1 respectively. All other

vortices have degree zero. In view of (28) and (IV.2), we have, if ~ is

sufficiently small

On the other hand, by Proposition 11.2 and assumption (IV.2), we see that
if c is sufficiently small, then

for some constant C independent of  depending only on A.
Since the problem is invariant by translations, we reduce this invariance

by a change of origin. For that purpose, we define maps ~, ~, by setting

We also set

so that, ~ has vortices 0, a2 , ... , a~n . Since by Lemma 3, the number of
vortices is bounded independently of n, we may assume, passing possibly
to a subsequence, that

Similarly, since by (IV.5) the sequence a2 is bounded, we may assume,
passing possibly to another subsequence, that

where a2 is a point in 1R2.
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Finally, passing possibly to another subsequence, we may assume that
there exist map s v and vh in Hl ~ ( I~ 2 ) , such that

for any compact set K C 1R2. Note that by lower-semicontinuity we have

and

Note however that we do not claim that v E V, since we have no control

on the L2-norm of 1. Actually, as we will see v may not be in V.

In order to prove Proposition 8, we have mainly to show that v is

not a constant map. For that purpose, we will use the notion of minimal

connection for charged vortices, introduced by H. Brezis, J.-M. Coron and
E. Lieb in [BCL], and already used in a similar context in [AB]. Let
R &#x3E; 0, fixed so that

We may take 1~ = 10C, where C is the constant in inequality (IV.5). Next
consider the set TR of real-valued functions defined on B(R) by

Finally, for w E H1 (B(I~), I~2), set

The functional D has the following continuity property:

LEMMA IV.l. - Let wn be a sequence in H 1 ( B ( R) , ~ 2 ), such that wn
converges weakly in H1 (B (R) ) to some map w. Then, we have

Proof. - The proof is an easy consequence of the fact that the embedding
Lz(B(R)) is compact.
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Next consider a map w in Hl ~ ( (~ 2 ), such that

Let wh be a regularized map for w, a minimizer for

We have

LEMMA IV.2. - For wand wh as above,

where as c-tO.

Proof. - For ç E TR, we estimate

We write

where

and

For 7i, we have by Cauchy-Schwarz inequality

For I2, we integrate by parts, and obtain

l’Institut Henri Poincaré - Physique theorique



205TRAVELLING WAVES FOR THE GROSS-PITAEVSKII EQUATION I

Hence, we deduce as above that

and hence

The conclusion then follows easily. []
The next lemma relates the functional D to the position of the vortices

(in the spirit of [BCL]).

LEMMA IV.3. - Let wand wh be as above, and for i = l, ... , .~, consider
the vortices ai for w h. Assume that deg(ai) _ ( -1 ~ 2, for i = 1, 2 and .zero
otherwise and

Then

where ’ depends only on c and as Hence ’

where as E-tO.

Proof. - Let f : be a smooth function such that

and

Consider next the map w defined on

so that w = on H = 1R2 B U and is hence 51-valued on H.

In order to prove the Lemma, we will first compare D( wh) with D ( w ),
and then show that is close to ~2~.
Vol. 70, n 2-1999.
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Step 1. - We have

where I~1 depends only on  and 

Proof - The proof is similar to the proof of Lemma IV.2. It suffices

to establish that

and then, to argue as in the proof of Lemma IV.2. In order to establish
(IV.12) notice, that for any z E 1R2

In view of the definition of f , we hence deduce that

It follows that

which proves (IV.12). This completes the proof of the first step.

Step 2. - Estimates for D (w ) .
We write

where

where W1 =  B(ai,03C1) and W2 =

For A 1, we have, by Cauchy-Schwarz inequality
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For A2, we notice, that since w is S1-valued on W2, that

Hence integration by parts, yields for A2

where, we have set ç == 0 on 1R2 B B(~). Hence

By degree theory,

On the other hand, since 1, we have

Hence, for z = 1,... £

where we have used Cauchy-Schwarz inequality together with ( 19) et (20).
This yields finally, since deg( ai) == ( -1 ) for i = 1, 2, and zero otherwise

and finally
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In particular, since 1, and a1 - 0, we obtain, taking

where K2(e) = tends to zero as e-&#x3E;0. Taking the supremum
over all ç

We claim, that actually

It suffices to construct a map ç such that

and

It is easy to see == Inf{dist(z, ~B(R), |z-ai|} is a suitable choice.

Step 3. Proof of Lemma IV.3. - Combining step 1 with (IV.14) we easily
deduce the first estimate of the Lemma. The second estimate can then be
obtained using Lemma IV.2.
We are now in position to complete the proof of Proposition 8.

Proof of Proposition 8 completed. - We have mainly to prove that v is
not a constant map. For that purpose, we are going to prove that

which will clearly yield the desired result. To that aim we first notice that

where K(e)-~0 as c2014~0. It follows in view of Lemma IV.3 that
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Hence, by Lemma IV.2, we deduce that

which shows, that, if ~ is sufficiently small

and establishes (IV.15).

Remark. - We have actually shown that

where depends only on e and ~f(e)2014~0 as Similarly one has

V. PROOF OF THEOREM 1

Recall, that in Proposition 6 we have shown that Nê separates Co and C~.
As a consequence of the Ghoussoub-Preiss variant of the mountain-pass
theorem (i. e. Theorem 2), we deduce directly Proposition 7, that is, for
any do, do, satisfying

there exists ~1 &#x3E; 0, such that, for ~  6-1, there is a sequence 
of maps in V, such that

and
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Consider next the map vn as defined in Section IV. Up to a subsequence,
still denoted ~, vn converges weakly in H1 (K) for any compact subset K
of R~ to some map u, belonging to Hl ~ ( I~ 2 ) . Moreover we have

where depends only on ~ and tends to zero as ~~0.

Changing C1 possibly to a smaller value, we see that for c  6-1, then

Hence u is not a constant map. It remains to prove that u is a solution

to equation (6). This is actually an easy consequence of (V.4). Indeed, let
r &#x3E; 0, and consider the ball B (r) . Then V.4 implies that

where in H-1(B(r)). Hence, since the equation is actually
subcritical, it implies compactness of solutions, that is

and u verifies

Since r was arbitrary, we see that u solves (6). Since u is not constant,
this completes the existence of solutions, as asserted in the Theorem.

Inequality (5) will be proved in the next Section.

VI. PROPERTIES OF SOLUTIONS

VI.l. Decay of v(x) as 

. 

This subsection is devoted to showing that the solution v obtained in
Theorem 1 converges pointwise to 1 as ~2014~+00. Recall (Proposition B.2)
that v is bounded. Moreover
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LEMMA VI.l. - ’ 

Proof. - Since v is bounded, Lemma B.3 implies that g = (1 - |v|2)2
is Holder continuous on every ball of radius ~, with a constant which

depends only on c. Therefore g is uniformly continuous, and integrable
(since  +00). Thus g(x)~0 as + oo. The assertion on ~v

results from the standard elliptic estimates..

Actually Lemma VI.1 is valid for any arbitrary finite energy solution w of

Let w(x,) = so that

The next lemma precises the behavior of p as + oo.

LEMMA VI.2. - Let cp = 1 - 2. Then

Proof. - By a straightforward computation, one obtains

Using  +00 and Lemma VI. 1, the assertion results from the Lz

regularity of -A + 2. With some extra work, we could in fact show that

cp E Vp &#x3E; 1 (see [BS]). *
Next we turn to the behavior of the phase of w.

LEMMA VI.3. - B(:c~-~0 as + 00.

Proof. - One readily obtains from (VI. 1 ) that
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By the Hodge decomposition,

so that

and

Thus E Lp ( I~ 2 ) , 1  p  +00. On the other hand, we deduce from

[CLMS] that the right hand side of (VI.5) belongs to the Hardy space
1{1(1R2) and thus (see [H], chap. III), belongs to the Lorentz space
L2,1(R2). Finally, ~03B8 E L2,1(03A903B4), V8 &#x3E; 0, where 03A903B4 = {x E R2 , 03C1 &#x3E; 8}.

Therefore (see for instance [H] ), 8 is continuous and bounded on 08,
&#x3E; 0. One can then prove that in fact tends to some constant which

can be normalized to 0 as + oo. This will be detailled in a subsequent
paper ( [B S ] ) and will lead to :

PROPOSITION VI.4. - + 00

VI.2. Some identities

Next we establish various identities of Pohojaev type. Those identities
were formally derived in [JPR].

PROPOSITION VI.5. - Let u be any finite energy solution of

such that there ’ exists q &#x3E; 2 such that

Then, if p = 22 R2 [(u - 1) ux1 - (u - 1) where u is the complex
def

conjugate of u, one has
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Proof. - (VI.8) is readily obtained by multiplying (VI.6) by u - 1 and
integrating the real part.
To get (VI.9), we first multiply (VI.1) by x2 a 2 we integrate the real

part (as usual this can be justified by a truncation process on x2 ). After a
few integrations by parts one gets

Now we multiply (VI.7) by xl ~- and integrate the real part to get

combining (VI.I0) and (VI.l1) yields (VI.8).
Note that (VI.ll) implies also that

COROLLARY. - fW.6) has no non trivial finite energy solution whenever
C=0.

Remark that the solutions obtained by Brezis-Merle-Riviere [BMR] have
infinite energy.

VI.3 Qualitative properties of the mountain-pass solution

We will now turn to the proof of inequalities (5) and of further properties
of the solution.

In view of the semi-continuity of Eê we have

LEMMA VI.6. - The verifies

The proof is straightforward. Note that Lemma VI.6 yields the upper
bound in inequality (5).
The next Proposition displays the vortex structure of the solution and

thus justifies rigorously the numerical solution obtained in [JR], [JPR]. It

shows in particular that, in the physical coordinates, the distance between
the two vortices is of order c-1 = ~-1 as ~-~0.
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PROPOSITION VI.7. - The solution u obtained is smooth. Moreover if c  CI,
there ’ exists exactly two points al and a2 in 1R2, and a radius 03C1 such that

Moreover, we have

and

where depends only and .K ( ~ ) -~ 0 

Proof. - For the first assertion (namely smoothness), we refer to standard
elliptic theory. Next we turn to the study of the vortices of u. In view of
the bound (VI.6) and equation (6), we may apply Proposition 2 to u. This
yields £ points ~i,..., ~ in 1R2, and a radius p &#x3E; 0, such that (14) to (20)
holds. In order to establish the Lemma we have first to show that :

i) u has no degree zero vortex,
ii) u has two vortices say al, a2 of degree +1 and -1 respectively.

Step 1. Prq/. - Suppose that u has a vortex of degree zero ai i.e.

By (20), we therefore have

where K(~)--~0 as ~-~0. By Lemma of Appendix 2, this yields
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By Lemma B.4, this yields

contradicting the fact that ai is a vortex.

Step 2. Proof of ii). - We have shown that

This shows that u has two vortices of degree +1 and -1 respectively.
Assertion (VI.17) then easily follows from Lemma IV.3, (IV.16)

and (IV.17).

APPENDIX A

THE CAUCHY PROBLEM

We consider the Cauchy problem associated to ( 1 )

To reduce (A.1 ) to a standard NLS problem, we set v = 1 + u. Then (A.1 )
writes

where

The next theorem proves that (A.I) is globally well-posed, as expected for
a nonlinear Schrodinger equation with repulsion.
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THEOREM A.1. - Let Uo E There , exists a unique ’ solution

u E of (A. 2). Moreover the energy is conserved,

Proof - The local existence and uniqueness is a direct consequence of
a result of Kato ([Kl], [K2], Theorem II and II’). In order to prove the

global existence we j ust need to derive a global a priori bound in 

The following computations are formal but can be justified in the usual

way (for instance by smoothing the initial data and constructing local H2

solutions, see [Kl], [K2]). We first multiply (A.2) by ut and integrate the
real part to get

which gives a uniform a priori bound 
Next we multiply (A.2) by u and integrate the imaginary part to get

Tf 

and the uniform bound on to get from (A.5) and Gronwall’s
lemma

If d = 3, we use the Gagliardo-Nirenberg inequalities
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and the uniform bound on to get from (A.5)

which again leads to the desired L2 bound.

APPENDIX B

The aim of this Appendix is to provide proofs for Propositions 1 and 2.

We begin with some useful tools, which are adapted from [BBH].

LEMMA B.1. - Let v and f satisfy (8), (9), (10). Let zo be a point in 1R2,
and r &#x3E; 0. Then we have

Proof. - The argument is similar to the proof of Theorem III.2 in [BBH],
and relies on Pohojaev identity : it suffices to multiply equation (8), by
the Pohojaev multiplier ( z - ~o) ’ ~ u and to integrate by part on B (zo, r ) .
Then following [BBH], Section III) we obtain (B. 1).

LEMMA B.2. - and f satisfy (8), (9), (10), and let 0~ &#x3E; 0 be given,
such that 0  ,~  cx  1. There constant C1 &#x3E; 0, depending only
on a, ~3, and Co such that, for 0  ~  1,

Proof - Translating the origin if necessary, we may assume that zo = 0.
Since we have, for 01521 = ,~ + ~ == 

so that, we may assert, by Fubini’s theorem, that there is some ro E (E0152, E01521)
such that
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Going back to Lemma B.1, we deduce therefore that

The conclusion then follows from the fact that o;i &#x3E; /3.

LEMMA B.3. - Let v and f satisfy (8), (9), (10). Then there exist constants
0  "Y  1 and C2 &#x3E; 0 such that

provided ~ ~.

Proof - We may assume (translating if necessary the origin) that zo = 0.
It is convenient to perform a change of scale. Therefore consider the maps,
f and v defined by

so that v verifies

Our aim is to bound v in T~~(B(2)) for some exponent p &#x3E; 1. This will

then yield the result by Sobolev embedding. To that purpose, we consider
the ball ~(3), and write,

where

and

with
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For (B.7), we have by standard elliptic theory

for any 1  p  2. We are therefore going to estimate for a

suitable p. First note that, for 1  p  2

so that

and

Next, observe that, since by Lemma B.2

we deduce that

for some constant C, so that

Hence, we will choose p = ~. Combining (B . 8) and (B.9), we easily
verify that

where C is a constant depending only on a, ,~ and Co. As a consequence,
we deduce that
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where C is independent of 6:. Combining (B.11) with (B.9) we obtain

Since is a harmonic function, it follows that

and hence by (B.11)

By the Sobolev embedding W2~4~3 ~ Co~-~, for some 0  "y  1 we

deduce that

This yields (B.4).
The next result generalizes Theorem III.4 of [BBH] to equation (8).

LEMMA B.4. - Assume v and f verify (8), (9), (10). Then there exist
positive constants ’xo and rio depending only on Co, and /3 such that, if for
some zo E 1R2, and some £ &#x3E; 0, such £ &#x3E; 203BB0~ we have

then

Proof. - Assume that there is a point zl in .B(~o~) such that

Then, by Lemma B.3, we have

with r = where C3 = Inf (l, (4~-)~~). It follows that we have
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~2
Take ’B0 == C3 and ~o == -3~~’ We then have

contradicting (B.13). This completes the proof of the Lemma.
The next result is a first step towards locating the vortices (in the spirit

of Proposition IV.4 of [BBH] or Proposition IV.2 of [BR]). It yields a local
version (i. e. on the scale of Proposition 1.

LEMMA 8.5. - Assume that v and f verify (8), (9), (10), and let

0  {3  0152  1. Let zo E 1R2. There exists a constant N03B1 E N, depending
only on 0152, {3, Co, and £ points x1, ... , x~ in B(x, n 0, such that

and

(Ào being the ’ constant in Lemma ’ B.4).

Proof - The proof relies on a covering argument. Consider a covering j
of the ball by a collection of balls Ao~), i E I such that

and

Consider next the subset J of I defined, by

By (B.17), (B.18) and Lemma B.2, we see that

where the constant C depends only on Co, {3 and 0152. On the other hand,
if some z E is such that
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then, by Lemma B.4, we have

Hence

This establishes the Lemma.

Our next aim is to deduce, from the local behavior on regions of scale EQ,
a global behavior on 1R2. Here, we follow basically the approach of [BR).
we start again with a technical tool.

LEMMA B .6. - Assume v and f verify (8), (9), (10). Let zo be some point
in ~2, and assume that

Then there exists a constant Co:, depends only on cx, {3 and Co, such that

Proof. - Set

Using the same argument as in the proof of Lemma B.2 (cf inequality (B.3)),
we may find some r1 E such that

By Lemma B.1 (Pohozaev inequality), it follows that

Assume now by contradiction that A verifies
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and if ~ is sufficiently small, we obtain

which implies, by Lemma B.4 that

A contradiction. Hence (B.20) cannot hold, we have

This completes the proof.
We are now in position to "globalize" Lemma B.5, that is, to prove

Proposition 1 of the introduction.

Proof of Proposition 1. - We follow very closely the proof of
Theorem IV.1 of [BR]. We use again a covering argument. Consider a
covering of 1R2 by balls J5(~~~), 1~ E I, such that

and

Consider the subset of I defined by

Since

We clearly see that

where C is some constant depending only on Co, 0152 and /3. Let now
zo E 1R2 be a point such that
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for some &#x26; ~ J. Then, we have

so that

It follows from Lemma B.6 that

Hence we have proved that

Since Card J is bounded independently of c, it suffices to invoke

Lemma B.5 to complete the proof of the Proposition.
We next proceed with the proof of Proposition 2. We closely follows a

preliminary version ( 1992) of [BBH] : the ideas have also been presented
in [AB]. We begin with a preliminary result, which turns out to be very
useful (see Lemma VI.1 of [AB]).

LEMMA B.6. - Assume that 03C5 and f satisfy (8), (9) and (10). E [Rt
consider the set

Then there exists some ço E (1 - log ~ ~ 2 , 1 - such that

and T (~o) is an union of smooth curves. Here denotes the 1-dimensional

measure (i. e. the length).

Proof - Set

Since
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we deduce that

On the other hand, the coarea formula yields

The Lemma then follows from the mean value inequality.
Since the proof of Proposition 2 is rather lengthy, we will split it in

several lemmas. We start with a purely combinatorial fact.

LEMMA B.7. - Let N E N*, and consider a collection of points 
with

Let 0  ~  2, and let 0  ~c  1 be a , f’zxed constant. Then there exists
~o &#x3E; 0 such that if 0  ~  ~o, then there exist 1~ E 1B1 and a subset J

of I such that 
.

and

Proof of Lemma B.7. - The proof is by induction, using a finite number
of steps (actually, at most N steps).

Step 1. - We have to distinguish two cases.

Case 1. - such that i 

In this case the proof is complete with
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Case 2. - There exist two points in 7, say and al (if we write
7 == {I,..., £}) such that

We eliminate the point a~ from the collection, and set

We then proceed to step 2.

Step 2. - Two cases may occur.

In this case, the proof is complete by (B.26), with

Case 2. - There are two points, say and ~Tl such that

We eliminate the point from the collection and set

We then proceed to Step 3, and we use the same argument with ~20142 points.
More generally, at step q we are left with ~ 2014 ~ + 1 points ai,..., 

such that

Arguing as in Step 1 or Step 2, we distinguish two cases.

Case 1. - We have

In view of (B.26) we then have, for j E ~.~ - q + 2, ... , ~}
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if ~ is sufficiently small. Hence, the proof is complete with

Case 2. - We have for two points in Jq, say a.~ _ q ~ 1 and 

We remove the point of the collection and proceed with step q + 1.
Since at each step we remove one point from Jq, the proof is completed

in at most N steps.
We apply the previous Lemma to the collection {ai} of points given by

Proposition 1. This yields us a family of points with

having properties (B .23 ), (B .24) and (B .25 ) . we next turn to a suitable
choice of radius p around the vortices: actually for technical reasons we
have to introduce two different radius po and p 1. We begin with po :

LEMMA B.8. - The~e exists a radius po E such that 

is suffcciently small)

and

Proof. - Let (1 - 2 |log~|2, 1- 1 |log ~|2) be the number obtained in

Lemma B.6. Consider . next, the subset B of defined by

We claim that

Indeed the set T(~o) consists in an union of smooth curves, which do

not intersect. We keep only the maximal curves, in T’(~o). i.e. if one
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curve encloses another one, we keep only the exterior one. Let T~ be the
collection of maximal curves in T(~~) and let Dk be the domain enclosed
by Tk. We have

For i E J, let (af, {3f) be the smallest interval such that

so that

Since

the conclusion (B .31 ) then follows immediately.
Set ,A = (~~k , ~~‘~+ 2 ) ~ S. We have by Fubini’s theorem

Assume now by contradiction, that for any 03C1 ~ A

Integrating this inequality, we obtain

We have
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where, for the last inequality, we have used (B.31). Hence going back
to (B . 34) we are led to

which contradicts (B.32). Hence (B.33) cannot hold for any 03C1 ~ A and the
existence of /9o is established.

An important consequence of Lemma B.8 is the following

PROPOSITION B .1. - Assume that

Then if ~ is sufficiently small

There are only two possibilities, setting di = deg( ai)
i) ¿ |di| I = 0, and all vortices have degree zero.

iEJ

ii) ¿ |di| = 2, and Vê has two vortices, say al and a2, with degrees + 1
iEJ
and -1 respectively. All other vortices have degree .zero.

Proof - Arguing as in the proof of Lemma II.2, we may show using
(B.29), (B.30) and Theorem IX.3 of [BBH], that

where C is some constant. Hence, since we obtain

On the other hand, by assumption ( 13) we have
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so that if ~ is sufficiently small

which implies, assuming (B.36), that

For the second assertion of the proposition it suffices to observe, that

otherwise the energy of 03C5 would be infinite. The conclusion then follows

easily, since di G Z.

In what follows wP will that

and assume that

then we have

LEMMA B .9. - Assume (8.40) and (8.41 ) hold. Then, for p E ( k+1/
we have

where C is some 

Proof. - The proof is similar to the proof of (11.14). Therefore, we omit it.
Next, set for i E J,

We have
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LEMMA B.10. - Assume that (B. 40) and (8.41 ) hold. Then we have, if
0  ~  ~

if v verifies (13).

Proof - It suffices to combine ( 13 ), (B.38) and (B .42) for 

Finally, we are going to choose a new radius p 1 E having
suitable properties for Proposition 2.

LEMMA B.11. - If ~ is sufficiently small, then there exists a radius pl in
such that

and

Proof. - The proof is similar to the proof of Lemma B . 8. Therefore,
we omit it.

We are now in position to complete the proof of Proposition 2.

Proof of Proposition 2 completed. - Choose

and

Clearly, in view of our previous results, ( 14) to ( 18) are satisfied, with these
choices, as well as (19) by Proposition B.1. It remains to establish (20).
Assuming ~ai - a2~ &#x3E; i6, we may use Lemma B.10. Combining it with

(B .43 ), we deduce that

where C is some absolute constant. Arguing as in the proof of Lemma 11.2,
we introduce on 1R2 B U the map

ZEJ
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and notice that

where ~i(6-)-~0 as ~--~ 0 (here we use the fact that H &#x3E; 1 - on

On the other hand, since v is S1-valued,

Hence

Going back to (B.44), we deduce from (B. 45 ) that

where ~2(~)~0 as This establishes (20) for i 2:: 3. The estimate for

i == 1,2 can be obtained similarly.
This completes the proof of Proposition 2.

Finally, we complete this Appendix by a result of independent interest,
which will be useful in Section VI and Appendix C.

PROPOSITION B.2. - Assume / verify (8), (9) and (10). Then, there
exists 2 C depending on Co such that

Proof. - The proof relies on a combination of Lemma B.2 and

Lemma B . 3 .
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APPENDIX C

PROPERTIES OF THE FUNCTIONAL L

Proof of Lemma 2. - One may verify that Gh is weakly sequentially
continuous on V. Hence, its infimum is achieved. It is then easy to deduce
the Euler equation (25). For (27) it suffices to write

Finally for (26), we have

We have, by Cauchy-Schwarz inequality

Similarly, integrating by parts, we have

Since h == ~1~4, combining the above inequalities, we obtain (26).

Proof of Lemma 3. - All the properties described in Lemma 3 are direct
consequence of Proposition 2, except (28). Therefore we only have to
prove (28). We divide the proof in several steps.

Step 1. - Let ~ a 1, ... , a,~ ~ and p be as in Proposition 2. There exists a
radius R1 &#x3E; 1 such that the following properties hold.
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In particular we have

Proof - Since

we have

Hence, there exists some Ro &#x3E; 0 such that for R &#x3E; Ro

and

Next, we claim that there exists some R1 &#x3E; Ro such that (C.3) holds.

Indeed, otherwise we would have by Fubini’s theorem

a contradiction.

Finally (C.4) can be deduced from (C.2) by Cauchy-Schwarz inequality.

Step 2. - Set

and n( z) == ~ otherwise. Then, we have
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Proof. - Set

so that, on SZP

We have

where C is some constant. On the other hand, we have, by proposition B.2

and a similar estimate holds for

Combining the previous inequalities, we deduce the conclusion (C.5)

Step 3. - We have

Proof. - First note that on SZP we have |03C5h| &#x3E; 2 , and hence we may
write locally

where (/? is some real function. It then follows that
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so that

We multiply this relation by the function x2 : 1 z = ix2--~x2 and
integrate by parts on This yields

Here T denote the unit tangent vector to oriented counter-clock
wise. We notice that

and that

where we have made use of (20). We deduce from (C.8) and (C.9) that

On the other hand, we have

and

Combining (C.7), (C.10), (C.11 ) and (C.12) we are led to
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To complete the proof, it remains to estimate the integral on the r.h. s

of (C.13). First note that

so that

where we have used estimate (C.3). Hence we have

where we have used (C.3) and (C.14). Going back to (C.13) we derive (C.6).

Step 4. Proof of Lemma 3 completed. - Combining (C.5) and (C.6), we
deduce easily the desired estimate.
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