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1. Introduction. In this paper we study a class of travelling shear waves in incom-
pressible nonlinearly viscoelastic media with three goals:

i) to present exact solutions for a family of properly invariant equations of non-
linear viscoelasticity,

ii) to study the roles'of nonlinear elastic response and nonlinear viscous response
in determining the qualitative behavior of solutions,

iii) to study the behavior of solutions in the limit as the viscous dissipation ap-
proaches zero in order to illuminate the shock structure of the system of hyperbolic
conservation laws that result from this limit process.

An important way to study a hyperbolic system of the form

U, = f(U)z (1.1)
is to examine its relationship to a parabolic system of the form

U, = f(U)z + AUzz (1.2)
where A is a small constant semi-positive-definite matrix. (Here and throughout this
paper subscripts denote partial derivatives.) The motivation for introducing (1.2)
comes from gas dynamics: Equation (1.1) may be regarded as describing a one-
dimensional flow of an inviscid fluid and Equation (1.2) that of a Newtonian fluid.
Within solid mechanics, however, there is no compelling reason to expect to find
dissipative mechanisms of a kind inspired by that of classical fluid dynamics.

Our Equations (2.12), (2.13), which describe a special class of motions of a very
general family of nonlinearly viscoelastic materials, can be cast in the form

d_
dt
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L w4
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;1.3)

where ^ and u depend on u] -I- uj, 2(wiM3z + «2«4Z), u\z + u2Az. System (1.3) allows a
dependence on uzz far richer than does (1.2). That (1.3) is parabolic-hyperbolic can
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be expected to cause serious analytic difficulties (to which we allude in Section 6).
On the other hand, the mathematical structure of (1.3) is special in several ways, as
a consequence of its role as a correctly posed, fully nonlinear problem of mechanics.

In Sec. 2, we formulate the governing equations for the special motions of our
viscoelastic materials. In Sec. 3, we obtain the equations for travelling waves and
determine many of their qualitative properties. In Sec. 4 we study the effect of small
viscosity, thereby obtaining viscous shock profiles. Here we show the paramount role
played by the elastic response and the surprisingly minor role played by the viscous
response. In Sec. 5 we discuss shock admissibility criteria. We comment on questions
of stability and existence in Sec. 6. In Sec. 7 we compare our results with those for
systems like (1.2).

2. Formulation of the governing equations. Let {i,j, k} be a fixed right-handed
orthonormal basis for Euclidean three-space. The reference configuration for the
body under study is the entire space, a typical material point of which has the form
Xi + Yj -I- Zk with X, Y,Z real. We study shearing motions of the space that take this
material point to the point x'\ + y] + zk at time t with

x = X + u(Z,t), y — Y + v(Z,t), z — Z. (2.1)
We henceforth replace the argument Z of the displacements u and v with z.

Relative to the basis {i,j, k} the left Cauchy-Green tensor B and the stretching
tensor D have matrices

B
1 -(- ul UZVZ uz
uzvz 1 + v2 vz

uz vz 1

d=5
0 0 uzt
0 0 \zl

uzl vzt 0

(2.2a, b)

Note that detB = 1 so that (2.1) describes an isochoric motion.
We assume that the space is filled with an incompressible isotropic homogeneous

viscoelastic material of differential type of complexity 1. For such a material the
Cauchy strees T is given by a constitutive equation of the form

T = -pi + S(B, D) (2.3)
where p, the unknown pressure field, is the Lagrange multiplier maintaining the
constraint of incompressibility, I is the identity tensor, and S, the extra stress, is
an isotropic tensor function of its two arguments. (Cf. [24, Eq. (35.9)]. S could
also depend on p (cf. [1]), but such dependence will not affect our analysis.) A
representation theorem of Rivlin and Ericksen [21, §27] (cf. [24, Eq. (13.7)]), shows
that S has the form

S(B, D) = y/,B + y/2D + ^3B2 + y/4D2 + ^S[BD + DB] + y/6[B2D + DB2]

+ y/7[BD2 + D2B] + ^8[B2D2 + D2B2] (2.4)

where y/\, y/% are isotropic scalar functions of B and D. Since the eigenvalues of
D are distinct except when uz, = 0 = vzl or since the eigenvalues of B are distinct
except when uz = 0 = vz, a further result of Rivlin and Ericksen [21, §34] (cf. [24,
Eq. (11.22)]) asserts that y/\,..., depend on the invariants

trB, trB2, trB3, trD, trD2, trD3, tr(BD), tr(BD2), tr(DB2), tr(B2D2) (2.5)
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(except possibly when uz,vz,uzl,vzl vanish simultaneously). Here tr denotes trace.
When B and D are given by (2.2), a lengthy computation shows that all entries of
(2.5) depend upon r) = [t]0, r]\, t]2) where

rj0 = u2z + vl t]\ = 2(uzuz, + vzvzt), rj2 = u2zt + v]t. (2.6)

Moreover, a further computation shows that (2.4) yields constitutive equations of
the form

i • (Sk) = h{t])uz + v{v)uzt,
j - (Sk) = //(»i)vz + v{r))vzt, (2.7)
k-(Sk) =£(„).

We assume that the scalar functions fi, v, £ are continuously differentiable.
We assume that the density of the reference configuration is uniform. Since the

medium is incompressible, this density is also the density of any deformed configu-
ration. Without loss of generality we take this density to be unity. If the medium is
subject to zero body force, then (2.3), (2.7) imply that the equations of motion are

-px + Luuz + vuzt]z = u„, (2.8)

-Py + [ftvz + vvzt]z = vtt, (2.9)

[~P + Z]z = 0. (2.10)

Since u and v are independent of x and y, Eqs. (2.8) and (2.9) imply that p is
affine in x and y while (2.10) implies that pz is independent of x and y. Thus p
must have the form

p(x, y, z, t) = m(t)x + n(t)y + q(z, t). (2.11)

If we assume that the pressure field (at infinity) is independent of x and y, then
m = 0 = n and (2.8) and (2.9) reduce to the autonomous system

(ixuz + nuzt)z = u„, (2.12)
(/ivz + vvz,)z = v„. (2.13)

After (2.12) and (2.13) are solved, q can be found from (2.10) to within a function
of t, which is determined by conditions at infinity.

More generally, we could set

U = uz, V = vz. (2.14)

Then (2.8), (2.9), (2.11) yield, in place of (2.12), (2.13), the related autonomous
system

[fiU + uU,]zz = Ult, (2.15)
[ftV + uV,]zz = V„. (2.16)

In this case m, n and the various functions of t that arise from integration are deter-
mined by conditions at infinity. Note that the presence of certain body forces would
also yield (2.15), (2.16).
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To avoid minor technical difficulties we limit our attention to (2.12), (2.13). Note
that this system admits the elegant complex form

(fiwz + uwzt)z = w„ (2.17)

for w = u + iv, with % = |wr|2, rji = (|wz|2)r, m = \wzt\2.
We assume that

M-,0,0)>0. (2.18)
This assumption, which is not critical in our development, is a consequence of the
Baker-Ericksen inequality (cf. [23, §53]). We also require that (2.12), (2.13) be
parabolic in the sense that the matrix

d(HU:+W:t) d(nu~_+uu=,)
du:t dv:,

d(uv:+vv:,) d(nu:+ UV;l)
du:, dvz,

This condition, which has thermodynamic significance, ensures that the constitutive
equations (2.7) describe a dissipative material.

If we let n o = §^, H.\ = etc., then (2.19) is equivalent to

v + 2[>,iu\ + (fi2 + v,\)uzuzt + v2u2zt] > 0, (2.20a)
v + 2[u iv2 + (/i,2 + v,\)vzvzt + u2v2,] > 0, (2.20b)

r i
u2 + 2v

is positive-definite. (2.19)

J«. 1 *7o + + v,i)h +V.2I2 ~l~ 4(/z 1 u2 ~ H,2v,i){uzvz, - V:uz,)2 > 0.
(2.21)

From (2.20) we obtain

v

We further require that

^,i>7o + +K\)ri\ +v,2tl2 > 0. (2.22)

uzt(iiuz + uuzt) + vz,{/ivz + vvzt) —> 00 as u2zl + v2, —> 00. (2.23)

3. Travelling waves. We seek travelling wave solutions of (2.17) of the form

w(z, t) = w (1—— ^ (3.1)
7

where c (without loss of generality) is a positive constant and y is a positive constant
to be assigned later. We denote derivatives of vv with respect to its argument by
primes. Substituting (3.1) into (2.17) we obtain the ordinary differential equation

(fxw' - cy~^vw")' = c2vv" (3.2)

where the arguments of // and v are y~2\w'\2, -c7~3(|vv'|2)', c2y~4|vv"|2. We integrate
(3.2) once to get

HW-cy~xvW' = c2W + a (3.3)

where
vv' = yW — ytj + iyV (3.4)

and where the constant of integration a can be taken to be real and nonnegative
because our problem is invariant under rotations of the complex W-plane. (For
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elastic materials u — 0 and y. depends only on t]0 = \W\2, so that (3.3) reduces to a
very uninteresting relation. But elastic materials do possess a very interesting family
of standing shear waves. Cf. [2].) From now on we omit the carets over tyTJ,V.
Note that the scaling of (3.4) is quite natural, and is consistent with (2.14).

We now study how the phase portrait of (3.3) in the complex W phase plane
depends on a, c, and the constitutive functions // and v. We first examine the
degenerate case in which a = 0, so that (3.3) is equivalent to

cvU' = y(n - c2)U, cvV = y(fi - c2)V (3.5a,b)
Note that derivatives of U and V are hidden as arguments of n and v in (3.5). But
(2.19) and (2.23) support a global implicit function theorem to the effect that (3.5) is
equivalent to a system in standard form, in which U', V are expressed as functions
of U, V,c, y. The trajectories of (3.5) lie on rays through the origin of the H^-plane.
The singular points of (3.5) consist of the origin together with those circles of radius
A about the origin for which

H{A2,0,0) = c2. (3.6)
There can be any number of such circles because the only restriction we have imposed
on fi(-, 0,0) is (2.18).

To find the actual nature of these radial trajectories we observe that (3.5) causes the
last term in the left side of (2.21) to vanish. Let S(c, y) be the set of all (U,KU', V) e
R4 satisfying (3.5). Then (2.21) implies that

v I v + 2 1 /^,l>70+ 2 (<".2 + ".l)l +U.2rl2 > 0 (3.7)

on S(c, y). Thus u cannot vanish on S(c, y). Now (2.20) implies that v(0,0,0) > 0.
Since (0, 0,0,0) e S(c, y) and since v is continuous, we can conclude that u is positive
on the connected component of S(c,y) containing (0,0,0,0). That (3.5) can be put
into standard form implies that S(c, y) is connected. Thus v is positive on S(c, y).
From (3.5) (or better yet, from its version in polar coordinates) we then find that
trajectories move radially outward where n(tj) > c2 and W ± 0 and inward where
H{rj) < c2 and W ^ 0 (as the phase y~'(z — ct) increases). Moreover, (3.5) implies
that - c2 can vanish only on the singular circles defined by (3.6) and possibly
at the origin. Thus we have a complete phase portrait of (3.5). A typical example is
illustrated in Fig. 3.8.

Now we turn our attention to the general case in which a > 0. Then (3.3) becomes

cvU' = y(n - c2)U - ya, cvV' = y{n - c2)V (3.9a,b)
from which we obtain

cu[UV' - VU'] = yaV (3.10)
We introduce polar coordinates R, 0 by

U = R cos0, F = sin 0, (3.11)
in terms of which (3.9) becomes

cvR' - y(n - c2)R - yacosQ, (3-12)
cvR& = ya sin 0 (3.13)
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Fig. 3.8a. A typical graph of the constitutive function 0. 0) show-
ing the two roots A\ and A2 of (3.6) when c2 has the indicated value.
Since u is continuously differentiate, the slope of R >-> m(R2, 0,0) is
0 at R = 0.

1/

Fig. 3.8b. Phase portrait of (3.5) corresponding to Fig. 3.8a. The two
families of trajectories attracted toward the circle of radius A, are
heteroclinic. Note that as the c2 of Fig. 3.8a is reduced to zero, the

two singular circles approach each other, coalesce, and then disappear,
whereupon the phase portrait is globally that of a node and contains
no heteroclinic trajectories.

where rj = (R2, -2cy~l RR',c2y~2[{R')2 + (tfO')2])-
The singular points of (3.9) occur when U' = 0 = V or possibly where v = 0.

In the former case the positivity of a readily shows that the corresponding singular
points are of the form (t/*, 0) where U* is a solution of

[fi{U2,0,0)-c2]U = a. (3.14)

Suppose v = 0. Then (3.10) implies that V = 0. Now the assumptions (2.19) and
(2.23) support a global implicit function theorem implying that (3.9) can be written
in the standard form

U' = f(U, Vc, a, y), V = g{U,Vc,a,y)V (3.15)
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[ p. [U2,0,0)-c2] U

Fig. 3.15. If //(•, 0,0) has the form shown in Fig. 3.8a, then U
lM(U2,0, 0)-c2]t/ has the form shown here and the intersection of its
graph with a horizontal line with a small enough ordinate a determines
the five roots U\ U$ of (3.14).

Moreover, (3.9) implies that g must be even in V. Thus V = 0 when V = 0.
On the other hand, (2.20b) implies that (V')2u2 > 0 when u = 0 (and V = 0),
which contradicts the fact that V = 0. We conclude that not only are there no
singular points corresponding to the vanishing of v, but that v can vanish nowhere
on solutions of (3.9). Note that the singular points are determined solely by the
elastic response. While it would be perfectly reasonable to supplement (2.18) with
the requirement that U i-+ Ufi(U2,0,0) be increasing, such an hypothesis would say
nothing about the number and disposition of solutions of (3.4). In Fig. 3.15 we
illustrate the construction of roots U\, Us of (3.14) when n(-,0,0) has the form
shown in Fig. 3.8a.

It is important to note that the singular points are collinear. They accordingly
correspond to states with constant and parallel W's. If U i-> U/u(U2,0,0) is strictly
increasing, then c2 and a can always be adjusted so that (3.14) has two prescribed
roots.

To classify these singular points, we linearize (3.9) about them, obtaining the
uncoupled system

c(y + 2nAy-*U})SU' = y{ji - c2 + 2ii,0U2)SU, (3.16a)
cvSV' = y{fi - c2)SV (3.16b)

for the variations SU.SV. Here u, n, n0, n,\ have arguments U},0,Q. Note that
(2.20) ensures that the coefficient of SU' in (3.16a) is positive, while (2.21) ensures
that v > 0. The roots of the characteristic equation for (3.16) are

y[(li - c2) + 2n,0U2] y{n - c2)
c{yu + 2n,\U}) ' cu ■ ( ' j

Note that the numerator of (3.17a) is just y times the derivative with respect to U
of the left side of (3.14) at roots of (3.14). It changes sign at simple roots. Its
denominator has fixed sign, by our preceding remarks. From Fig. 3.15, which is
typical, we find that n - c2 is positive at positive roots of (3.14) and negative at
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negative roots. Thus if (3.14) has only simple roots, then the singular points are either
saddle points or nodes and their determination follows immediately from (3.14).
That (3.16) is uncoupled means that the stable and unstable separatrices through
each saddle point are parallel to the coordinate axes at the singular point and that
if the two roots in (3.17) are not equal, then each node has axes parallel to the
coordinate axes. Thus, we have

Theorem 3.18. The location and the type of the singular points of (3.9a,b) depend
only on the elastic response ^(-,0,0).

When the situation of Fig. 3.15 holds, U\ is an unstable node, U2 a saddle point,
U3 an unstable node, f74 a stable node, and Us a saddle point. See Fig. 4.6.

4. Viscous shock profiles. In this section we study the behavior of travelling wave
solutions of Eqs. (2.12), (2.13) where fi and v are given by

H = Ju(lo ) + eji{ri), i/ = ev[ti) (4.1)

where e is a small positive number. We note that unlike simpler models of viscosity
(cf., for instance, Conley and Smoller [5], T. P. Liu [17], Majda and Pego [20]) the
parameter e cannot be scaled out of the system of equations (2.12), (2.13), (4.1).
Substituting (4.1) into (3.9a,b) and introducing the travelling waves (3.1), we obtain

cey~l0U' = (Ji - c2)U + efiU - a, csy~li>V' = (JI - c2)V + efiV (4.2)

Suppose for large values of |?/i| and \rj2\ that fi and 0 have the form

/}(»?) = Mi{r]o)\ri\|*[sign(?7i )f + M2{t]0)\rj2\l/2 + ...,
= iVi(f/o)|r/i|p + N2(ri0)\t]2\q/2 + ...

where M\, M2, N\, N2, are prescribed functions, where fi = 0 or 1, where k, /, p,
q > 0, and where the ellipses denote lower-order terms. We now set y — sa and seek
an appropriate choice of a. We substitute (4.3) into (4.2) noting that in the resulting
equation the only e's that appear have exponents 0, 1 — a( 1 + p), 1 - a( 1 + q), 1 - ak,
1 - at. These are the candidates for the smallest exponent on e. Let us consider the
case in which q > p,k - 1, / - 1; the treatment of all other cases is similar. Then
the candidates for the smallest exponent are 0 and 1 - a(l + q). If they are not
equal, then the coefficients of the smaller must vanish, producing an inadmissible
degeneracy. We consequently take a = (1 + q)~x. After some tedious calculation we
find that the leading terms of (3.9), corresponding to the limit of s approaching zero,
can be reduced to the form

U* = Cu~c2)U-at y, = (44)

with
D = cNV*"1 {[(/7 - c2)U - a]2 + [(/Z - c2) V]2}^.'2

Since the denominators of (4.4) are the same, we conclude that the only effect of the
terms N2 and q is merely a nonlinear rescaling of the orbits. These observations lead
to
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-a2 -u5 -u4 -a

Fig. 4.6. Typical phase portrait for the reduced system (4.4) when Ji
has the form of 0,0) of Fig. 3.8a. The horizontal and vertical iso-
clines are shown as dashed curves. Note that the horizontal isoclines
other than the (/-axis are circles. Separatrices are shown as heavy
curves. The portrait is symmetric about the [/-axis. For this prob-
lem, the disposition of the horizontal and vertical isoclines completely
determines the topological character of the phase portrait.

Theorem 4.5. The qualitative properties of the phase portrait of (4.4) (which corre-
sponds to (4.2), (4.3) with e = 0) are completely determined by the elastic response-p.

In Fig. 4.6, we exhibit the phase portrait of (4.4) when Ji has the form of fi(-, 0,0)
shown in Fig. 3.8a. In this case Fig. 3.15 is valid. It is a straightforward exercise to
determine the qualitative behavior of U and V on any trajectory of Fig. 4.6.

In view of the remarks following (3.5) and the construction leading to (4.4), we
can write (4.2), (4.3) in the form

U' = [(Ji - c2)U - a]D+ ct>{U Ve) = f(U, Ke),
V = {]I-c2)VD-l + y/{U,Ke)V = g{U,Ve)V

where <f> and (// afe continuous, <j>(U,V0) = 0 = i//(U,K0), and </>(•, •, e) and y/(-, s)
are continuously differentiable. (Cf. (3.15).) 0 and ^ need not be continuously
differentiable in e because the most important terms excluded from (4.4) could be
proportional to with /? e (0, 1). But we avoid this difficulty simply by introducing a
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new small parameter co = eP, (a change of variables, which, with foresight, could have
been performed ab initio). Then the resulting composite functions corresponding
to <t> and yy would be continuously differentiable in U,Kco. Thus, without loss of
generality, we take <f> and yj of (4.7) to be continuously differentiable.

We next study how the location of the horizontal and vertical isoclines of (3.9)
depend on e for e small.

Let us recall the following elementary theory (which does not seem to be readily
accessible). Let h be a small positive number and let R2 x (-h, h) 9 (x, e) h-> f(x, e) €
R be a continuously differentiable function. Let the gradient §j(x, 0) of / with respect
to x at e = 0 satisfy

|£(x.0)#0if/(x,0) = 0. (4.8)

Then
/(x, 0) = 0 (4.9)

defines a C1 -curve in R2, to which we can give the parametric representation s ► x(s)
with x continuously differentiable. By definition of a C1-curve, the function

df,"(*) = g£(x(s),0)/ dx*(s).°) (4.10)

assigning the unit normal vector to the curve x is well-defined and continuous. Now
set

g(s, t, s) = f(x{s) + tn{s), e). (4.11)
Then (4.9) implies that g(s, t, 0) = 0, regarded as an equation for t in terms of s, has
a solution t — 0. Since

gt(s, 0, 0) = 0) • n(s) ± 0 (4.12)

by (4.8) and (4.10), the implicit function theorem implies that for e sufficiently small
the equation g(s,t,e) = 0 has a continuously differentiable solution t = t(s, e) with
t(s, 0) = 0. Thus for small e, the curve s x(s) + t(s, e)n(^) is continuously differen-
tiable and approaches the curve 5 >-»■ x(j) as e —> 0, uniformly on compact subsets of
R2.

The horizontal isoclines of (4.7) are the curves in the (U, F)-phase plane satisfying

g(UVe)V = 0. (4.13)

The isocline V = 0 is independent of e, so we need only consider other branches
of horizontal isoclines, for which g(U, Ve) = 0, V ± 0. We identify g(U, Ks) with
/(x, e) of the preceding paragraph. Then (4.9) is equivalent to

Ji(U2 + V2) = c2 (4.14)

(which describe circles) while (4.8) yields

(U2 + V2)~p0(U2 + V2) ± 0 (4.15)

for U, V satisfying (4.14), V / 0. Thus, if Ji has the form of ^(-,0,0) of Fig. 3.8a,
then the horizontal isoclines of (4.7) are close to those of (4.4) on compact sets
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when e is small. The treatment of the vertical isoclines is analogous. The condition
corresponding to (4.8) is

(IJIqU2 + Ju - c2, 2pUV) ± (0,0) when [Ji(U2 + V2) - c2]U = a. (4.16)
(Here a > 0). Hence we deduce

Theorem 4.17. On any compact subset of {{U,V)\ V / 0}, the horizontal and
vertical isoclines of (4.7) approach those of (4.4) uniformly as e —► 0. If R i->
Ji(R2) - c2 has only simple zeros, then the horizontal isoclines of (4.7) approach
those of (4.4) uniformly as e —> 0 on any compact subset of the phase plane. If
U h-> [ju{U2) - c2]U - a has only simple zeros, the same statement applies to the
vertical isoclines.

The above result is a theorem on the structural stability of the isoclines of (4.7). A
similar theorem can be obtained for those orbits of (4.7) that connect nondegenerate
equilibrium points. First, we note that system (4.4) is gradient-like, i.e., there is a
real-valued function K(U,V) which increases along nonconstant solutions of (4.4).
To see this we note if D were unity, then the right-hand side of (4.4) would have a
potential k(U, V). We can then define K = D~lk. Now, suppose that C is an orbit
connecting two nondegenerate equilibrium points of (4.4), say a saddle point to an
attractive node. As shown before, these points are also nondegenerate equilibrium
points of (4.7). Let TV be a neighborhood of C containing no other equilibrium points
of (4.7). It is easy to show that the function K makes (4.7) gradient-like in ./V if e is
sufficiently small. We are now in a position to use a theorem of Conley and Smoller
[4], Since C is an orbit connecting two equilibrium points, its Conley index, h(C),
is 0 (cf. Smoller [23], p. 453). We note that C is the maximal invariant set of (4.4)
in N. A consequence of the definition of the Conley index is that h{C) = 0 where C
is the maximal invariant set of (4.7) in N. Since (4.7) is gradient-like and h(C) = 0,
Theorem 22.33 of [23] implies that there is a connecting orbit for (4.7) in N. These
remarks lead to

Theorem 4.18. The orbits of (4.4) connecting nondegenerate equilibrium points with
(Conley) index 0 continue as connecting orbits of (4.7) for e sufficiently small.

5. Admissibility of shocks and viscous shock profiles. In this section we study the
admissibility of shock waves of

utt - {Jiuz)z = 0, v,t — (Jivz)z = 0 (5.1)
where JH depends only on ?/0. Under appropriate conditions on Ji the above system
is hyperbolic. Let U\ = uz, Ui = vz, w3 = ut, u4 = vt, and u = (u\, U2, uj, w4). Then we
can write (5.1) as the fourth-order system

u, = [f(u)]z = fluz (5.2)
where

f(u) =

"3
U4

~pu 1
L/Z u2->

du

1
df
T~ u
ou

0 0 10
0 0 0 1

ju + 2^i0u2 2iu0uiu2 0 0
2 J10U\U2 ~p+2jl0U2 0 0

(5.3)
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We note that (5.1) is formally the same as the equations governing the planar mo-
tion of a nonlinearly elastic string and, in that context, has been studied extensively
by Keyfitz and Kranzer [13] and by Shearer [22], Also, Antman and Guo [2] ex-
hibited standing wave solutions of (5.1) under assumptions on Ji that are physically
reasonable for shearing motions of incompressible nonlinearly elastic bodies.

System (5.2), (5.3) is hyperbolic for all values of rj0 = u] + u\ for which ~p0 and
Ji 4- 2?ioJi0 are positive. In particular, the four eigenvalues of are ±y/^o an<^
±y/ji + 2t/o/7o with ^e first two linearly degenerate. Moreover, system (5.2), (5.3)
fails to be strictly hyperbolic at all points for which Ji0 is zero.

Solutions to the initial value problem of a quasilinear hyperbolic system generally
develop discontinuities or shocks in finite time. For this reason it is necessary to seek
solutions of these systems in the wider class of weak solutions where the propagation
of these discontinuities is allowed and well posed. Unfortunately, uniqueness is lost
in this larger class of admissible solutions. There has been a considerable amount
of research into obtaining the proper admissibility criterion for choosing a unique
solution. The question of uniqueness has been settled for some systems of conser-
vation laws (cf. DiPerna [8]). These systems have the property, among others, that
the characteristic fields are either linearly degenerate or genuinely nonlinear. The
question of uniqueness of solutions still remains open for systems, such as ours, that
fail to be genuinely nonlinear. Furthermore, there are several admissibility criteria
that, either for physical or mathematical reasons, are candidates for the appropriate
extra condition needed for the unique determination of a solution to (5.2). In this
section we make a comparison of the "generalized entropy condition" (cf. Liu [16])
and the "viscosity" criterion in the context of (5.2).

Let us denote a discontinuity of (5.1) by (s, u~,u+) where 5 is the speed of prop-
agation and where u- and u+ are the limits of u about the discontinuity from the
"left", and the "right". Then the Rankine-Hugoniot jump conditions for (5.1) are

-s[wi] = [m3],
= [uA,1 1 _ (5.4)

-s[u3] = IUUi],

-j[m4] = [flu2l
where [w] = w+ - w~. We next eliminate the velocities w3 and w4 from (5.4) and
introduce the polar coordinates (r, 6) in the (wi, «2)-plane by setting u\ = rcosd,
U2 = r sin 6, where r2 = t]0. We then substitute these relations into (5.4) and conclude
that (5.1) admits only shocks for which [6] = 0 or [/*] = 0. Shocks of the second kind
are linearly degenerate. In the remainder of this paper we discuss the question of
admissibility of shock waves of the first kind. Note that the shock across which 8 is
continuous corresponds to the collinear singular points for travelling waves discussed
in the paragraph preceding that containing (3.16). The shock across which Ji is
continuous corresponds to travelling waves with <3 = 0. (Cf. (3.6).)

Before stating our results, we need to introduce the concept of the generalized en-
tropy criterion. We assume that (s, u-, u+) satisfies the Rankine-Hugoniot conditions
(5.4) and set s = s(u~, u+). Let u~ be in R4. Let 5(u~, u) be the set of all points in R4
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that can be connected to u~ by a shock, i.e., let (u~, u) satisfy the Rankine-Hugoniot
conditions for some s. A triple (s, u~,u+) is said to be admissible according to the
generalized entropy condition of Liu [16] if

s(iT",u) > s(iT,u+) (5.5)

for every u on .S'(u~>u+) between u~ and u+. For (5.1), inequality (5.5) requires
that the chord connecting (r~, r~Ji((r~)2) to (r+, r+~p((r+)2) remain above the graph
of the function r i-> rji(r2) for all r between r~ and r+. We remark that (5.5) is
reasonable when r~ and r+ are of the same sign but it fails to hold, unless Ju is a
constant function, when r~ and r+ are of opposite sign since r /7(r2) is obviously
even.

For constitutive functions that are globally genuinely nonlinear it is not difficult
to show that inequality (5.5) reduces to the classical shock conditions of Lax [15],
which require that an admissible shock is produced by the intersection in forward
time of characteristics of the same family. Specifically, a shock (s, u~,u+) is said to
be admissible according to Lax's criterion if

[/I + 2(M? + ul)~p0]\(u- u-} >S2> ~P\(u;,uIy

S2>[Jl+ 2{u] + W2)£,o]I«,«2+) > 7*l(u+«+)•

In the terminology of [15], inequalities (5.6) are equivalent to the definitions of
an admissible 4-shock and an admissible 1-shock when /Z0 is positive. Moreover,
although (5.6) is a reasonable assumption when (5.1) is strictly hyperbolic, we do not
expect it to hold for every u\, u2 between the points {u\, mJ) and (w{\ u\) since the
constitutive function, (0,00 )9ch r~p{r2), is neither convex nor concave.

Does the shock solution obtained from the vanishing viscosity method satisfy (5.5)
and (5.6) and vice versa? To what extent does the validity of (5.5) and (5.6) depend
on the form of n and ui A partial answer to these questions is given by

Theorem 5.7. Let (s, u~,u+) be a shock that satisfies (5.5) with strict inequality for
u 7^ u+ and also satisfies (5.6). Let fi and 0 satisfy (4.3). Then there is a one-
parameter family of travelling wave solutions of (2.12), (2.13) that converges to this
shock pointwise almost everywhere as s approaches zero.

Proof. Without loss of generality, we assume that uf = 0. Following the calcula-
tions that led to (4.4) and (4.7) we find that u\{£,) and u2(£), with £ = y~'(z - st),
satisfy

. (7/ - c2)u\ — a ,, ,
«i = — T, + <t>{u\,u2,e),

f (5.8)
"2 = ^ °D + V("i> "2. e)w2

where 0 and y/ are as defined in (4.7). The parameter a is chosen such that (wj~> 0)
and (mJ, 0) are equilibrium points of (5.8). Condition (5.6) guarantees that (wf.O)
is a saddle point and that («|, 0) is an attractive node. The strict inequality in (5.5)
implies that there are no other equilibrium points between them. It follows from the
second equation of (5.8) that the w,-axis is invariant under (4.3). Also, linearization
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of (4.3) about (w^.O) reveals that the unstable manifold of this equilibrium point
is tangent to the Wi-axis. Thus the unstable manifold remains in the Wi-axis and
approaches the attractive equilibrium point (m|,0).

We note that if the strict inequality in (5.5) does not hold, then there is at least
a third equilibrium point (u*, 0) with u\ < u* < which prevents the unstable
manifold from reaching (wf,0). Thus, in this case, although the generalized entropy
condition is satisfied for both (5, u~,u+) and (s, u~,u*), only the latter state satisfies
the viscosity criterion.

6. Comments on stability and existence. In this section we study the stability of
the viscous shock profiles described by Theorem 5.7 when // and v satisfy (4.1).
Furthermore, we present a proof of the existence and uniqueness of the solutions
to the initial-boundary value problem of (2.12), (2.13) for a class of constitutive
functions.

As in the previous section, (2.12), (2.13) subject to (4.1) can be written as the
system

u, = f(u), + e[G1(u,uz)ii + G2(u,uz)iiz]r, (6.1)
where

f(u)

" U 3

«4

Jiu\

The eigenvalues of M = are

r0 0 0 0
0 0 0 0
jx 0 0 0

L0 fi 0 0J

g2 =

ro 0 0 0
0000
0 0 V 0
0 0 0 0

(6.2)

A, = -yjn + 2t]0ju0, A2 = -y/fl, A3 = sJJl, A4 = H + 2t]0/iQ. (6.3)

Let 1, and r, denote the left and right eigenvectors of M normalized so that 1, • r, = 1
(1, is the right eigenvector of MT). Then

1,"Mr,'= 2M|[A2 + (^-Ai)2] for /= 1,4,

vul (6.4)
h ■ Mr,- = 2^2[^2 + - ^>)2] ^ ' = 1. 3,

where A, = a-^, i = 1,2.
In recent years there has been a substantial amount of research on the stability

of travelling wave solutions of systems of the form (6.1) where G) = 0 and G2 does
not depend on uz (cf. Liu [17], [18], Goodman [10], Majda and Pego [20]). Since v
and t]0 are positive, (6.4) implies that condition (3.21) of [17] is satisfied. For these
special systems Liu [17] and Goodman [10] also required that

C = (l1,l2,l3,l4)TG2(u)(r1,r2,r3,r4) (6.5)

be positive-definite. A lengthy calculation shows that in our case, however,
1 0 0 11
0 110
0 110

-1 0 0 1J
c = 5 (6.6)
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which is a singular matrix of rank 2. We also point out that our model (with Gi = 0,
G2 = G2(u)) satisfies Majda and Pego's [20] definition of linear stability, but does
not satisfy their definition of strict stability.

Recently Liu [18] showed that a condition like (6.5) is not needed to prove the
stability of viscous shocks for the one-dimensional equations of a compressible heat-
conducting Navier-Stokes fluid. Presumably his approach could be extended to (6.1)
with Gi = 0 and G2 independent of uz. We point out that models of viscoelastic-
ity satisfying these conditions were treated by Kanel' [12] and MacCamy [19]. A
richer class of physically reasonable dissipative mechanisms, which could ensure the
positive-definiteness of (6.5), are discussed in the last paragraph of Sec. 7. All these
observations indicate that the stability of viscous shock profiles remains an important
open problem for general systems of the form (6.1).

We next turn to the question of existence, uniqueness, and regularity of solutions to
(2.12), (2.13) subject to traction-free boundary conditions specified at the two planes
z = 0 and z = 1. The program we follow is the one introduced by Friedman [9] in the
context of linear parabolic differential equations with nonconstant coefficients and
applied successfully by Dafermos [6] to an equation of one-dimensional nonlinear
viscoelasticity. The idea of the proof of the existence theorem is as follows. Given a
parabolic equation having coefficients that are Holder continuous together with their
appropriate derivatives, one proves that the Holder norm of the solution, together
with its derivatives of order up to 2 in z and up to order 1 in t, are bounded by
the Holder norm of the boundary data and the forcing term. The analysis leading
to these estimates has two stages. The first is a lengthy and meticulous estimation
of the Holder norm of the second derivative of the solution in terms of the Holder
norm of the solution itself and the forcing term. This analysis relies solely on local
estimates of the fundamental solution of the parabolic equation. The second stage is
an estimate of the Holder norm of the solution in terms of the boundary data and the
forcing term [9, p. 121]. This estimate relies crucially on the maximum principle, a
property that our system lacks in general. The local existence theorem in [6] is proved
by combining the above a priori estimate with the Leray-Schauder theory. The proof
of existence for all time relies on energy estimates and on growth conditions imposed
on the nonlinearities that control the elastic and the viscoelastic responses.

Our existence theorem follows the program by Dafermos [6] very closely. We shall
point out some of the differences in our model and otherwise refer the reader to [6]
for the methodology. We begin with the following assumption. Let M be the matrix
of partial derivatives of )iuz + uuzt, H-Vz + uvzl with respect to uz, vz. Let N be the
matrix defined in (2.19). Our assumption concerning the elastic and the viscoelastic
responses is

|Mv|2 < (Nv, v), (6.7)

for v e R2. This assumption is a generalization of (2.2) of Dafermos [6]. (As
pointed out in [3] his assumption may not be physically reasonable for bodies suffering
compression, but is perfectly satisfactory for the description of shearing motions.)

A careful study of the proofs of the bounds of the fundamental solutions of lin-
ear parabolic equations with nonconstant coefficients obtained in [9] reveals that the
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same bounds can be obtained for such parabolic systems. In order to use this in-
formation to obtain a priori bounds on the Holder norm of the solution in terms of
Holder norms of the forcing term and the initial data we need to invoke a maximum
principle. For that reason we assume that n and v are functions of rj0 only and invoke
Theorem VII.2.1 of Ladyzenskaja et al. [14] which provides the maximum principle
for systems whose highest-order spatial derivatives are uncoupled. A tedious and
lengthy manipulation now shows that all of the a priori estimates obtained in [6] also
hold for (2.12), (2.13) and that the proof of the existence and uniqueness presented
in [6] goes through in our case. We summarize these remarks in

Theorem 6.8. Let n = h{yjq), u = v{r\o) be twice continuously differentiable. Let
»o, Mi, v0, V] be twice continuously differentiable functions of z with m'-(0) = m'-(1) =
v;'(0) = v-(l) = 0 for / = 0,1. Suppose (2.19) and (6.7) hold. Then (2.12), (2.13) has
a unique solution in C2+a([0, 1] x [0, T]) satisfying the initial condition

u{z, 0) = u0(z), v(z,0) = v0(z), Ut{z, 0) = U\{z), v,(z, 0) = Vi(z), (6.9)

and the boundary conditions

uz{0, t) = vz(0, t) = mz(1, t) = vz(l, t) = 0. (6.10)
7. Conclusions. Conley and Smoller [5] studied (1.2) finding that the qualitative

behavior of the phase portrait for travelling waves depends crucially on the form of
A. Indeed, they exhibit A's for which there are no orbits connecting singular points.
Majda and Pego [20] studied (1.2) when A depends on u. They showed that the A's
for which there are no connecting orbits could be excluded by the imposition of a
further requirement they call strict stability.

In Sees. 3 and 4 we showed that the qualitative properties of the phase portrait for
(4.2), (4.3) are scarcely affected by the nature of the viscous dissipation. This result
stands in marked contrast to that of Conley and Smoller, whose phase portraits,
corresponding to a limited class of dissipative mechanisms, are highly sensitive to
changes in the mechanism. Whereas some of their equations lack enough connecting
orbits, we confront the opposite problem that some pairs of singular points are joined
by an infinity of connecting orbits. The chief difference between our model and theirs
is that ours comes from a correctly formulated physical theory and theirs does not.
Our equations also fail to be strictly stable in the sense of Majda and Pego [20],

In Theorems 4.17 and 4.18 we proved results on the structural stability of our
phase portraits. We point out that the concept of structural stability is in a certain
sense inappropriate from the viewpoint of the underlying mechanics. Qualitative
properties of solutions need not be invariant under all small changes of (2.12), (2.13),
but only under changes of ^ and v, for only these changes are consonant with the
representation theorem delivering (2.4).

Admissibility conditions, such as that of Liu [16], which is based on the mathe-
matical question of uniqueness for Riemann's problem, illuminate some of the issues
associated with the multiplicity of connecting orbits, but do not resolve them fully.
What may be required is a much deeper investigation of admissibility conditions
generated by the evanescence of a whole array of dissipative mechanisms including
viscosity, heat conduction, and strain-gradient effects (cf. [7], [11].)
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