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Location of earthquakes is a primary task in seismology and microseismic

monitoring, essential for almost any further analysis. Earthquake hypocenters

can be determined by the inversion of arrival times of seismic waves observed at

seismic stations, which is a non-linear inverse problem. Growing amounts of

seismic data and real-time processing requirements imply the use of robust

machine learning applications for characterization of seismicity. Convolutional

neural networks have been proposed for hypocenter determination assuming

training on previously processed seismic event catalogs. We propose an

alternative machine learning approach, which does not require any pre-

existing observations, except a velocity model. This is particularly important

for microseismic monitoring when labeled seismic events are not available due

to lack of seismicity before monitoring commenced (e.g., induced seismicity).

The proposed algorithm is based on a feed-forward neural network trained on

synthetic arrival times. Once trained, the neural network can be deployed for

fast location of seismic events using observed P-wave (or S-wave) arrival times.

We benchmark the neural network method against the conventional location

technique and show that the new approach provides the same or better

location accuracy. We study the sensitivity of the proposed method to the

training dataset, noise in the arrival times of the detected events, and the size of

the monitoring network. Finally, we apply the method to real microseismic

monitoring data and show that it is able to deal with missing arrival times in

efficient way with the help of fine tuning and early stopping. This is achieved by

re-training the neural network for each individual set of picked arrivals. To

reduce the training time we used previously determined weights and fine tune

them. This allows us to obtain hypocenter locations in near real-time.
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1 Introduction

Earthquakes observed in the crust and the upper mantle are

caused by natural forces or induced by human activity (possibly

both in the case of triggered seismicity). Location of the observed

earthquakes is one of the crucial tasks of seismology and

microseismic monitoring as hypocenters play key role in

interpretation for natural seismic hazards (earthquake

disasters, tsunamis) or in mitigation of unwanted induced

seismicity and interpretation of microseismicity related to

human activity (oil and gas reservoirs, geothermal extraction,

CO2 sequestration, etc.). For example, a rapid and automated

earthquake location using initially identified arrivals of direct

P-waves is needed for early warning systems (e.g., Cremen and

Galasso, 2020) or tsunamis to be able to determine size of the

natural earthquake and mitigate hazards associated with

unpredictable seismicity.

Induced seismicity, whether in mines (e.g., Foulger et al.,

2018) or induced by unconventional production (Ellsworth,

2013) requires locations for mitigation of felt seismicity in

previously seismically quiet intraplate areas in different parts

of the world. The induced seismicity hazards use the so-called

‘traffic light system’ (TLS) originally developed for mitigation of

seismicity in geothermal exploration (Häring et al., 2008) and

later applied to a wide range of underground operations (e.g.,

Verdon and Bommer (2020); Schultz et al. (2020)). This TLS

usually requires real-time detection, location and size

characterization of induced seismicity. Real-time locations of

weak induced earthquakes (microseismic events) are used to

image subsurface stimulations, delineate fault movements and

optimize energy extraction (Maxwell et al. (2010) or Duncan and

Eisner (2010)). All of these methods utilize automatic location

algorithms.

The automatic location methods for induced seismicity have

been studied for at least two decades (see, e.g., Foulger et al.

(2018) for an overview). Traditional location techniques use

arrival times of the direct P- or S-waves and are mainly used

in downhole monitoring (Rutledge and Phillips, 2003), while

more recent techniques use diffraction stacking to locate

microseismic events by enhancing signal-to-noise ratio (e.g.

Duncan and Eisner, 2010; Anikiev et al., 2014). Both

techniques are used for automated location from local

monitoring arrays (with thousands of channels in surface

monitoring). The advantage of using arrival times or

diffraction stacking is in lower requirements on accuracy of

velocity model, as only direct arrival times are needed.

At the same time, the full-waveform-based location methods

do not require picking (e.g., Li et al., 2020) and allow

implementations independent of variability in the acquisition

geometry from event to event. This is not the same for picking-

based locations where picks may and may not be available on

certain stations as discussed later. In this study we focus on a

location method using direct P-wave arrivals, a classical

seismological problem which requires only the P-wave velocity

model. This location method requires pre-existing picking

(automated or manual) of multiple P-wave arrival times but is

less sensitive to velocity model errors.

The machine learning (ML) methodologies are

increasingly applied to seismic data processing to provide

real-time results, deal with consistently increasing amount of

data and take advantage of growing computational resources

which can handle them. ML attracts increasing attention in

geoscience (Dramsch, 2020) and geophysics (Yu and Ma,

2021) in general, as well as in seismology (Kong et al.,

2019), mainly for detection and location tasks (e.g., Zhu

and Beroza, 2018; Mousavi and Beroza, 2020; Mousavi

et al., 2020; Saad and Chen, 2021), but also for de-noising

(e.g., Saad et al., 2021; Birnie and Alkhalifah, 2022), source

mechanism determination (e.g., Nooshiri et al., 2021;

Steinberg et al., 2021), reconstruction of ground-shaking

fields (e.g., Fornasari et al., 2022) and other purposes. The

use of ML algorithms also brings consistency in processing

rarely achievable by manual processing.

In supervised ML one constructs a mathematical model,

which is trained by using labeled data (also called training

data), to make predictions (of, e.g., hypocenter locations) from

new unseen data (data which were not labeled). For example,

Perol et al. (2018) studied induced seismicity in Oklahoma,

United States, using a convolutional neural network (CNN).

They trained the network on data from 2709 events recorded

on two stations to roughly locate earthquakes belonging to one of

six regions. Kriegerowski et al. (2018) applied CNNmethodology

to swarms of natural earthquakes from 8 to 12 km depth in West

Bohemia, recorded on nine local stations, they located clustered

earthquakes with greater consistency than manual processing.

Tous et al. (2020) reported the results of applying a deep CNN for

P-wave earthquake detection and source region estimation in

North-Central Venezuela. Zhang et al. (2021) developed a deep

learning early earthquake warning system that utilizes fully

convolutional networks (FCN) to simultaneously detect

earthquakes and estimate their source parameters from

continuous seismic waveform streams. To train the network,

they collected 773 cataloged earthquakes with magnitude ranging

from 2.0 to 3.7.

Previously mentioned methods reveal a certain limitation, as

they require large manually pre-processed historical catalogs for

training the CNNs or FCNs. Generally, those solutions are quite

demanding in terms of the amount of training data needed, as

well as in terms of training time costs. For example, a CNN-based

method that does not rely on the historical database was

proposed by Vinard et al. (2021), who applied CNNs trained

on synthetic data to improve result obtained by an imaging

method based on a grid search. Usage of a neural network with a

simpler architecture that needs less or no training data (and

therefore is faster to train) is needed for induced seismicity as

often there is no pre-processed historical dataset which can be
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used. Simply there are many cases when there is no seismicity

recorded prior to any activity that may induce it.

In this study, we propose a new method of utilizing a feed-

forward artificial neural network (ANN) to determine

hypocenters, which is trained on synthetic traveltime data to

overcome the problem when there are no real samples in the

study area. We found this easier to train than CNN and it does

not require any historical dataset. Original methodology and tests

on synthetic datasets are summarized in Hao et al. (2020) where

an initial implementation of the idea was demonstrated on a 2D

synthetic model. This was followed by the first testing on real data

presented in Anikiev et al. (2021). In this paper, we extend the

method and analyze the results to develop a practical location

method based on our initial results reported earlier. In particular,

here we study the method on 3-D synthetics and extend the

analysis to field data towards developing a practical approach to

the problem.

All earthquake location techniques require a seismic velocity

model and depend on its accuracy. Our methodology assumes

subsurface velocities to be known, so that calculation of the

traveltimes from the subsurface locations can be performed

properly. Using arrival times as an input automatically leads

to averaging over the velocity model and results in lower

requirements on the high resolution of the velocity model.

This advantage is common for all traveltime-based location

algorithms and the cost of that is the requirement of picked

arrival times. Alternative location algorithms require more

detailed knowledge of the velocities to model full waveforms

(multiply scattered and trapped waves) and hence may result in

large errors where such a model is not available. Recent progress

in automated picking using machine learning (e.g., Wiszniowski

et al. (2013); Zhu and Beroza (2018); Bhandarkar et al. (2019)) as

well as template matching (Ross et al., 2019) represent various

efficient solutions for picking that can be combined with a neural

network location technique based on time of picked arrivals. By

choosing the wave arrival times as an input for ANN, we pre-

select the physically meaningful feature to be trained on.

Therefore, we deliberately exclude the feature selection

essential in training of more sophisticated networks like CNN.

Machine-learning-based methods outperform classical

location algorithms in terms of computational efficiency

because location using a trained network does not depend on

the location grid size and step. Also, neural network provides

natural interpolation of locations between the training grid nodes

as the weights of the NN smooth the output. Classical location

methods, instead, need to utilize probability density functions

(see, e.g., Eisner et al., 2010) to smooth the misfit assuming

Gaussian distribution of the image function. We show that the

developed ML location is potentially more reliable due to high

sensitivity of the estimated hypocenters to errors in picked arrival

times.

In contrast to the published works of Perol et al. (2018),

Kriegerowski et al. (2018) and Tous et al. (2020), we train the

network using a synthetic dataset. This is particularly important

for monitoring of induced seismicity because in most cases there

are no recorded historical earthquakes in the area (before the

purpose-built seismic receiver network). Training on synthetics

does not require labeled earthquake data. Once trained, the

neural network can be used to locate real events using their

observed P-wave arrival times as an input.

We use synthetic data to analyze the factors that may affect

the performance of the neural network. It is important to

emphasize that in our study we consider a typical

microseismic monitoring setting with many stations (usually

several hundred) deployed over a relatively small area (usually

about 5 km by 5 km). However, the methodology in general is not

limited to this type of acquisition geometry. Through numerical

tests, we explore the accuracy of the proposed method as a

function of several parameters, including velocity model

complexity, station network distribution, and the size of the

training data. Finally, we apply the developed machine-learning

methodology to location of microseismicity occurred during real

hydraulic fracturing operations in the Arkoma basin in the

United States of America. The resulting hypocenters are

compared with locations obtained by a conventional

traveltime-based location method (Eisner et al., 2010) based

on the maximum likelihood principle (Anikiev et al., 2014;

Anikiev, 2015). We show that the locations are similar if not

better and the ANN-based methodology is less sensitive to

gridding issues and more sensitive to outliers (false positive

event detections) in data.

2 Methodology

To locate the earthquake hypocenters, we utilize an ANN

trained on pre-processed traveltimes calculated from a grid of

synthetic earthquake locations. The input is provided as a vector

of size defined by the number of P-wave arrival time picks.

2.1 Feed-forward neural networks

A feed-forward neural network is a composition of neurons

organized in layers. Each neuron represents a mathematical

operation, whereby it takes a weighted sum of its inputs plus

a bias term and passes them through an activation function. The

output of a neuron is then passed on to subsequent neurons as

their inputs. Mathematically, the output, ζ, of a neuron is

given as:

ζ � f ∑
i

wi χi + b⎛⎝ ⎞⎠, (1)

where ωi is the weight associated with the input χi, b is the bias

term, and f () represents the activation function (Anikiev et al.,
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2021). A nonlinear activation function is typically used to learn

nonlinear relationships between the input and the output.

Training of a neural network refers to the mechanism of

adjusting the networks’ weights and biases to correctly map

the input to the output provided in the training data.

2.2 Event location using feed-forward
neural networks

For the seismic event location problem, the input layer of the

neural network comprises one neuron per station for the total

number of recording stations in the monitoring network. The

output layer will contain one neuron for each coordinate axis.

Hidden layers of neurons are used to learn nonlinear

relationships between the input and the output.

To locate the hypocenter of a detected seismic event that

was recorded at the stations of an earthquake monitoring

network, we use its registered P-wave arrival times. In order to

get rid of dependence on the origin time, we use the deviation

of arrival times from their mean as the input to the ANN,

that is

Δti � ti − 1
N

∑N
i�1

ti, (2)

where ti denotes the P-wave arrival time registered at the i-th

station. N denotes the total number of the stations. Δti is the

deviation of arrival time relative to the average arrival time. It is

worth noting that even though the event origin time is not

available, Δti is not affected by it due to the subtraction in Eq.

2. The proposed methodology allows us to locate events from

P-wave arrival times only (or S-wave arrival times only). The

generalization to combinations of P- and S-waves or more

complex arrivals is discussed later.

Based on our experience in training an ANN model, we

found the training to be often slow while directly using the input

consisting of Δti. Therefore, we scale the input Δti to the range [0,
1] to accelerate the training process by using the following

normalization:

τi � Δti − Δtmin

Δtmax − Δtmin
, (3)

where Δtmin and Δtmax denote the minimum and maximum of all

Δti values in the whole training data, respectively. It must be

noted that for consistency Δtmin and Δtmax are used not only for

training but also while evaluating the trained ANN model for

predictions.

The training data for our network are generated synthetically.

For a given velocity model that is discretized into regular grids,

we define a number of potential source positions inside an

identified seismic zone of interest and calculate the

corresponding traveltimes using the factored fast sweeping

method (Fomel et al., 2009). We define the arrival time as the

time of observed arrival of a seismic wave (P-wave in our case),

while traveltime is the synthetic time of the seismic wave

propagation between a source and a receiver. Using Eq. 2, we

compute the deviations of traveltimes for a set of training

sources, and then scale them using Eq. 3 to obtain the scaled

traveltime deviations which are then fed as input to the ANN

model. The outputs of the ANN are the predicted coordinates of a

source.

To build and train the feed-forward ANN, we use Keras

API (Chollet, 2015)—an open-source neural network library

that runs on top of Tensorflow (Abadi et al., 2015). We use the

rectified linear unit as activation function for the hidden

layers while the output layer uses a linear activation function.

The loss function for training the ANN model is chosen to be

the averaged squared L2-norm of residuals between the

predicted location and the associated label from the

training set:

J � 1
L
∑L
l�1

‖x l( )
ANN − x l( )

Syn‖22, (4)

where L is used to denote the total number of synthetic

sources, while xANN and xSyn denote the coordinate vectors

for the predicted source location and true source location,

respectively.

Then training the neural network amounts to being an

optimization problem of minimizing the loss function given in

Eq. 4. To do so, we use the Adam optimizer (Kingma and Ba,

2014) with mini-batch training. The training of the network

terminates when the network’s weights and biases are adjusted,

misfit between the input and the output (defined by the loss

function 4) is below a certain threshold. While increasing the

hidden layers and/or the number of neurons in each hidden layer

may result in improved performance on the training set, beyond

a certain point, it leads to the problem of over-fitting, causing

poor performance on test data. Hence, we deliberately designed

the neural network architecture through trial and error (Hao

et al., 2020).

2.3 Event location in case of missing data

In field data, it is often the case that some stations do not

record a seismic event, or the records are too noisy leading to the

inability to pick a wave arrival. Due to a fixed architecture, the

ANN model expects input for all stations that it has been trained

on. This makes the application of the proposed approach tricky

in the case of field data. To overcome this problem, one approach

is to retrain the ANN model only for the stations that have the

observed P-wave arrival picks. However, it is time consuming to

train the ANN each time from beginning, and, therefore, we

propose to use fine tuning instead. Fine tuning is a machine
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learning technique where model parameters (weights, biases)

trained for one task are reused as initial model parameters for

another similar task (Anikiev et al. (2021) use a more broad term

“transfer learning”, but “fine tuning” is more appropriate in this

case).

In this study, the network parameters obtained after

training of the original neural network with all available

receivers as input are used as starting weights for training

of a new neural network with the reduced input. In other

words, for each new seismic event, we re-train a reduced ANN

that is limited to the distribution of stations on which this

event has picked arrivals only. To make this re-training faster

we use parameters initialized using those from the originally

trained ANN with all available stations as input. We show that

such re-training is fast and allows near-realtime location. The

relevant weights and biases can be easily copied from the

original trained neural network model with all available

receivers given that the order of stations in the input layer

is defined and is consistent between the models. Location

using fine tuning significantly reduces the computational

overhead without compromising on the accuracy of the

predictions.

2.4 Origin time determination

Last but not least, apart from coordinates of a seismic source

location algorithms usually provide also the origin time of event.

In the proposed method, the origin time t0 can be estimated by

minimizing the least squares misfit F (t0) between the actual

picked arrival times ti and the traveltimes tci computed for the

corresponding receivers for the determined event location (x0, y0,

z0) shifted by t0:

F t0( ) � ∑N
i�1

ti − tci x0, y0, z0( ) + t0( )( )2.

3 Synthetic data examples

To explore the sensitivity of the proposed methodology on

different factors that affect the location accuracy, we design a set

of simple 2-D synthetic numerical experiments. Figure 1 shows

the P-wave velocity model considered for the tests. The model

spans 6 km in horizontal direction and is 2.5 km in depth with a

grid step of 10 m in both directions. The rectangular box (in

cyan) shows the zone of interest (2000 m in x by 500 m in z at an

average depth of 1750 m) where we model the synthetic

earthquakes. The P-wave velocity distribution in the model is

represented by a vertical gradient from 2.6 km/s to 4.35 km/s. In

total 121 stations are evenly distributed on the surface (top of the

model) with a 50 m interval (blue triangles in Figure 1). This

ensures a minimum offset-to-depth ratio of 1:1.

The architecture of the feed-forward neural network is shown

in Figure 2. The network consists of three hidden layers with

40 neurons (M = 40 in Figure 2) in each layer (Hao et al., 2020).

The number of neurons in the input layer equals the number of

stations (N = 121 in Figure 2), while two neurons in the output

layer correspond to the two coordinate axes (D = 2 in Figure 2).

The activation function for the hidden layer is the rectified linear

unit (ReLU), a piecewise linear function, while the final layer has

the linear activation function. ReLU is the default activation

function for modern deep learning networks (e.g., Glorot et al.

(2011)). The source code showing implementation of the

described neural network model in Python is available in the

Supplemental Material.

FIGURE 1
The 2-D P-wave velocity model considered for the tests. The cyan rectangular box shows the zone of interest with expected seismicity. Green
dots represent 451 source positions used for training. Blue triangles on the top of themodel denote 121 seismic stations. Themodel is taken fromHao
et al. (2020).
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To train the network, we use synthetic data generated for a set

of artificial sources placed on a regular grid in the zone of interest

(the green dots and the rectangular box in Figure 1). Having

trained the network on these sources, we test the method by

feeding synthetic arrival times from 100 test sources randomly

placed in the zone of interest. The traveltimes are calculated by

the fast sweeping method (FSM, Zhao (2005)) at various station

positions on the surface.

Following Hao et al. (2020), we present a systematic study of

the different factors affecting the accuracy of the location with the

ANN method. We used 1000 epochs to train the ANN in each

numerical test, whereas the number of stations and the number

of training grid points during these tests were varied (see

Table 1). The result show that the accuracy of the located

events slightly decreases with the number of training sources

while training time is still very short.

3.1 Effect of noise in test data

To measure the sensitivity of the ANN to potential errors in

picking P-wave arrival times, we test the network by feeding in

traveltimes (of test events) contaminated by Gaussian noise. We

train the network using traveltime data from 451 training sources

located inside the rectangular box shown in Figure 1 and spaced

at an interval of 50 m along both x and z axes. The times of wave

arrivals are modelled at the 121 stations on the surface (see

Figure 1). Assuming no systematic bias in picking, we consider

that picking errors result from random errors (noise). We

consider two noise levels by adding to the arrival times a

random Gaussian noise with zero mean (μ) and standard

deviations (σ) of 10 ms and 20 ms.

Figure 3 shows examples of arrival times of a single test

event after subtracting the mean value (see Eq. 2),

FIGURE 2
Network graph for a 3-layer perceptron withN input units andD output units, where N is a number of seismic stations with picked wave arrivals
and D is a number of spatial dimensions. Each hidden layer contains M hidden units.

TABLE 1 Training time and standard deviation of location errors for different number of training sources and stations.

Number
of training sources

Number of stations Std. dev. Of x
error (m)

Std. dev. Of z
error (m)

Training time (s)

451 121 16.3 19.1 50.1

451 31 29.3 30.0 44.8

126 121 15.8 25.0 13.3

126 31 44.3 46.5 12.9

27 121 41.1 124.8 4.9

27 31 57.3 133.2 4.7
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contaminated with Gaussian noise of two levels,

corresponding to σ = 10 ms (Figure 3A) and σ = 20 ms

(Figure 3B). Figures 4A,B show distribution of location

error in x and z coordinates of the source locations for the

two noise levels (true locations were subtracted from

predicted). We observe that location errors increase as the

noise in the arrival times increases. However, even for higher

noise contamination in time picks, the maximum location

error does not exceed 100 m. Generally the error distributions

fit to the Gaussian as seen from the black curves in Figures

4A,B. Parameters of the resulting fitting distribution in each

case are shown in the legends of Figures 4A,B.

3.2 Effect of the number of stations

Next, we study the effect of the number of stations (receivers)

on location errors. The tested model is the same as in Figure 1,

but the number of stations is reduced to 31 stations spaced at an

interval of 200 m. Figure 4C shows location errors for test data

from the same 100 sources with a Gaussian noise corresponding

to σ = 10 ms. By comparing Figures 4A,C, we observe

considerable reduction in location accuracy when the number

of stations is reduced. We observe that the standard deviation of

location errors considerably increases (almost twice).

Figure 4D shows location error histograms for the arrival

time noise level of σ = 20 ms. We observe, similar to the previous

case, that increased noise worsens the location accuracy (in

agreement with Hao et al., 2020). However, when the number

of stations in the monitoring array is reduced, the reduction in

accuracy is greater, indicating increased sensitivity to noise. Since

the monitoring array is horizontal and we are using P-wave

traveltimes, the vertical location is less constrained, and therefore

the vertical location errors increase more than the horizontal

errors. However, even in the worst considered scenario, the

maximum location error observed is around 150 m, which is

about three steps of the training grid (50 m).

3.3 Effect of the number of training
sources

Finally, we study the effect of the number of sources used to

train the network. Table 1 shows the training times and standard

deviations of x and z location errors for the neural network

trained using 451, 126, and 27 sources, corresponding to regular

intervals of 50 m, 100 m, and 250 m, and for different station

distributions: with 31 and 121 stations. The test data in all cases

were contaminated by Gaussian noise with σ = 10 ms.

Computations were performed on a laptop with NVIDIA

GeForce MX150 graphics card.

It is obvious that the training time reduces as the number of

training sources decreases, but the reduction in accuracy is

significant. The training time is also slightly less if fewer stations

are used. This observation suggests using a higher number of sources

will improve the location accuracy. It is worth noting that a smaller

training grid but a denser station array gives higher horizontal

accuracy than a larger training grid but a coarser station array. This

is not always true for vertical accuracy, which seems to be more

sensitive to the number of training nodes.

4 Real data examples

To test the ANN method on real data, we apply the

methodology to the field microseismic monitoring dataset

gathered on the Woodford shale reservoir (Figure 5) in

Oklahoma, United States.

4.1 Real seismic monitoring setting

Figure 5 show the 3-D inhomogeneous isotropic P-wave

velocity model (Figure 5A) and the microseismic data

acquisition geometry (Figure 5B). The original grid spacing of

the velocity model in x-, y- and z-directions is uniform and equal

FIGURE 3
Illustration of synthetic arrival times for a test event after subtracting their mean (black curves). The arrival times contaminated with noise are
shown with blue dots. (A) Arrival times contaminated with zero-mean Gaussian noise with noise level σ =10 ms. (B) Arrival times contaminated with
zero-mean Gaussian noise with noise level σ =20 ms.

Frontiers in Earth Science frontiersin.org07

Anikiev et al. 10.3389/feart.2022.1046258

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1046258


to 22.86 m (75 ft). Geophones recording vertical displacement

component are distributed in the form of a star-like array with

10 arms (Figure 5B), comprising 911 seismic stations in total.

The same microseismic monitoring setting and dataset was

used by Anikiev et al. (2014) to benchmark the diffraction

stacking location technique (see also Anikiev (2015)). The

velocity model was derived from the processing of active

source data or sonic logs and calibrated with sources at

known positions (Anikiev et al., 2014). In this paper we

benchmark the ANN methodology by comparing it with the

traveltime maximum likelihood (TML) method (Eisner et al.,

2010), following Anikiev et al. (2014).

The TML algorithm minimizes the misfit between manually

picked arrival times and synthetic traveltimes calculated for a

reference velocity model (Anikiev et al., 2021). Hypocenter

locations then are obtained from a resulting probability

density function. Therefore, the TML: (i) uses the same input

data as the ANN and (ii) is also based on residual minimization

(Anikiev et al., 2021). This makes both ANN and TML methods

suitable for comparison with the TML method used as a

benchmark.

4.2 Preliminary synthetic ANN test for the
real monitoring setting

Similar to a 2-D synthetic numerical study, for the 3-D case

study we also design the feed-forward artificial neural network

with three hidden layers (see Figure 2). Provided that synthetic

data do not have gaps, the input layer consists of 911 neurons

(N = 911 in Figure 2), each of which represents an arrival time

deviation (Eq. 2) at the appropriate station. Each of the three

hidden layers has 250 neurons (M = 250 in Figure 2). The array of

seismic stations in this real example is larger than the one used in

the 2-D study, leading to a larger amount of neurons in the

hidden layers. The output layer now consists of 3 neurons (D = 3

FIGURE 4
Location errors in x and z directions for 100 test sources with arrival times measured on 121 equispaced stations (A and B) and 31 equispaced
stations (C and D), and contaminated by noise with Gaussian distribution and σ =10 ms (A and C) and σ =20 ms (B and D).
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in Figure 2), which represent the predicted x-, y- and z-

coordinates of the event hypocenter.

Location grid for TML is represented by an array of 5184 grid

nodes consisting of 24 × 24 nodes in 9 vertical planes (Figure 5).

The grid nodes are regularly distributed over the zone of interest

(cyan rectangular block in Figure 5A) around lateral parts of the

four wells (Figure 5B), so that the resulting grid spacing of the

location grid is 91.44 m (300 ft) in all directions. For consistency,

the same grid was used to produce the training data, i.e.

5184 training sources were placed to the positions of the

location grid nodes, forming a training grid (see also Anikiev

et al., 2021).

For each training source, we applied the 3-D factored FSM

algorithm (Fomel et al., 2009) to obtain the synthetic

traveltimes at all the stations. The factored FSM

significantly reduces the location error, especially in depth,

due to much higher accuracy of computed traveltimes at far

offsets (Alexandrov et al., 2021). The computed traveltimes,

after removing the mean (Eq. 2) and scaling (Eq. 3), are used

as an input for the ANN, which is then trained until its output

matches the coordinates of the training sources by minimizing

the loss function 4.

In order to evaluate the performance of the ANN by using the

synthetic data, we randomly generated 100 test sources inside the

zone of interest (Figure 5) and computed the corresponding

traveltimes from these sources to the seismic stations with the

factored FSM using the known velocity model. Figure 6 shows the

error distributions of the predicted source coordinates (true

locations were subtracted from predicted). The maximum

errors in the x- and y-coordinates do not exceed 10 m, and

the maximum error in the z-coordinate is less than 20 m, which is

close to the grid spacing interval of the velocity model (22.86 m)

and much smaller than the training grid spacing (91.44 m). The

mean values of the observed error distributions are close to zero.

The forms of these distributions are similar to Gaussian,

implying that the locations should be correct as long as the

input arrival times are correct.

4.3 Benchmarking on real data

For benchmarking we selected 75 independent seismic events

strong enough to be picked on majority of stations without

stacking. Figure 7 shows deviation times (see Eq. 2) obtained

from manual P-wave arrival time picking for all 75 events on

911 stations. White gaps correspond to the stations for which the

picking was not possible or not reliable (Anikiev et al., 2021). The

seismic events are sorted by the number of missing arrival time

picks. This number varies from 41 for the best picked event

(event 1, Figure 7) to 503 for the worst picked event (event 75,

Figure 7). Figure 7 shows that even the most distinct event (event

1) has clear P-wave arrivals only on 870 stations out of 911.

Event 39 has different picking pattern due to an unusual

distinctive moveout and apex point of the traveltime curve,

indicating a unique epicenter position. Event 74 (second last)

was incorrectly picked at several stations at the far offset of the 6-

th arm (see Figure 5B). These picking errors result in the set of big

negative deviations of arrival time (see Figure 7). We kept this

incorrectly picked event to compare the sensitivity of the two

methods to a real case scenario where either a human or a picking

FIGURE 5
Microseismicmonitoring setting at theWoodford shale reservoir in Oklahoma, United States: (A) P-wave velocitymodel and (B) data acquisition
geometry. (A) 3-D view of the P-wave velocity model. The colorbar displays the color-coded P-wave velocities in m/s. The blue dots on the surface
are seismic stations. The cyan rectangular box shows the zone of interest around lateral parts of the four wells (black lines). The zone ranges from
1303.02 m (4275 ft) to 3406.14 m (11175 ft) along the x (easting) and y (northing) axes, and from 1546.86 m (5075 ft) to 2278.38 m (7475 ft)
along the z (depth) axis. (B) Map view of the data acquisition geometry: the star-like seismic station array with 10 arms (numbers) and 911 stations
(blue dots), the 24 x 24 x 9 location grid with 5184 nodes (green squares show only 576 upper grid nodes), distributed over the zone of interest (cyan
square), resulting in the grid spacing of 91.44 m (300 ft).
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algorithm wrongly identifies the P-wave arrival. We observe that

the ANN algorithm results in a similar location anomaly as the

TML. Classical traveltime-based location methods like TML are

flexible to missing data. In contrast to that, data gaps introduce a

serious fundamental complexity for feed-forward ANNs, which

require regular input.

As a proof of concept for real data, following Anikiev et al.

(2021), we first tested a “brute-force” approach by training the

ANN from scratch for each real event separately, taking into

account only stations with available time picks. This means that

we re-trained the neural network for each picked event using only

the stations with available picks. In the data application of

Anikiev et al. (2021) a fixed number of training epochs (4000)

and an initial learning rate of 10–4 were used. This could result in

an overfitting, especially when the validation set (100 random

sources) has a similar distribution to the training data.

Overfitting is a common problem in ML which occurs when

the ANN fits the training data too well. In order to avoid

overfitting we follow a different approach. We first split the

training data and use 15% of initial dataset for validation and

then implemented early stopping (e.g., Chollet, 2015), i.e.

tracking the validation loss and stopping the training before

overfitting occurs. This has also reduced the overall time cost of

the training. We used a patience parameter of 100 as a stopping

criteria in each case. The patience parameter is a number of

epochs with no improvement after which training will be stopped

(see Keras API documentation (Chollet, 2015). Moreover, we set

a loss function value threshold of 391.9 m2 as an additional

criterion. If loss function goes lower than this threshold, the

training stops. The threshold value was estimated from the

velocity model grid step of 22.86 m: 3 × (22.86/2)2 = 391.9.

This means that if the misfit is corresponding to one-half of the

velocity model grid step (used also for traveltime computation),

the training already reaches the reasonable accuracy level,

although some other multiples of the grid step might be also

acceptable. Application of these two criteria provides the

compromise between the accuracy and computation time of

training with its numerical stability and helps to avoid over-

fitting, thus making the training flexible.

Figure 8 shows comparison of the TML locations (blue

circles) with the ANN locations (orange circles) for all

75 events. To produce this result for each event, we

performed re-training of the ANN from scratch. As seen

from Table 2, the number of epochs until stopping varied

from 674 to 1943 with an average of about 1214. Event 74,

which was picked with several errors, is located by the ANN

method at an extremely large depth of around 4500 m,

outside of the training grid (green dots in Figure 8),

whereas the TML locates it close to the lower bound of the

grid. This indicates that the ANN is more sensitive to data

with large uncertainty (outliers, e. g, false positive detections)

than the TML. Such deviations can be used in quality control

as indicators of input data errors. Location misfit for the event

74 in lateral direction is smaller, so the true epicenter is

expected to be to the north from the wells. Event 39, which

has the aforementioned dissimilar arrival time pattern

FIGURE 6
Location errors in three directions: x (left), y (middle) and z (right) for 100 test sources (without noise). Black curve in each panel show result of
Gaussian distribution fit, corresponding parameters are listed in the panel legend.

FIGURE 7
Deviation times obtained from manual P-wave arrival time
picking for 75 real microseismic events recorded with 911 seismic
stations. Blue horizontal dashes show number of missing (out of
911) time picks (right axis) for each event.
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(Figure 7), is predictably located by both methods to the

south-southwest from the wells and the cluster of the

remaining events.

If we take a closer look into the locations of the 74 reliably

picked events (excluding the event 74), as displayed by Figure 9,

we see that horizontal misfit between the locations by TML and

FIGURE 8
Comparison of TML locations (blue circles) with ANN locations (orange circles) obtained with re-training for all 75 events: map view (top panel),
view from the south (left bottom panel), view from the east (right bottom panel). Two locations for the same event are connected with a black line.
Green dots represent the grid nodes for the TML, also used as training sources for the ANN. Wells are shown with black lines.
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ANN does not exceed the spacing of the location (training) grid

even for the distant event 39 (southwestern corner on the map

view in Figure 9). Vertical misfit is generally larger but is

comparable to the grid spacing as well (in agreement with

Anikiev et al., 2021).

To avoid the time-consuming re-training from beginning, we

propose to use fine tuning (transfer learning in Anikiev et al.

(2021), i.e., make use of the weights of a pre-trained network to

speed up adaptation to the new input pattern. Technically, fine

tuning consists of unfreezing the initially trained model and

further additional training on the new data with a lower learning

rate. The neural network is first pre-trained on the complete

array of stations with the same stopping criteria mentioned

before. The trained weights and biases are then transferred

into the corresponding layer of a new neural network that is

designed for each event with its own input layer dimension

according to the pattern of available P-wave arrival time picks.

Finally, this newly set network is shortly trained (fine-tuned) with

a patience of 5 and the last used learning rate taken from the pre-

training.

Figure 10 shows the TML locations of the same 74 reliably

picked events compared to the ANN location obtained with fine

tuning. We observe that the locations obtained using fine tuning

are similar to those obtained with the entirely re-trained neural

network, but they are achieved much faster. The average misfit of

locations obtained with fine tuning with TML locations is lower

(see Table 2). At the same time fine tuning significantly reduces

the amount of required training epochs and time cost. The

average time cost with fine tuning is roughly 25 times lower.

The pre-training stopped at 1027 epochs, which took less than

8 min (Table 2), while an average of 39 epochs in terms of fine

tuning per each event provide sufficient accuracy in tens of

seconds (Table 2, Figure 10). All computations were

performed on the same machine as in the synthetic data case.

Figure 11, Figure 12 show histograms of misfit in x-, y- and z-

directions together with absolute misfits for ANN with re-

training and ANN with fine tuning, respectively. The lateral

misfits in case of ANN with fine tuning do not exceed 40 m,

which is twice as less than the training grid spacing of 91.44 m

(Figure 12). The vertical misfits are predictably larger, especially

in case of ANN with re-training, where it reaches 120 m

(Figure 11). The standard deviations of the misfit distributions

in lateral direction are similar for both results. In contrast, the

standard deviation of the vertical misfit is smaller for locations in

Figure 12 obtained with fine tuning. The distribution of the

absolute misfits (square root of the sum of squared misfits in x-,

y- and z-directions) in both cases fits well to the non-central χ

distribution with 3 degrees of freedom. The latter is

mathematically consistent with the distribution of the absolute

value (square root of sum of squares) of the three independent

normally distributed quantities with non-zero mean (e.g.,

Bhattacharya and Burman (2016). The distribution is

described by the non-centrality parameter, reflecting the

characteristic difference between the two results. Statistical

distributions for both cases (ANN with re-training and with

fine tuning) can be described with non-centrality parameter

much smaller than the training grid step. The maximum

absolute misfit for fine tuning (Figure 11) is less than 80 m, so

it does not exceed the training grid step, whereas for ANN with

re-training it exceeds it with values over 120 m.

Comparison of Figure 9 with Figure 10 and Figure 11 with

Figure 12 shows that the proposed ANN methodology extended

with fine tuning provides sufficient location accuracy without

time consuming computations, as illustrated by Table 2.

5 Discussion

In the proposed ANN method the neural network is trained

only with synthetic data, i.e., no existing seismic data are needed

(although the method does not exclude the ability to use existing

catalog locations), and so the training can be done before the

TABLE 2 Computation time costs for the ANN training and location of 75 events, and location misfits when compared with the TML.

Operation parameter Training
for all stations

Location with re-training Location
with fine tuning

Max. limit of training epochs 4000 4000 per event 100 per event

Min. number of epochs to stop 1027 674 17

Av. number of epochs to stop 1027 1214 39

Max. number of epochs to stop 1027 1943 71

Early stopping patience 100 100 5

Time cost (s) 472.6 40632.2 1610.4

Av. time cost per event (s) - 541.8 21.5

Min. abs. misfit (m) - 8.7 9.0

Av. abs. misfit (m) - 35.5 32.1

Max. abs. misfit (m) - 121.9 72.5
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monitoring starts. However, if enough seismic events in the area

are observed previously, it can be trained using P-wave arrivals

and locations of these real events. Obviously, the accuracy of the

network trained with real events depends on number of events

FIGURE 9
Comparison TML locations (blue circles) with ANN locations (orange circles) obtained with re-training for 74 reliably picked events: map view
(top panel), view from the south (middle panel), view from the east (bottom panel). Two locations for the same event are connected with a black line.
Green dots represent the grid nodes for the TML, also used as training sources for the ANN. Wells are shown with black lines.
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and spatial distribution of their locations. Training with synthetic

data is more time consuming and computationally expensive but

the accuracy of resulting ANN locations is higher. The time

needed to locate a single event stays the same once the network is

FIGURE 10
Comparison of TML locations (blue circles) with ANN locations (orange circles) obtained with fine tuning for 74 reliably picked events: map view
(top panel), view from the south (middle panel), view from the east (bottom panel). Two locations for the same event are connected with a black line.
Green dots represent the grid nodes for the TML, also used as training sources for the ANN. Wells are shown with black lines.
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pre-trained, no matter whether the training is done with

synthetic or real data.

A typical workflow for deployment of the proposed

method for microseismic monitoring is represented in

Figure 13. The most time consuming parts: computation of

the traveltime lookup table and training of the ANN are

performed before the monitoring starts. Real-time detection

stage can also be implemented with the help of ML (out of the

FIGURE 11
Histograms of misfits between TML locations and ANN locations obtained with re-training for 74 reliably picked events. Black curve in each
panel shows the result of distribution fit with the corresponding parameters listed in the panel legend.

FIGURE 12
Histograms of misfits between TML locations and ANN locations obtained with fine tuning for 74 reliably picked events. Black curve in each
panel shows the result of distribution fit with the corresponding parameters listed in the panel legend.
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scope of this paper). The essential part of detection stage is to

provide the P-wave arrival times for a certain subset of

stations (picking depends on the quality of the record and

often cannot be done reliably on all stations). Real-time

location then requires inexpensive fine tuning of the

initially trained NN for the provided set of stations. The

fine-tuned network model is stored and re-used for further

events with the same subset of stations, thus reducing the

processing time. We suggest to use the 3-layer perceptron

architecture of the NN explained by Figure 2, whereM = 250 is

optimal for number of recording seismic stations N

around 1000.

In real-time monitoring applications, time to deliver the

source locations is important. We have shown that combining

fine-tuning with early stopping and additional loss function

threshold gives a compromise between the location accuracy

and computation time required for additional training. The

fine tuning step is done in seconds on a mobile mid-range

GPU and won’t be a bottleneck in real-time implementations

on more performant GPU systems.

As we show on synthetic examples, the developed ANN

method suffers from the same known limitations as all the other

location methods when monitoring with surface array. The

average location uncertainty in vertical direction is typically

higher than in horizontal directions when only P-wave arrival

times are input. If data quality allows, methods can be usually

extended with S-wave arrivals and location accuracy improves.

Location quality decreases with higher uncertainty of picks

(related to SNR of arrivals in real data) and with coarser

training grid. However, in our case, the latter can be easily

eliminated as the ANN can be pre-trained with synthetic

events in an arbitrarily dense training grid.

FIGURE 13
The flowchart showing a typical implementation of ANN-based location in real-time microseismic monitoring setting. Time consuming blocks
in the blue zone belong to a pre-processing stage performed prior to the monitoring, while blocks in the reddish zones are in real time. Blue blocks
represent input data, yellow blocks correspond to processes, green ellipses show intermediate products and deep-green diamonds show the
output: arrival time picks and predicted hypocenter coordinates. Gray block denotes that fine tuning requires only the list of relevant stations,
arrival time picks from raw seismograms are used for NN evaluation only.
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Location uncertainty estimates are highly dependent on

the accuracy of the velocity model, which is always different.

We have tested the accuracy of location based on synthetic

tests and provided estimates of the standard deviation in each

case. We consider this to be a fair representation of the

potential location error. Integration of the dedicated

uncertainty estimates into the ML prediction is a more

sophisticated task which is out of the scope of the present

manuscript. It is certainly one of the directions for further

advanced studies.

In real data, signal-to-noise ratio varies for each event and

consequently number of input stations with available picks

changes, leading to gaps in the input data. In order to solve

this problem we initially considered several options.

First, one can use interpolation of the data at the stations

with missing time picks. Interpolation methods for uniform

grids are not applicable in this case, as the stations are usually

distributed irregularly. The kriging method (Stein, 1999)

models the interpolated data through a Gaussian process

governed by prior covariances, and it is applicable to

irregular grids. The kriging algorithm performs well for

small local gaps, e.g., when few stations with missing picks

are surrounded by the stations with available time arrivals.

However, it can introduce a significant bias in the case when

the missing picks occur on the stations at the edge of the

network or along a certain direction due to the radiation

pattern defined by the source mechanism of an earthquake.

Such a situation is typical when using star-like geometries

(Anikiev et al., 2014; Staněk et al., 2015). Besides, any

interpolation method is likely to introduce a non-physical

distortion to the set of traveltimes in the case of a coarse

network of stations.

The benchmark comparison with the TML method shows

that the proposed location algorithm is as good as any other

arrival time based location technique. It provides good

location if the velocity model is good and arrival times are

correctly picked. Velocity model errors are perhaps the most

significant source of location biases in both surface and

downhole monitoring (Eisner et al., 2010). Very much the

same as for any other arrival time based method (e.g., for the

mentioned TML method), the errors in velocity model in the

proposed ANN approach influence only the traveltime

computation. Therefore, we consider the accuracy of the

velocity model to be a more general problem that has

already been covered in literature. For instance, Eisner

et al. (2009) presented an extensive study of the effect of

errors in the velocity model on locations derived from arrival

time picks by simulating uncertainties for frequently used

borehole and surface acquisition receiver geometries and

assuming a homogeneous medium.

Another option for benchmarking would be to use any

other conventional location method to calculate the

traveltimes based on the estimated location. This means

that prior to the prediction of location by the ANN, the

real traveltimes are “regularized” using the modeled ones.

For such an approach, the TML methodology suits the best, as

it is based on the maximum likelihood of traveltimes, which is

consistent with the chosen cost function in our algorithm.

However, there is an obvious disadvantage of this

approach–for each event, it requires an additional step of

location, therefore making the ANN-based location

computationally less attractive.

Finally, in order to be independent of the missing data, one

could pre-train many ANNs for different sets of available

stations. Every possible combination of stations requires 2N

trainings with N being a number of seismic stations. It

possible for very small N and is out of question for large N.

Alternatively, we may consider training only for a certain set of

“backbone” stations where all events are picked, and throwing

away all other picks on the remaining stations.

After testing the aforementioned methods, we decided to

use fine tuning to overcome the issue of missing picks. Fine

tuning is an effective method taking advantage of weights of

ANN obtained after training with full array of stations

acquiring data. With a limited number of epochs, we are

able to quickly train ANN specific for each individual event

picked on a specific subset of stations. The other methods

seem not to be as robust and accurate as the fine-tuning

approach.

A ML location method that is flexible to the number of

seismic stations was proposed by van den Ende and Ampuero

(2020), who developed a graph neural network (GNN)

approach which is also invariant to the order in which the

stations are arranged. First, authors suggest to analyze the

waveforms on each station using a CNN which extracts certain

features, and then the location of stations is appended to form

a feature vector that serves as an input for the second

multilayer perceptron (MLP) component. After performing

the operation on every station, the results are combined into a

graph feature vector. So far we have considered to adapt this

approach for traveltime-based location, where the selected

feature at each station is the picked arrival time. GNN might

result in potential improvement, but the challenge is in

enforcing the feature to be the arrival time.

6 Conclusion

A machine learning methodology proposed earlier was

extended in this paper into a practical technique capable of

locating real microseismic events in a typical microseismic

monitoring setting. This extension represents a non-trivial

task which was not anticipated earlier.

The location method is based on P-wave arrival picks input

and artificial neural network trained on a set of known locations.

Its main advantage is a possibility to train the system only with
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synthetic data, i.e., no existing seismic data are needed before its

application. Therefore, the training can be successfully done even

in areas where any prior seismicity has not been observed, and it

can be done in advance, before the actual seismic monitoring

starts.

The training dataset is computed with known velocity

model, monitoring array, and a set grid of training

locations in the subsurface. The ANN must be trained with

the same (sub-)set of stations as the data of real event are from.

However, in reality, a subset of stations with available picks for

each event changes due to various reasons (variable SNR,

missing stations, etc.). To overcome this problem, we use fine

tuning: the weights of ANN obtained after training using full

array of seismic stations are used as initial values and a new

ANN can be quickly trained for each individual event picked

on a specific subset of stations. In order to prevent overfitting

we further investigated the use of early stopping by reserving

part of the training data for validation and tracking the

validation loss.

The extended methodology was tested on 2D and 3D

synthetic examples that allowed us to determine optimal

neural network parameters and estimate location errors. We

showed that accuracy of resulting locations increases with

density of training location grid, number of available seismic

stations and quality of input data, which is in agreement with

the behavior of classical location methods. The ANN method

was benchmarked against a commonly used TML method on a

real dataset acquired during hydraulic fracturing. We

demonstrated that locations from both methods are

comparable and the location misfit is similar to the training

grid spacing when a reliable velocity model is used. However,

the ANN-based location is less sensitive to gridding, more

sensitive to data outliers, and implies simple and straight-

forward training. Use of the early stopping criterion

presented in this study helped to significantly reduce the

computation time both for initial training using the full set

of seismic stations and for the fine-tuning training step.

Analysis of real data application results show that the

proposed approach is efficient and can be applied during real-

time monitoring when combined with reliable automatic event

detection and arrival time picking algorithms. We proposed a

workflow for implementation of the method in the real-time

monitoring setting.
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