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S U M M A R Y  
Cross-borehole seismic data have traditionally been analysed by inverting the arrival 
times for velocity structure (traveltime tomography). The presence of anisotropy 
requires that tomographic methods be generalized to account for anisotropy. This 
generalization allows geological structure to be correctly imaged and allows the 
anisotropy to be evaluated. In a companion paper we developed linear systems for 
2-D traveltime tomography in anisotropic media. In this paper we analyse the 
properties of the linear system for quasi-compressional waves and invert both 
synthetic and real data. Solutions to the linear systems consist of estimates of the 
spatial distributions of five parameters, each corresponding to a linear combination 
of a small subset of the 21 elastic, anisotropic velocity parameters. The parameters 
describe the arrival times in the presence of weak anisotropy with arbitrary 
symmetries. However, these parameters do not, in general, describe the full nature 
of the anisotropy. The parameters must be further interpreted using additional 
information on the symmetry system. In the examples in this paper we assume 
transverse isotropy (TI) in order to interpret our inversions, but it should be noted 
that this final interpretation could be reformulated in more general terms. 

The singular value decomposition of the linear system for traveltime tomography 
in anisotropic media reveals the (expected) ill-conditioning of these systems. As in 
isotropic tomography, ill-conditioning arises due to the limited directional coverage 
that can be achieved when sources and receivers are located in vertical boreholes. In 
contrast to isotropic tomography, the scalelength of the parametrization controls the 
nature of the parameter space eigenvectors: with a coarse grid all five parameters 
are required to model the data; with a fine grid some of the parameters appear only 
in the null space. 

The linear systems must be regularized using external, a priori information. An 
important regularization is the expectation that the elastic properties vary smoothly 
(an ad hoc recognition of the insensitivity of the arrival times to the fine-grained 
properties of the medium). The expectation of smoothness is incorporated by using 
a regularization matrix that penalizes rough solutions using finite difference penalty 
terms. The roughness penalty sufficiently constrains the solutions to allow the 
smooth eigenvectors in the null space of the unconstrained problem to contribute to 
the solutions. Hence, the spatial distribution of all five parameters is recovered. The 
level of regularization required is difficult to estimate; we advocate the analysis of a 
suite of solutions. Plots of the solution roughness against the data residuals can be 
used to find 'knee points', but for the fine tuning of the regularization one has little 
recourse but to examine a suite of images and use geological plausibility as an 
additional criterion. 

The application of the regularized numerical scheme to the synthetic data reveals 
that the roughness penalty should include terms that penalize high gradients 
addition to penalizing high second derivatives. Only when this constraint was 
included were the features of the original model recovered. The inversions of the 
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field data yield good images of the expected stratigraphy and confirm previous 
estimates of the magnitude of the anisotropy and the orientation of the symmetry 
axis. T h e  solutions further indicate an increase in anisotropy from the top  to the 
bottom of the survey region that was not previously detected. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Key words: anisotropy, regularization, traveltime tomography. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 INTRODUCTION 

Since at least 1971, cross-borehole seismic surveying has 
been used as a remote sensing tool in  the exploration and 
exploitation of hydrocarbon reserves (Bois et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1971, 
1972). The same geophysical technique has also been used 
extensively in mining applications (Mason 1981 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; Leung & 
Downey 1988), in waste disposal site evaluation (Wong, 
Hurley & West 1983; Paulsson, Cook & McEvilly 1985; 
Bregman, Bailey & Chapman 1989a) and in civil 
engineering site surveying (LaPorte et al. 1973; Saito et al. 
1988; Wright et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1988). The objectives of crosshole 
seismic surveys include mapping the distributions of seismic 
velocities, locating and mapping fracture distributions, 
stratigraphic and structural imaging, and mapping of stress 
regimes. Further objectives include the mapping of velocity 
alterations induced by industrial processes, such as steam 
injection or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin situ combustion (for example, Bregman, 
Hurley & West 1989~). Geophysical tomography, i n  which 
arrival times are inverted in order to provide an estimate of 
the distribution of seismic velocities, has emerged as a 
promising data processing technique capable of meeting 
these objectives. 

There are three complicating factors that make geophysi- 
cal tomography more difficult than its algorithmic 
predecessor, medical tomography. The first two factors are 
the awkward geometric restrictions that borehole geometries 
impose and the large variations in seismic velocities that are 
encountered in the Earth. These two factors have been dealt 
with extensively in the literature. The geometric restrictions 
imply a coverage of the subsurface by ray paths that is 
deficient in ray angles. This aperture limitation results in 
data that are not sufficient to uniquely specify the velocities. 
Regularization of the equation systems using appropriate 
constraints (for example, damped least squares) is essential. 
The second factor, large velocity variations, introduces 
non-linearities into the equation system, since the solution is 
dependent upon the ray paths, which are themselves 
determined by the velocities (i.e. the unknowns). The 
non-linearity of the equation system must be approached by 
relaxation, solving iteratively in turn for the ray paths and 
for the velocities (Cottin et al. 1986; Bregman et ul. 1989a). 
However, in some cases the velocity variations may be so 
large that the geometric ray approximation itself is 
inadequate. In these cases a more complete modelling 
technique, such as the method of finite differences, is 
required to generate the partial derivatives required (Luo & 
Schuster 1989). 

Anisotropy is the third complication. Surprisingly, little 
research in geophysical tomography exists that admits this 
complication or that tries to address the problem of 
traveltime inversion in the presence of anisotropy. Yet an 
extensive literature exists that documents the presence of 

seismic anisotropy in the Earth’s crust (see Crampin 1987, 
for a review). The major evidence of crustal anisotropy is 
the observation of shear wave splitting. In an exploration 
context, shear wave splitting has been observed recently in a 
multitude of case studies using multicomponent surface 
recorded data (for example, Lynn & Thomsen 1990; Frasier 
& Winterstein 1990). Other direct evidence of anisotropy is 
the measurement of velocity anisotropy in laboratory 
measurements. Thomsen (1986) has summarized a large 
number of laboratory core sample measurements. 

Shear wave splitting can be observed in the presence of 
very weak anisotropy, as the splitting depends on velocity 
differences along the same propagation directions. The 
directional dependence of velocities in conventional 
(non-tomographic) studies is difficult to separate from the 
effects of heterogeneity. In tomographic studies, the wide 
directional coverage allows quasi-compressional ( q P )  or 
quasi-shear (4s) anisotropy to be observed directly, rather 
than inferred fom shear wave splitting and interfcrence 
effects. 

The geometric ray (high frequency) approximation is 
usually used in tomography to model arrival times. Since the 
rays will always inadequately sample the continuous 
distribution of the elastic properties of the Earth, one could 
expect severe alias errors. Aliasing is not generally 
considered to be a problem in isotropic tomography because 
seismic waves are band-limited, and arrival times are often 
insensitive to the fine-grained properties of the medium. 
However, when fine-grained properties are spatially 
correlated (for example in finely layered media), the 
long-wavelength properties are anisotropic. We can only 
safely assume that the arrival times are unaffected by the 
fine-grained properties of the medium if we include terms in 
the inversions that model the long-wavelength anisotropy. 

Anisotropy appears to be ubiquitous, yet tomography has 
been applied widely (and often successfully) without 
accounting for anisotropy. To some extent this can be 
understood in terms of scalelengths, since the Earth is 
heterogeneous over a wide range of characteristic lengths. 
At seismic wavelengths, although layered sediments, 
fractured rocks and sediments containing amounts of 
oriented anisotropic mineral constituents will behave 
anisotropically, disturbances of the symmetries will weaken 
the anisotropy (Kerner 1989). Formations have different 
amounts of anisotropies at different scalelengths and, 
therefore, the assumption of isotropy may be justified when 
the anisotropy is negligible at the relevant scale. 
Nonetheless, several tomography data sets exist, gathered 
by various groups, in which anisotropy does play a 
significant role. However, until now, no rigorously 
developed formalism for tomography existed that could be 
used to account for the anisotropy. Instead, the approach 
taken has been to use crude methods to estimate the effect 
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of the anisotropy and remove it from the data before 
proceeding under the assumption of isotropy. McCann et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01. 
(1989) have published an example that shows the efficacy of 
this approach. Others have presented similar approaches 
(for example, Peterson et al. 1990). 

This paper is the second of two papers that present and 
apply a formalism for the application of traveltime 
tomography in anisotropic media. In our first paper 
(Chapman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Pratt 1992, hereafter referred to as Paper I) 
we derived analytical expressions for traveltime perturba- 
tions due to anisotropy. By assuming weak anisotropy and 
by assuming that sources and receivers were confined to a 
single imaging plane, we showed that the traveltimes were 
sensitive only to a limited subset of the elastic tensor 
components. We gave explicit expressions for the partial 
derivatives using both straight and curved rays. Using the 
partial derivatives, appropriate linear systems for traveltime 
inversion in the presence of anisotropy can be formulated. 
The solution of the resultant linear systems is an estimate of 
the distribution (throughout the interwell region) of the 
elastic tensor components. 

An important aspect of the approach used in Paper I is 
that the linear systems do not assume any particular 
symmetries. However, in order to extract geological 
parameters from the solutions (i.e. to interpret the results), 
it is necessary to assume a symmetry system. In an appendix 
of Paper I we provided a transformation for mapping 
transverse isotropy (TI) parameters to the tensor com- 
ponents (the 'global parameters'). For qP-waves, there are 
the same number of global parameters as TI parameters 
(five). However, the two parameter sets do not span the 
same space. The inverse transformation, obtaining the TI 
parameters from the global parameters, requires some 
additional information. For example, where the symmetry 
axis is nearly vertical, additional information on the azimuth 
of the symmetry axis must be provided. Both layered media 
and media with a single set of oriented cracks have TI 
symmetries, so that the TI to global transformations will be 
appropriate for these special cases. For the purposes of the 
examples in this paper we assume TI symmetries; the 
symmetry axes are assumed to be nearly vertical (but need 
not be exactly vertical). For more general symmetry 
systems, appropriate transformations could also be formu- 
lated; more a priori information on the symmetry axes 
would then be required. 

In this paper we investigate the application of the results 
of Paper I to qP-wave traveltime tomography. We analyse 
the numerical properties of these systems, and show that, as 
in isotropic problems, a crosshole geometry leads to 
ill-conditioned linear equation systems. Just as regulariza- 
tion is required for isotropic tomography, we require 
adequate regularization to solve the anisotropy problem, 
which is even less well posed. We show that damped least 
squares is inadequate, and that it is essential to apply 
smoothing constraints [we use constraints similar to those 
applied in the I-D electromagnetic problem by Constable, 
Parker & Constable (1987)]. 

In order to demonstrate the application of the numerical 
scheme, we investigate data from a simulation problem 
(synthetic data) and data from a field crosshole experiment. 
The field data were obtained in near-surface sediments 
known to be anisotropic [the data are those used in the 

study by McCann et al. (1989), described above]. In 
near-surface sedimentary environments, the intrinsic ani- 
sotropy of clay materials is combined with the anisotropic 
behaviour of finely layered sediments. This leads to a 
symmetry in the velocities about approximately vertical 
axes. The field data we examine support this conjecture 
about the nature of the anisotropy in these sediments. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 METHODOLOGY 

2.1 P-wave perturbation equations 

In this section we briefly review the formulation given in 
Paper I for qP-wave traveltime tomography in anisotropic 
media. In the majority of published case studies, 
tomography has been carried out using the first arrivals, 
generally assumed to be P- or qP-waves. First arrivals are 
far easier to use than the later arriving shear waves. In 
anisotropic media, shear wave tomography requires that the 
shear waves be correctly identified (as fast and slow split 
shear waves) and correctly picked. It is difficult to pick any 
arrival, but shear waves are far more difficult to accurately 
separate from other arrivals, with which they interfere. Here 
we do not consider the shear wave tomography problem. 
This allows us to use a simpler (although less general) 
notation than in Paper I. 

In Paper I we gave perturbation methods for the 
approximate computation of arrival times in anisotropic 
media. These methods, first developed by cerveny & Jech 
(1982) and by Jech & PSenEik (1989), relate traveltime 
perturbations to perturbations of the components of the 
elastic tensor. This formulation allows the anisotropy to be 
perfectly general. The perturbation approach relies on the 
validity of Fermat's principle, which allows the perturbation 
in the traveltimes due to small perturbations in the ray 
trajectory to be ignored. 

It is extremely convenient to use isotropic unperturbed 
media, and to consider anisotropic effects to be due to weak 
perturbations of isotropic systems. This assumption allows 
one to proceed without developing new methods for ray 
tracing in anisotropic media-all rays are traced in 
unperturbed isotropic media. In view of the past success in 
assuming isotropy, we consider this to be a satisfactory 
approximation. Iterative inversions yield estimates of the 
corrections to the elastic tensor, some of which are required 
due to errors in the isotropic velocities, and some of which 
are required due to ignoring the anisotropy. 

The wave propagation properties of the medium are 
represented by a spatial distribution of the elastic tensor, 
aijkr The tensor aijkr contains the 81 density normalized 
media stiffnesses, aiikl= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcijkIlp, of which only 18 are 
independent (Federov 1968). We proceeded in Paper I by 
introducing small perturbations, baijk,. For the case in which 
the original elastic tensor distribution is everywhere 
isotropic, we obtained the expression 

[equation (32) in Paper I], which relates the traveltime 
perturbation for qP-waves, bT, to an integration over the 
ray path, 2, of a weighted sum of the components of 6ai,kr 

The weighting in the terms of the integrand is determined 
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system of the rock properties can provide this information. 
We return to this aspect of the methodology in Section 2.3. 

by the components of the slowness vector, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, in the 
unperturbed, isotropic media. In equation (1) the 
integration measure, dT, is an incremental measure of time 
in the original (unperturbed) medium and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALY is the isotropic 
velocity distribution in the unperturbed medium. 

In the original, isotropic media the slowness vector can be 
expressed as p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp/a, where @ is the unit vector tangent to 
the ray trajectory. Furthermore, along the ray path, 

where dl is an increment of length along the ray path. 
Equation (1) can be rewritten as 

(3) 

which shows clearly how the weighting terms in the 
integrand are determined by the ray direction, p. 

In Paper I we made the further assumption that data are 
collected for source-receiver pairs that are all co-planar. 
Small deviations from the plane can be corrected for by 
projection onto the plane with appropriate traveltime 
corrections. Once this is assumed, the coordinate system can 
be oriented so that the x 2  coordinate is normal to the plane. 
In isotropic 2-D media rays are confined to the ( x l ,  x, )  
plane and, hence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF2 is always zero. This reduces the 
number of independent terms contributing to the integral in 
equation (3) to 5: 

(4) 

where 

6ql  = k I l , ,  S q ,  = 26al13, + 46a,,,,, 

6q4 = 46a3331, 6q5 = 6a3,,,. ( 5 )  

69, = 46a1,31, 

To first order, varying any of the other elastic parameters 
other than the six that appear above will not affect the q P  
arrival times. Of the six parameters, all,, and a3,31 appear 
only in combination. To first order, 2-D tomographic 
imaging can ignore variations in the other parameters. If 
one is primarily interested in correcting tomographic 
velocity estimates for anisotropy, this result is encouraging 
since only five parameters need be included. However, if 
one is interested in characterizing the symmetry system or 
otherwise quantifying the anisotropy and its distribution, 
this result indicates (as one would expect) that there is an 
insufficient amount of information in 2-D qP-wave arrival 
times to characterize fully the elastic tensor. 

The five q parameters describe the intersection of the 
wavefront with the plane of the survey exactly, but there 
exists an infinite set of media that have the same wavefronts 
in the plane of the survey. The result of an inversion for 
these five parameters can be interpreted only in terms of 
other a priori information. Knowledge of the symmetry 

2.2 Piecewise liomogeneous media and bent ray 
tomography 

In this section, equations for compressional wave tomog- 
raphy in anistropic media are formulated in terms of media 
that are piecewise homogeneous. The assumption of 
piecewise homogeneity implies that rays consist of straight 
line segments and bend only at interfaces (the ‘bent ray’ 
method). It is clear from the literature (Bording et al. 1987; 
Dyer & Worthington 1988a, b; Worthington et al. 1989) that 
bent ray tomography is of considerable utility. The 
advantage of the bent ray formulation is the ease with which 
it can be programmed and the speed at which it will run. 
The interfaces at which rays are to be bent are determined 
by interpretation of straight ray tomograms. For the 
purposes of ray tracing, the interfaces should approximately 
define geological units, or regions. This allows a skilled 
interpreter to incorporate external knowledge (for example, 
geological plausibility) and thus to constrain the method. 
Below, we give a brief review of the bent ray method in 
isotropic media in order to  introduce its use in anisotropic 
media. 

2.2.1 

In isotropic media the linear equations for tomography 
relate traveltime perturbations to perturbations in the media 
slownesses. The linear equation system is 

Bent ray tomography in isotropic media 

6Tk = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFki SUi, or 6T = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF 6U, (6) 

where Tk is the kth arrival time and Ui is the isotropic 
slowness at the ith location in the model. The 6T and SU 
variables are the perturbations to T and U. Fki is a large, 
sparse matrix (the FrechCt matrix) containing the partial 
derivatives, eTk/aui. In order to compute the partial 
derivatives, rays must be traced through the starting model 
of the geological regions. In piecewise homogeneous models 
the partial derivative of the kth time with respect to changes 
in the ith slowness parameter is simply the length of the ray 
segment, Al,,, of the kth ray in the i th region. Following the 
computation of the partial derivatives, one can proceed to 
solve equation (6) for the velocity perturbations using an 
appropriate numerical technique. 

In the computation of the partial derivatives required in 
equation (6), one can choose to keep the existing model 
parametrization and proceed to solve the tomography 
equation for the regional velocity perturbations only. 
However, more commonly, the model is reparametrized in 
terms of homogeneous rectangular cells on a 2-D grid. 
Equation (6) can then be used to  solve for traveltime 
perturbations in each cell. 

The next step in bent ray tomography is to interpret the 
resultant image. If the interpretation indicates that the 
regional model used to generate the ray paths is inconsistent 
with the result, the procedure may be repeated with a new 
regional model. This iteration is required in order to take 
into account the non-linear nature of the tomographic 
problem due to the dependencies of the ray paths on the 
velocity model. This step is interpretive, and it allows the 
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possible models to be constrained by an understanding of 
the geological setting. The most satisfactory implementation 
of this step is to superimpose new interfaces on top of the 
current tomographic image using a graphical input device. 

2.2.2 Bent ray tomography zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin anbotropic media 

We now proceed to discretize equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4). By introducing 
homogeneous regions (or cells), we have for the kth ray 
Path 7 

6Tk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Fkij 6qi~ (7) 

[see equation (38) in Paper I] where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6q,, is the jth 69, 
parameter ( j =  1, 2, . . . , 5) in the ith region. Fkij is the 
sensitivity (or partial derivative) of the arrival time of the 
kth ray to changes in 6q,. Replacing the integration in 
equation (4) by a summation, and replacing dl by Alki (the 
distance traversed by the kth ray path in the ith cell), we 
obtained [equation (40) in Paper I] 

(no summation over j). The quantities above are simple to 
compute the ray path in the original (isotropic) medium and 
the geometry of the regions (Fig. 1). 

Equations (7) and (8) form a linear system for 
tomography in anisotropic media. The perturbation for the 
kth ray is a sum of five contributions from each cell. Given a 
set of measurements, 6Tk, one can proceed to choose an 
appropriate numerical scheme to solve for 6q,. Before 
proceeding, it is useful to recast the system in a matrix form. 
Introducing the new subscript, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 5(i - 1) + j ,  we have 

In order to facilitate the constraints we use in a later section, 
we introduce an additional model parameter, 6qo = 6a2 (in 
contrast to Paper I here we use the perturbation of the 
square of the isotropic velocity). The remaining parameters 
are modified accordingly [see equation (36) in Paper I]. 
These parameters, h e ,  j = 1, . . . , 5  represent purely 
anisotropic components. We then obtain 

6 T k  = Fkl or 6T = F 6ij, (10) 

[the subscript 1 is changed so that I = 6(i - 1) + j], with 

The remaining partial derivatives for ( j  = 1, 2, 3, 4, 5) are 
unchanged. 

i th  cell , 

kth raypoth 

Fmre 1. The partial derivatives of the traveltime for the kth ray 
path in the ith cell of a piecewise homogeneous medium can be 
computed from Al, the length of the ray segment and the 
components of p, the tangent to the ray trajectory. 

It should be noted that equations (9) and (10) lead to 
non-linearities in the inverse problem, even when ray 
curvature due to velocity structure can be ignored. The 
non-linearity arises because a solution for 6q can contain an 
isotropic component, indicating that the initial choice of the 
distribution of a was inappropriate. This is overcome by 
relaxation: recomputing the distribution of a, relinearizing 
and resolving the equations. How the a's are computed 
from the solutions, 6q, is dealt with in Section 2.4. 

2.3 The global to TI transformation 

The solution of the linear equation systems in equations (9) 
and (10) yields an estimate of the perturbations, or errors, 
in the five parameters, 69,. Using anisotropic tomography 
and given a starting model, one thus recovers the spatial 
distribution of the five parameters, q (in contrast to our 
earlier notation, here q is a five-component vector 
representing the solution at only a single location). The 
non-uniqueness of five parameters to fully describe the 
elastic tensor was noted in Section 2.1. Knowledge of the 
symmetry system of the rock properties can provide the 
information required to be able to interpret the five 
parameters geologically. In general, the lower the symmetry 
is, the more parameters are required to describe the elastic 
properties and the more external information is required. 

Often, a suitable anisotropic system is TI. As described in 
the Introduction to this paper, this is a suitable system in the 
examples that follow in Sections 4 and 5. For TI systems, 
there are also five parameters that describe the qP-wave 
velocities. It should be noted that these five parameters and 
the five elastic constants, q, are not the same-they do not 
even span the same space! If the rock properties are known 
to exhibit TI symmetries, this information constrains the 
solutions almost sufficiently to allow the TI parameters to be 
estimated from q. Actually, as we show below, this problem 
is itself singular and an additional degree of freedom needs 
to be removed before the TI can be obtained. 

The mapping of TI parameters to q (the global 
parameters) is the subject of appendix E in Paper I. Here 
we consider the inverse problem: mapping the five global 
parameters to the TI parameters, following the application 
of anisotropic tomography. This mapping must be carried 
out at each spatial location. The five global parameters can 
be expressed as 

[equation (E4) in Paper I], where the polar angle, 0, and 
the azimuthal angle, @, are the Euler angles specifying the 
symmetry axis. The matrix H is a 5 x 3 matrix whose 
elements are non-linear functions of 13 and + (the elements 
are given explicitly in Paper I). 

The TI parameters A, B and C in equation (12) are given 
by 

A = a 1 1 1 1 ,  B = a1133  + 2a3131, C = a3333. (13) 

In equation (13) only, the subscripts ijkl refer to a 
coordinate system congruent with the TI axis. 
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Anisotropic traveltime tomography-11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 

obvious choice would be always to choose the horizontal 
phase velocities, 4:”. A second choice would be the vertical 
velocities, 4:’. These are straightforward, but they may not 
yield interpretable tomographic images, especially in 
complex regions in which the axis of symmetry may vary. In 
TI media other possibilities offer themselves. One could use 
the velocities along the symmetry axes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC”’. Using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC’” has 
the advantage of being independent of the orientation of the 
symmetry axis. However, these estimates are all biased: in 
TI systems with a vertical symmetry axis (TIV systems) 
systems the horizontal velocities are often fastest and the 
vertical velocities are slowest. This choice of an isotropic 
component of the velocity may not be a good choice in 
terms of the subsequent relinearization. Instead, a velocity 
that represents an average over all directions is required. 

An appropriate isotropic velocity is supplied by the 
harmonic decomposition of the elastic tensor given by 
Backus (1970). Backus showed that a general fourth-order, 
3-D elastic tensor could be decomposed into five ‘harmonic’ 
tensors, one of order 4, two of order 2 and two of order 0. 
The higher order tensors contain information on the 
orientations of the symmetry axes and on the magnitude of 
the anisotropy. In isotropic media the higher order tensors 
vanish and the two zeroth-order tensors (scalars) are directly 
related to the isotropic Lam6 parameters. The zeroth-order 
tensors define the isotropic component of both the 
compressional and the shear velocities. 

The isotropic compressional velocity component of a 
general elastic tensor was given by Backus (1970) as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (21/15)QJj, (15) 

Q.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr l  = (a..  ijmm + 2airn,m)/21 

where Qjj is the trace of the matrix, 

(16) 

(this notation differs slightly from that used by Backus, since 
we use a density normalized tensor). Equations (15) and 
(16) reveal the fundamental inability of 2-D, q P  tomography 
to resolve even the zeroth-order components of the elastic 
tensor. Explicitly, 

Equation (12) introduces non-linearities into the global to 
TI transformation. The transformation can be achieved by 
iteration from a starting guess of the values of A, B, C, 6 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACp. At each iteration equation (12) is used to compute 
the misfit between the global and TI parameters, partial 
derivatives are computed and new hexagonal parameters are 
generated. In practice we have found that the transforma- 
tion is nearly always singular, or very nearly singular. This 
can be overcome by eliminating the degree of freedom 
associated with the lowest singular value, so that only four 
TI parameters are recovered. The degree of freedom 
eliminated is usually some linear combination of the two 
Euler angles. For example, for near symmetry axes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 = 0), 
Cp is indeterminate. In the case of near vertical axes we 
always proceed by adding the constraint Cp = 0.0. It may be 
helpful in the future to incorporate external information on 
the orientation of the symmetry axes (for example from 
analysis of the polarization of split shear waves). 

Thomsen (1986) has introduced an alternative parameter 
set for TI media. The Thomsen parameters simplify the 
directional velocity dependencies and facilitate a geological 
interpretation. The five Thomsen parameters are a(, (the 
velocity along the axis of symmetry), E (the non-dimensional 
‘amount’ of anisotropy), 6 (a second non-dimensional 
parameter that describes the anellipticity of the slowness 
sheets) and two direction cosines that describe the 
orientation of the axis of symmetry. Given A, E and C it is 
straightforward to compute a(,, E and 6 [see Paper I, 
equation (E9)]; specifically, 

ff o -  - c1/2 , € = ( A  -C)/2C, 6 = (B- C)/C. (14) 

The last relationship is valid only within the weak anisotropy 
assumption. 

Due to the non-linearities certain non-uniquenesses arise. 
For example, for a given set of global parameters, both (a(,, 
E ,  6, 6, Cp) and ((yo, -6, 6, 6 + n/2, Cp) fit the same qj 
parameters. Both sets of parameters yield the same curve of 
slownesses in the plane of the survey, but they represent 
very different media (the slowness sheet of one of these is 
prolate, the other is oblate). The approach we have taken to 
avoid this particular non-uniqueness is to constrain E to be 
positive. Other problems arise due to local minima in the 
fitting when the slowness sheets are not ellipsoids (when 
626).  We have found that a global search over several 
hundred values of 6 is a useful way to begin this 
transformation. 

2.4 Isotropic components of velocities 

It was noted at the end of Section 2.2 that equations (9) and 
(10) are non-linear in the isotropic velocity, a, since a 
appears both in the partial derivatives and in the solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq. 
The set of five 6q,’s may contain an isotropic component, 
indicating the original isotropic velocity model was 
inadequate. This can be approached numerically by 
relaxation. A new isotropic model is chosen after each 
inversion and the equations are relinearized and re-solved. 
In tests we have carried out the solutions stabilize after 
several iterations (three or four is typical); the perturbations 
are then purely anisotropic. 

The question remains as to how the isotropic velocities 
may be chosen from the five global parameters, q. One 

Thus, 

QJj = (3q1 + 3q5 + q3 + 3a2222 + 2allZ2 

+ 4alZ12 + 2a2233 + 4a2323)/21, (18) 

in which only the first three terms are determined by qP 
tomography in a 2-D plane. 

To remove the non-uniqueness, again it is necessary to 
assume some symmetry property. If we assume a TIV 
system, then a2222=all l l  = q l ,  al122+2a~212=a1111 =q1 
and 2 ~ , , ~  + 4a2,,, = 2al13, + 4a13,, = q3. Making these 
substitutions into equation (18) yields, for TIV systems 

Qjj = (8qi + 2q3 + 3q5)/21. (19) 

Similarly, for an arbitrary orientation of the axis of 
symmetry, 

Qjj = (8A + 4 8  + 3C)/21. (20) 
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26 R.  G .  Pratt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand C.  H .  Chapman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In the degenerate case of isotropy, where A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= B = C,  we 
obtain cr2 = A ,  as expected. The higher weighting of A in 
equation (20) reflects the fact that most of the 3-D slowness 
sheet lies close to the transverse slowness. 

In order to extract a suitable isotropic component of 
velocity from the five zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq parameters, given a TI media, we 
first apply the global to TI transformation to obtain A, B 
and C ,  and then use equation (20) followed by equation (15) 
to compute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. 

3 T H E  LINEAR SYSTEM A N D  
REGULARIZATION 

3.1 The singular value decomposition of the linear 
system 

In equations (6), (9) and (lo), we formulated linear systems 
for tomography in isotropic and in anisotropic media. Each 
of these systems is characterized by a FrechCt matrix F. The 
M X N FrechCt matrix is a linear mapping from the 
N-dimensional parameter space to the M-dimensional data 
space. For isotropic tomography N is the number of cells 
chosen to discretely represent the velocity field M is the 
number of ray paths. For anisotropic tomography using 
equation (9) (or equation lo), N is the number of cells 
multiplied by five (or by six). Because each ray crosses only 

1 

Figure 2. The ray geometry used to  generate the linear systems 
analysed in Figs 3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and 5. 

702 

7 O0 

7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 o - ~  

7 0-6 

a small number of cells, F is extremely sparse. It is 
important to take advantage of this sparseness in the 
computer solution of tomographic problems. 

Linear systems such as equations (6), (9) and (10) are, for 
most exploration geometries, extremely ill-conditioned. The 
ill-conditioning is a result of the source-receiver geometries 
and often cannot be overcome. The singular value 
decomposition (SVD) of the FrechCt matrices for crosshole 
tomography has been used effectively by Bregman, Bailey & 
Chapman (1989b) to analyse the crosshole tomography 
problem. Here, we review these results for isotropic 
tomography and continue the analysis for traveltime 
tomography in anisotropic media. 

For any matrix F there exists the SVD, 

F = UAVT (21) 

(Lanczos 1961). The matrix U is an M x M orthogonal 
matrix of eigenvectors that span the data space, the matrix 
V is an N X N orthogonal matrix of eigenvectors that span 
the parameter space and A is an M x N diagonal matrix 
whose diagonal elements are known as the singular value of 
F. The singular values are always non-negative and the 
number of non-zero singular values is always equal to or less 
than the minimum of M and N. Zero-valued singular values 
cancel the contributions of the corresponding eigenvectors. 
The matrices in equation (21) can be partitioned, so that 

where the subscript p indicates that only the columns of U 
and V that are multiplied by non-zero singular values are 
retained. The remaining columns of V span the null space of 
F. Parameter configurations that are linear combinations of 
vectors lying completely within the null space have no effect 
on the modelled traveltimes. 

Figure 2 shows the ray paths we consider in the following 
model study. The rays originate at five source locations 
located at the right-hand edge and connect each source with 
the five receiver locations at the left-hand edge. The results 
of the SVD of the isotropic tomography FrechCt matrix for 
this configuration were discussed by Bregman et al. (1989b). 
In Fig. 3 we reproduce some of these results. The velocity 

SVD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(25 dofa, 25 cells, 25 parameters) 

- 
I 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Eigenvectors and associated singular values for isotropic tomography using the model shown in Fig. 2. The cell geometry is 
5 x 5 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 cells. 
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Anisotropic truveltime tomography-11 27 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
field is discretely represented by a 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 grid of points, 
leading to a total of 25 parameters which are used to 
attempt to fit the 25 data. There are thus 25 singular values; 
these are plotted in Fig. 3 above the corresponding 
eigenvectors of the parameter space (i.e. the columns of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV). 
There are four zero-valued singular values for this 
configuration; these four are associated with four eigenvec- 
tors that define the purely vertical structures in the model. 
Apart from the four zero singular values, the lowest singular 
values are associated with patterns centred over cell 
locations close to the top and bottom edges of the survey 
(the poorly sampled cells). Bregman showed that the 
ill-conditioning could be alleviated if additional data from 
sources or receivers located on the surface were included. 
Unfortunately, in many applications the distance to the 
surface is much larger than the distance between the wells, 
so that this approach is often not possible. Furthermore, the 
near surface is often more heterogeneous, anisotropic and 
attenuating than everything else, leading to  additional 
imaging problems. 

Figure 4 shows the SVD when the additional degrees of 
freedom required to describe the anisotropy are included 
(using equation 9), without increasing the data volume. 
Since five parameters are required at  each cell location (dq,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j = 1, . . . , 5), there are now 125 eigenvectors required to 
span the parameter space, each of which can be partitioned 
into five spatial distributions, one for each 6q,. The first 25 
of these eigenvectors are plotted below their corresponding 
singular values. All remaining singular values are identically 
zero, so that only the eigenvectors shown can influence the 
modelled traveltime data. These eigenvectors contain 
primarily components of 64, and, for the smaller singular 
values, components of 64,. Almost all the contributions for 
the remaining parameters lie within the null space of the 
problem as posed (with some exceptions at the centre of the 
model). The survey resolves the 64, in roughly numerical 

SVD (25 data, 25 

order; the 6qj with larger values of j have less influence on 
the data. This phenomenon can be understood in terms of 
the formula for the partial derivatives, equation (8). For 
small values of j ,  the magnitudes of the partial derivatives 
are larger for near-horizontal rays (with large f i ,  
components) and smaller for near-vertical rays. The 
spectrum of singular values and eigenvectors is a reflection 
of the distribution of ray angles, which is biased toward the 
near-horizontal rays. Again, if sources or receivers were 
located along the top edge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the survey, this would alleviate 
the ill-conditioning and change the distribution of the 
eigenvectors. 

Figure 5 shows the SVD obtained when the total number 
of cells is reduced. The grid is now 3 x 2, so that there are 
only six cells (30 parameters) altogether. The pattern of the 
spectrum we described in the previous paragraph is clear. In 
this case, however, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaq,, dq, and dq, parameters have a 
greater influence on the data. Because the cell size is 
increased, the cells contain more ray segments. In order to 
fit the data using the parametrization it is necessary to vary 
all five parameters within the cells. For this parametrization 
there are 23 non-zero singular values, although these values 
fall off drastically beyond the 20th singular value. The 
eigenvectors for the zero singular values contain linear 
combinations of vertical structures in several parameters. 
The low singular values are associated with specific linear 
combinations of the 64, and 6q, parameters. 

We conclude from the previous two paragraphs, and from 
Figs 3 and 4, that crosshole arrival times can be modelled in 
very different ways, depending on how the model is 
parametrized. If a fine grid is used in the discretization, the 
arrival times can be modelled using only 64, and 64,. If a 
coarser grid is used, then one needs to include the remaining 
parameters in order to fit the data. The only way in which 
one can decide on the validity of either of these models is to 
incorporate other criteria. 

cells, 125 parameters) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o o o o o o o o o a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 0 0 0 0 0 0 0 0  o o c n o  

1 o-2 

7 o - ~  l oo  I 

Figure 4. Eigenvectors and associated singular values for anisotropic tomography using the model shown in Fig. 2. The cell geometry is as in 
Fig. 3, but here five parameters per cell are used. 
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28 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR.  G.  Pratt and C.  H .  Chapman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SVD (25 doto,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 cells, 30 parameters) 

10-4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I ' " 1  

Figure 5. Eigenvectors and associated singu!ar values lor anisotropic tomography using the model shown in Fig. 2. The cell geometry is 
2 x 3 = 6 cells. 

For the multiparameter case, the scalelength of the 
parametrization is more important than that in isotropic 
tomography. In isotropic tomography, when a fine grid is 
used, the data can usually be modelled by varying only the 
long-wavelength components, since decreasing singular 
values are generally associated with decreasing wavelengths 
in the eigenvectors. In the fine-grid multiparameter case, the 
spectrum does not arrange itself according to wavelength. 
For example, in Fig. 3 the short-wavelength components of 
S q ,  have more influence than the long-wavelength 
components of the remaining 6q,'s. This difficulty in 
modelling data using multiple parameters has also been 
noted (in a different context) by Scales, Docherty & 
Gersztenkorn (1990). Even in the single parameter case, 
when too fine a parametrization is used, the eigenvector 
spectrum is no longer arranged in decreasing wavelength 
order. This can lead to artifacts in isotropic tomographic 
images. 

3.2 The inverse problem and the nature of a priori 

information 

The condition numbers for the matrices in the examples in 
the previous section (Figs 3, 4 and 5) are effectively infinite. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In solving equations (6), (9) and (10) this ill-conditioning 
needs to be addressed. The eigenvectors associated with the 
zero singular values (i.e. the vectors that span the null 
space) are unconstrained by the data. Any combination of 
these eigenvectors can be added to the solution without 
affecting the result. The inverse method must include some 
criteria for selecting the components of the null space that 
appear in the solution. Techniques for including external 
information serve to regularize the inverse problem 
(Tikhonov & Arsenin 1977). 

Possible forms of external information that might be 

incorporated are: 

(1) a starting model (often of unknown certainty); 
(2) an estimate of the magnitude of the anisotropy (for 

(3) an expectation that the elastic properties vary 

(4) some combination of the above. 

example, isotropy is expected); 

smoothly; and 

The third item requires comment. In actuality, elastic 
parameters vary at all scalelengths down to microscopic 
levels. If seismic waves propagated as rays, the elastic 
parameters would necessarily be always undersampled. 
Therefore, parameter estimates would be subject to severe 
aliasing errors. If the data are assumed to contain 
information on only the smooth components of the 
parameter distribution, this places a limit on the grain of the 
geology that one expects will influence the data. This 
approach, in ad hoc sense, is a recognition of the fact that, 
because the seismic energy is band-limited, the arrival times 
of transmitted waves are insensitive to the fine-grained 
properties of the medium. In anisotropic media the media 
must be adequately sampled, not only to prevent spatial 
aliasing, but also to provide the required parameter 
resolution. 

There are a number of different philosophical approaches 
that can be taken to incorporate external ('a priori') 

information, although most yield similar numerical schemes. 
Tarantola (1987) presents a stochastic formulation for the 
inverse problem that lends itself to the incorporation of any 
of the items enumerated above. In the stochastic inverse the 
probability distribution is described for a range of models. 
The probability of a given model, 6q, is proportional to 

where the least-squares objective functional, S( 6q) is 
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Anisotropic traveltime tomography-It zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA29 

variances of the anisotropy parameters are smaller than the 
variance of the squared velocities. We formalize this by 
invoking the alternative parametrization given in equation 
(lo), in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6ijj with j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 correspond to the velocities and 
in which bij, with j = 1, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 represent purely anisotropic 
parameters. This allows the correct variances to be assigned 
to each parameter, specifically 

defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S(6q) = (F 6q - 6T)TCd ‘(F Sq - 6T) + 6qTC,’ 6q. (24) 

In equation (24) the data space and parameter space a priori 

covariance matrices, Cd and C,,, are used to weight the 
relative contributions to the objective function of the data 
residuals (the differences between modelled and observed 
data) and the parameter differences (the differences 
between a priori and estimated parameters). This version of 
the probability distribution is dependent on the assumption 
of Gaussian probability distributions both for the data and 
for the model parameters. Neither assumption can really be 
justified. However, there is little choice but to proceed with 
the assumption of Gaussian model statistics, as one is 
unlikely in any case to be able to determine a more 
appropriate statistical model. Because Scales, Gersztenkorn 
& Treitel (1988) have shown that the least-squares 
formulation can be used to treat non-Gaussian data statistics 
by iteratively reweighting the data following each least- 
squares inversion, it is appropriate to continue to use the 
least-squares formulation. 

Using equations (23) and (24), any solution to the 
tomography problem, bq, can be assigned a unique 
probability value. The most probable solution is the one that 
minimizes the functional, S(6q). Normally, the observa- 
tions, 6T, are the differences between the a priori, isotropic 
model and the observed data. If the a priori model is 
anisotropic this can equally well be incorporated (nonethe- 
less, partial derivatives are always computed using an 
isotropic model). 

Since the data are often assumed to be of uniform 
variance and uncorrelated, replace Cd with Cd = u:I in 
equation (24): 

S(6q) = a,’(F 6q - c ~ T ) ~ ( F  6q - 6T) + SCC;’ 6q. (25) 

In order to obtain the required solution, differentiate S(6q) 
with respect to the model parameters, and the result equal 
to zero. This leads to the solution 

(FTF + a;Ci’) 6q = FT 6T 

In the case of infinite a priori model variances this equation 
reduces to the well-known normal equation for least 
squares. For singular F, the normal equation cannot be 
solved (FTF has no inverse); the presence of a finite C, 
matrix allows a solution to be obtained. 

We now explore some of the possible forms of the matrix, 
C,. If the n priori information is limited to a set of model 
parameters that are expected to be uncorrelated and have 
uncertain variance (constraint l), then 

c, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41, (27) 

where up is chosen to be of the order of the magnitude of 
the parameters. This leads to the damped least-squares 
solution 

( F ~ F  + A*I) 6q = F~ 6 ~ ,  

with L 2 =  a:/$. 
In order to be able to constrain solutions to confirm with 

an expected level of anisotropy (i.e. constraint 2), a 
modification of the covariance matrix given in equation (27) 
is required. This constraint implies that the a priori 

[C,],= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu: for j = O  

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj =  I , .  . . , 5 (29) = a; __ 
A2 

A2 + K 2  

(no summation over I ) .  The relationship between the 
subscripts 1 and j has been given at the end of Section 2.2.2. 
K is thus a measure of the decrease in the a priori variances 
of the anisotropy parameters relative to the variance of the 
velocity. 

The form of the a priori parameter covariance matrix 
given in equation (29) leads to the damped least-squares 
solution 

(FTF + 1’1 + K2r ’ )6q = FT ST, 

where I ’  is a modified identity matrix in which the diagonal 
elements that correspond to j = 0 parameters are set equal 
to zero. Both this form and equation (28) are special cases 
of damped least-squares solutions with zero a priori 

parameter covariances and non-uniform parameter 
variances. 

The expectation of smoothness (constraint 3 )  can also be 
incorporated into the stochastic inverse, at least in theory. 
This information can be implemented using a covariance 
between parameters spatially separated by a distance, Ar, of 
the form, 

(30) 

where L represents the distance over which one expects the 
solution to be smooth. Since C,) is a smoothing operator, the 
effect of C,’ in equation (25) is to penalize roughness in the 
solution. 

In practice, the use of a covariance operator designed to 
penalize roughness is costly to implement, since the matrix 
C, becomes dense (destroying the sparseness of the Frechtt 
matrices). Instead, it is more effective to add a derivative of 
the solution to the objective function (Constable et al. 

1987): 

S(6q) = ui2(F 6q - 6T)T(F 6q - 6T) + C 2  SqTRTR 6q, (32) 

where R is a discrete, sparse, difference operator (the 
regularization operator). The actual form of R can vary. 
Either the first difference or second difference forms can be 
used; the former is used to penalize solutions with large first 
derivatives (large spatial gradients) in the solution, the latter 
penalizes solutions with large second derivatives (large 
values of the spatial Laplacian operator). If C2RTR = A’I 
(i.e. the zeroth difference operator) then the regularization 
operator penalizes the magnitude of the solution, as in 
damped least squares. In Section 4.2 we give explicit 
formulae for first and second difference operators. 

Equation (32) leads to a solution of the form 

( F ~ F  + E’R~R) 6q = F~ 6 ~ ,  (33) 
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with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2'0;. The operator z2RTR replaces the role of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C;' in equation (26) (it is also a roughness operator), but it 
is much easier to compute and does not destroy the 
sparseness of the formulation. Equation (33) can also be 
written in a generic form as 

Sq = Ft 6T, (34) 

Ft = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(FTF + &'RTR)-'FT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(35) 

where Ft is the pseudo-inverse of F, given by 

3.3 The effect of constraints on the SVD 

In order to gain insight into the operation of the constraints 
discussed in the previous section it is useful to consider the 
SVD of the pseudo-inverse, F' (equation 35). Substitution 
of the SVD of F (equation 22) yields 

F~(v,A;v; + E ~ R ~ R ) - ~ V , A ~ U , T .  (36) 

For the case of infinite a priori variances ( E - 0 )  equation 
(36) reduces to the generalized inverse, 

(37) 

The generalized inverse simply sets the components of the 
null space equal to zero in the solution. Problems occur in 
applying a generalized inverse when, as in Figs 2 and 4 there 
are singular values within A,, that lie close to zero. 
Multiplying the data eigenvectors, U ,  by A;' leads to 
unacceptable amplification of noise in the data. The data 
fitting will be too successful and the solutions will be 
dominated by those eigenvectors that actually have little 
influence on the data. Furthermore, as we have shown in 
Section 3.1, the scalelength of the parametrization will 
determine the form of the solution that the generalized 
inverse will yield: parametrization on a fine grid will yield 
fine-grain solutions, with only 69, and 692 terms, whereas a 
coarse parametrization will yield coarse-grain solutions with 
estimates of all 6q, parameters. 

If E ~ R ~ R  = A1 (damped least squares), then some of the 
deficiencies of the generalized inverse are rectified. Under 
this regularization, equation (36) reduces to 

Ft = V,&'DU;f, (38) 

with the diagonal damping matrix 

A; 
D =  

A: + A21' (39) 

The damping matrix contains diagonal elements ranging in 
values from 0 to 1. As the singular values become small (less 
than A in magnitude) the damping acts to reduce their effect 
in the pseudo-inverse. A judicious choice of damping can 
avoid the overfitting of noisy data. However, the 
eigenvectors in the null space do not contribute to the 
solution and the scalelength of the parametrization will, 
therefore, as in the generalized inverse, determine the 
nature of the solution. 

For more general regularization operators, R, (for 
example, the first and second difference forms) equation 
(36) can only be reduced to 

F? = V [ A ~ A  + E 2 ( ~ ~ ) T ~ ~ ]  - I A ~ u ' ~ .  (40) 

The partitioned form of the SVD is no longer used. To the 
extent to which (RV)TRV is not diagonal, this pseudo- 
inverse contains contributions from eigenvectors within the 
null space of the unconstrained problem. In contrast to the 
generalized inverse and damped least squares, the additional 
requirement of smoothness allows components from the null 
space of the unconstrained problem to contribute to the 
solution. This is desirable, since the scalelength of the 
parametrization should not determine the nature of the 
solution. It is preferable to use the parameter, E ,  to control 
the regularization. Reconstructing the solution using 
equation (40) inhibits the contribution of the rough 
eigenvectors, but allows the smooth eigenvectors in the null 
space of the unconstrained problem to contribute to the 
solution. 

3.4 The numerical solution of the inverse problem 

The solution of the traveltime tomography problem in the 
presence of anisotropy has been defined, generically, by use 
of the pseudo-inverse, Ft (equation 35). Normally, one 
would like to avoid actually forming the pseudo-inverse 
(which is costly for most realistic problems). There are many 
equation solvers that solve the normal equation for least 
squares without explicitly forming a pseudo-inverse. The 
regularized solution, equation (33), can be manipulated to 
yield the normal equation, 

(F"p6q = kT 6f. (41) 

This form, exactly equivalent to equation (33), is obtained 
by making use of the augmented FrechCt matrix, 

@ = 
(42) 

(which still has N columns, but now has M + N rows) and 
the augmented data vector, 

sf= ("0'). (43) 

To solve the inverse problem we use the LSQR solver for 
damped least squares. LSQR is a modified conjugate 
gradient technique for damped least squares, originally 
proposed by Lanczos (1950), but not numerically tractable 
until implemented by Paige & Saunders (1982). An 
important feature of the LSQR solver is that it allows full 
advantage to be taken of the sparseness of the matrices, F 
and R. The LSQR solver incorporates only standard 
damping of the form given in equation (28). When using the 
more general forms of regularization operators the LSQR 
algorithm can still be used, provided the augmented matrix 
and data vectors, @ and S f ,  are provided. 

4 APPLICATION TO COMPUTER 
GENERATED DATA 

In the following sections we describe the application of the 
numerical scheme, equation (41). We generated data by 
computer simulation, we inverted the data to obtain the 
spatial distributions of the global parameters q and, finally, 
we used the transformation described in Section 2.3 to map 
these to the isotropic velocities, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, the Thomsen 
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parameters, E and 6 and the two Euler angles, 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs 
described in Section 2.3, in order to apply the final global to 
TI  transformation, it was necessary to add two further 
constraints: that the azimuthal angle, @ be zero and that E 

be greater than zero. 

4.1 Model description and data generation 

Figure 6 depicts the anisotropic model and the survey 
geometry used in the following study. The two 'boreholes' 
are separated by 100111, and the length of the source and 
receiver arrays is 200m. The model is uniformly TI ,  and 
includes a central velocity anomaly as indicated by the box. 
The TI  parameters for this model are E = 10 per cent and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 = - 10 per cent. The symmetry axis is contained within the 
survey plane and is tilted 20" from the vertical. The velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a0 along the symmetry axis is 3 . 0 k m s P '  except in the 
central anomaly. The central anomaly is characterized by 
the same anisotropy parameters, but contains an increase in 
velocity = 3.2 km s-'). The monopole terms for these 
two regions are (Y = 3.113 km s-' ,  for the surrounding 
region and (Y = 3.321 km s- I, for the central anomaly. 

11 source locations (along the left-hand edge of the 
model) and 11 receiver locations (along the right-hand edge 
of the model) were used in the synthetic data generation. 
Arrival times for all 121 source-receiver pairs were 
generated using an exact 2-D ray theory. Because the 
symmetry axis is contained within the plane 2-D ray tracing 
is sufficient. The anisotropies are weak (10 per cent) and we 
therefore expect the perturbation approach to be valid; this 
was confirmed by comparing the modelled times with times 
modelled using equation ( 4 t t h e  differences were of the 
order of the machine precision. We also deliberately chose 
the velocity anomaly to he small (6.67 per cent) in order to 
be able to ignore non-linearities. In this study of traveltime 
inversion we treat only the linear aspects of the problem; we 
do  no relinearize and we use only straight rays. The 
tomography problem is often only weakly non-linear and we 

\ T \-\\\\\ 
\ \ \ \ \ \ \ \  
\ \ \ \ \ \ \ \  
\ \ \ \ \ \ \ \  
\ \ \ \ \ \ \ \  
\ \ \ \ \ \ \ \  

\ \ \ \ \ \ \ \  
\ \ \ \ \ \ \ \  
\ \ \ \ \ \ \ \  
\ \ \ \ \ \ \ \  

Schematic of sjnthetic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstudy 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Model for synthetic study. The model is uniformly 
transversely isotropic (TI), with E = 10 per cent, 6 = -10 per cent. 
The symmetry axis is contained in the survey plane and tilted 20" 
from the vertical. The central anomaly is a 6.67 per cent increase in 
velocity . 

expect the non-linear aspects of the problem to be soluble in 
a straightforward manner by relaxation. 

4.2 Regularization 

There are 121 traveltime data available from the computer 
simulation. We parametrized the model using a grid 8 cells 
wide and 15 cells high. We used the parameter set q,  so that 
the total number of parameters was 6 X 8 X 15 = 720. From 
the arguments presented in Section 3.3, the use of a 
generalized inverse or damped least squares would imply 
that one does not expect that the parameters 6q,, 6q,, 6q, 
will appear in the solution. To extract information about 
these parameters, it is important to sacrifice some of the 
spatial resolution of the fine parametrization grid. This was 
done by constraining the parameters to  be spatially smooth, 
in the manner described in Section 3.2. 

In Section 3 we related the constraints on anisotropic 
tomography to u priori parameter covariance matrices. 
Although ideally these matrices should be specifically 
computed from available data (well logs, for example) in a 
statistical fashion, in reality the relevant information is often 
not available. Instead, we now show the results we obtained 
for a range of regularization levels, and develop methods for 
selecting appropriate regularization levels from a suite of 
results. The two parameters we varied were E, the 
roughness penalty and the K ,  the anisotropy penalty. 

To apply both roughness and anisotropy penalties to the 
tomography problem, we used an augmented FrechCt matrix 
of the form 

and an augmented data matrix 

(44) 

(45) 

where R,, R, and RvZ are the roughness matrices for the x 
and z gradient terms (the first difference operators) and the 
Laplacian term (the second difference operator). The 
FrechCt matrix, F, contains M =  121 rows a2d N = 7 2 0  
columns. The augmented FrechCt matrix, F, contains 
M + 4N = 2901 rows and N = 720 columns. 

To compute the first difference operators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, and R, we 
used centred finite difference approximations to the first 
derivatives, a / d x  and a/&. These operators can be 
represented by the finite difference 'stars': 

F- 
0 -1 0 

( - I  I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 

To compute the second difference operator we used a 
centred finite difference approximation of the Laplacian, V2. 
The operator can be represented by the 9 point finite 
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101 1101 

(47) 

In equations (46) and (47) A is the width of a cell. If the 
cells are not square the equations must be slightly modified. 
The finite difference stars in equations (46) and (47) cannot 
be used at the edges of the survey. Instead, for the first 
difference operators we use forward or backward 
differencing schemes. The second differences are left 
unconstrained at the edges. 

Each row of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,, R, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARp2 corresponds to a particular 
parameter, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6q,, where each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 implicitly defines both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and j 
in 6qi, (the jth Sij, parameter in the ith cell). The non-zero 
elements of the Ith row of each matrix are computed by 
overlaying the star with its centre at the ith cell, and 
entering the values of the star into the corresponding 
column locations. This leads to a block tridiagonal form for 
each matrix. The diagonal blocks contain tridiagonal 
submatrices and the off-diagonal blocks contain diagonal 
submatrices. 

4.3 Effect of the regularization parameters 

We have not yet treated the problem of selecting the 
appropriate levels of constraints, E and K. In general, as the 
magnitudes of E or K are decreased the data fit improves. 
However, using values that are too small will result in 

0.8 

0.6 
(I, 
0 
Q 
C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tn 2 0.4 

ctr 
m 
P 
& 

0.2 

overfitting of the data and amplification of the data errors by 
the small eigenvalues of the problem. Constable el al. (1987) 
and Scales et al. (1990) recommend choosing the roughness 
penalty, E ,  by selecting a value at which the data are fit to 
within exactly one standard deviation. Two related problems 
arise when attempting to implement this criterion. First, the 
standard deviation of the data is not in practice known 
accurately. Second, the criterion is based on the assumption 
of Gaussian data statistics. In traveltime tomography the 
data errors are often non-Gaussian, since the errors are 
dominated by picking errors. Furthermore, in regions of 
complex velocity structure, the ray theory used to model the 
traveltimes is inadequate, leading to modelling errors. 
Modelling errors, if not accounted for, reveal themselves as 
data errors with decidedly non-Gaussian statistics. An 
alternative approach is to carefully examine a suite of 
solutions and use a number of indicators to estimate optimal 
regularization parameters. 

Using the synthetic data from the model in Fig. 6, 
equation (41) was solved for a suite of values of the 
regularization parameters, E and K. All solutions were 
generated using a constant, isotropic velocity, (Y = 3.09, as a 
starting model (the average of all the average ray velocities). 
In order to demonstrate the dependence of the solutions on 
the regularization parameters, in Fig. 7 we display the RMS 
values of the data residuals, 

112 ($ (F 6q - GT)T(F 6q - 6 ~ ) )  ; (48) 

and the roughnesses of the solutions as measured by the 

Synthetic data 

0 
0 0.2 0.4 0.6 0.8 

RMS Residuals 

Figure 7. Solution roughness trade-off curves for the synthetic data set. A suite of solutions for varying values of roughness penalty ( E )  and 
anisotropy penalty (K )  were analysed. 
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Anisotropic traveltime tomography-tt 33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the source depth decreases from left to right along the 
horizontal axis, and the receiver depth decreases from top to 
bottom along the vertical axis. This format of arranging 
source-receiver locations is commonly known as a ‘stacking 
chart’ and is extensively used in surface reflection data 
processing. For all solutions in which a non-zero value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK 

was used, there is a systematic appearance to these 
residuals: there are bands of positive and negative residuals 
that correspond to source-receiver pairs that have a 
common ray angle. For example, source-receiver pairs of 
equal depths appear along the diagonal-these pairs are all 
linked by horizontal rays. Because these data contain only 
computation errors due to machine rounding, a valid 
inversion should yield residuals with no such systematic 
patterns. The presence of residuals that are correlated with 
a ray angle is indicative of an incorrect anisotropy in the 
solution. Only at the K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.0 level do the residuals show the 
expected random behaviour. Displaying all the traveltime 
residuals in plots such as these is far more diagnostic than 
simply computing the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARMS level of the residuals. 

In this section we have advocated selecting the 
regularization parameters partly according to the ap- 
pearance of a suite of tomograms. This may strike 
mathematical purists as lacking in rigour. Nonetheless, this 
approach is consistent with the philosophy of the stochastic 
inverse, in which an interpreter would not be given a single 
result, but a suite of possible results each with a given 
probability value. We have not been able to compute 
quantitative probability estimates, due to an inadequate 
knowledge of either the data statistics or the parameter 
statistics. However, we have shown how several indicators 
can be used together to qualitatively estimate the most 
probable solution from a suite of results. The interpreter is 
free to pursue the interpretation based on any or all of these 
results. The result that is chosen will reflect the interpreter’s 
a priori understanding of the geological setting. In terms of 
the larger objective of creating a geological model based on 
all available information, this approach is entirely 
satisfactory. 

RMS value 

where 

(49) 

expected the solutions are rougher and the residuals are 
smaller. Typically, the curves exhibit ‘knee points’ beyond 
which, if the constraints are relaxed further, the RMS 
roughnesses rapidly become very large. This rapid increase 
in roughness is an indication of an insufficient level of 
constraint. Conversely, increases in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE lead to large increases 
in RMS residuals. A rapid increase in residuals is an 
indication of too high a level of constraint. The value of E at 
the knee point is thus a good estimate of the optimal level of 
constraint. 

We advocate the use of the trade-off curves such as those 
in Fig. 7 in conjunction with an examination of the actual 
parameter estimates in order to select the parameter, F. For 
the model problem, the trade-off curves show that, for low 
values of K, there is a knee point in the range 3.0 < E < 30.0. 
In order to choose a value from this region, we examined 
the actual images obtained from the solutions. The display 
shown in Fig. 8(a) depicts 12 velocity tomograms [the 
monopole velocity (a) images] obtained from 12 of our test 
solutions. The unacceptable roughness in the low E solutions 
is evident. This roughness shows up in part as artifacts in the 
regions close to the source and receiver locations (the 
‘aliasing artifacts’). The low E solutions also display lobes of 
high velocity in the top right-hand and bottom left-hand 
corners. These lobes are required to account for the 
traveltimes if the anisotropy parameters are not resolved 
(the ‘unresolved parameters artifacts’). For any value of K ,  

as E is increased, first the aliasing artifacts disappear, then 
the unresolved parameters artifacts disappear. We selected 
the value E = 7.0 based on the appearance of the top row of 
tomograms in Fig. 8(a). 

For a given value of E changing K does not change the 
solution roughness, but results in an increased level of 
residuals. Nonetheless, a given level of residuals can always 
be obtained for any value of K by relaxing the roughness 
constraint. Fig. 8(b) shows the 12 anisotropy tomograms 
(the images of E )  obtained from the same 12 solutions. The 
anisotropy of the solution at ( E  = 10.0, K = 0.0) is 
reasonably homogeneous and close to the true value of 10 
per cent. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs the roughness constraint is relaxed, the 
solutions display incorrect and inhomogeneous anisotropies. 
As K is increased, as expected, the solutions show less and 
less anisotropy. The corresponding velocity tomograms on 
Fig. 8(a) for increasing K values display artifacts in the form 
of incorrect high-velocity lobes. These lobes can often be 
diagnostic of an incorrect anisotropy in the solution. 

In order to select an appropriate value for K ,  we show one 
final set of plots. Fig. 8(c) is a display of all the data 
residuals for the 12 solutions. Each pixel in each of these 12 
panels is coloured according to the traveltime residual for a 
single source-receiver pair. The pixels are arranged so that 

4.4 Results 

Figure 9 displays the complete solution we obtained from 
the synthetic data, with the regularization parameters K = 0 
and E = 7.0. The velocity estimates (Fig. 9a) correspond to 
the true values of a = 3.113 for the isotropic component and 
3.19 for the horizontal velocity. The location but not the 
magnitude of the velocity anomaly has been recovered. The 
absence of the rough components in the solution has 
resulted in a smoothing of the anomaly and an error in the 
peak value of the velocity anomaly. The magnitudes of the 
anisotropy parameters (Fig. 9b) also correspond to the true 
values of E = 10 per cent and 6 = -10 per cent. Fig. 9(b) 
shows how remarkably accurate the orientations of the 
symmetry axis within the source receiver plane (the polar 
angle, 0) have been estimated. 

5 APPLICATION TO FIELD DATA 

5.1 Geological setting and survey specification 

In 1988 the British Geological Survey (BGS) carried out a 
series of borehole experiments at Purton, in the UK 
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(McCann et al. 1989). The boreholes penetrated the Oxford 
Clay, an Upper Jurassic clay formation outcropping in the 
south of England. At the location of the survey, the clay is 
about l00m thick and overlies a limestone layer. The 
Oxford clay is largely homogeneous and plane layered, but 
there are stringers of variable sand content that influence its 
elastic properties significantly. The clay has been deter- 
mined by a number of experiments to exhibit transverse 
isotropy with near-vertical symmetry axes (King 1983; 
Barnes 1984; Kerner, Dyer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Worthington 1989). The 
anisotropy factor is of the order of 10 per cent. 

Although the BGS sought to investigate attenuation, they 
also carried out a traveltime experiment using two boreholes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
60 m deep and 20 m apart. The tomography data consisted 
of 210 arrival times obtained using 15 sources in one of the 
boreholes and recorded at 14 receivers in the other 
borehole. The source, known as a 'sparker', was a downhole 
electrode assembly across which a capacitor bank was 
discharged (see McCann, Grainger & McCann 1975, for a 
description of the source). The sparker generates fre- 
quencies between 0.5 and 2 kHz. The receivers used in this 
experiment were hydrophones. 

5.2 Straight ray isotropic tomography results 

In the study by McCann et al. (1989), the Purton crosshole 
data were used to form velocity tomograms. McCann et al. 
found that their initial image, formed without taking 
anisotropy into account, bore little relationship to the 
known stratigraphy. In Fig. 12(a) we show a similar image, 
also formed using isotropic tomography. Fig. 12(a) bears 
similarities to some of the underconstrained images shown 
in the bottom row of Fig. 8(a). In this case the high-velocity 
lobes are distributed symmetrically, leading us to expect a 
nearly vertical symmetry axis. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure U. Isotropic tomographic images from the Purton data (a) 
The velocity tomogram obtained without accounting for anisotropy 
(b) The velocity tomogram obtained by correcting arrival times 
under the assumption of a 10 per cent, homogeneous, elliptical 
anisotropy. 

Following this demonstration of the serious artifacts that 
result when isotropy was assumed, McCann et al. then 
showed that, by assuming a uniform, elliptical ( E  = 10 per 
cent, 6 = 10 per cent) anisotropy (with a vertical axis of 
symmetry), they could correct the measured times according 
to assumed ray paths. Using these corrected data a more 
plausible image was obtained. We also tried this approach. 
The result is shown in Fig. 12(b). The image shows the 
layered stratigraphy that is expected in the Oxford clay. The 
high-velocity zone in the centre of the images corresponds 
lithologically to a zone of higher sand content. The 
tomogram in Fig. 12(b) effectively demonstrates the 
improvement in stratigraphic imaging obtained using a very 
crude assumption about the anisotropy. There is an 
indication, especially at the top and bottom of the image, 
that the anisotropy assumption is not completely correct. In 
the next section we show that the data support a more 
rigorous approach. 

5.3 Parametrization and regularization 

For the purposes of the anisotropic tomography inversion of 
the Purton data, the model was parametrized using a grid 8 
cells wide and 25 cells high, yielding a total of 200 cells. A 
constant velocity, isotropic model with (Y = 1.81 km s-' was 
the initial model for the computation of the partial 
derivatives F and the data differences 6T. We again used six 
6qj parameters at each cell location in order to separately 
constrain the isotropic and anisotropic parts of the solution. 
The total number of parameters used was therefore 1200. In 
selecting the regularization parameters for the data set, E 

and K, we followed the methodology established in Section 
4.3 with the synthetic data; i.e., use a number of indicators 
derived from a suite of solutions with different regulariza- 
tion levels. 

Figure 13 shows the trade-off curves obtained for all 
combinations of E and K that were tested. The knee points 
of the solution roughness curves occur in the vicinity of 
3.0 < E < 7.0. The appropriate level of the anisotropy 
penalty must be estimated by evaluating the images and the 
data residuals, shown in Fig. 10. It is evident from Fig. lO(a) 
(the velocity images) that, as the anisotropy penalty is 
increased, the velocity structure becomes less plausible 
geologically. The E images, Fig. 10(b), show that, for 
K = 0.01 (the top row), high values of E (up to 20 per cent) 
are obtained near the bottom of the survey. As K is 
increased, the anisotropy at the bottom decreases and a 
compensating, high-velocity lobe appears at the bottom of 
the velocity images. As the E =0.7, K = 1.0 level, the 
velocity tomogram is very similar to the isotropic 
tomography result, Fig. 12(a). 

The sensitivity of the inversions to the choice of the 
regularization parameters can be judged qualitatively by 
examining Figs lO(a) and (b). The plane layered nature of 
the solutions is quite robust and is lost only when the 
anisotropy penalty terms become large. The magnitudes of 
the anisotropies are also insensitive to E and K at the centre 
of the survey region. At the top and bottom of the survey, 
where the ray coverage is poor, the anisotropy images are 
sensitive to the penalty terms. However, the pattern of 
increasing anisotropy from top to bottom is present on 
almost all of these images, as is the sharp increase in 
anisotropy below the high-velocity layer. 
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Figure 13. Solution roughness trade-off curves for the Purton field data. A suite of solutions for varying values of roughness penalty ( E )  and 
anisotropy penalty ( K )  were analysed. 

All the traveltime residuals for these 12 solutions for the 
Purton data are shown in Fig. lO(c). The display is exactly 
equivalent to Fig. 8(c). As in Fig. 8, for all solutions in 
which K was greater than 0.01, there is a systematic 
appearance to the residuals: there are bands of positive and 
negative residuals that correspond to source-receiver pairs 
that have a common ray angle. In the vicinity of the knee 
point E = 3.0, K = 0.01 the residuals can be seen to contain 
several ‘outliers’. These outliers are due to traveltime 
picking errors. Most of these are positive, which is 
consistent with the expectation that traveltime picks 
underestimate the true times in difficult data areas. The 
least-squares formulation places too much weight on the 
outliers, which do not conform to the assumption of 
Gaussian data statistics. Rather than using a lower value of 
E to reduce the outliers, we prefer to avoid fitting these. 
This is an ad hoc approach; a more rigorous procedure is to 
reweight the residuals according to their fit, and resolve the 
equations. This latter procedure, known as iteratively 
reweighted least squares (IRLS), has been shown 
(Schlossmacher 1973; Scales et al. 1988) to be equivalent to 
using L, norms in the objective function. 

5.4 Anisotropic tomography results 

Using the arguments presented in the previous section, we 
decided to proceed with the regularization parameters 
~ = 3 . 0  and ~ = 0 . 0 1 .  The system was relinearized, the 
partial derivatives were recomputed and the linear equation 
system was resolved. A total of three relinearizing steps 
were used, after which the solutions were essentially stable 
(i.e. the solutions, 6q, contained no further isotropic 
component). 

The results for straight rays are shown in Fig. 11. The 
monopole velocity image (Fig. l l a )  is similar to the image 
shown in Fig. 12(b), which was obtained by assuming a 
uniform ( E  = 6 = 10 per cent) anisotropy with a vertical axis 
of symmetry. The image in Fig. l l (a)  no longer contains the 
low- and high-velocity lobes present at the top and bottom 
of Fig. 12(b). The E images show low anisotropies in the 
near-surface sediments, with increasing values of E at the 
bottom of the model. Thus, it would appear that the image 
in Fig. 12(b) was overcorrected for anisotropy in the shallow 
region and undercorrected at depth. It is interesting to note 
that the anisotropy appears to increase sharply below the 
high-velocity (sandier) layer within the Oxford Clay. The 
values of 6 obtained from the inversion are everywhere 
approximately 4-5 per cent lower than the values of E ;  this 
appears to confirm that this medium has almost an elliptical 
anisotropy behaviour. Finally, the values of 8 recovered 
confirm that the symmetry axes are approximately vertical. 

The velocity variations in this case study are limited, and 
the problem is only weakly non-linear. Although not shown 
here, tests were carried out using a curved ray approach. 
These tests yielded images very similar to those shown in 
Fig. 11. In areas with more dramatic variations in velocities 
a curved ray approach will be required to account for the 
non-linear dependency of the ray paths on the solution. 

6 DISCUSSION 

In Paper I we proposed theories for 2-D tomography in 
anisotropic media using both qP-  and @-waves. In this 
paper we have investigated the application of the theory for 
qP-wave tomography. As expected, the linear systems are 
extremely ill-conditioned, and appropriate constraints are 
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required in order to extract meaningful solutions. Using 
singular value decompositions (SVD) of the linear systems, 
we have identified the expected spatial heterogeneity, or 
roughness, of the medium as an important constraint. The 
geometry of the ray paths defines an upper bound of 
heterogeneity that can be resolved; media with finer grained 
heterogeneity than this upper bound are undersampled, and 
the solutions are subject to alias errors. In anisotropic 
tomography the scalelength at which aliasing occurs is 
correspondingly longer than in isotropic tomography, given 
the same set of rays. If this scalelength is larger than the 
Fresnel zone width of the wave propagation, alias errors will 
be significant. W e  believe that this consideration should be 
incorporated into the specification of crosshole surveys. 

Following the SVD analysis of the linear systems, we gave 
a regularization scheme that included a penalty term for 
solutions with large roughnesses. Using a synthetic example, 
we showed how important this constraint is in allowing 
features of the true structure to be recovered, We found 
that penalizing the second derivative of the solution was 
insufficient: we also required a term in the regularization 
that penalized large gradients in the solutions. In selecting 
the regularization parameters (i.e. the level of the 
smoothness constraints) for the synthetic data inversion, we 
found it essential to analyse a suite of solutions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA band of 
acceptable regularization levels can be determined by 
examining plots of solution roughness against the data fit 
and searching for knee points. For fine tuning one has little 
recourse but to examine a suite of images and select a result 
on the basis of geological plausibility. In determining a level 
of constraint for anisotropy penalty terms, the examination 
of plots of all traveltime residuals are invaluable. 

In the final section of this paper we applied our numerical 
scheme to  crosshole arrival times measured in near-surface 
clay sediments known to be anisotropic. We found that we 
could obtain ‘useful estimates of the spatial distributions of 
the velocity and of the anisotropy. The images indicate that 
the anisotropy of the sediments increases from the top of the 
geological column to the bottom, with a sharp increase in 
anisotropy below a high-velocity layer associated with a 
higher sand content. This description of the heterogeneity of 
the anisotropy was not available previously. 

In this paper we have limited our investigations to TI 
media and to problems in which the nonlinear dependence 
of the ray paths on the solutions can be ignored. We 
consider that the nonlinear aspects of the problem will be 
soluble in a straightforward manner using techniques 
already well established in the isotropic tomography 
problem (for example, Bregman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1989a). Our  present 
research is directed toward incorporating these ‘curved ray’ 
methods and accounting for more general symmetry 
systems, with a view to solving more general tomography 
problems. The application of the theory for shear wave 
tomography (given in Paper I) will also be an important area 
for future research, although, as we indicated in the 
Introduction, this may have to await further progress in the 
technology of borehole seismic measurements. 
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