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Traversable asymptotically flat wormholes in Rastall gravity

H. Moradpour1∗, N. Sadeghnezhad1†, S. H. Hendi2‡
1 Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha, Iran

2 Physics Department and Biruni Observatory, Shiraz University, Shiraz 71454, Iran

There are some gravitational theories in which the ordinary energy-momentum conservation law
is not valid in the curved spacetime. Rastall gravity is one of the known theories in this regard
which includes a non-minimal coupling between geometry and matter fields. Equipped with the
basis of such theory, we study the properties of traversable wormholes with flat asymptotes. We
investigate the possibility of exact solutions by a source with the baryonic matter state parameter.
Our survey indicates that Rastall theory has considerable effects on the wormhole characteristics.
In addition, we study various case studies and show that the weak energy condition may be met
for some solutions. We also give a discussion regarding to traversability of such wormhole geometry
with phantom sources.

I. INTRODUCTION

Wormholes as the backbone of interstellar travels [1, 2], should be traversable [3, 4]. Some primary solutions for
traversable wormholes have also been derived by M. Visser [5]. It is also argued that a phantom energy may support
the traversable wormholes [6–8]. Moreover, it is shown that wormholes and black holes are convertible structures
and in fact, their physics are so close to each other [9–15]. These structures are also studied in modified theories
of gravity [16, 17] such as the braneworld scenario [18, 19], conformal Weyl gravity [20], the f(R) gravity [21, 22],
and the curvature-matter coupling framework [23, 24] (for a detailed review see [25]). In addition, one may use
cut-and-paste method to construct a thin-shell wormhole which needs an exotic matter that violates the null energy
condition. Following this surgical technique, various thin-shell wormhole solutions have been addressed in the context
of different gauge-gravity theories [26–38].
In the curvature-matter theory of gravity [39–41], while the divergence of energy-momentum tensor is not always

zero, geometry and matter fields are coupled to each other in a non-minimal way. Indeed, quantum effects in curved
spacetimes such as the particle production process [42–46] may motivate us to consider non-divergenceless energy-
momentum sources and thus modify the general relativity theory. On the other hand, there is another modification
to the Einstein’s theory proposed by P. Rastall [47], which also couples the geometry to the matter fields in a non-
minimal way [48–50]. As it has been argued by Rastall [47], we only test the energy-momentum conservation law
in our laboratory and thus the flat space. Indeed, to generalize the condition of null covariant derivative of energy-
momentum tensor from flat spacetime to the curved spacetime is the simplest assumption to get general relativity.
Therefore, it is not forbidden to relax this condition which leads to a modified general relativity theory [47].
Although the Rastall field equations are more simple than those of the curvature-matter theory, it is in agreement

with some observational data on the Hubble parameter and the age of the universe [51] meaning that it could
be free of the entropy and age problems of the standard cosmology [52]. In addition, the Rastall theory leads to
better consistency with the observational data of the matter dominated era against the Einstein field equations [53].
Observational data on the helium nucleosynthesis also supports this theory [54]. More studies on the cosmological
features of the Rastall theory including its consistency with various cosmic eras can be found in [48, 55, 56]. Finally,
it is worthwhile mentioning that this theory provides an appropriate platform to investigate the gravitational lensing
[57, 58]. In addition, abelian-Higgs strings in a phenomenological Rastall model have been analyzed in Ref. [59].
Moreover, Rastall gravity has been investigated in the context of the Gödel-type universe with a perfect fluid matter
[60] and it was shown that the geodesics of particles does not altered.
Moreover, similar to the curvature-matter theory of gravity, in the Rastall theory the divergence of energy-

momentum tensor does not always vanish in the curved spacetime [47], and therefore, the energy-momentum con-
servation law is not always valid. In fact, the curvature-matter theory is a kind of f(R) gravity, in which matter
and geometry are coupled to each other in a non-minimal way [39–41], and its lagrangian differs from that of the
Rastall theory [49, 50]. As we have mentioned, the wormholes structures are addressed in the curvature-matter cou-
pling framework [23–25]. Therefore, since the Rastall theory differs from the curvature-matter coupling framework
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[39–41, 49, 50], it is useful to investigate the structure of wormholes in this framework in order to get new aspects of
wormholes, Rastall theory and in fact, the effects of considering a source (an energy-momentum tensor) with non-zero
divergence on the wormholes and spacetime structures.
Here, we will introduce some traversable asymptotically flat wormholes in the Rastall framework and study their

physical properties. Moreover, we are interested in studying the effects of considering an energy-momentum tensor,
supporting the background, with non-zero divergence on the wormhole structures and their properties. In order to
achieve such goal, we first review some properties of the Rastall theory, and then try to get the energy conditions in
the Rastall theory. Besides, taking the Newtonian limit, we derive a dimensionless parameter for the Rastall theory
which helps us in simplifying and classifying calculations in this theory, meanwhile, some mathematical properties
of traversable asymptotically flat wormholes are also addressed. In addition, we study some physical properties of
the energy-momentum tensor supporting the mentioned geometry in the Rastall theory. Our study shows that the
wormhole parameters are affected by the parameters of Rastall theory.
The paper is organized as follows. In the next section, we review the Rastall theory and point out some of its

mathematical and physical properties. In section (III), we address some mathematical properties of asymptotically
traversable wormholes. Sections (IV) and (V) include some examples for the traversable asymptotically flat wormholes
in the Rastall theory. We also study the properties of energy-momentum tensor, supporting the geometry in this theory,
as well as the relation between the Rastall’s and wormhole’s parameters throughout the forth and fifth sections. The
last section is devoted to the summary. Units of c = ℏ = 1 are considered in this paper.

II. A BRIEF REVIEW ON THE RASTALL THEORY

Rastall questioned the validity of the energy-momentum conservation law in the four dimensional spacetime [47]. His
hypothesis (Tµν

;µ ̸= 0) leads to a modification to the Einstein field equations in agreement with various observational
data [51–58]. Based on the Rastall’s theory [47], if the spacetime is filled by a source with Tµ

ν , then

Tµν
;µ = λR,ν , (1)

where R and λ are the Ricciscalar of the spacetime and Rastall parameter, respectively. This equation leads to [47–54]

Gµν + κλgµνR = κTµν , (2)

which can finally be written as

Gµν = κSµν , (3)

where κ is the Rastall gravitational coupling constant, and Sµν is the effective energy-momentum tensor defined as

Sµν = Tµν − κλT

4κλ− 1
gµν . (4)

Therefore, solutions for the Einstein field equations are also valid in the Rastall theory, if only we consider Sµν as the
new energy-momentum tensor, for which we have

S0
0 ≡ −ρe = − (3κλ− 1)ρ+ κλ(pr + 2pt)

4κλ− 1
,

S1
1 ≡ per =

(3κλ− 1)pr + κλ(ρ− 2pt)

4κλ− 1
,

S2
2 = S3

3 ≡ pet =
(2κλ− 1)pt + κλ(ρ− pr)

4κλ− 1
. (5)

Here, ρ, pr and pt are the energy density and pressures corresponding to Tµ
ν , respectively. Besides, ρe, per and pet

are also the effective energy density and pressures corresponding to Sµ
ν , respectively. We should note here that

ρe, per and pet (effective components) differ from the energy density and pressures components of original energy-
momentum source (Tµν). In fact, this effective components have some geometrical aspects and they help us in
comparing energy-momentum sources satisfying Rastall field equations (2) with those satisfying the Einstein field
equations (3). Moreover, as a desired result, the Einstein field equations are reobtained in the appropriate limit
λ → 0. Finally, it is worthwhile mentioning that the Einstein solutions of R = 0 is also valid in this theory [18, 61].
One can also use Eq. (5) to see that

ρe + per = ρ+ pr, ρe + pet = ρ+ pt, (6)
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meaning that whenever the null and weak energy conditions are satisfied by the energy-momentum tensor, the effective
energy-momentum tensor will also meet these conditions. It is shown that, in Rastall’s framework, if the weak energy
condition is met by the energy-momentum tensor, then the second law of thermodynamics is also satisfied by the
apparent horizon of the Friedmann-Lemaitre-Robertson-Walker universe [62]. More studies on the thermodynamic
properties of this theory can be found in [63, 64]. In addition, the dominant energy condition expresses that matter
flux should be directed along the timelike and null geodesics, i.e. ρ ≥ 0 and ρ ≥ |pi| [65]. On the other hand,
Raychaudhuri’s equation as well as the Focusing theorem lead to the strong energy condition (ρe + per + 2pet ≥ 0) for
the Einstein tensor and thus Sµν [65]. Combining the strong energy condition with Eq. (5), one finds

ρe + per + 2pet = ρ+ pr + 2pt +
2κλ

4κλ− 1
(ρ− pr). (7)

Therefore, ρ + pr + 2pt ≥ 0 if ρe + per + 2pet ≥ 2κλ
4κλ−1 (ρ − pr). Besides, since the time-time component of the Ricci

tensor (R00) should meet the Newtonian limit [47, 50, 66], we get

κ

4κλ− 1
(3κλ− 1

2
) = κG, (8)

where κG = 4πG, and therefore, the Einstein coupling constant (κ = κE ≡ 8πG) is recovered only while λ = 0 [47, 50].
Solving this equation for λ, one reaches

λ =
κ− 2κG

6κ2 − 8κκG
. (9)

Here, it is useful to note that Eqs. (4) and (9) indicate that the dimension of λ should be the inverse of that of κ
which means λκ = γ, where γ is a dimensionless constant, we call the Rastall dimensionless parameter. Inserting this
result into (8), we obtain

κ =
8γ − 2

6γ − 1
κG. (10)

We finally define the state parameter w and the effective state parameter we as

w =
pr
ρ
, (11)

and

we =
per
ρe

, (12)

respectively. One can use Eqs. (5) and (11) to get

ρ = γ(per − ρe) + 2γpet + ρe, (13)

pr = γ(ρe − per)− 2γpet + per,

pt = γ(ρe − per)− 2γpet + pet ,

and

w =
γ(ρe − per)− 2γpet + per
γ(per − ρe) + 2γpet + ρe

, (14)

for the components of Tµ
ν and the state parameter, respectively. From now on, for the sake of simplicity, we set

8πG = 1 or equivalently κG = 1
2 which leads to

κ =
4γ − 1

6γ − 1
, (15)

where we used Eq. (10) to get the this result.
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III. TRAVERSABLE ASYMPTOTICALLY FLAT WORMHOLES, GENERAL REMARKS

Consider the general form of traversable static spherically symmetric wormholes written as

ds2 = −U(r)dt2 +
dr2

1− b(r)
r

+ r2dΩ2, (16)

in which b(r) and U(r) are called the shape and redshift functions, respectively. Additionally, dΩ2 = dθ2 + sin2 θdϕ2

is the line element on the two-dimensional sphere with radius r. The zeroth and radial components of Eq. (3) lead to

b′(r) = κρer2, (17)

and

U ′(r)

U(r)
=

κperr
3 + b(r)

r (r − b(r))
, (18)

respectively. The last equation can be rewritten as

U ′(r)

U(r)
=

rweb
′(r) + b(r)

r (r − b(r))
, (19)

by using Eq. (12). The final equation that comes from the G2
2 component, is

pet = per +
r

2

[
(per)

′ + (ρe + per)
U ′(r)

2U(r)

]
, (20)

for which we have also used Eq. (18). In the preceding formulae, the prime sign denotes the derivative with respect to
r. Since we are looking for wormhole solutions, the shape function should satisfy the b(r0) = r0 condition, in which r0
is the wormhole throat radius. Besides, in order to avoid singularities U(r) should be finite and non-zero everywhere

[4]. Moreover, the asymptotically flat condition implies the (1− b(r)
r ) → 1 and U(r) → 1 conditions for r → ∞. The

later condition leads to the 1 + z = 1√
U(r1)

relation for the redshift of a photon which has been emitted at r1 and

is observed at infinity. One can check that, for α < 1, b(r) = r0 + β[( r
r0
)α − 1] is a solution which satisfies both the

b(r0) = r0 and (1− b(r)
r ) → 1 conditions [67, 68]. Therefore, inasmuch as obtain the b(r) = r0 + β[( r

r0
)α − 1] relation

is independent of the U(r) function, the mentioned shape function is general and can be employed for every redshift

function. Bearing Eq. (17) in mind, we obtain ρe(r) = αβ
κr30

( r
r0
)α−3. Considering the ϕ(r) = r − c hypersurface with

normal nα = ∂αϕ(r), simple calculations lead to nαn
α = nrn

r = 1− b(c)
c at r = c meaning that the r = c hypersurface

is null whenever c = r0. Therefore, inasmuch as the wormhole throat is a null hypersurface, one may expect that
a radiation source (w = 1

3 ) should at least satisfy the throat of traversable wormholes. But, due to the flaring-out
condition, this expectation cannot be satisfied in the framework of general relativity [26]. Although the wormhole
throat is a null hypersurface, it is not a horizon. The latter is due to this fact that, in order to obtaining wormhole,
the redshift function should be finite and non-zero everywhere [4], meaning that the redshift should not be divergent
at r = r0. Therefore, for avoiding horizon at r = r0, we should have U(r0) ̸= 0.
Now, using Eqs. (17) and (18), one can evaluate the effective radial pressure and density at throat as

per(r0) = − 1

κr20
and ρe(r0) =

αβ

κr30
, (21)

respectively. Finally, since per(r) = we(r)ρ
e(r), we get the we(r0)βα = −r0 condition. The flaring-out condition also

tells us that the shape function should satisfy the b′(r0) < 1 condition, where again the prime denotes the derivative
with respect to r [4]. Therefore, the flaring-out condition leads to αβ < r0. Moreover, since at the throat we have [4]

per(r0) + ρe(r0) = ρe(r0)(1 + we(r0)) =
b′(r0)− 1

κr20
, (22)

the flaring-out condition leads to per(r0) + ρe(r0) < 0 and per(r0) + ρe(r0) > 0 for κ > 0 and κ < 0, respectively.
In summary, independent of the value of κ, the wormhole parameters, including α, β, r0, and we(r) should meet
the we(r0)βα = −r0 and αβ < r0 conditions. Thus, for αβ > 0, one can find that we(r0) < −1. Moreover, since
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we are looking for asymptotically flat solutions, we have α < 1. Finally, we should remind here that the effective
components do not represent a real fluid. Such geometry has been previously studied in the Einstein and braneworld
frameworks [67–71]. In what follows, we investigate some properties of such geometry as well as its corresponding
energy-momentum source in the Rastall framework.
Combining Eqs. (6) and (22) with each other, one can easily find

pr(r0) + ρ(r0) = ρ(r0)
(
1 + w(r0)

)
=

b′(r0)− 1

κr20
, (23)

meaning that if γ meets either the γ < 1
6 or 1

4 < γ condition (or equally κ > 0), then the flaring-out condition is

obtained whenever we have ρ(r0)
(
1+w(r0)

)
< 0. In this situation, an energy-momentum source with negative energy

density and −1 < ω may support wormhole. In addition, a source with ω < −1 and positive energy (a phantom
source) can also support this geometry. Moreover, for negative values of κ (or equally 1

6 < γ < 1
4 ), one finds that the

flaring-out condition leads to the ρ(r0)
(
1 + w(r0)

)
> 0 condition meaning that a source with positive energy density

and state parameter which satisfies the −1 < ω condition may also support wormholes. For this case, it is also easy
to obtain that a source with ω < −1 may support this geometry if it meets the ρ(r0) < 0 condition. We should note
that although the negative energy may support wormholes [72, 73], due to their various problems, physicists mostly
focus on the phantom solutions [26, 72, 73].

IV. WORMHOLES WITH CONSTANT REDSHIFT FUNCTION

Now, we consider the U(r) = 1 case which respects the asymptotically flat condition and also leads to z = 0.

As we have previously mentioned, since the b(r0) = r0 and (1 − b(r)
r ) → 1 conditions are enough to obtain the

b(r) = r0 + β[( r
r0
)α − 1] relation, we can use this shape function in order to continue our study. From Eqs. (18)

and (20), one obtains

per = −b(r)

κr3
= −

r0 + β[( r
r0
)α − 1]

κr3
, (24)

and

pet = −per + ρe

2
, (25)

respectively, where ρe(r) = αβ
κr30

( r
r0
)α−3. Therefore, for the effective state parameter, we reach

we(r) = − b(r)

rb′(r)
= −

r0 + β[( r
r0
)α − 1]

αβ( r
r0
)α

, (26)

which, as a check, leads to we(r0) = − r0
αβ at the wormhole throat. By combining Eqs. (13), (14) and (15) with the

above results, we find

ρ =
αβ(1− 2γ)(6γ − 1)

(4γ − 1)r30
(
r

r0
)α−3, (27)

pr =
6γ − 1

4γ − 1
[
2αβγ

r30
(
r

r0
)α−3 +

β − r0 − β( r
r0
)α

r3
],

pt =
6γ − 1

4γ − 1
[
αβ(4γ − 1)

2r30(
r
r0
)3−α

−
β − r0 − β( r

r0
)α

2r3
],

and

w(r) =
1

1− 2γ
[2γ − 1

α
+

β − r0
αβ( r

r0
)α

], (28)

for the components of Tµ
ν and the state parameter, respectively.
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A. The 0 ≤ α < 1 case

Eq. (28) leads to

w(r0) =
1

1− 2γ
[2γ − r0

αβ
], (29)

at the wormhole throat. Moreover, since the wormhole throat is a null hypersurface, one may equal the above state
parameter with that of radiation ( 13 ) and get

β =
3r0

α(8γ − 1)
. (30)

Now, since αβ < r0, simple calculations yield 1
2 < γ meaning that κ is positive, and therefore, based on Eq. (23), the

flaring-out condition is met if we have ρ(r0) < 0.
As the second example, we look for solutions that satisfy the w(r → ∞) → 0 condition. Applying the r → ∞ limit

on Eq. (28), one can obtain

w =
1

1− 2γ
[2γ − 1

α
]. (31)

Bearing the w(r → ∞) → 0 condition in mind, a simple calculation leads to

α =
1

2γ
, (32)

as the mutual relation between α and γ. Inserting this result into Eq. (28), one obtain

w(r) =
2γ(β − r0)

(1− 2γ)β( r
r0
)α

. (33)

It is useful to note here that γ should meet the γ > 1
2 condition to cover the 0 ≤ α < 1 case. Besides, since αβ < r0,

Eq. (32) implies β < 2γr0. In Figs. (1) and (2), energy density, the pressure components and the state parameter
are plotted, respectively, in the exterior of a wormhole with radius r0 = 1. It is interesting to note that, unlike the
pressure components, energy density is positive for these solutions. In fact, the positivity of energy density is due
to the β(1 − 2γ) term in Eq. (27) which is positive for γ > 1

2 , while β < 0 < r0
α . For these solutions, as it is clear

from Eq. (33) and Fig. (2), we have w(r) → 0 at the r → ∞ limit. The weak energy condition is also violated by the
plotted cases.
Now, let us consider situation in which w(r → ∞) → η, where η is an arbitrary constant. Therefore, from Eq. (31),

we reach at

α =
2γ

1− 2γη(1− 2γ)
, (34)

combined with Eq. (27) to find

ρ =
2γβ(1− 2γ)(6γ − 1)

[1− 2γη(1− 2γ)](4γ − 1)r30
(
r

r0
)

2γ
1−2γη(1−2γ)

−3, (35)

pr =
6γ − 1

4γ − 1
[

4γ2β

[1− 2γη(1− 2γ)]r30
(
r

r0
)

2γ
1−2γη(1−2γ)

−3 +
β − r0 − β( r

r0
)

2γ
1−2γη(1−2γ)

r3
],

pt =
6γ − 1

4γ − 1
[

2γβ(4γ − 1)

2[1− 2γη(1− 2γ)]r30(
r
r0
)3−

2γ
1−2γη(1−2γ)

−
β − r0 − β( r

r0
)

2γ
1−2γη(1−2γ)

2r3
].

As another example, we consider the β = r0 case, leading to w(r) = η, and find that for γ < α−1
4α < 0 (and thus

κ > 0), energy density is positive and pressure components are negative. Additionally, one can check to see that the
flaring-out condition is also satisfied in this situation. The behavior of non-zero components of energy-momentum
tensor have been plotted in Fig. (3) for a wormhole with a = 0 ·98. Finally, we should indicate that since γ is negative
and 0 ≤ α < 1, we always have η < −1 meaning that it is a phantom solution.
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FIG. 1: The plot depicts ρ, pr and pt as the functions of radius. Solid lines: α = 1
2
, γ = 1 and β = −3. Dot lines: α = 1

4
,

γ = 2 and β = −6.

FIG. 2: The plot depicts w(r) function for some values of γ. Solid lines: α = 1
2
and γ = 1. Dot lines: α = 1

4
and γ = 2.

B. The α < 0 case

Here, we investigate wormholes with α ≤ 0. From Eq. (28), it is apparent that, in order to have a non-divergent
state parameter at the r → ∞ limit, we should have β = r0. Therefore, we confine ourselves to the β = r0 case and
get

w =
1

1− 2γ
[2γ − 1

α
], (36)

for the state parameter as a function of γ and α. In addition, the αβ < r0 constraint leads to α < 1 and therefore,
the flaring-out condition (αβ < r0) is automatically respected by wormholes of α < 0 in Rastall’s framework. In this
situation, ρe(r0) =

α
κr20

, and we can also use Eq. (26) to reach at we = − 1
α . Therefore, for α < 0, the effective state
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FIG. 3: The plot depicts ρ, pr and pt as the functions of radius for β = r0 = 2, γ = −0 · 5 and η = −1 · 01.

parameter meets the 0 < we condition. Now, using the results obtained from Eq. (22), we find that the flaring-out
condition is satisfied. It is due to this fact that, since 1+we > 0, for positive (negative) κ, we should have ρe(r0) < 0
(ρe(r0) > 0), a result respected by the ρe(r0) =

α
κr20

expression.

As the first example, consider the w = 1
3 case leading to

α =
3

8γ − 1
. (37)

It can be combined with the α < 0 condition to get γ < 1
8 meaning that κ is positive (Eq. 15), and thus, we have

ρe(r0) < 0 and ρe(r0) + pe(r0) < 0 (see (Eq. 22)). Therefore, wormholes with α < 0 and β = r0 may be supported by
a fluid with the same state parameter as that of the radiation source (w = 1

3 ) in Rastall theory with γ < 1
8 . Inserting

Eq. (37) into (27) and using (15), we obtain

pr(r) = wρ(r) =
(6γ − 1)(1− 2γ)

(4γ − 1)(8γ − 1)r20
(
r

r0
)

3
8γ−1−3,

pt(r) = 2
(5γ − 1)

(1− 2γ)
pr(r). (38)

Since γ < 1
8 , unlike the transverse pressure, energy density and radial pressure are negative, and therefore, ordinary

energy-momentum sources, which have positive energy density, cannot support these solutions.
As the second example, we consider the w = 0 case for which Eq. (36) leads to α = 1

2γ , and thus γ < 0 to respect

the α < 0 condition. Additionally, from (27) we get

ρ(r) =
(6γ − 1)(1− 2γ)

(4γ − 1)2γr20
(
r

r0
)

1
2γ −3,

pt(r) =
(6γ − 1)

2(1− 2γ)
ρ(r). (39)

It is apparent that pt(r) > 0 and energy density is negative for γ < 0 meaning that a dust source (a source with ρ > 0
and w = 0) cannot support this geometry in Rastall theory.
Finally, since a fluid with w ≤ − 2

3 is needed to describe the current phase of the universe expansion [74], we consider

the w = − 5
6 case. Inserting it into (36), one reaches

α =
6

2γ + 5
, (40)
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and therefore, whenever γ < − 5
2 , leading to κ > 0, the α < 0 condition will be satisfied. Combining (40) and (27),

we obtain

ρ(r) = −6

5
pr(r) =

6(6γ − 1)(1− 2γ)

(4γ − 1)(2γ + 5)r20
(
r

r0
)

6
2γ+5−3,

pt(r) =
(26γ − 1)

12(1− 2γ)
ρ(r). (41)

As it is obvious, for γ < −5
2 , we have ρ(r) < 0 whenever the pressure components are positive. In addition, from

Eqs. (36) and (27), one finds

ρ =
α(1− 2γ)(6γ − 1)

(4γ − 1)r20
(
r

r0
)α−3, (42)

pr =
(6γ − 1)(2γα− 1)

(4γ − 1)r20
(
r

r0
)α−3,

pt =
6γ − 1

4γ − 1
[
α(4γ − 1)

2r20(
r
r0
)3−α

+
1

2r20
(
r

r0
)α],

where β = r0 has also been used to obtain these results. Since α is negative, energy density is positive whenever γ
either meets the 1

6 < γ < 1
4 or 1

2 < γ condition. In this situation, pr and w are positive (negative) for 1
6 < γ < 1

4

( 12 < γ). As we have previously seen in Eq. (23), for κ < 0 (or equally 1
6 < γ < 1

4 ), the flaring-out condition is satisfied

if ρ(r0) + pr(r0) > 0. In addition, ρ(r0) + pr(r0) = (6γ−1)(α−1)
(4γ−1)r20

which is positive for κ < 0 and negative for 1
2 < γ

(or equally κ > 0), and therefore, based on Eq. (23), the flaring-out condition is obtained. In Figs. (4) and (5), we

FIG. 4: The plot depicts ρ, pr and pt as the functions of radius for β = r0 = 3
2
and α = −0 · 5.

have plotted the non-zero components of energy-momentum tensor for γ = 1
5 and γ = 3

2 , respectively. Using Eq. (28),

one finds that, since α is negative, w = 2α−5
3α > 2

3 for γ = 1
5 , and moreover, w = 1−3α

2α < − 3
2 (phantom solution),

whenever γ = 3
2 . Finally, it is worthwhile remembering that since for γ = 1

5 (γ = 3
2 ) we have κ < 0 (κ > 0), the

flaring-out condition leads to the ρ(r0) + pr(r0) > 0 (ρ(r0) + pr(r0) < 0) condition which is met based on the results

obtained from the ρ(r0) + pr(r0) =
(6γ−1)(α−1)
(4γ−1)r20

relation.

V. WORMHOLES WITH CONSTANT EFFECTIVE STATE PARAMETER

Here, we investigate some properties of a source that supports asymptotically flat wormholes with constant effective
state parameter and b(r) = r0+β[( r

r0
)α−1], in the Rastall framework. Since the effective state parameter is constant,
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FIG. 5: The plot depicts ρ, pr and pt as the functions of radius for β = r0 = 3
2
and α = −0 · 5.

we(r0)αβ = −r0 is reduced to weαβ = −r0 which leads to we = − r0
αβ . Using this result and Eq. (19), we get

U(r) = C exp(

∫
( r
r0
)α(β − r0) + r0 − β

r(r − r0 + β(1− ( r
r0
)α))

dr), (43)

where C is an integration constant and may be found by asymptotically flat condition. Combining Eqs. (12) and (14)
with each other, one reaches

w(r) =
we(1− γ) + γ(1− 2wt

e)

γ(we + 2wt
e) + 1− γ

, (44)

where wt
e =

pe
t

ρe , for the state parameter. In addition, from Eqs. (20) and (19) we obtain

wt
e = we +

r

2
[
we(ρ

e)′

ρe
+ (1 + we)

b+ rweb
′

2r(r − b)
]. (45)

For example, inserting α = −1 into Eq. (43), one reaches at

U(r) = C(r − r0)
r0−1
r0+β (r + β)

β2−r0
β(β+r0) r

1−β
β . (46)

Therefore, in order to avoid the r = r0 singularity, we should have r0 = 1 and β > −1 = −r0 which lead to

U(r) = (
r + β

r
)

β−1
β , (47)

where we also considered the asymptotically flat condition to get the above result.
From now on, for the sake of simplicity, we only focus on the r0 = 1 case yielding weαβ = −1, and αβ < 1. Inserting

Eq. (17) and b(r) = 1 + β[rα − 1] into Eq. (44) and using the weαβ = −1 condition, we finally get

w(r) =

2we(1−γα)
(we+1)A(r) + γ( 2

(we+1)A(r) + 1)

γ( 2weα
(we+1)A(r) + 1) + 2(1−γ)

(we+1)A(r)

, (48)

in which A(r) = (β−1)rα+1−β
r−1+β(1−rα) and in the r → ∞ limit, w → we+γ(1−weα)

1−γ(1−weα)
, for α < 1. In addition, in the κ = 1 limit,

which leads to γ = 0 and thus λ = 0 (15), the result of Einstein theory, i.e. w(r) → we is reobtained [67].
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A. Solutions with asymptotically zero state parameter

For solutions in which state parameter vanishes asymptotically (w(r → ∞) → 0), we get

we =
γ

γα− 1
, (49)

for the effective state parameter as a function of γ and α. Besides, since weαβ = −1, one finds

β =
1− γα

γα
, (50)

for the β parameter. Bearing the αβ < 1 condition in mind, we can use the above equation to obtain

1− γ

γ
< α, (51)

available if γ meets either γ < 0 or 1
2 < γ. In this situation, Eq. (51) gives a lower bound for α, and therefore, we

should have 1−γ
γ < α < 1 to meet the the asymptotically flat condition (α < 1). Inserting (50) and (49) into (48),

one can obtain

w(r) =

2γ(γα−1)
B(r)(γ(α+1)−1) + γ( 2(γα−1)

B(r)(γ(α+1)−1) + 1)

γ( 2γα
(γ(1+α)−1)B(r) + 1) + 2(1−γ)(γα−1)

(γ(1+α)−1)B(r)

, (52)

in which B(r) = (1−2γα)rα+2γα−1
(r−1)γα+(1−γα)(1−rα) .

For the α = −1 case, using Eqs. (50), (17) and (22), one can easily see that the flaring-out condition is satisfied
when γ < 0 leading to κ > 0. In fact, for −1 < γ < 0, although −1 < we < 0, we have ρe < 0 and therefore, based

FIG. 6: The plot depicts ρ, pr and pt as the functions of radius for β = 1
we

= − 2
3
and γ = 3α = −3.

on Eq. (22), the flaring-out condition is met. In addition, for γ < −1, we have we < −1 and ρe > 0 meaning that the
flaring-out condition is satisfied. Considering a Rastall theory of γ = −3, we have plotted this case for β = 1

we
= −2

3 ,

which is a phantom solution, in Fig. (6).

B. Solutions with asymptotically radiation state parameter

In order to get solutions with asymptotically radiation state parameter, following the above recipe, we get

we =
1− 4γ

3− 4γα
, (53)
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for the effective state parameter. In obtaining this result we used the (w(r → ∞) → 1
3 ) condition. Moreover,

combining Eq. (53) with the ωeαβ = −1 condition, we reach at

β =
4γα− 3

α(1− 4γ)
. (54)

Now, one can combine these equations with Eqs. (13) and (48) to get the non-zero components of energy-momentum
tensor as well as the state parameter, respectively. The β = 19, γ = 1

5 , α = −1 has been plotted in Fig. (7). Here,

FIG. 7: The plot depicts ρ, pr and pt as the functions of radius for β = 19, γ = 1
5
, and α = −1.

since γ = 1
5 , we have κ = −1 < 0 and therefore, based on Eq. (23), the flaring-out condition is met if ρ(r0)+pr(r0) > 0,

a condition obtained by this case. Therefore, for these solutions, it is theoretically possible to respect the flaring-out
condition and energy conditions simultaneously.

C. The β = r0 = 1 case

Inserting β = r0 = 1 into (48), one can obtain

w =
2we(1− γα) + 2γ

2weαγ + 2(1− γ)
, (55)

for the state parameter. Moreover, since β = 1, the weβα = −1 condition leads to we = − 1
α . By substituting this

result into the last equation, we arrive at

w =
2γα− 1

(1− 2γ)α
, (56)

for the state parameter. It is also obvious that, since β = r0 = 1, the αβ < 1 condition is satisfied whenever α < 1.
Additionally, from Eq. (43), we obtain

U(r) = C. (57)

Therefore, the asymptotically flat condition implies C = 1 and finally, one gets

ρ(r) =
αrα−3(6γ − 1)

4γ − 1
(1− 2γ),

pr(r) =
rα−3(6γ − 1)

4γ − 1
(2γα− 1), (58)

pt(r) =
rα−3(6γ − 1)

2(4γ − 1)
(α(4γ − 1) + 1).
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Here, we should note that although these results are similar to those obtained in Sec. (IVB), there is a key difference
between these results and those addressed in (IVB). While in Sec. (IVB), we have β = r0 where r0 is an arbitrary
quantity, here, β = r0 and r0 must be equal to 1.
As the first example, consider the w = 0 case leading to α = 1

2γ , pr = 0, and finally pt(r) = 6γ−1
2(1−2γ)ρ, where

ρ(r) = (6γ−1)(1−2γ)
2γ(4γ−1) r

1−6γ
2γ . For these solutions, since the asymptotically flat condition implies α < 1, the Rastall

dimensionless parameter should meet the 1
2 < γ condition meaning that the energy density is negative. Therefore, we

do not focus on this case further.
As the second example, we consider the w = 1

3 case. Simple calculations yield α = 3
8γ−1 , ρ(r) = pr(r)

3 =

3(6γ−1)(1−2γ)
(4γ−1)(8γ−1) r

6(1−4γ)
8γ−1 and pt(r) = 2(6γ−1)(5γ−1)

(4γ−1)(8γ−1) r
6(1−4γ)
8γ−1 . For these solutions, energy density and radial pressure are

positive whenever 1
4 < γ < 1

2 . But, for these values of γ, we have κ > 0 and therefore, based on Eq. (23), the
flaring-out condition is not satisfied.
Using Eq. (56), one can easily find that phantom solutions (w < −1) may be obtained whenever one of the below

conditions is met:

1. γ > 1
2 and α < 0.

2. γ < 1
2 and 0 < α < 1.

For the first case, we have κ > 0 and energy density is positive. Moreover, from Eq. (23), it is far from apparent
that the flaring-out condition is also satisfied. In Fig. (8), non-zero components of energy-momentum tensor have

FIG. 8: Here, α = −1, γ = 5
2
, and thus w = − 3

2
.

been plotted for α = −1 and γ = 5
2 . It is obvious that the weak energy condition is violated by this phantom solution.

On the other hand, positive energy density is obtainable in the second case if γ either meets γ < 1
6 or 1

4 < γ < 1
2

again leading to κ > 0 and pr(r) < 0. The case of γ = α = 1
3 has been depicted in Fig. (9). As it is apparent,

although the transverse pressure is positive for this solution, since ρ + pr < 0, the weak energy condition is not met
by this solution.

VI. CONCLUSION

After referring to the Rastall theory, we defined the Rastall dimensionless parameter (γ) helping us in simplifying
the calculations. In fact, regarding the Newtonian limit, one can find a relation between Rastall gravitational coupling
constant (κ) and the Rastall parameter (λ) on one hand, and the Newtonian gravitational coupling constant (κG) on
the other hand. Indeed, κ and λ are unknowns in this theory and they are only constrained by the Newtonian limit.
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FIG. 9: Here, γ = α = 1
3
.

Therefore, by finding a suitable value for γ and using the results of Newtonian limit, one can obtain both κ and λ
parameters. It is also obvious that λ = 0 case leads to γ = 0 and thus the Einstein field equations are recovered.
Thereinafter, we considered a general form for the shape function of traversable asymptotically flat wormholes and

studied some cases. Our results indicate that phantom solutions can be supported by this theory. Moreover, we found
out that, depending on the value of γ and thus κ, traversable wormholes may meet both the flaring-out condition and
energy conditions in the Rastall theory. Therefore, our study shows that a non-minimal coupling between curvature
and matter fields may theoretically support traversable wormholes satisfying energy conditions. In addition, we found
that the wormhole parameters (α and β) are affected by the Rastall dimensionless parameter as well as the assumed
primary conditions such as the asymptotically zero- or radiation-like state parameter. Moreover, we studied wormholes
of we = constant and investigated the properties of the energy-momentum source supporting the geometry in some
cases, including solutions with asymptotically dust- or radiation-like state parameter, as well as the solutions with
constant state parameter while β = r0 = 1. We also investigated the possibility of supporting such geometries by a
source of w ≤ − 2

3 .
Finally, it is important to study the effects of the Rastall hypothesis on the stability conditions of wormholes.

Moreover, the study of charged wormhole structures in the Rastall framework is also interesting. It is also worthwhile
to investigate the particle geodesics in the context of obtained wormhole geometry. We leave these subjects for the
future works.
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