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Abstract In this paper we study relativistic static traver-
sable wormhole solutions which are a slight generalization
of Schwarzschild wormholes. In order to do this we assume
a shape function with a linear dependence on the radial coor-
dinate r . This linear shape function generates wormholes
whose asymptotic spacetime is not flat: they are asymptot-
ically locally flat, since in the asymptotic limit r → ∞
spacetimes exhibiting a solid angle deficit (or excess) are
obtained. In particular, there exist wormholes which con-
nect two asymptotically non-flat regions with a solid angle
deficit. For these wormholes the size of their embeddings in a
three-dimensional Euclidean space extends from the throat to
infinity. A new phantom zero-tidal-force wormhole exhibit-
ing such asymptotic is obtained. On the other hand, if a solid
angle excess is present, the size of the wormhole embeddings
depends on the amount of this angle excess, and the energy
density is negative everywhere. We discuss the traversability
conditions and study the impact of the β-parameter on the
motion of a traveler when the wormhole throat is crossed.
A description of the geodesic behavior for the wormholes
obtained is also presented.

1 Introduction

The Einstein field equations admit simple and interesting
solutions for hypothetical tunnels connecting two asymp-
totically flat universes, or two asymptotically flat portions
of the same universe. A lot of attention has been paid to
their geometrical properties and physical effects: apart from
that wormholes would act as shortcuts connecting distant
regions of spacetime, they can be used for constructing a
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time machine, for which a stable traversable wormhole is
required [1–5].

The concept of a bridge connecting two spacetimes may
be traced back to a work of Einstein and Rosen [6], who
constructed an exact solution of the field equations corre-
sponding to a spacetime of two identical sheets joined by a
bridge. The Einstein–Rosen solution is the first ever example
of wormholes, as we understand them today, and it can be
related to the previous work of Flamm [7], who was the first
to construct the isometric embedding of the Schwarzschild
solution. The relation between Einstein–Rosen and Flamm
solutions is discussed in Ref. [8].

Historically, the word wormhole was first coined by
Misner and Wheeler [9]. Another term related to worm-
hole physics is the drainhole, which was formulated by
Ellis [10]. In practice, the drainhole is a prototypical example
of traversable wormholes, which is a spherically symmetric
static solution of the usual coupled Einstein-scalar field equa-
tions, but with nonstandard coupling polarity [11].

In classical general relativity the matter content thread-
ing wormholes plays an important role. Typically, spheri-
cal traversable wormholes are discussed, and they may exist
only in the presence of exotic matter, which may have even
negative energy and would violate all energy conditions
(EC) [1,2,12]. Today, the existence of such type of matter
fields seems to be suitable due to the observed accelerated
expansion of the universe, which can be explained by grav-
itational effects of the dark energy or phantom energy that
also violates EC.

Static spherical wormholes supported by phantom energy
also have been constructed [13,14]. In this case the phantom
matter threading the wormholes is an anisotropic fluid with
a very strong negative radial pressure, satisfying the equa-
tion of state pr/ρ < −1, i.e. ρ + pr < 0. The issue of
matter supporting wormholes has been revisited in general
relativity as well as in alternative theories, and it was shown
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that the requirement of exotic matter could in some cases be
avoided. For example, cylindrically symmetric wormholes
have deserved a considerable attention, mainly in relation to
cosmic strings. Cylindrical wormhole throats may exist under
slightly different conditions in comparison with spherically
symmetric ones [15–17]. On the other hand, in Brans–Dicke
gravity, Lorentzian wormholes are compatible with matter
source which, apart from the Brans–Dicke scalar field, satis-
fies the EC [17,18].

Asymptotically flat wormhole geometries are of particular
interest [1,2,12], however, more general wormhole space-
times also have been studied in the literature [19–21].

One interesting topic in wormhole physics is the study of
thin-shell wormholes (with their stability properties). They
are constructed by cutting and pasting two spherically sym-
metric manifolds to form a geodesically complete new one
with a shell placed in the joining surface, i.e. the thin-shell
is surrounding the wormhole [22]. Cylindrically symmetric
thin-shell wormholes have also been explored [23,24], as
well as spherically symmetric thin-shell wormholes within
the context of linear [25] and non-linear electrodynam-
ics [26–28].

The Schwarzschild solution may be interpreted as an
asymptotically flat wormhole, for which the shape function
is given by b(r) = r0 = const . However, this is a not
traversable wormhole since this wormhole possesses a hori-
zon at its throat. This is due to the redshift function has the
form e2φ(r) = 1 − r0/r . One can construct Schwarzschild
traversable wormhole versions by demanding that the red-
shift function does not have horizons and maintaining the
radial metric component in the form −g−1

rr = 1−r0/r [1,2].
In this paper we consider a slight generalization of Schw-

arzschild traversable wormholes by considering the radial
metric component given by −g−1

rr = Const − r0/r , which
implies that the shape function has the linear form b(r) =
a1r + r0, where a1 is a constant parameter. In such a way,
we study static traversable wormholes with a linear shape
function, which we call Schwarzschild-like wormholes.

The paper is organized as follows. In Sect. 2 we discuss
the Morris–Thorne (M–T) wormhole formulation and obtain
the field equations. In Sect. 3 we construct wormholes with
a linear shape function. In Sect. 4 we examine in some detail
zero-tidal-force Schwarzschild-like wormholes. In Sect. 5 we
study the description of the geodesic behavior of zero-tidal-
force Schwarzschild-like wormholes. In Sect. 6 we conclude
with some remarks.

2 The Morris–Thorne wormhole formulation and field
equations

Any static spherically symmetric wormhole is described by
the metric

ds2 = e2φ(r)dt2 − dr2

1 − b(r)
r

− r2d�2, (1)

where d�2 = dθ2+sin2 θdϕ2, eφ(r) and b(r) are the redshift
and shape functions, respectively.

The redshift function must be non-zero and finite through-
out the spacetime in order to ensure the absence of horizons
and singularities. On the other hand, the shape function must
satisfy the condition b(r)

r ≤ 1, in order to the radial met-
ric component grr < 0. The equality sign holds only at the
throat, where b(r0) = r0, and r0 is the minimum value of
r . Therefore, the wormhole shape function has a minimum
at r = r0, where the wormhole throat is located. Thus, in
Eq. (1), the radial coordinate covers the range r0 ≤ r < ∞,
while the angles are defined over the ranges 0 ≤ θ ≤ π and
0 ≤ ϕ ≤ 2π , respectively.

Asymptotically flat wormhole geometries are of particular
interest. In this sense, Morris and Thorne in their work [1,
2,12] impose an additional restriction on the shape function
b(r)
r → 0 as r → ∞. This constraint leads to a geometry

connecting two asymptotically flat regions.
By assuming that the matter source threading the worm-

hole is described by the single anisotropic fluid T ν
μ =

diag(ρ,−pr ,−pl ,−pl), from the Einstein field equations
without a cosmological constant we obtain

κρ(r) = b′

r2 , (2)

κpr (r) = 2

(
1 − b

r

)
φ′

r
− b

r3 , (3)

κpl(r) =
(

1 − b

r

)

×
[
φ′′ + φ′ 2 − b′r + b − 2r

2r(r − b)
φ′ − b′r − b

2r2(r − b)

]
,

(4)

where a prime denotes ∂/∂r , ρ is the energy density, and pr
and pl are the radial and lateral pressures, respectively.

To construct wormholes one may consider specific equa-
tions of state for pr or pl , or restricted choices for the redshift
and shape functions, among others. In this paper we shall use
a specific form for the shape function.

3 Wormholes with linear shape functions

For constructing traversable wormholes the often used ansatz
for the shape function is b(r) = r0(r/r0)

α , with 0 < α < 1,
for which is verified that if r → ∞ we have b(r)/r → 0.
In this paper we shall consider a shape function with a linear
dependence on the radial coordinate b(r) = α + βr , where
α and β are arbitrary constants. Evaluating at the throat, i.e.
b(r0) = α + βr0 = r0, we find that α = (1 − β)r0 and the
shape function takes the form
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b(r) = (1 − β)r0 + βr, (5)

Notice that, from the proper radial distance l(r) =
± ∫ r

r0

dr√
1− b(r)

r

, it can be shown that at the throat always is

satisfied the relation b′(r0) ≤ 1 [12]. In particular, this
implies that β ≤ 1 for the shape function (5). On the other
hand, if we apply the flare out condition [1,2], expressed by
d2r
dz2 = b(r)−b(r)′r

2b(r)2 > 0, we obtain that r0(1 − β) > 0. There-
fore, for Schwarzschild wormholes (β = 0) we have r0 > 0,
while for Schwarzschild-like wormholes we have β < 1.

In conclusion, the wormhole metric is finally provided by

ds2 = e2φ(r)dt2 − dr2

(1 − β)
(
1 − r0

r

) − r2d�2. (6)

From now on, we consider Schwarzschild-like wormholes
defined by requiring that β < 1.

From Eq. (5) we see that at spatial infinity b(r)/r → β,
so the condition b(r)

r → 0 is fulfilled only for a vanishing β.
Therefore, in general, Eq. (6) describes non-asymptotically
flat wormholes, excluding the case β = 0, which with a non-
zero and finite redshift function describes an asymptotically
flat wormhole, as those considered by Morris and Thorne.

If eφ(r) → const for r → ∞, then Eq. (6) becomes

ds2 = dt2 − dr2

(1 − β)
− r2d�2, (7)

which describes a spacetime with a solid angle deficit (or
excess). This can be seen directly by making the rescaling
2 = r2

1−β
. Then the metric (7) becomes ds2 = dt2 − d2 −

(1 − β) 2d�2. This new form of the asymptotic metric (7)
shows explicitly the presence of a solid angle deficit for
0 < β < 1, and a solid angle excess for β < 0, which
vanish for β = 0, obtaining the standard Minkowski space-
time. It should be noted that the solid angle of a sphere of
unity radius is now 4π(1 − β) < 4π for 0 < β < 1, and
4π(1 − β) > 4π for β < 0. For elucidating some fea-
tures of this spacetime we can study associated embedding
diagrams to it. One may visualize the shape and the size
of slices t = const, θ = π

2 of the metrics (6) and (7) by
using a standard embedding procedure in ordinary three-
dimensional Euclidean space. In general, in order to embed
two-dimensional slices t = const, θ = π

2 of the metric (1)

we have to use the equation dz(r)
dr =

(
r

b(r) − 1
)−1/2

[1,2].

This expression can be rewritten as dz
dr =

√
b(r)

r
(

1− b(r)
r

) . Since

r ≥ r0 > 0 and 1 − b(r)/r > 0 the expression under the
square root is positive if b(r) > 0, and negative if b(r) < 0,
thus spacelike slices of any wormhole (1) can be embedded
in a three-dimensional Euclidean space if b(r) > 0. In such
a way, for the wormhole (6) the embedding takes the form
dz
dr =

√
(1−β)r0+βr
r(1−β)

(
1− r0

r

) .

(a) (b)

Fig. 1 Plot a shows embedding diagrams of the metric (7) for slices
t = const, θ = π

2 and β = 1
2 , 3

4 , 9
10 (solid, dashed and dotted lines,

respectively). All slices exhibit a conical singularity due to the solid
angle deficit of the metric (7). Plot b shows embeddings for Eqs. (6)
and (7) (dashed and solid lines, respectively) with β = 3/4. For r → ∞
the distance between dashed and solid curves approaches zero. The
dotted line represents the embedding of (6) with β = 0

Note that the numerator is everywhere positive for 0 ≤
β < 1. In this case (1 − β)r0 + βr ≥ 1, for r > r0, and the
embedding extends from the throat to infinity. For β < 0 we
have that (1 −β)r0 +βr > 0 for r0 ≤ r < (1 − 1/β)r0, and
(1 − β)r0 + βr ≤ 0 for r ≥ (1 − 1/β)r0, implying that the
embedding exists only for r0 ≤ r ≤ (1 − 1/β)r0. Thus, for
slices t = const, θ = π

2 of (7) we obtain zc(r) = ± r√
1−β
β

.

In Fig. 1a we show embedding diagrams for β = 1
2 , 3

4 , 9
10 .

In this case the spacetime has a solid angle deficit and its
slices t = const, θ = π

2 exhibit a conical singularity. In
Fig. 1b we show embeddings for Eq. (6) with β = 0, and
Eqs. (6) and (7) with β = 3/4. It is interesting to note that
for β = 3/4 and r → ∞ the distance between embeddings of
Eqs. (6) and (7) approaches zero. Effectively, in this case the

embedding function of metric (6) is given by dz1
dr =

√
3r+1√
r−1

,
which implies that

z1(r) =
√

3r2 − 2r − 1

+ 2√
3

ln

(
− 1√

3
+ √

3r +
√

3r2 − 2r − 1

)
.

Note that dz1
dr → √

3 for r → ∞, therefore z1(r) has an
inclined asymptote with a slope of

√
3. On the other hand,

for the metric (7) we have dz2(r)
dr = √

3, and therefore z2(r) =√
3r . Clearly this implies that the inclined asymptote of z1(r)

is, at least, parallel to z2(r), but we have z1(r)
z2(r)

→ 1 as r → ∞,
which allows us to conclude that the distance between the
embeddings discussed approaches zero.

For the metric (6) and r ≥ r0, we have κρ = β/r2, which
is positive for spacetimes with a solid angle deficit, and neg-
ative for spacetimes with a solid angle excess.
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(a) (b)

Fig. 2 In plot a embeddings of (6), exhibiting a solid angle deficit, for
slices t = const, θ = π

2 and β = 0, 1
2 , 3

4 , 9
10 (solid, dashed, dotted and

dash-dotted lines, respectively) are shown. For 0 ≤ β < 1 embeddings
extend from r0 to infinity. In plot b embeddings of Eq. (6) and β =
− 1

2 ,−1,−15 (dashed, dotted and solid lines, respectively) are shown.
The dash-dotted line corresponds to β = 0. For β < 0 embeddings
extend from r0 to rmax,i = r0(β−1)

β
> r0, where i = 1, 2, 3

As we stated above, for 0 < β < 1 wormhole embed-
dings extend from the throat to infinity, and the constraint
b(r)
r → 0 leads to a geometry connecting two asymptotically

non-flat regions (strictly speaking asymptotically locally flat)
of the form (7), but with a solid angle deficit. For slices of

Eq. (6) we obtain zwh(r) = ± F+r0 ln
(
r0−2βr0+2βr+F

2
√

β

)
2
√

(1−β)β
, where

F = 2
√

(r − r0) (βr − βr0 + r0). Notice that for r → ∞
we have zwh(r) ≈ r√

1−β
β

+ C = zc(r), as we would expect

(see Fig. 1b). In particular, for 0 < β < 1 the model describes
a wormhole carrying a global monopole. In Fig. 2a we show
embedding diagrams for β = 0, 1

2 , 3
4 , 9

10 .
If β < 0 the embeddings extend from the throat to a

maximum value rmax := r0(β−1)
β

> r0. For β → −0
rmax → ∞, while for β → −∞ we have rmax → r0, allow-
ing us to have wormhole embeddings of microscopic size.
In Fig. 2b we show embeddings for (β = 0,− 1

2 ,−1,−15),
whose size depends on the amount of the angle excess. For
r > rmax wormhole slices cannot be embedded in an ordi-
nary Euclidean space. Instead, a space with indefinite metric
must be used. Nevertheless, one may match such a worm-
hole solution, as an interior spacetime, to an exterior vac-
uum spacetime at the finite junction surface r = rmax (see
Ref. [14]).

4 Zero-tidal-force Schwarzschild-like wormholes

A particularly simple wormhole class we shall examine in
some detail is the set of zero-tidal-force Schwarzschild-like
wormholes for which the metric has the form

ds2 = dt2 − dr2

(1 − β)
(
1 − r0

r

) − r2d�2, (8)

and the energy density and pressures are given by

κρ = β

r2 , κpr = r0(β − 1)

r3 − β

r2 , κpl = −r0(β − 1)

2r3 .

(9)

Note that at the throat pr (r0) = −1/r2
0 < 0, while

pl(r0) = −(β − 1)/(2r2
0 ), and it is positive for β < 1.

The radial pressure vanishes at the defined above surface
rmax := r0(β − 1)/β. For 0 < β < 1, rmax < 0, and, for
β < 0, rmax > 0. This implies that for r ≥ r0 the radial pres-
sure is negative if 0 < β < 1, while for β < 0 we obtain that
pr < 0 for r0 ≤ r < rmax, and pr > 0 if r > rmax. The lateral
pressure is positive for any β < 1. For the null EC (NEC), i.e.
ρ + pi ≥ 0, we obtain ρ + pr = r0(β − 1)/r3, thus pr does
not fulfill NEC. On the other hand, ρ + pl = β/r2 − r0(β−1)

2r3 ,
so pl fulfills NEC for r ≥ r0 if 0 < β < 1, and for
r0 < r < rmax/2 if −1 < β < 0; lastly if β < −1
we have ρ + pl < 0 for r ≥ r0. It is remarkable that
ρ + ptotal = ρ + pr + 2pl = 0. Hence the null (ρ + pi ≥ 0),
weak (ρ ≥ 0 and ρ + pi ≥ 0), strong (ρ + pi ≥ 0 and
ρ + ptotal ≥ 0) and dominant (ρ ≥ 0 and pi ≤ |ρ|) EC are
not fulfilled for r ≥ r0.

Due to ρ > 0, pr < 0 and pl > 0, for r ≥ r0 and
0 < β < 1, Eq. (8) describes a phantom wormhole carrying a
global monopole: the right-hand side of Eq. (9) represents the
components of the energy-momentum tensor, which includes
the effects produced in the geometry by two distinct objects:
the global monopole (for which r0 = 0 and ρ = −pr =
β/(κr2), pl = 0), and the wormhole itself (for which β = 0
and ρ = 0, pr = −2pl = −r0/r3). Global monopoles are
known for producing a solid angle deficit at infinity [29–31].
By tuning the parameter β, one can make the solid angle
deficit arbitrarily close to 4π . Notice that the wormhole β =
0 is a particular solution of the selfdual Lorentzian wormhole
with a vanishing energy density as discussed in Ref. [32,
33].

Let us now focus to traversability conditions of the zero-
tidal-force Schwarzschild-like wormhole (8). We shall sup-
pose that a traveler journeys radially through the worm-
hole (8), beginning at rest in the space station 1 in the lower
universe, and ending at rest in a space station 2 in the upper
universe.

An important traversability condition required is that the
acceleration felt by the traveler should not exceed Earth grav-
ity g⊕ = 980 cm/s2. As shown in Ref. [1,2], the acceleration
felt by the radially moving traveler is given by

a = ±
(

1 − b(r)

r

) 1
2

e−φ(r)(γ eφ(r))′c2,

where eφ(r) and b(r) are the redshift and shape functions

of the metric (1); and γ =
(

1 − v(r)2

c2

)−1
, v(r) being the

radial velocity of the traveler as she passes radius r , as mea-
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sured by a static observer at r . Then for the zero-tidal-force
wormhole (8) we see that the constraint is given by

|a| =
∣∣∣∣
(
(1 − β)

(
1 − r0

r

)) 1
2
γ ′c2

∣∣∣∣ � g⊕ .

For a Schwarzschild wormhole the acceleration felt by a trav-

eler is given by |aSch | =
∣∣∣∣(1 − r0

r

) 1
2 γ ′c2

∣∣∣∣. Therefore, for a

given radius r between stations 1 and 2, the acceleration is
lower than |aSch | for Schwarzschild-like wormholes exhibit-
ing a solid angle deficit due to 0 < β < 1, while it is greater
than |aSch | for wormholes exhibiting a solid angle excess,
since β < 0. This constraint may be trivially satisfied, inde-
pendently of the value of β, by requiring that the traveler
maintains constant speed v throughout her trip from the sta-
tion 1 to the station 2 (by ignoring the acceleration at leaving
station 1 and the deceleration upon arriving at station 2).

Another important traversability condition is related to the
tidal accelerations felt by the traveler (for example between
head and feet), which should not exceed the Earth’s gravi-
tational acceleration. As shown in Ref. [1,2] the radial and
lateral tidal constraints are given by∣∣∣∣
(

1 − b

r

) (
−φ′′ − φ′2 + b′r − b

2r(r − b)
φ′

)
c2

∣∣∣∣ |ξ | � g⊕,

∣∣∣∣γ
2c2

2r2

[(v

c

)2
(
b′ − b

r

)
+ 2(r − b)φ′

]∣∣∣∣ |ξ | � g⊕,

respectively, where ξ represents the size of the traveler’s
body. The radial tidal constraint can be regarded as constrain-
ing the redshift function, while the lateral tidal constraint can
be regarded as constraining the speed v with which the trav-
eler crosses the wormhole [1,2].

In the case of zero-tidal-force Schwarzschild-like worm-
hole (8) we conclude that the radial tidal constraint is every-
where identically zero. On the other hand, for the lateral tidal

constraint we obtain
∣∣∣ γ 2v2

2r3 r0 (β − 1)

∣∣∣ |ξ | � g⊕ . In the limit

that the motion is nonrelativistic we have v << c and then
γ ≈ 1. Therefore we have∣∣∣∣ v2

2r3 r0 (β − 1)

∣∣∣∣ |ξ | � g⊕ .

This constraint is more severe at the smallest radial value, i.e.
at the throat. So evaluating at r0, and by considering that the
size of the traveler’s body is 2 m, we obtain for the traveler’s
speed

v � 3
√

2√|β − 1| r0. (10)

Now some words about the total travel time from station
1 to station 2. Standard M–T wormhole spacetimes are flat at
spatial infinity; for this reason, in order for the stations to be
located not at spatial infinity, but near the wormhole, Morris
and Thorne put stations 1 and 2 in regions that are very nearly

flat. In such a way, in the standard M–T procedure the stations
are located at radii where the factor 1 − b(r)/r differs from
unity by only 1% [1,2].

If we apply the same criterion we must require the condi-
tion (1 − β)(1 − r0/r) = 0.99, which gives the relation for
the radial location of stations

r1 = r2 = 100(1 − β)

1 − 100β
r0. (11)

For the asymptotically flat Schwarzschild wormhole (β = 0)
this means that stations are located at r1 = r2 = 102r0. For
zero-tidal-force Schwarzschild-like wormholes with β < 0
we have that r1,2 → 102r0 if β → −0, while r1,2 → r0 if
β → −∞. Therefore, for spacetimes with solid angle excess
the stations may be located at r0 < r1,2 < 102r0.

For calculating the total travel time we need to know
the total proper distance between stations 1 and 2, which is
defined by l(r) = ± ∫ r

r0

dr√
1−b/r

. For the Schwarzschild-like
wormhole (8) we obtain

l(r) = ±
2
√
r(r − r0) + r0 ln

(−r0+2r+2
√
r(r−r0)

r0

)
2
√

1 − β
.

Evaluating this function at r1 and r2 we obtain

l(r1) =
2r0

√
9900(1−β)

(1−100β)2 + r0 ln
(

199−100β
1−100β

+ 2
√

9900(1−β)

(1−100β)2

)
2
√

1 − β
,

l(r2) = −
2r0

√
9900(1−β)

(1−100β)2 +r0 ln
(

199−100β
1−100β

+2
√

9900(1−β)

(1−100β)2

)
2
√

1 − β
,

and therefore the total proper distance between stations is


l =
2r0

√
9900(1−β)

(1−100β)2 + r0 ln
(

199−100β
1−100β

+ 2
√

9900(1−β)

(1−100β)2

)
√

1 − β
.

Now, if the traveler journeys with constant speed (10),
then the total time travel is given by


t = 
l

v

=
(

2
√

9900(1−β)

(1−100β)2 + ln
(

199−100β
1−100β

+ 2
√

9900(1−β)

(1−100β)2

))

3
√

2
.

From this expression we have for the total travel time that if
−∞ < β < 0 then 0 s < 
t < 24.158 s. Since for β = 0 the
total travel time is 24.158 s, we conclude that the presence
of a solid angle excess allows the traveler to make the trip in
a shorter time lapse.

For wormholes with 0 < β < 1 we have from Eq. (11)
that r1 and r2 are positive only if 0 < β < 1/100. Therefore,
for zero-tidal-force Schwarzschild-like wormholes with solid
angle deficit, it is possible to locate stations where the cur-
vature of the wormhole is negligible (with deviations of 1%
from flatness) only if β ≈ 0. Note that for 0 < β < 1/100
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we have 100r0 < r1,2 < ∞. If we compare this case with
asymptotically flat wormholes, we see that the solid angle
deficit imposes the requirement that stations be located fur-
ther away from the throat, contrary to what happens with
wormholes with solid angle excess. In this case we have for
the total travel time: 24.158 s < 
t < ∞, thus in the pres-
ence of a solid angle deficit the traveler makes the trip in a
longer time lapse than for β ≤ 0.

Lastly, we should note that the total time lapse 
t for
travel from station 1 to station 2 is the same for the traveler
as well as for observers at both stations.

5 Geodesics

Now we shall consider a description of the geodesic behavior
for zero-tidal-force Schwarzschild-like wormholes (8), cor-
responding to different values of β. To proceed we use the
Lagrangian L = 1

2gαβ
dxα

dτ
dxβ

dτ
associated to the metric (8),

L = 1

2

[
ṫ2 − ṙ2

(1 − β)(1 − r0
r )

− r2θ̇2 − r2 sin2 θϕ̇2
]

,

(12)

and the conserved conjugate momenta �t and �ϕ are

�t = ∂L
∂ ṫ

= ṫ = E,�ϕ = −∂L
∂ϕ̇

= r2 sin2 θϕ̇ = const.

(13)

Because we deal with spherical metric (8) we shall consider
the test particle paths confined to the plane θ = π/2. There-
fore we have

E2 = h + L2

r2 + ṙ2

(1 − β)(1 − r0
r )

, r2ϕ̇ = L , (14)

where h = 1 for time-like geodesics and h = 0 for null
geodesics and L is the angular momentum per unit mass.

Let us now explore radial time-like geodesics. To do this
we must put L = 0 and h = 1 and consider initial conditions
for Eq. (14). Specifically, the initial position (ti , ri ) and the
initial velocity vi . We shall suppose that the test particle, at
ti = 0, starts to move at ri with initial velocity vi . These
initial conditions imply that

E2 = 1 + 1

(1 − β)(1 − r0
ri

)
v2
i , (15)

and Eq. (14) may be written as

±
√

1 − r0
r

1 − r0
ri

v2
i = ṙ , (16)

where the − sign is valid for particles moving from ri towards
the wormhole throat, while the + sign for particles moving
from ri to infinity. We note that in the former case the particle

starts to move with the velocity vi > 0 and tends to the
maximum value vmax = vi/

√
1 − r0/ri .

It becomes clear that if the test particle has zero initial
velocity, i.e. vi = 0, then ṙ = 0 and r(τ ) = const , implying
that the test particle will remain at rest at the initial position
ri . This means that we need to give the particle an initial
velocity vi �= 0 in order to push it towards the throat or
ti infinity. However, notice that Eq. (16) implies that time-
like geodesics starting at ri > r0 with initial velocity vi
will always reach the throat with zero velocity, due to the
requirement r = r0 at the throat.

From Eq. (15) we may write v2
i = (E2 − 1)(1 − β)(1 −

r0/ri ), and since the β-parameter is restricted to the range
β < 1 and ri ≥ r0, then we conclude that E2 ≥ 1. The value
E2 = 1 implies that the particle is at rest.

By deriving Eq. (16) with respect to the affine parameter
τ we obtain for the second derivative of the radial coordinate
r̈ = (E2−1)(1−β)r0

2r2 , which is everywhere positive. The pres-
ence of a solid angle deficit or excess does not play any role
in the sign of the acceleration since to β < 1. To this sec-
ond derivative there may be associated a pseudo Newton law
r̈ = −V ′

eff/2 [34], where Veff is an effective potential and

′ = ∂/∂r . Then the acceleration r̈ = (E2−1)(1−β)r0
2r2 shows

us that the gravitational field is everywhere repulsive. This is
valid only for radially moving test particles, since for objects
at rest we have E2 = 1 (see Eq. (15)), and then the expression
for r̈ implies that they possess a zero radial acceleration.

In order to see the qualitative behavior of time-like radial
geodesics starting to move at ri with initial velocity vi we
solve Eq. (16), whose solution is given by

τ(r) = ±
√

1 − r0
ri

2vi

×
(

2
√
r2−r0r+r0 ln

(
−r0

2
+r+

√
r2 − r0r

))
+C,

(17)

whereC is an integration constant. We want to describe a par-
ticle starting to move from ri at τ = 0, so we shall impose the
initial condition τ(ri ) = 0. In Fig. 3a we plot both solution
branches (17) as r = r(τ ). The test particle which moves
towards the throat, reaches it at a finite time (with a zero
velocity). On the other hand, the radial outwards geodesic
reaches infinity. This result is in agreement with the fact that
in this case the effective potential has a repulsive character. In
Fig. 3b we show the velocity as a function of the radial coor-
dinate corresponding to radial outwards geodesic (the upper
curve) and the radial inwards geodesic (the lower curve). For
the radial inwards geodesic (vi = −3) the particle reaches
the throat with zero velocity, while for the radial outwards
geodesic (vi = 3) the particle velocity tends to the maximum
value vmax = 3

√
2.
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(a) (b)

Fig. 3 The profile of radial outwards (+ sign) and radial inwards (−
sign) geodesics of Eq. (17) are plotted in a. Both start from ri = 4 with
initial velocity vi �= 0 at τ = 0 (r0 = 2). The radial outwards geodesic
(the upper curve) reaches infinity, while the inwards one reaches r0
at a finite time, ending up with a zero velocity, since dr

dτ
|r0 = 0 (the

lower curve). In b radial outwards (the upper curve) and radial inwards
(the lower curve) geodesics of Fig. 3a are plotted. Both particles start
to move at ri = 4 with initial velocity vi = ±3 (r0 = 2). For the
radial inwards geodesic (vi = −3) the particle reaches the throat with
zero velocity, while for the radial outwards geodesic (vi = 3) we have
v → vmax = 3

√
2

Let us now explore non-radial time-like geodesics, i.e.
paths satisfying L �= 0 and h = 1. In this case the relevant
equations of motion are Eq. (14), therefore the initial con-
dition to be considered are position (ri , ϕi ) and the initial
radial velocity ṙi and angular velocity ϕ̇i . We shall suppose
that the test particle starts to move at ri with initial radial and
angular velocities vi and ϕ̇i , respectively.

For Eq. (14) the initial conditions imply that for a test
particle starting to move at ri with initial radial velocity vi
we have

E2 = 1 + L2

r2
i

+ v2
i

(1 − β)(1 − r0
ri

)
, (18)

and then Eq. (14) becomes(
L2

(
1

r2
i

− 1

r2

)
+ v2

i

(1 − β)(1 − r0
ri

)

)

×
(

1 − r0

r

)
(1 − β) = ṙ2. (19)

This equation reduces to Eq. (16) if L = 0. On the other
hand, for r2ϕ̇ = L the initial conditions imply that for a
particle starting to move at ri with initial angular velocity ϕ̇i
we have r2

i ϕ̇i = L . We shall see later that the presence of
the angular momentum L in Eq. (19) allows the β-parameter
influences the trajectories of non-circular geodesics of the
spacetime (8). For circular geodesics it must be required that
its radial velocity vanishes, i.e. dr/dτ = 0. From Eq. (19)
we see that the acceleration for ṙ = 0 is given by

r̈ = (1 − β)
(

1 − r0

r

) L2

r3 , (20)

implying that r̈ ≥ 0 everywhere. Since r̈ vanishes only at
r = r0, then circular orbits only exist at the wormhole throat.
For any other location r > r0 if the test particle has zero
radial velocity it will be always accelerated in the direction
of increasing r .

Now, let us note that Eq. (19) implies that the test particle
has zero radial velocity at r0 and at the radius

rzero =
⎛
⎝ 1

r2
i

+ v2
i

L2(1 − β)
(

1 − r0
ri

)
⎞
⎠

−1/2

> 0. (21)

If the condition rzero > r0 is satisfied, the radius (21) rep-
resents for a geodesic starting at ri > r0 with vi < 0 and
ϕ̇i �= 0 a point of reversal, since at this radius (rzero < ri ) the
test particle, which approaches to the throat, is deflected by
the wormhole. In other words, rzero represents the minimum
distance to the wormhole throat which can be reached by a
test particle. In this case the time-like geodesic lies always
on the one side of the wormhole (or on the other) and the test
particle does not cross the throat (see Figs. 4a, 5).

For a test particle starting to move at some ri0 > r0 with
zero velocity, Eqs. (20) and (21) imply that the particle will
start to move from this location ri0 to the spatial infinity,
following a specific geodesic path that would have initially
had some velocity vi < 0 at some ri > ri0, which further
satisfies the condition rzero = ri0. Additionally, it should
be considered that Eq. (19) implies that outward geodesics

(a) (b)

Fig. 4 The behavior of the radial velocity for the geodesics G1 (dotted
line) and G2 (solid line) with a same value of L is shown in a. The
throat is located at r0 = 1. The velocities for a given common value
ri > r0 satisfy the condition |vG1 (ri )| > |vG2 (ri )|. We see that both
geodesics are confined to one side of the wormhole. The reversal radius
are different: for G1 the turning point is located at the wormhole throat,
while for G2 the turning point is located at a radius greater than r0.

In b, the qualitative behavior for the branch l̇ =
√
E2 − 1 − L2

r(l)2 is

shown for different values of E , L and r0. For dashed curves L2

E2−1
−

r0L√
E2−1

≥ 0, then reversal points do exist, while for the solid curve

L2

E2−1
− r0L√

E2−1
< 0, so geodesics reach the throat, where the minimum

speed is reached, and they pass to the other wormhole side
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(a) β = −1/2 (b) β = 0 (c) β = 1/2

(d) β = −1/2 (e) β = 0 (f) β = 1/2

Fig. 5 Plots a–c show embedding diagrams for the case where non-
radial geodesics are confined to one side of the wormhole, and r0 = 1,
β = −1/2, 0, 1/2. In this case geodesics do not cross the throat since

they satisfy the condition L2

E2−1
− r0L√

E2−1
≥ 0, and therefore there

exist reversal points. In c we show geodesics which overlap with itself
in one caustic point. Plots d–f show embedding diagrams for passing
non-radial geodesics through the wormhole throat, which satisfy the

condition L2

E2−1
− r0L√

E2−1
< 0

have a limit for the radial velocity given by vlimit = [L2(1 −
β)/r2

i + v2
i /(1 − r0/ri )]1/2.

It can be shown also that there exist inward time-like
geodesics that cross the throat. In order to show this we
shall rewrite Eq. (14) by introducing the rescaling dl =
± dr√

(1−β)(1− r0
r )

, which implies that

l(r) = ±
2
√
r(r − r0) + r0 ln

(
− 1

2 r0+r+√
r(r−r0)

r0
2

)

2
√

1 − β
, (22)

where we have used the integration constant for imposing the
requirement that the throat be located at l = 0, i.e. l(r0) = 0.
Additionally, Eq. (22) implies that for r0 ≤ r < ∞ the
introduced l-coordinate satisfies −∞ < l < ∞.

In such a way, Eq. (14) takes the form l̇2 = E2 −1− L2

r(l)2 ,

where l̇ = dl
dτ

and r(l) is the inverse function of Eq. (22).

In order to have l̇2 > 0 we must impose on the energy the
condition E2 > 1. It should be noted that in this case the
metric (8) is provided by ds2 = dt2 −dl2 −r(l)2d�2, where
l is the proper radial coordinate. For finding the turning points
discussed above we must require l̇ = 0 in l̇2 = E2−1− L2

r(l)2 .

This condition is satisfied for rzero(l) = L√
E2−1

≥ r0, and
by using Eq. (18) this equation takes the form (21). We can
find the values of lzero by putting rzero(l) into Eq. (22), which
allows us to find

lzero = ± 1

2
√

1 − β

⎡
⎣2

√
L2

E2 − 1
− r0L√

E2 − 1

+r0 ln

⎛
⎝−1 + 2L

r0
√
E2 − 1

+ 2

r0

√
L2

E2 − 1
− r0L√

E2 − 1

⎞
⎠

⎤
⎦ .

(23)

Reversal points do exist only for L2

E2−1
− r0L√

E2−1
≥ 0 and

2L
r0

√
E2−1

+ 2
r0

√
L2

E2−1
− r0L√

E2−1
> 1. If the parameters E , L

and r0 do not satisfy these constraints then reversal points do
not exist and the geodesics pass to the other wormhole side
(this is shown in Fig. 4b).

6 Conclusions

We have presented new static traversable wormholes, dubbed
Schwarzschild-like wormholes, by considering a specific
shape function with a linear dependence on the radial coordi-
nate. The solution is given by Eq. (6) and represents a geom-
etry connecting two asymptotically non-flat regions due to
the presence of a solid angle deficit or a solid angle excess,
which is characterized by the constant β (0 < β < 1 for
angle deficit, and β < 0 for angle excess). In the first case, the
embeddings extend from the throat to infinity (see for exam-
ple Fig. 2a). In the second case, the embeddings extend from
the throat to maximum radial value (see Fig. 2b). Therefore,
the shape and the size of the wormhole embeddings depend
on the amount of the solid angle deficit or excess.

We examined in some detail the set of zero-tidal-force
Schwarzschild-like wormholes. In the framework of these
solutions we discuss a phantom wormhole carrying a global
monopole. In the case of solid angle deficit, the energy-
momentum tensor includes two distinct objects, namely a
global monopole and the wormhole itself. These wormholes
are sustained by anisotropic matter source in which the null,
weak, strong and dominant EC are not fulfilled for r ≥ r0.

We have also considered a description of the geodesic
behavior for zero-tidal-force Schwarzschild-like wormholes
(8), corresponding to different values of the β-parameter. The
analysis of the Euler–Lagrange equation shows that a test
particle, radially moving toward the throat, always reaches
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it with a zero velocity at a finite time, while for radial out-
wards geodesics the particle velocity tends to of maximum
value, reaching the infinity. On the other hand, for non-radial
geodesics we derive the conditions which must be fulfilled in
order to geodesics cross the throat. In such a way, we show
that if reversal points do exist the geodesics are confined to
one side of the wormhole, while if reversal points do not exist,
the geodesics cross the throat (see Fig. 5). For plotting Fig. 5,
besides equation r2ϕ̇ = L , we have used the radial Euler–

Lagrange equation − r̈
(1−β)(1− r0

r )
+ r0

(
E2−h− L2

r2

)
2(1− r0

r )r2 + L2

r3 = 0,

which we solved numerically.
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