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This article is based on the study of wormhole geometries in the context of symmetric teleparallel
gravity or f (Q) gravity, where Q is the non-metricity scalar, and it is responsible for the gravitational
interaction. To discuss the wormhole solutions, we consider spherically symmetric static spacetime
metric with anisotropic matter contents under well-known non-commutative distributions known
as Gaussian and Lorentzian distributions with an extra condition of permitting conformal killing
vectors (CKV). This work aims to obtain wormhole solutions under these distributions, and through
we found that wormhole solutions exist under these Gaussian and Lorentzian sources with viable
physical properties. Further, we examine the stability of our obtained solutions through Tolman-
Oppenheimer-Volkoff (TOV) equation and found that our calculated results are stable.
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I. INTRODUCTION

In recent decades, wormhole physics has been of considerable interest among researchers after the seminal work
done by Morris and Throne [1]. The possibility of the existence of wormholes is still an open question. Khatsy-
movsky discussed deeply on this topic in [2]. Gravitational lensing by wormholes was studied in [3–5] and light
deflection in [6, 7]. Recently, some interesting investigations on wormhole geometries have been discussed in [8–11].
Basically, a wormhole is a hypothetical tunnel in space-time with two distinct endpoints or two connecting black
holes, which was first introduced by Weyl [12] and, after that, by Wheeler [13]. Morris and Throne[14] and other
authors in [15–17] argued that a wormhole would permit travel in space and time and explicitly discussed the best
way to convert a wormhole traversing space into traversing time. Moreover, some literature is available on worm-
holes where the traversing path does not go through the exotic matter region [18, 19].
Topologically, in the space-time geometry, wormholes act like tunnels that connect two distinct space-times of the
universe by a minimal surface called the wormhole throat and satisfy the flaring out conditions [20], through which
one can easily traverse in both dimensions. Recent research is based on the study of the essential conditions to guar-
antee their traversability. The prominent of these properties is a unique type of matter called exotic matter, and it is
responsible for the violation of null energy conditions (NEC) and is necessary for forming a traversable wormhole.
Such strange object supported by a single fluid component exist on both dynamic [21–26] and static [27–30] cases. In
general, classical matters obey the energy conditions, but some quantum fields like the Casimir effect, scalar-tensor
theories, and Hawking evaporation supported the violations of energy conditions. Visser et al. [31] developed a
suitable measure for wormhole maintenance called volume integral quantifier for quantifying the total averaged
null energy condition.
Nevertheless, in this context of Einstein General relativity (GR), a static wormhole without violating the energy con-
ditions is still an open question. Hence, Visser [32, 33] introduced a technique called the cut and paste technique to
minimize the usage of exotic matter, but it restricted the exotic fluid at the throat of the wormhole. Also, Kuhfittig
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[34, 35] developed a solution to hamper the exotic fluid of an arbitrary thin region by forcing a condition b
′
(r) < 1

at wormhole’s throat.
As it is known that modified gravity theories might significantly minimize or even invalidate the requirement for
exotic matter. In fact, the investigation of wormhole solutions in different modified theories of gravity is signifi-
cant in Theoretical Physics. S. N. Lobo and Oliveira [36] have constructed traversable wormhole geometries in f (R)
gravity where R represents the Ricci scalar, and by using specific shape function and several equations of state, they
investigated the validity of energy conditions. DeBenedictis and Horvat have studied the existence of wormhole
throats for Rn model under anisotropic fluid in f (R) gravity [37]. Harko et al. [38] and Pavlovic and Sossich [39]
have investigated the wormhole geometries without exotic matter in modified f (R) gravity. Furthermore, one can
check wormhole solutions in various modified theories of gravity such as in f (R, T) gravity [40, 41], f (T) gravity
[42–44], noncommutative geometry [45–47] and so on.
Basically, non-commutative geometry is an intrinsic property of the manifold itself as explicit in [48], and it can
be introduced in GR by modifying the matter source. Schneider and DeBenedictis discussed in detail the back-
ground of both non-commutative distributions in [49]. It is accepted that with the assistance of non-commutative
geometries, some viewpoints of quantum gravity can be investigated mathematically in a preferable way. Space-
time quantization is the essential development of string theory, and the spacetime coordinates may be operated
as non-commutative operators in the D-brane [50]. Such non-commutative operator are used to encrypted in the
commutator [xµ, xν] = iθµν, where θµν is the anti-symmetric matrix which indicates the discretization of spacetime
[51–54]. Non-commutativity replaces the point-like structures with smeared objects to wipe out the divergences
that show up in GR. This smearing can be shown by utilizing Gaussian and Lorentzian distributions of minimal
length

√
θ rather than the Dirac delta function. Sushkov [55] employed Gaussian distribution to study wormholes

supported by phantom energy. Rahaman et al. [56] studied wormhole solutions under non-commutative back-
ground and found that wormhole solutions exist in the usual four, as well as in five dimensions, but they do not
exist in higher-dimensional spacetimes. Also, the stability of a special class of thin-shell wormholes in GR under
non-commutative geometry has been studied in [57].
The study of conformal symmetry defines a link between matter and geometry through the Einstein field equations.
Due to this, the vector $ defined as the generator and the metric g is mapped onto itself conformally along ξ of this
conformal symmetry, and it can be written as

L$gζη = F(r)gζη , (1)

where F(r) represents the conformal killing vector (CKV) and L represents the Lie derivative operator. An interesting
observation found that for a static metric, neither $ nor F(r) need to be static. The authors in [58, 59] used this
approach to show that for a class of conformal motions, the equation of state (EoS) is uniquely determined by the
Einstein equations. Later on, Maartens and Maharaj [60] has extended this particular exact solution for the static
sphere of charge imperfect fluid. Recently, Kuhfitting [61, 62] discussed a barotropic equation of state admitting a
one-parameter group of conformal motion for the wormhole.
Recently, an interesting alternative theory of gravity has been proposed by Jimenez et al. [63], so-called f (Q) gravity
or symmetric teleparallel gravity where Q represents the non-metricity scalar. The critical difference between GR
classical gravity and symmetric teleparallel gravity is the affine connection rather than the physical manifold. In
[63], the authors have shown that symmetric teleparallel gravity is equivalent to GR in flat space. Noted that f (Q)
gravity features in second-order field equations, which is similar to f (T) gravity. While f (R) gravity field equations
are up to fourth-order [64]. Thus, f (Q) gravity presents a distinct geometric description of gravity. Since it is newly
proposed, many authors have already made some interesting applications of this gravity. We quote, for instance, in
[65–67] some cosmological features of f (Q) gravity were investigated, Energy conditions in f (Q) gravity have been
studied by Mandal et al. in [68] and wormhole solutions have been investigated in f (Q) gravity in Refs. [69, 70]. For
more application of f (Q) gravity one can check [71, 72].
In this present study, we are inspired to discuss the existence of wormhole solutions under Gaussian and Lorentzian
distribution with conformal symmetry in f (Q) gravity. The outline of the manuscript is organized as follows: In
sec. II, we present the necessary formulation for f (Q) gravity. The basic condition for traversable wormhole and the
outline of conformal killing vectors have been presented in sec. III. In sec. IV we investigate the wormhole solutions
inspired by Gaussian and Lorentzian sources. Moreover, the stability of the obtain wormhole solutions with the help
of Tolman-Oppenheimer-Volkoff has been discussed in sec. V while in sec. VI we use the exoticity parameter to
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investigate the exotic matter at the throat of the wormhole. At last, the concluding remarks of our current study are
summarized in sec. VII.

II. BASIC FIELD EQUATIONS IN f (Q) GRAVITY

The dynamics of the universe in symmetric teleparallel gravity is described by following action [63]

S =
∫ 1

2
f (Q)

√
−g d4x +

∫
Lm
√
−g d4x , (2)

where f (Q) represents the function of the non-metricity scalar Q, g denote the determinant of the metric gµν, and
Lm is the density of matter Lagrangian.
Another essential component to describe the f (Q) gravity is the non-metricity tensor which is defined as

Qλµν = 5λgµν, (3)

and its two traces are given below

Qα = Qα
µ

µ, Q̃α = Qµ
αµ. (4)

Further, the conjugate of non-metricity tensor (superpotential tensor) is of the form:

Pα
µν =

1
4

[
−Qα

µν + 2Q(µ
α

ν) + Qαgµν − Q̃αgµν − δα
(µQν)

]
, (5)

Now one can find the non-metricity scalar by taking the trace of non-metricity tensor given by Eq. (3)

Q = −Qαµν Pαµν. (6)

The definition of the stress-energy tensor for the fluid description of the spacetime is of the form

Tµν = − 2√−g
δ
(√−gLm

)
δgµν . (7)

The field equation describing the gravitational interactions in the symmetric teleparallel gravity acquired by varying
the action (2) with respect to the fundamental metric tensor gµν is shown below:

2√−g
5γ

(√
−g fQ Pγ

µν

)
+

1
2

gµν f + fQ

(
Pµγi Qν

γi − 2 Qγiµ Pγi
ν

)
= −Tµν, (8)

where fQ = d f
dQ .

Also, by varying the action (2) with respect to the connection, one can find the following relation

5µ5ν

(√
−g fQ Pγ

µν

)
= 0. (9)

III. TRAVERSABILITY CONDITIONS FOR WORMHOLES AND CONFORMAL KILLING VECTOR

Here, we consider spherically symmetric static spacetime metric and this spacetime is conventionally composed
as

ds2 = −eε(r)dt2 + eσ(r)dr2 + r2(dθ2 + sin2 θdΦ2), (10)

where

• ε(r) = 2 Ψ(r) with Ψ(r) is the redshift function.
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• eσ(r) =
(

r−b(r)
r

)−1
with b(r) is the shape function.

• The wormhole throat joins two asymptotic regions and is placed at the radial coordinate r0, where b(r0) = r0.

• The flaring-out requirement, b(r)−rb′(r)
2b2(r) > 0, which should valid at or near the throat, must be satisfied by the

shape function b(r). This reduces to b′(r0) < 1 near the wormhole’s throat.

• The shape function should meet the condition 1− b(r)
r > 0 for the radial coordinates r > r0 in order to maintain

the proper signature of the metric.

• The metric functions must obey the requirements Ψ(r) and b(r)
r tend to zero as r approaches to ∞ in order

to have asymptotically flat geometries. For no-asymptotically flat wormholes, these criteria can obviously be
relaxed.

In the present study, as we are going to analyze the wormhole solutions, we assume the matter content described by
an anisotropic energy-momentum tensor which is given by

Tν
µ =

(
ρ + pt

)
uµ uν + pt δν

µ +
(

pr − pt
)

vµ vν, (11)

where ρ is the energy density and vµ is the unitary space-like vector in the radial direction. uµ is the four-velocity
vector such that −uµuµ = vµvµ = 1. The expressions pr and pt denotes the radial and tangential pressures, respec-
tively and both are functions of radial coordinate r.
For the metric (10), the trace of the non-metricity Q is given by,

Q =
2
r

e−σ(r)
(

ε
′
(r) +

1
r

)
. (12)

Now, in our current work, we assume a linear functional form of f (Q) gravity, which is expressed as:

f (Q) = αQ + β (13)

where, α and β are free parameters.

Further, we use the concept of conformal symmetry by using the vector field F, the Eq. (1) provides the following
expression:

L$gζη = gηη$
η
;λ + gζη$

η
;η = F(r)gζη . (14)

where L represents the Lie derivative, with the CKVs $η , and vector field F(r). With the help of killing vector,
constants of the motion can be determined i.e. along any given geodesic, quantities will be constant. Moreover, for
(a) F(r) = constant, Eq. (14) gives Homothetic vector, for (b) F(r) = 0, Eq. (14) gives the killing vector, and when (c)
F(r) = F(x, t) then it gives conformal vector.

Using Eq.(10), in Eq.(14), we get the following three different expressions:

$1ζ
′
(r) = F(r), $1 =

rF(r)
2

, $1η
′
(r) + 2$1

,1 = F(r).

By solving the above system by using the spacetime Eq. (10), we get the following relations:

eε(r) = e2Ψ(r) = K2
1r2, eσ(r) =

(
r− b(r)

r

)−1

=
K2

2
(F(r))2 , (15)

where, K1 and K2 are considered integration constants. By using Eqs. (10-13) with Eq. (15) in Eq. (8) we get a
following final version of field equations as:

ρ = − β

2
+

α

r2 −
α F(r)
K2

2 r2

(
2 r F

′
(r) + F(r)

)
, (16)



5

pr =
β

2
+

3α(F(r))2

K2
2r2

− α

r2 , (17)

pt =
β

2
+

α F(r)
K2

2 r2

(
2 r F

′
(r) + F(r)

)
, (18)

where ′ represents d
dr .

IV. PHYSICAL ANALYSIS OF WORMHOLE GEOMETRY

In this section, we shall discuss the physical analysis of wormhole solutions with the help of Eqs. (16)-(18) under
noncommutative distributions. For this purpose, we consider two noncommutative sources, namely Gaussian and
Lorentzian distribution of particle-like gravitational sources, and hence the energy densities are expressed as [73, 74]

ρ =
Me−

r2
4θ

8π3/2θ3/2 , (19)

ρ =

√
θM

π2
(
θ + r2

)2 , (20)

respectively. Here, M and θ are the smearing mass distribution and the noncommutativity parameter, respectively.

A. Wormhole solutions under Gaussian Distribution for f (Q) gravity

In this subsection, we match the Gaussian source of energy density (19) with Eq. (16), we get the following
differential equation

Me−
r2
4θ

8π3/2θ3/2 = − β

2
+

α

r2 −
α F(r)
K2

2 r2

(
2 r F

′
(r) + F(r)

)
, (21)

After solving the above differential equation with the scope of Eq. (14), we get the following shape function

b√
θ

(
r√
θ

)
= −C1

K2
2
−

K2
2

8 α

−2M1er f
(

r
2
√

θ

)
π

+
2M1re

− 1
4

(
r√
θ

)2

π3/2
√

θ
+

8αr√
θ
− 1

3
4β1

(
r√
θ

)3

+
r√
θ

, (22)

where M1 = M√
θ
, β1 =

√
θβ, C1 =

√
θC0 with C0 is a constant of integration for Eq. (21), and er f is an error function.

By using the Eq. (22) in Eq. (17) and Eq. (18), we get a following expressions for pressure components

pr =
1
θ

(
β1

3
− 5αC1

K4
2

(
r√
θ

)3 −
5M1er f

(
r

2
√

θ

)
4π
(

r√
θ

)3 +

5M1e
− 1

4

(
r√
θ

)2

4π3/2 − 4α(
r√
θ

)2

)
, (23)

pt =
1
θ

(
2β1

3
− 5αC1

2K4
2

(
r√
θ

)3 −
5M1er f

(
r

2
√

θ

)
8π
(

r√
θ

)3 − 3M1e
− 1

4

(
r√
θ

)2

16π3/2 +
5M1e

− 1
4

(
r√
θ

)2

8π3/2
(

r√
θ

)2 −
4α(
r√
θ

)2

)
. (24)

Now, we are going to discuss the behaviors of obtained shape function from Eq. (22) graphically. Here the shape
function represent of the form b√

θ

(
r√
θ

)
and this form of shape functions depends on α, M1, β1, K2 and C1. Under
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FIG. 1: Shows the behavior of b√
θ

(
r√
θ

)
and b′√

θ

(
r√
θ

)
with respect to r√

θ
for different values of α with fixed parameters

M1 = 0.2, β1 = 0.07, K2 = 1.2 and C1 = −5 under Gaussian distribution.

FIG. 2: Shows the behavior of
b√
θ

(
r√
θ

)
r√
θ

and b√
θ

(
r√
θ

)
−
(

r0√
θ

)
with respect to r√

θ
for different values of α with fixed parameters

M1 = 0.2, β1 = 0.07, K2 = 1.2 and C1 = −5 under Gaussian distribution.

this Gaussian sources framework we fixed some free parameters M1 = 0.2, β1 = 0.07, K2 = 1.2 and C1 = −5 to
analyse the results fruitfully. The left panel of Fig. 1 shows the increasing behavior of b√

θ

(
r√
θ

)
as
(

r√
θ

)
increases for

different values of α and the right plot of Fig. 1 indicates that b
′
√

θ

(
r√
θ

)
< 1 for

(
r√
θ

)
>
(

r0√
θ

)
i.e., flare-out condition

satisfied. To check the asymptotically flatness condition we plot
b√
θ

r√
θ

verses r√
θ

which is presented in the left panel of

Fig. 2 and it is indicating that
b√
θ

r√
θ

approaches to a small positive value as the radial coordinates r√
θ

get larger values.

Hence, it can be concluded that the asymptotically flatness behavior of the shape function cannot be achieved under
this distribution. Also to locate the throat of wormhole, we imposed the condition b√

θ

(
r0√

θ

)
=
(

r0√
θ

)
. The right

panel of Fig. 2 indicates that the wormhole’s throat is located at r√
θ
= r0√

θ
where b√

θ

(
r√
θ

)
−
(

r0√
θ

)
cuts the r√

θ
-axis.

For α = 1.1, b√
θ

(
r√
θ

)
−
(

r0√
θ

)
cuts the r√

θ
-axis at

(
r0√

θ

)
= 4.18 (approximately). Whereas for α = 1.2 and α = 1.3,

the area of throat radii located at
(

r0√
θ

)
= 4.09 and

(
r0√

θ

)
= 4.02 (approximately), respectively. One can notice that
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FIG. 3: Evolution of θ(ρ) with respect to r√
θ

for different values of α with fixed parameters M1 = 0.2, β1 = 0.07, K2 = 1.2 and
C1 = −5 under Gaussian distribution.

FIG. 4: Evolution of θ
(
ρ + pr

)
and θ

(
ρ + pt

)
with respect to r√

θ
for different values of α with fixed parameters M1 = 0.2,

β1 = 0.07, K2 = 1.2 and C1 = −5 under Gaussian distribution.

the position of the wormhole’s throat decreasing with the increase of the parameter α. In short, we can say that the
shape function satisfy all the necessary condition for the WH under Gaussian distributions.
With the help of Eqs. (19), (23) and (24), we have shown the behavior of energy conditions graphically in Figs.
3-6. According to Fig. 3, θ(ρ) > 0 i.e. energy density is positive in the entire shape-time. In Figs. 4 and 5, we
have shown the behaviors of null energy condition NEC

(
θ(ρ + pr), θ(ρ + pt)

)
and dominant energy condition

DEC
(
θ(ρ− pr), θ(ρ− pt)

)
, respectively and the figures showing that both the energy conditions are violated. But

the Fig. 6 indicates that the strong energy condition SEC θ(ρ + pr + 2pt)) is satisfying. Violation of NEC hold the
wormhole’s throat open under this Gaussian distribution framework.
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FIG. 5: Evolution of θ
(
ρ− pr

)
and θ

(
ρ− pt

)
with respect to r√

θ
for different values of α with fixed parameters M1 = 0.2,

β1 = 0.07, K2 = 1.2 and C1 = −5 under Gaussian distribution.

FIG. 6: Evolution of θ(ρ + pr + 2 pt) with respect to r√
θ

for different values of α with fixed parameters M1 = 0.2, β1 = 0.07,
K2 = 1.2 and C1 = −5 under Gaussian distribution.

B. Wormhole solutions under Lorentzian Distribution for f (Q) gravity

In this subsection, we match the Lorentzian source of energy density (20) with Eq. (16), we get the following
differential equation

√
θM

π2
(
θ + r2

)2 = − β

2
+

α

r2 −
α F(r)
K2

2 r2

(
2 r F

′
(r) + F(r)

)
, (25)

After solving the above differential equation with the scope of Eq. (14), we get the following shape function

b√
θ

(
r√
θ

)
=

C2

K2
2
−

K2
2

6α

(
r√
θ

) 3M1

π2
((

r√
θ

)2
+ 1
) + β1

(
r√
θ

)2

− 5α

− K2
2 M1 cot−1

(
r√
θ

)
2 π2α

, (26)
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FIG. 7: Shows the behavior of b√
θ

(
r√
θ

)
and b′√

θ

(
r√
θ

)
with respect to r√

θ
for different values of α with fixed parameters

M1 = 0.2, β1 = 0.07, K2 = 1.2 and C2 = −5 under Lorentzian distribution.

where C2 =
√

θC00 with C00 is a constant of integration for Eq. (25). By using the Eq. (22) in Eq. (17) and Eq. (18),
we get a following expressions for pressure components

pr =
1
θ


β1

3
+

1

2
(

r√
θ

)3

−
10αC2

K4
2

+
5M1r

√
θ

(
π2
((

r√
θ

)2
+ 1
)) − 8αr√

θ
+

5M1 cot−1
(

r√
θ

)
π2



 , (27)

pt =
1
θ

1

12π2K4
2

(
r√
θ

)3
((

r√
θ

)2
+ 1
)2

(
− 30π2αC2

( r√
θ

)2

+ 1

2

+ K4
2

r√
θ

−3M1

( r√
θ

)2

− 5



+ 8π2

( r√
θ

)2

+ 1

2β1

(
r√
θ

)2

− 6α


+ 15K4

2 M1

( r√
θ

)2

+ 1

2

cot−1

(
r√
θ

))
. (28)

In Figs. 7 and 8, we have discussed the behaviors of obtained shape function from Eq. (26) graphically. In this case,
for a best fit configuration we set the free parameters similar to subsection IV A. The left panel of Fig. 7 indicates that
the shape function b√

θ

(
r√
θ

)
increases as

(
r√
θ

)
increases and the right plot of Fig. 7 shows that flare-out condition

satisfied i.e., b
′
√

θ

(
r√
θ

)
< 1 for

(
r√
θ

)
>
(

r0√
θ

)
for different values of α. We have plotted the graph of

b√
θ

r√
θ

with respect

to r√
θ

in the left panel of Fig. 8, to check the asymptotically flatness condition and the graph indicating that
b√
θ

r√
θ

tends

to a small positive value as r√
θ

increases which means that flatness condition is not satisfied under the lorentzian

distribution also. Moreover, to find the wormhole throat, we plot the graph of b√
θ

(
r√
θ

)
−
(

r0√
θ

)
verses r√

θ
in the

right panel of Fig. 8 which indicates that the wormhole throat is located at r√
θ
= r0√

θ
where b√

θ

(
r√
θ

)
−
(

r0√
θ

)
cuts

the r√
θ
-axis. For α = 1.1, b√

θ

(
r√
θ

)
−
(

r0√
θ

)
crosses the horizontal axis r√

θ
at
(

r0√
θ

)
= 4.20 (approximately). Similarly,

for α = 1.2 and α = 1.3, the area of throat radii located at
(

r0√
θ

)
= 4.10 and 4.08 (approximately), respectively. In this

case also we found that the position of the wormhole throat decreasing with the increase of the parameter α. Hence,
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FIG. 8: Shows the behavior of
b√
θ

(
r√
θ

)
r√
θ

and b√
θ

(
r√
θ

)
−
(

r0√
θ

)
with respect to r√

θ
for different values of α with fixed parameters

M1 = 0.2, β1 = 0.07, K2 = 1.2 and C2 = −5 under Lorentzian distribution.

FIG. 9: Evolution of θ(ρ) with respect to r√
θ

for different values of α with fixed parameters M1 = 0.2, β1 = 0.07, K2 = 1.2 and
C2 = −5 under Lorentzian distribution.

under this Lorentzian distribution, shape function satisfy all the basic criteria for a traversable wormhole.
We are now using Eqs. (20), (27) and (28), to show the behavior of energy conditions graphically in Figs. 9-12. From
Fig. 9, we can say that the energy density is positive throughout the shape-time. In Figs. 10, the profile of NEC
is depicted where one can observe that θ(ρ + pr) < 0, i.e., NEC is violated. Violation of NEC may confirm the
exotic matters at wormhole’s throat. Moreover, the behaviors of DEC and SEC have been shown in Figs. 11 and 12,
respectively. In this case, we have found that DEC is violated while the SEC is obeyed.

V. EQUILIBRIUM CONDITION

In order to find the equilibrium configuration for the wormhole geometry in the background of noncommutative
Gaussian and Lorentzian distributions, we shall use the generalized Tolman-Oppenheimer-Volkoff (TOV) equation.
The generalized TOV equation is provided as [75, 76]

− dpr

dr
− ε

′
(r)
2

(ρ + pr) +
2
r
(pt − pr) = 0, (29)
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FIG. 10: Evolution of θ
(
ρ + pr

)
and θ

(
ρ + pt

)
with respect to r√

θ
for different values of α with fixed parameters M1 = 0.2,

β1 = 0.07, K2 = 1.2 and C2 = −5 under Lorentzian distribution.

2 3 4 5
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p
t
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FIG. 11: Evolution of θ
(
ρ− pr

)
and θ

(
ρ− pt

)
with respect to r√

θ
for different values of α with fixed parameters M1 = 0.2,

β1 = 0.07, K2 = 1.2 and C2 = −5 under Lorentzian distribution.

where ε(r) = 2Ψ(r). The forces namely, hydrostatic (Fh), the gravitational (Fg) and anisotropic force (Fa) are
represented by following expressions

Fh = −dpr

dr
, Fa =

2
r
(pt − pr), Fg = − ε

′

2
(ρ + pr), (30)

and thus Eq. (29) takes the form given by

Fa +Fg +Fh = 0.

The profile of Fh, Fa, and Fg for our wormhole solutions under Gaussian and Lorentzian sources are shown in
Fig. 13 and 14, respectively by assigning the values of the free parameters as we used in the above figures. One
can observe from Figs. 13 and 14 that the hydrostatic force (Fh) is dominating compared to anisotropic (Fa) and
gravitational (Fg) forces, respectively. Here for both the sources, it can be seen that the force Fh takes the positive
values while the other forces Fa and Fg are negative, which is clearly define that to hold the system in equilibrium
state, the hydrostatic force is balanced by the combined effect of anisotropic and gravitational forces. One may check
the Refs. [77, 78] where the authors have been studied deeply on this topic.
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FIG. 12: Evolution of θ(ρ + pr + 2 pt) with respect to r√
θ

for different values of α with fixed parameters M1 = 0.2, β1 = 0.07,
K2 = 1.2 and C2 = −5 under Lorentzian distribution.

FIG. 13: This profile shows the graphical representation of Fh, Fa and Fg with respect to r√
θ

for α = 1.1 (le f t), α = 1.2 (middle)
and α = 1.3 (right) with fixed parameters M1 = 0.2, β1 = 0.07, K1 = K2 = 1.2 and C1 = −5 under Gaussian distribution.

VI. EXOTICITY PARAMETER

In this section, we shall investigate the presence of the exotic matter at the throat and its vicinity by means of the
behavior of the exoticity parameter, i.e., Ω, which is defined as [19, 79]

Ω = −ρ− pr

|ρ| , (31)

Noted that, non-negativity of Ω ensure the presence of exotic matter at or nearer to the throat of the wormhole.
By keeping this concept in mind, using Eqs. (19) and (23) for Gaussian, and Eqs. (20) and (27) for Lorentzian
distributions, we have plotted the graphs of exoticity Ω against the radial coordinate r√

θ
for both distributions in Fig.

15. Interestingly, we can observe that exoticity is showing positive behavior at or nearer to the throat of wormhole
and after that it is showing negative behavior for both cases. This implies that right from the wormhole’s throat
to an adequate distance is surrounded by exotic matter. Moreover, we can also conclude that meeting the flare-out
condition does not necessarily imply a violation of the NEC in the modified gravity. Readers can also check the Refs.
[1, 24, 80] for a detailed discussion.
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FIG. 14: This profile shows the graphical representation of Fh, Fa and Fg with respect to r√
θ

for α = 1.1 (le f t), α = 1.2 (middle)
and α = 1.3 (right) with fixed parameters M1 = 0.2, β1 = 0.07, K1 = K2 = 1.2 and C2 = −5 under Lorentzian distribution.

FIG. 15: The profile shows the behavior of exoticity Ω with respect to r√
θ

for (le f t) Gaussian and (right) Lorentzian distributions
with fixed parameters M1 = 0.2, β1 = 0.07, K2 = 1.2 and C1 = C2 = −5.

VII. CONCLUDING REMARKS

In this manuscript, we have discussed the possibility of the existence of wormhole solutions in the framework of
f (Q) gravity or symmetric teleparallel gravity under anisotropy matter sources. The geometry behind this work is
inspired by the noncommutativity along with the conformal killing vectors (CKV). The concept of finding a solution
with the help of CKVs and non-commutative sources is not a new approach. There are many works available in
literature where these concepts have already been used to investigate the existence of black holes and wormholes
in various modified theories. Kuhfittig in [81] has discussed different functional forms of f (R) gravity via several
shape functions for wormhole under non-commutative geometry. Jamil et al. has used non-commutative geometry
to studied wormhole solutions in f (R) gravity in [82]. Also, in the article [83], Ghosh studied the existence of
Einstein-Gauss-Bonnet black hole inspired by non-commutative geometry. However, this current study provides a
novel discussion that such non-commutative distributions along with the conformal symmetry have not been used
before in the symmetric teleparallel gravity. In this whole study we assume a particular form of linear model for
f (Q) i.e., f (Q) = α Q + β, where Q is the non-metricity scalar which is responsible for the gravitational interaction
and α and β are free parameters. With the help of this linear functional form, we found that the field equations are
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extremely complicated, and hence we use conformal symmetry to get the exact analytic solution of field equations.
Inspired from the works of Nicolini et al. [48] and Mehdipour [84], we used non-commutative energy density
suggested by them and analyzed the corresponding form of shape functions and energy conditions for obtained
wormhole solutions graphically separately. The main features of this current study are highlighted below:

(1) Under both Gaussian and Lorentzian distribution, we have found that the obtain shape functions are increasing
functions in nature with respect to r√

θ
and graphically, it has also shown that at the wormhole’s throat, flare

out condition hold which is represented in Figs. 1 and 7.

(2) In the left panel of Figs. 2 and 8, we have shown the behavior of asymptotically flatness condition. We found

that due the conformal symmetry assumption, the ratio
b√
θ

r√
θ

approaches to a small positive value as the radial

coordinate r√
θ

get larger values. Hence, it can be concluded that the asymptotic flatness behavior of the shape
function cannot be achieved in both distributions. As a result, for the redshift function, the wormhole spacetime
is not asymptotically flat; hence it will have to be cut off at some radial distance which smoothly joins to an
exterior vacuum solution in the standard way.

(3) Also, one can observe the right panel of Figs. 2 and 8 that the values of wormhole throat decrease as increases
the values of α in both non-commutative cases.

(4) In Figs. 3 and 9, it can be seen that, for both cases, energy density shows positively decreasing behavior
throughout the spacetime.

(5) Furthermore, we studied NEC, DEC, and SEC in Figs. 4-6 and 10-12. It is found that for both non-commutative
distributions, NEC bounds are violated as θ(ρ + pr) < 0 while the SEC is satisfied. Thus, NEC’s violation may
confirm the exotic matter at the wormhole’s throat, which is a basic requirement for traversable wormhole
existence.

(6) Moreover, the Tolman-Oppenheimer-Volkoff (TOV) equation has been calculated to check the stability of the
matter distribution subject to the hydrostatic force Fh, anisotropic force Fa, and gravitational force Fg due to
anisotropic pressure. One can check the Figs. 13 and 14 that these forces balanced each other’s impact to hold
the system in equilibrium and thereby yielding a stable wormhole.

(7) Lastly, we have used the exoticity parameter to verify the presence of exotic matter at the wormhole’s throat.
From our analytical analysis presented in Fig. 15, it is found that exoticity Ω is positive at or nearer to the
wormhole throat, which implies that the wormhole’s throat is filled with exotic matter.

Thus, it is very transparent from our analysis that all the necessary conditions relating to a traversable wormhole are
fulfilled under the non-commutative geometry and the conformal symmetry. It would also be interesting to explore
wormhole solutions in the symmetric teleparallel gravity with the help of different other matter sources into account.
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[4] W. Javed, R. Babar, A. Övgün, Phys. Rev. D 99, 084012 (2019).
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