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1 Introduction

One of the most intriguing results of the recent exploration of the relationship between

quantum information and quantum gravity in holography [1–3], in the particular context

of the AdS/CFT correspondence [4–7], is the realization that black holes connected by a

wormhole are highly quantum-mechanically entangled with each other [8–10]. Thought

experiments suggested by this realization, in which connected black holes are treated as

entangled quantum states [11–15], have elucidated connections between general-relativistic

results for the wormhole geometry and quantum-mechanical results concerning entangled

states. Such thought experiments can often be viewed as probing the classical, many-qubit

limit of the proposed ER/EPR conjecture [10], which relates quantum entanglement and

wormholes more generally.
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Typically, the imposition of causality and energy conditions prevents anything from

traveling from one side of the Einstein-Rosen bridge to the other [16]. However, it has been

shown that wormholes can be rendered traversable in AdS/CFT [17, 18] via the insertion

of a double-trace deformation on the boundary CFTs: in effect, as we review in section 3,

a bilocal operator coupling the two CFTs introduces a negative null energy shock wave in

the bulk and hence allows causal paths through the wormhole. In previous work [14], it

was shown in the classical holographic limit that the inability to differentiate with perfect

confidence between a pair of black holes either connected by a classical interior Einstein-

Rosen bridge geometry or not is dual to the quantum-mechanical fact that entanglement is

not a linear observable. As an exercise, in section 4 we revisit this result in the traversable

wormhole context and show it continues to hold, as it must given that the boundary is still

described by a good quantum-mechanical theory.

More generally, however, we would like to examine the broader implications of the

traversable wormhole construction in the context of quantum information theory. We

know that when a wormhole is rendered traversable we can use it to send (some) signals

between two regions of spacetime or, equivalently, between subsystems of the two dual

CFTs. A natural question is whether the propagation of such signals through the would-

be traversable wormhole region can function as a reliable entanglement witness1 for the

quantum system of the two entangled black holes.

Furthermore, the successful transmission of such signals manifestly results in the trans-

fer of information between the two regions (or the two CFTs). While the overall evolution

of the two CFTs is jointly unitary, the transport of quantum information from one CFT to

another is a process that, since it concerns subsystems, need not be unitary (and, in fact,

the transport of qubits is generically nonunitary in everyday laboratory situations where

they cannot be totally isolated from their environments). The process of sending informa-

tion through a wormhole is thus better described in the language of a quantum channel.2

Given this description, we would like to better understand the role that the traversable

wormhole is playing as a quantum communication channel between the two CFTs and

whether its bulk properties translate into any nontrivial properties of the relevant subclass

of quantum channels. At the same time, we can also use signal propagation via such a

quantum channel to learn about the structure of the wormhole itself.

In this paper, we formalize both of these notions, constructing algorithms that one

would follow to utilize the traversable wormhole either as a quantum channel for sending

information or as an entanglement witness to probe the spacetime geometry and its dual

entanglement structure. After some preliminaries, we define (in section 5.1) the quantum

channel that evolves excitations initially localized near a part of one boundary subregion to

excitations near the other boundary. Because this is a channel between infinite-dimensional

Hilbert spaces, we are next motivated to consider (in section 5.2) a coarse-grained map-

ping between finite-dimensional code subspaces, following ref. [19]. The construction of

1An entanglement witness is an operator that is capable of distinguishing certain patterns of entangle-

ment from separable states. For a more detailed definition, we refer the reader to section 6.
2A quantum channel provides a general formalism for describing the transmission of quantum (and

classical) information, not necessarily unitarily, in a potentially noisy system; see section 2.
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this channel allows us to make contact with the quantum information literature on finite-

dimensional channels, and (in section 5.3) we combine these results with the gravitational

description of the channel to place a bound on its entanglement capacity and describe a

protocol that saturates this bound. While this protocol maximizes the number of qubits

that can be sent through the wormhole while it remains traversable, it is not optimized

to measure properties of the deformation itself. We thus consider (in section 7) additional

protocols that better exploit the nature of the channel as an entanglement witness for the

bulk spacetime geometry.

Throughout this paper, we will work in a semiclassical approximation, where we can

take the spacetime geometry of the wormhole to be well described by Einstein’s equations,

corresponding under AdS/CFT to two entangled black holes in the large-N limit. In

particular, we will not use the assumptions of ER/EPR [10], since we do not need to

ascribe any geometric notion to single Bell pairs or small numbers of qubits.

The organization of this paper is as follows. In section 2, we discuss some formalism

for quantum channels. In section 3, we review the traversable wormhole construction in

AdS/CFT. In section 4, we comment on the implications of wormhole traversablity for the

observability of entangled states. In section 5, we put these concepts together for a rigorous

definition of traversable wormholes as a specific class of quantum channels. In section 6, we

discuss entanglement witnesses in quantum information theory. Finally, in section 7 we con-

struct a setup in which traversable wormholes can serve as partial entanglement witnesses

for the class of quantum states of pairs of black holes with unknown mutual entanglement

structure. We conclude in section 8 with some final discussion and thoughts on future work.

2 Review of quantum channels

We begin with a brief review of quantum channels and the associated technology relevant

to the analysis of traversable wormholes. A more complete treatment of the subject can

be found in refs. [20, 21].

2.1 Channel basics

A quantum channel generalizes the notion of unitary evolution in quantum mechanics to

include the possibility of dissipative evolution. Quantum channels map density matrices

onto density matrices, but information need not be preserved by this mapping. Such a

description is appropriate for open quantum systems, for example, where the system being

described is free to interact with other unmonitored degrees of freedom. The unmonitored

degrees of freedom appear to leech information out of the system being described and cause

it to evolve nonunitarily. In precise terms, a quantum channel is defined as follows.

Definition 2.1 Let HA and HB denote Hilbert spaces and let L(HA) and L(HB) denote

the spaces of linear operators on HA and HB, respectively. A linear operator3 N : L(HA)→
L(HB) is a quantum channel or superoperator if it obeys the following conditions:

3A channel need not be linear, and we will indeed later encounter an example of a nonlinear channel.

See ref. [22] for further discussion of nonlinearity and some of its associated issues.
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i. N maps Hermitian operators onto Hermitian operators.

ii. N is trace-preserving.

iii. N is completely positive, i.e., for any extension of HA to HA⊗HX , the map N ⊗ IX
is positive.

Channels are conventionally defined as above so that they have an operator-sum represen-

tation, among other reasons.

In the case that HA and HB correspond to degrees of freedom held by two different

parties, A and B, a quantum channel can be thought of as a generalization of a classical

communication channel that transmits quantum information from A to B. Just as one can

ask what the capacity of a classical communication channel to transmit bits is, a natural

question to ask is what the capacity of a quantum channel to transmit qubits is. However,

while Shannon’s theorem [23] provides a clean expression for the capacity of a classical

channel, there is no similarly universal and tidy expression for quantum channel capacity.

Intuitively, quantum channel capacity (which we hereafter refer to as just “capacity”)

is the ratio of the number of qubits transmitted by the channel to the number of qubits

taken as input per use of the channel. The capacity depends sensitively on the details of

its definition. It depends as well as on what resources are available to the parties operating

the channel, such as, for example, whether the parties A and B are allowed to communicate

classically or share entangled ancillae that they can consume to assist their communication.

As an illustration, let us define the asymptotic channel capacity for parties that are

unassisted by shared entanglement or classical communication. (This definition is given

in section 10.7 of ref. [21].) Let NA→B be a channel from HA to HB, where we have

introduced superscripts to indicate between which spaces the channel acts. We introduce

two additional Hilbert spaces, HR and HE . We define HR to be a reference space, with

dimension at most that of HA, such that any input to the channel, ρA, can be written as

the reduced state of some pure state |ψ〉RA ∈ HR⊗HA. In other words, for each ρA, there

is a state |ψ〉RA such that

ρA = TrR |ψ〉〈ψ|RA. (2.1)

Similarly, HE is an environmental space onto which NA→B can be extended to an isometry

UA→BE such that, altogether, IR⊗UA→BE |ψ〉RA = |φ〉RBE maps a pure state onto another

pure state.

We now make several auxiliary definitions. In terms of these additional Hilbert spaces,

coherent information is defined as follows.

Definition 2.2 The coherent information from R to B is

Ic(R〉B)φ ≡ −S(R|B)

≡ S(ρB)− S(ρRB)

= S(ρB)− S(ρE).

(2.2)

The second line above is just the definition of conditional entropy, and the third line follows

because |φ〉RBE is a pure state.

– 4 –
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Note that Ic(R〉B)φ depends on neither the purification |ψ〉RA of ρA nor the choice

of dilation UA→BE of NA→B, as can be seen from the third and second lines of eq. (2.2),

respectively. Coherent information is a measure of how much information makes it through

the channel, in the sense that Ic(R〉B)φ > 0 means that the reference system R is more

correlated with B than the environment E. This is particularly evident if one rewrites

Ic(R〉B)φ in terms of mutual information:

Ic(R〉B)φ =
1

2
(I(R : B)− I(R : E)) . (2.3)

Coherent information therefore captures the amount of quantum information transmitted

by a single use of the channel, which is formalized in the definition below.

Definition 2.3 The one-shot quantum channel capacity is

Q1(N ) ≡ sup
A
Ic(R〉B)φ, (2.4)

where the supremum is over all states ρA.

Finally, we arrive at the definition of the asymptotic channel capacity by considering

the limiting case in which the two parties are allowed multiple uses of the channel.

Definition 2.4 The quantum channel capacity is

Q(N ) ≡ lim
n→∞

sup
An

1

n
Ic(R

n〉Bn)φRnBnEn . (2.5)

In analogy with the asymptotic definition of classical channel capacity, quantum channel

capacity is therefore the average rate at which quantum information is transmitted over

the channel, per channel use.

An important point is that asymptotic channel capacity is not in general equal to the

one-shot capacity because channel capacity can be superadditive. This is because, in many

cases, quantum error correction and a cleverly designed communication protocol can allow

the communicating parties to overcome some of the noisy losses incurred during use of the

channel by redundantly encoding their messages over the course of several channel uses.

In other words, n correlated uses of a channel can in general result in the transmission of

more quantum information that n uncorrelated, repeated uses of the channel. The case of

additive capacity, where Q(N ) = Q1(N ), is a relatively special case.

An important lesson to take from the formalism in this present section is that the

notion of a “quantum channel capacity” requires a significant clarification in general before

it is well defined. We must therefore carefully define the specific types of quantum channel

capacities we want before we can apply the language of quantum channels to the traversable

wormhole geometries we are interested in here.

2.2 Channels from bipartite Hamiltonians

We now focus on a particular class of quantum channels: those generated by bipartite

unitary gates [24]. Consider a bipartite Hilbert space H = HA ⊗ HB, where dimHA =

– 5 –
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U

A′

A

B

B′

Figure 1. The most general protocol that A and B can perform that uses U exactly once and that

makes use of their freely-available resources: local unitary operations, ancillae (A′ and B′), and

classical communication. (The classical side channel is not explicitly shown.)

dimHB = d <∞ and the factors HA and HB correspond to systems held by two parties,

A and B, respectively.4 Let U : H → H be a unitary operator, which maps a joint state

shared by A and B to another joint state. However, given the bipartition of H, one can

think of U as defining a two-way quantum channel between A and B. Via the action

of U , information about the state held by A propagates to B and vice versa. One very

natural way such channels arise is through time evolution when the systems held by A and

B are coupled. In this case, U is just the time evolution operator generated by the joint

Hamiltonian on HA ⊗HB.

A basic quantity of interest for this setup is the channel capacity of the bipartite

unitary operator U . That is, how much quantum information can reliably be transmitted

between the two parties via use of the channel? While the precise calculation of asymptotic

channel capacity is still a formidable task in this restricted setup, much is known about the

entanglement capacity of such channels, which we elaborate on in the rest of this section.

We will assume here that two-way classical communication is a free resource shared

by A and B. Per ref. [24], we will also assume that A and B have access to ancillae of

arbitrarily large (but finite) dimension and that A and B are allowed to perform local

unitary operations. Consequently, denoting the ancillary systems by A′ and B′, the most

general protocol that uses U once is shown in figure 1 (cf. ref. [24]).

2.3 Entanglement capacity

Loosely speaking, entanglement capacity quantifies the ability of a channel to generate

entanglement. We will be interested in entanglement production between two parties,

so here we will consider the case in which the channel maps between states in the same

Hilbert space, where the Hilbert space decomposes into two factors corresponding to the

two parties that become entangled.

We will follow the definitions and notation of ref. [24]. Let N : L(H) → L(H) be a

channel between states on the Hilbert space H, and suppose that H decomposes into the

tensor product H = HA ⊗ HB with dimHA = dimHB = d < ∞. Then an entanglement

capacity can be defined as follows.

4We can assume that the dimensions of the two factors are equal, without loss of generality, because the

smaller of two Hilbert spaces can always be embedded into a larger space to match the dimension of the

other factor.
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Definition 2.5 The t-shot entanglement capacity of N with respect to the entanglement

measures Ein and Eout is

E
(t,∅,r)
in→out,N ≡ sup

Pt

1

t
[Eout (Pt(|00〉〈00|))− Ein (|00〉〈00|)] . (2.6)

The supremum is over all protocols Pt that use N t times. The argument r denotes the

collection of freely available resources, such as local unitary operations and classical com-

munication (LOCC), as well as ancillae. The empty set symbol, ∅, specifies that the initial

state is chosen to be an unentangled state between HA and HB, denoted by |00〉. (Here we

omit subscripts on the state.) In the case where we are free to prepare any initial state, the

capacity is given by

E
(t,∗,r)
in→out,N ≡ sup

Pt
sup
ρ

1

t
[Eout (Pt(ρ))− Ein (ρ)] . (2.7)

Note that we will always assume that LOCC is a freely available resource, in which case

the choice of initial unentangled state does not matter. Note also that the asymptotic limit

is denoted

E
(∗,r)
in→out,N = lim

t→∞
E

(t,∗,r)
in→out,N . (2.8)

Definition 2.5 makes clear that entanglement capacity depends on the choice of entan-

glement measures used to quantify the entanglement between HA and HB. Abstractly, an

entanglement measure is defined as follows [24].

Definition 2.6 An entanglement measure on states in H = HA ⊗ HB is a function E :

L(H)→ [0,∞) that obeys the following conditions:

i. E(|Ψ〉〈Ψ|) = 0 for product states |Ψ〉 = |ψ〉A ⊗ |φ〉B.

ii. E is invariant under local unitaries, i.e.,

E(UA ⊗ UB ρU †A ⊗ U
†
B) = E(ρ).

iii. E is nonincreasing under LOCC.

iv. For all states ρ, E(ρ ⊗ |Φd〉〈Φd|) = E(ρ) + E(|Φd〉〈Φd|), where |Φd〉 denotes the

maximally entangled state across A and B,

|Φd〉 =
1√
d

d∑
i=1

|i〉A |i〉B .

For example, the entanglement entropy with respect to one of the factors, say A,

Ee(ρ) = −Tr ρA log2 ρA , (2.9)

is an entanglement measure, where ρA = TrB ρ denotes the reduced state of ρ on A.

Two other entanglement measures that we will consider here are the entanglement cost,

Ec, and the distillable entanglement, Ed. The entanglement cost of a state ρ is essentially

the number of Bell pairs that A and B must consume in order to prepare the state ρ using

only LOCC. Its precise definition is as follows [25].

– 7 –
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Definition 2.7 The entanglement cost of a state ρ is defined as

Ec(ρ) ≡ inf

{
E | ∀ ε > 0, δ > 0, ∃m,n,N

such that
∣∣∣E − m

n

∣∣∣ ≤ δ and D
(
N (|Ψ−〉〈Ψ−|⊗m), ρ⊗n

)
≤ ε
}
.

(2.10)

In the above, |Ψ−〉 is a single copy of a Bell singlet state shared between A and B,∣∣Ψ−〉 =
1√
2

(|01〉 − |10〉) , (2.11)

N is any LOCC channel acting on m copies of |Ψ−〉, and D is the Bures distance,

D(ρ, ρ′) = 2
√

1− F (ρ, ρ′), (2.12)

where F (ρ, ρ′) = Tr
√
ρ1/2ρ′ρ1/2 is the Uhlmann fidelity.

In other words, Ec(ρ) quantifies the asymptotic rate at which Bell pairs are consumed to

produce copies of ρ. That is, if A and B must use m shared Bell pairs to produce n copies

of ρ as m and n grow large, then Ec expresses the fact that each copy of ρ “costs” m/n

shared Bell pairs.

Similarly, the distillable entanglement Ed(ρ) of a state ρ is essentially the number of

Bell pairs that A and B can extract from the state ρ using only LOCC. Its precise definition

is similar to the definition of Ec above.

Definition 2.8 The distillable entanglement of a state ρ is defined as

Ed(ρ) ≡ sup

{
E | ∀ ε > 0, δ > 0, ∃m,n,N

such that
∣∣∣E − m

n

∣∣∣ ≤ δ and D
(
|Ψ−〉〈Ψ−|⊗m,N (ρ⊗n)

)
≤ ε
}
.

(2.13)

In other words, Ed quantifies the asymptotic rate at which Bell pairs can be distilled if A

and B share many copies of a given state ρ. Note that Ec, Ed, and Ee all coincide when ρ

is a pure state [26].

Armed with these definitions, a natural measure of the ability of a channel to generate

entanglement is therefore the entanglement capacity with Ein = Ec and Eout = Ed; this

capacity measures the ability of a channel to yield a net gain (or loss) of Bell pairs.

The importance of the entanglement capacity E
(∗,r)
c→d,N (or E

(∅,r)
c→d,N ) is that it provides

a lower bound for the channel capacity via the following explicit protocol [27]. Asymp-

totically, each use of the channel produces at most E
(∗,r)
c→d,N clean Bell pairs; given the

channel output, one can perform an entanglement purification protocol to extract at most

Ed shared Bell pairs between A and B, but Ec Bell pairs must be consumed to generate

the input for the next run of the channel. Since A and B share a classical communica-

tion channel, they can use the newly produced E
(∗,r)
c→d,N Bell pairs to run a teleportation

protocol [28]. Recall that teleportation consumes E
(∗,r)
c→d,N Bell pairs and 2E

(∗,r)
c→d,N bits of

– 8 –
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classical communication to transfer an arbitrary state of E
(∗,r)
c→d,N qubits from A to B. Since

we have exhibited an explicit protocol which, through use of the channel N , achieves an

asymptotic qubit transfer rate of E
(∗,r)
c→d,N , then it follows that the channel capacity of N

must be at least as big as E
(∗,r)
c→d,N , i.e.,

Q(N ) ≥ E(∗,r)
c→d,N . (2.14)

2.4 Entanglement capacity of bipartite unitary channels

A key result of ref. [24] is that many entanglement capacities for bipartite unitary channels

are additive and independent of classical communication, which we denote by “cc”. In

particular, it is shown therein that

E
(t,∗,cc)
c→d,U = E

(1,∗)
c→d,U . (2.15)

Therefore, an optimal protocol for generating entanglement that uses U t times is just to

use an optimal one-use protocol t times. Moreover, via a host of corollaries, it is further

shown that

E
(1,∗)
c→d,U = E

(1,∗)
c→c,U (2.16)

E
(1,∗)
c→c,U = sup

|ψ〉
Ec(U |ψ〉)− Ec(|ψ〉) (2.17)

E
(1,∗)
c→c,U = E

(∅)
c→c,U . (2.18)

The corollaries (2.16) and (2.17) imply that the optimal one-shot protocol can be realized

with a pure input state, and corollary (2.18) establishes that the asymptotic entanglement

capacities with and without the ability to prepare arbitrary input states (the resource ∗)
are equal. Note, however, that the one-shot capacity E

(1,∅)
c→d,U may be different.

3 Review of traversable wormholes in AdS/CFT

Having carefully defined our quantum information-theoretic quantities of interest, we now

turn to the specific system under consideration: the holographic traversable wormhole. In

this section, we briefly review the geometrical arguments of refs. [17, 18], which show that

a double-trace deformation of the thermofield double state for the boundary CFTs leads to

traversability of the wormhole in the bulk holographic description. We will furthermore use

the machinery of refs. [29, 30] to explicitly connect the size of the deformation’s coupling

to the amount of negative energy falling towards the wormhole and hence the amount by

which the horizon is shifted and the wormhole rendered traversable.

The thermofield double state in the tensor product of two identical noninteracting

theories is the state that results in a thermal density matrix at inverse temperature β if

either of the two theories is traced out:

|Ψ〉 =
1√
Z

∑
n

e−βEn/2 |n̄〉L ⊗ |n〉R , (3.1)

– 9 –



J
H
E
P
1
1
(
2
0
1
8
)
0
7
1

where Z is the temperature-β−1 partition function of one of the non-interacting theories [9],

a bar denotes CPT conjugation, and |n〉 and En denote the energy eigenstates and eigen-

values, respectively, of each theory. If we specialize to the case in which both theories are

large-N CFTs on the (D − 1)-dimensional boundary sphere (or, equivalently, the case in

which each theory lives on a separate boundary sphere), the bulk description of |Ψ〉 is the

two-sided AdS-Schwarzchild black hole, with metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

D−2, (3.2)

where

f(r) ≡ 1− 16πGDMD

(D − 2)ΩD−2rD−3
− 2Λ

(D − 1)(D − 2)
r2. (3.3)

Here, Λ is the cosmological constant, dΩ2
D−2 is the angular metric, ΩD−2 is the vol-

ume of the (D − 2)-sphere, and MD is a mass parameter corresponding to the mass

of a black hole with temperature β. It is often convenient to define the AdS length as

` ≡
√
−(D − 1)(D − 2)/2Λ, so that the last term in eq. (3.3) becomes simply +r2/`2.

Following refs. [17, 30], let us specialize to the nonrotating BTZ black hole in D = 3

dimensions [31]. Defining a unitless mass m ≡ 8G3M ≡ 8G3M3 − 1 proportional to the

ADM mass M of the geometry [32], eq. (3.3) becomes simply −m + (r2/`2), so we can

write the metric as

ds2 = −r
2 − r2

h

`2
dt2 +

`2

r2 − r2
h

dr2 + r2dφ2, (3.4)

where rh = `
√
m. To avoid a naked conical singularity, m must be nonnegative so that rh

is real (except for the case of m = −1, which corresponds to pure AdS [31]). In Kruskal

coordinates (u, v) defined by e2rht/`
2

= −v/u and r/rh = (1 − uv)/(1 + uv) in the right

wedge, this becomes

ds2 =
−4`2dudv + r2

h(1− uv)2dφ2

(1 + uv)2
. (3.5)

In these coordinates, which can be analytically continued to cover the entire two-sided

geometry, the past and future singularities are located at uv = +1, the horizons are located

at uv = 0, and the two boundaries are located at uv = −1. The geometry is sketched in

part a) of figure 2.

It is clear that the metric (3.4) describes a (marginally traversable) wormhole geometry,

in which particles falling from one exterior across the horizon are unable to escape into

the other exterior. From the bulk perspective, the wormhole could be rendered traversable

by sending in a null energy condition-violating shock wave. The question is whether such

a shock wave can be naturally created by operators in the boundary theory. In ref. [17],

a natural-seeming double-trace deformation of the boundary was considered, in which

relevant operators dual to bulk scalars are entangled across the two theories, giving an

effectively bilocal contribution to the action:

δS =

∫
dt dφh(t, φ)OR(t, φ)OL(−t, φ), (3.6)
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tf

tw

�v = ↵{

Figure 2. Penrose diagrams for the AdS wormhole, with future event horizons illustrated by the

black dashed lines. In panel a), the standard AdS black hole geometry is depicted, which in D = 3

dimensions has the BTZ metric given in eqs. (3.4) and (3.5). In panel b), the spacetime has been

modified by the double-trace deformation at time tw, resulting in a negative null energy shock wave

in the bulk (yellow line). This shock wave has the effect of moving the apparent horizon inward

(green line), rendering the wormhole traversable: signals sent from the left boundary before tf can

reach the right boundary (red line) and vice versa (blue line).

where O has conformal dimension ∆ and the coupling h has support only in some time

window. The minus sign appearing as an argument in OL is present because t is the time

associated with the bulk timelike Killing vector, which runs in opposite directions in the

left and right wedges; hence, δS as constructed turns on the double-trace deformation at

the same boundary time as seen in the CFT.

For positive h, the integrated energy falling through the horizon
∫

duTuu|v=0 is nega-

tive: in detail, Tuu is initially negative once the pulse has had time to reach the horizon,

and though it later becomes positive, the integrated energy flux remains negative [17]. The

resulting geometry is shown in part b) of figure 2; probes sent from the boundary towards

the origin of the spacetime at times earlier than the deformation is applied have a window

in which they can escape into the other exterior region and eventually be received on the

other boundary. In later sections we will exploit this ability to send some signals from one

boundary to the other for information-theoretic purposes. In the remainder of this section,

we confine ourselves to working out (an approximation to) the deformed metric, specifically

the width ∆v of the window in which signals can escape into the second asymptotic region.

In principle, we could work out the post-deformation metric5 by first evaluating the

Green function for φ in the modified boundary conditions sourced by the deformation [34,

5Of course, a generic CFT perturbation around the TFD state might not necessarily have a classical bulk

description. We are assuming here that the double-trace deformation is such that in any description of a

single asymptotic region only classical matter is added to the boundary, even though the deformation must

in general change the entanglement structure between the two regions since it changes the structure between

the two boundaries. This picture might not be fully self-consistent, in which case we could, for example,

resort to the semiclassical description and compute the metric sourced by the expectation value of the stress-

energy tensor operator. See ref. [33] for related discussion of the validity of a bulk geometric description.
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35], then computing the stress tensor, and finally inverting the linearized (or full) Einstein

equations to find the new metric.

For the restricted shock wave-type problem relevant to us, however, we can take a

simpler approach. The methods of refs. [29, 30] apply to problems in which a solution to

the vacuum Einstein equations is deformed by a delta-function perturbation at the origin.

Provided some consistency conditions are satisfied, the leading change to the metric is a

shift in the location of the horizon. In particular, ref. [30] considers the case of shock waves

in AdS, i.e., an AdS-Vaidya geometry. Suppose we release a shock wave of boundary energy

E at Killing time tw, thereby taking a BTZ solution with mass M in the far past to one

with mass M + E in the far future. For the double-trace coupling h, we have

E ∼ −hG3M/`. (3.7)

The AdS-Vaidya geometry that glues these two spacetimes together along the null surface

of the shock wave is [30]

ds2 =
1

(1 + uv̂)2

[
−4`2dudv̂ + 4`2αδ(u)du2 + r2

h(1− uv̂)2dφ2
]
, (3.8)

where the hatted coordinate is given by v̂ = v − αθ(u) and

α ≡ − E

4M
erhtw/`

2
= O(1)× hG3

`
erhtw/`

2
, (3.9)

where the O(1) factor depends on the time-dependent profile one uses for the double-trace

coupling h in eq. (3.6). This expression is exact for fixed α in the limit where E/M → 0

and tw → ∞ simultaneously [30]. In our case, E is negative, so the null energy condition

is violated, allowing the wormhole to be traversable; in particular, Tuu = −(α/4πG3)δ(u).

In our case, where we are considering the double-trace deformation, we by construction

have two shocks, one approaching from the right and one from the left. Hence we should

similarly replace u with û = u− αθ(v) and the metric is

ds2 =
1

(1 + ûv̂)2

[
−4`2dûdv̂ + 4`2α

(
δ(û)dû2 + δ(v̂)dv̂2

)
+ r2

h(1− ûv̂)2dφ2
]
. (3.10)

That is, both horizons are shifted inward in the Kruskal coordinates by α for E negative.

In the regime we are considering, in which gravitational interactions between the two shock

waves can be neglected, the two shocks can be simply superimposed, as in eq. (3.10).

We have arrived at an expression (3.9) for the horizon shift in terms of the energy of

the shock waves created at the boundary by the double-trace deformation. We will now

discuss in what ways wormhole traversability can and cannot be interpreted in information-

theoretic terms, in particular in the language of entanglement witnesses and quantum

channels.

4 Traversable wormholes do not make entanglement an observable

It might appear that the procedure described in the previous section for rendering worm-

holes traversable makes it possible to determine whether any pair of black holes is connected
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by a wormhole: one could simply assume that such a wormhole exists, perform the ap-

propriate double-trace deformation to make the wormhole traversable, and send a signal

into one member of the pair and check whether it emerges from the other. More explicitly,

within the AdS/CFT setup described in section 3, we could imagine that the experimenter

has access to a number of CFT boundaries dual to bulk black hole geometries and wishes to

check if a particular pair of black holes is connected by a wormhole or, equivalently, if two

boundaries are connected by a quantum channel like the ones we will describe in section 5.

If this experiment could be performed with perfect reliability, so that it was always

possible to verify that two black holes were connected by a wormhole, it would violate a fun-

damental principle of quantum mechanics, namely, that entanglement is not an observable.

More precisely, because a superposition of states that are entangled (in some basis) need not

itself be entangled, the set of all entangled states in a bipartite Hilbert space H = A⊗B, E ≡
{|Ψ〉 : S(TrA |Ψ〉 〈Ψ|) 6= 0}, is not a subspace of the Hilbert space. Hence, linearity of quan-

tum mechanics requires that no projector onto E exists, so entanglement is not a quantum-

mechanical observable. More generally, no subset of E (except for trivial subsets consisting

of single entangled states) is itself a subspace and so, while a projector onto any individual

entangled state exists, there is no such projector onto a set of more than one entangled state.

As was pointed out in ref. [14],6 because wormhole geometries are described by entan-

gled states such as the thermofield double state, there is no quantum-mechanical observable

that can differentiate between such states and the entire collection of product states of the

two boundaries (which includes, e.g., states that describe an unentangled black hole in

each bulk region). This is the holographic consequence of entanglement not being an ob-

servable. Of course, given a particular entangled state, such as the thermofield double, one

can distinguish it from a particular product state by measuring some operator. However,

a particular entangled state cannot be distinguished from an unknown product state, and

much less an unknown entangled state from an unknown product state. In other words,

given a particular entangled state and an operator, there is always a separable state that

reproduces the entangled state’s measurement statistics of that operator.

Hence there must be a gravitational obstruction in the bulk that prevents any proce-

dure from determining with perfect reliability whether a bulk geometry containing a black

hole is connected by a wormhole to a different bulk region. Ref. [14] treated standard

nontraversable AdS wormholes and hence considered procedures in which a bulk observer

crossed the horizon and looked for a signal (or another observer) in the black hole interior

originating from a different asymptotic bulk geometry. It was argued that there always

exist wormhole geometries in which the bulk observer would hit the black hole singularity

before being able to receive any signals, so no completely reliable procedure for detecting

the presence of a wormhole could exist. That is, since the metric exterior to the event hori-

zon is time-independent, it is possible for the black hole to indeed be connected to another

by a nontraversable wormhole, but for this fact to be undetectable if the observer jumps

6For the most part, ref. [14] worked within the context of the ER/EPR hypothesis, in which every

entangled state is meant to be connected by a (perhaps microscopic or highly quantum) wormhole. We

have restated the argument of ref. [14] in a form that does not rely on the ER/EPR conjecture.
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| (t = t0)i = |�(t0)i

tw

t0
| (t = t0)i = |�(t > tf)i

Figure 3. Different outcomes for the double-trace deformation experiment, depending on the

state |ψ(t0)〉 at time t0, which is dual to the geometry in the corresponding Wheeler-deWitt patch

(shaded gray). The times of the signal t0 (blue and red lines) and the double-trace deformation

(yellow lines) are fixed, but the time coordinate of the geometry can be shifted up and down, due to

the time-invariance of the AdS black hole metric. If |ψ(t0)〉 corresponds to the thermofield double

state at time t0, |φ(t0)〉 (left), or more generally to any |φ(t < tf)〉, then the signal succeeds in

traversing the wormhole (blue line, left). On the other hand, if the state |ψ(t0)〉 corresponds to any

|φ(t > tf)〉, the signal fails to traverse the wormhole, hitting the singularity (red line, right). The

existence of states where such failures occur is a necessary consequence of the linearity of quantum

mechanics, since entanglement is not an observable.

into the black hole too late to observe a particular, fixed signal entering the wormhole from

the other side (see figure 4 of ref. [14]).

Making the wormholes traversable using the procedure of refs. [17, 18] allows a broader

class of experiments in the bulk, in particular, the experiments mentioned above and de-

picted in panel b) of figure 2, in which no event horizon is actually crossed. However, it

does not change the quantum-mechanical argument forbidding a projector onto collections

of entangled states, so there must be some bulk geometric circumstances under which the

procedure can fail to send a signal through the wormhole. In particular, recall [10] that

the CFT states dual to a wormhole in the bulk are not restricted to only the thermofield

double, but include a one-parameter family of states indexed by boundary time,

|φ(t)〉 =
1√
Z

∑
n

e−βEn/2e−2iEnt |n̄〉L ⊗ |n〉R . (4.1)

These describe states of two entangled black holes that have both evolved forward by a time

t relative to the thermofield double state. As t increases, the causal diamond extending

into the bulk from the CFT boundary moves toward the future, with its intersection with

the past singularity first decreasing and then eventually its intersection with the future

singularity increasing. As discussed in ref. [14], observers starting any finite distance away
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from the horizon in a wormhole geometry corresponding to a sufficiently large value of t

would hit the singularity before crossing into the other half of the spacetime.

A similar phenomenon, depicted in figure 3, occurs here. Consider performing the

double-trace deformation at fixed boundary time tw, on a wormhole geometry where the

observer releases a signal from the boundary at some fixed time t0. The state of the

boundary at time t0, |ψ(t0)〉, corresponds to the Wheeler-deWitt patch in the bulk anchored

to time t0 on the boundary. Outside of the apparent horizon and to the past of the shock

wave associated with the double-trace deformation, the geometry is still simply described

by the time-independent exterior of the AdS black hole. Hence, |ψ(t0)〉 can be any one of

the |φ(t)〉 in eq. (4.1), all of which are indistinguishable to boundary observers at t0. If

|ψ(t0)〉 = |φ(t < tf)〉, the signal makes it through the wormhole, as shown in the left panel

of figure 3, but if |ψ(t0)〉 = |φ(t > tf)〉, as in the right panel of figure 3, the signal fails to

traverse the wormhole and instead hits the singularity. Thus, there is always some class

of wormhole states where the signaling procedure would fail, and these states cannot be

distinguished from two unentangled black holes.

Just as quantum mechanics does not forbid an observable that determines whether an

arbitrary state is a member of a particular proper subset of all entangled states, a successful

traversal of the wormhole by a particular signal allows us to conclude that two black holes

are entangled in a particular manner.7 We will make this notion precise by using the tools

of entanglement witnesses in sections 6 and 7 below, but we first consider more carefully

the quantum-mechanical process that corresponds to rendering the wormhole traversable.

5 Traversable wormholes as quantum channels

Let us begin by revisiting the process of making a wormhole traversable and sending a

bulk excitation through it, but from the perspective of the boundary theory. Let H =

HL ⊗ HR denote the joint Hilbert space of two CFTs, which we refer to as the “left”

and “right” CFTs, and suppose that we prepare the thermofield double state at some

initial (boundary) time ti. The basic procedure begins with acting at the left spacetime

boundary with an operator φL, which, from the perspective of the bulk, causes an excitation

to begin propagating in toward the black hole. Then, at a later time tw, the double-

trace deformation OLOR is performed across both CFTs, which produces the negative null

energy shocks in the bulk that make the wormhole traversable. The end result is that the

excitation produced by φL manifests itself in the right CFT at some later time tf . From

the perspective of the bulk, this is the time at which the excitation, having traversed the

wormhole, reaches the right boundary.

7In particular, the geometrical information alone would allow us to single out the value of t among the

states in eq. (4.1) corresponding to |ψ(t0)〉, e.g., by measuring the curvature at some identifiable point in

the spacetime (such as where the signal intersects the shock wave, cf. ref. [14]) or the total time delay

between t0 and the signal’s reception on the other boundary (which depends on the redshift factor of the

metric over the entire path of the signal, which in turn will be different for various |φ(t)〉).
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From the perspective of the boundary theory, the entire process above is described by

the unitary evolution of a state at ti to a state at tf ,

|Ψ(tf)〉 = U(tf , tw)eihOLORU(tw, ti)φL |TFD(ti)〉 . (5.1)

The operator U(t1, t2) denotes the unitary time evolution operator derived from the CFT

Hamiltonian that evolves a state in H from the time t1 to t2.

5.1 A channel between boundary (sub)regions

The relation in eq. (5.1) naturally gives rise to a quantum channel between the two CFTs.

We can think of the total time evolution from ti to tf as a bipartite unitary map, which gen-

erates a channel between the two CFT sides, as discussed in section 2. Instead of just consid-

ering a map from HL to HR, however, we can more generally consider maps from subfactors

of HL to subfactors of HR that correspond to boundary subregions. We do so on physical

grounds: if our aim is to study how excitations created by φL propagate through the bulk

and these excitations are created near the boundary, then from the perspective of the CFT

it makes sense to think of these excitations as (initially) being localized to the minimal

boundary subregions that contain them. Of course, we can always take the boundary subre-

gions to be the entire left and right CFTs to restore a channel between the full boundaries.

Given a boundary subregion A in the left CFT and a subregion B in the right CFT,

the channel maps an initial state on A, obtained by acting with φL on |TFD(ti)〉 and

tracing out Ā, to the final reduced state on B at tf . In other words, we can characterize

the channel, NA→B, as follows:

NA→B : D(NA→B) → L(HB)

ρA 7→ TrB̄ (|Ψ(tf)〉〈Ψ(tf)|) .
(5.2)

The domain of NA→B, D(NA→B) ⊂ L(HA), is the set of states that can be attained by

acting on the reduced state of |TFD(ti)〉 on HA with unitary operators that correspond to

the specific set of allowed φL,

D(NA→B) ≡
{
ρA = OA (TrĀ |TFD(ti)〉〈TFD(ti)|)O†A

}
. (5.3)

Here, OA is the CFT representation of φL on the boundary subregion A.

Such a channel is straightforward to write down and intuitive in its meaning. It takes

as input the density matrix on A, which describes the ingoing perturbation from the dual

gravitational point of view, and outputs the reduced density matrix on B, which describes

the perturbation that has exited the wormhole after traversal. However, it is a channel

between infinite-dimensional Hilbert spaces, to which many of the finite-dimensional results

do not necessarily directly apply (see refs. [36, 37] for more discussion of infinite-dimensional

bosonic channels). Nevertheless, on one hand, we can ask how the dual gravitational

description informs such channels between infinite-dimensional spaces. On the other hand,

as we will now consider, it is also interesting to try to make contact with existing results

on channels between finite-dimensional spaces.
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H̃ ∋ |ψ̃〉

V

H ∋ |ψ〉 U

W

|ψ′〉

|ψ̃′〉
N

Figure 4. Traversable wormhole as a map between code subspaces.

5.2 A map between code subspaces

Our aim is to construct a map that acts on states in an associated finite-dimensional

Hilbert space H̃. Furthermore, we would like H̃ to factorize as H̃ = H̃L ⊗ H̃R in such a

way that we can relate H̃L to excitations of the left CFT and H̃R to excitations the right

CFT. With these aims in mind, our strategy will be to define a map that encodes states

|ψ̃〉 ∈ H̃ as states |ψ〉 ∈ H. We can then let |ψ〉 evolve according to the CFT unitary time

evolution, including the double-trace deformation in the evolution. Finally, by completing

the procedure with a decoding of the final state back to a state in H̃, the result is a mapping

between states in H̃. The whole procedure is illustrated schematically in figure 4.

In the spirit of ref. [19], let us consider building up a collection of states that are

perturbatively close to the thermofield double by acting with local bulk operators. For

simplicity, we will only consider a single type of bulk operator, φ(x), and suppose that it

can be inserted at locations xL1 , xL2 , . . . , xLN in the left asymptotically-AdS region and at

locations xR1 , xR2 , . . . , xRN in the right asymptotically-AdS region, with at most a single

insertion at any location.8 This defines a collection of d2 = (2N )2 states,9

|TFD(ti)〉 , φ(xL1 ) |TFD(ti)〉 , φ(xR2 ) |TFD(ti)〉 , φ(xL1 )φ(xR2 ) |TFD(ti)〉 , . . . (5.4)

This of course constitutes a coarse-graining of the full traversable wormhole picture. We

only consider a finite number of excitations at a finite number of locations because we do

not want the backreaction to be strong enough to change the background geometry non-

perturbatively. In this coarse-grained regime, each φ(xi) should be thought of as creating

an excitation that we can attempt to send through the wormhole. Transmitting a given

quantum state “through the wormhole” will then amount to acting with the φ(xi) in a

particular correlated way.

The framework that we have built up here can be compared to, e.g., a description of

the transmission of quantum information via an optical fiber. While sending pulses of light

down an optical fiber amounts to exciting the photon field in a prescribed way and then

letting the field propagate, instead of working with the full set of field-theoretic degrees of

freedom it is much more convenient to work with a coarse-grained picture that describes

the transmission of discrete qubits.

8More generally, φ(x) could also denote smeared operators centered at x that create wave packets.
9We will use |TFD〉 to denote both the CFT state and the state of the dual gravitational theory, relying

on context to distinguish between the two.
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For simplicity, let us further suppose that the locations xi are close enough to the

boundary and far enough apart so that each φ(xLi ) can be represented as a CFT operator

OAi on the left boundary with support on a minimal boundary subregion Ai, such that

Ai∩Aj = ∅ for i 6= j. Similarly, let OBi and Bi denote such CFT operators and subregions

on the right boundary corresponding to the bulk operators φ(xRi ). The corresponding

collection of states in the CFT is of course

|TFD(ti)〉 , OA1 |TFD(ti)〉 , OB2 |TFD(ti)〉 , OA1OB2 |TFD(ti)〉 , . . . (5.5)

We note the important caveat that it is not rigorously known whether such representa-

tions of bulk operators on minimal boundary subregions exist when the background is the

thermofield double. However, such reconstructions are possible about an empty AdS back-

ground [38], and it has been shown that global reconstructions on the full boundary are

possible for AdS-Schwarzschild [39]. For now we will proceed with the assumption above,

although we could alternatively think instead of pushing the φ(xi) all the way to the bound-

ary, so that they are also by definition local on the boundary. It is interesting to study finite-

dimensional constructions because many results on channels apply to finite-dimensional

systems; nevertheless, we include the above caveat about our construction for complete-

ness. Should the construction from eq. (5.5) fail to hold on rigorous grounds, we would be

surprised if it were impossible to design a better finite-dimensional construction in the CFT.

5.2.1 Encoding and evolution

Suppose that H̃ = H̃L ⊗ H̃R is a Hilbert space of dimension d2, with dim H̃L = dim H̃R =

d ≡ 2N , and let {|X̃α〉L}dα=1 and {|X̃β〉R}dβ=1 be orthonormal bases for H̃L and H̃R,

respectively. Given any state in H̃,

|ψ̃〉 =

d∑
α,β=1

cαβ |X̃α〉L|X̃β〉R, (5.6)

we can use the collection of states in eq. (5.5) to encode |ψ̃〉 into a state in H by thinking

of each X̃α as one member of the power set of {1, 2, . . . , N}:

|ψ̃〉 7→ |ψ〉 =
V |ψ̃〉
‖V |ψ̃〉‖

=
1

‖V |ψ̃〉‖

d∑
α,β=1

cαβ

⊗
i∈X̃α

⊗
j∈X̃β

OAiOBj

 |TFD(ti)〉 .
(5.7)

The encoding is realized by an operator V : H̃ → H,

V =
d∑

α,β=1

⊗
i∈X̃α

⊗
j∈X̃β

OAiOBj

 |TFD(ti)〉 〈X̃α|L〈X̃β |R . (5.8)

Note that V is not isometric because the encoded states, ⊗i∈X̃α ⊗j∈X̃β OAiOBj |TFD(ti)〉,
are not orthogonal.

– 18 –



J
H
E
P
1
1
(
2
0
1
8
)
0
7
1

Given the encoded state |ψ〉, the action of the channel itself is again just the time

evolution generated by the CFT Hamiltonian, which we supplement with a double-trace

deformation at t = tw. This leads to a final (encoded) state∣∣ψ′〉 = U |ψ〉 , (5.9)

where

U = U(tf , tw)eihOLORU(tw, ti). (5.10)

5.2.2 Decoding

To complete the channel, we must map the state |ψ′〉 back onto a state in H̃. To this end,

we can define the mapping∣∣ψ′〉 7→ |ψ̃′〉 =
W |ψ′〉
‖W |ψ′〉 ‖

=
1

‖W |ψ′〉 ‖
d∑

α,β=1

wαβ(ψ′)|X̃α〉L|X̃β〉R ,
(5.11)

where

wαβ(ψ′) = 〈TFD(tf)|

⊗
i∈X̃α

⊗
j∈X̃β

O†
A′i
O†
B′j

∣∣ψ′〉 . (5.12)

For shorthand, we write |TFD(tf)〉 for U |TFD(ti)〉.
Let us consider this decoding in more detail. The basic idea is that at the later time

tf , we want to see whether the initial excitations made it through the wormhole to the

other boundary. If transmission through the wormhole was successful, then they should

reappear as local excitations at the later time tf . To this end, we have introduced a new set

of boundary subregions, A′i and B′j , which may be different from the original set of boundary

subregions, but should be related to them as a function of, e.g., the angle of incidence of

the original excitations, possible interactions among excitations in the bulk, etc. Likewise,

these new boundary subregions have associated operators OA′i and OB′j , which should

correspond to smearings of possible transmitted bulk excitations onto the boundary.

Different choices of Ai, Bj , A
′
i, B

′
j , and the associated operators give rise to differ-

ent channels with different capacities for the same traversable wormhole. Of course, with

very poor choices of boundary subregions and operators, one could end up with channels

that have artificially low capacities, as illustrated in figure 5. However, it seems a rea-

sonable expectation that appropriate choices of boundary subregions and operators can

adequately capture the intuitive picture of “sending qubits through a wormhole” with this

construction. For instance, in the limit where the excitations do not cause nonperturbative

backreactions and where they do not interact in the bulk, inspection of figure 5 shows

that, in a near-optimal protocol, each B′j should simply be the reflection of Aj in the axis

perpendicular to the direction of propagation of the signal created by φ(xj). If the bulk

excitations are allowed to interact, their propagation through the wormhole becomes a

bulk scattering problem, and the B′j should be chosen so as to maximize the probability
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b
A1

A2

B′

1

b

φ(x1)

φ(x2)
B′

2

Figure 5. In this example, a signal sent from the boundary subregion A1 reaches the boundary

subregion B′
1, but a signal sent from A2 reaches no receiving B′

j for this particular choice of boundary

subregions.

of detecting transmitted excitations. If the experimenter has sufficient resources to choose

regions B′j to cover the entire boundary, these considerations are unimportant, but in a

resource-constrained situation (such as, for example, if the total area and/or total number

of boundary subregions are limited) they become relevant.

To recapitulate, an initial state |ψ̃〉 is first encoded with V , evolved with the CFT time

evolution U , and then decoded with an operator W : H → H̃,

W =
d∑

α,β=1

|X̃α〉L|X̃β〉R 〈TFD(tf)|

⊗
i∈X̃α

⊗
j∈X̃β

O†
A′i
O†Bj ′

 . (5.13)

In spirit, one can think of the map W as a projection that picks out particular states in

H that correspond to the codewords in H̃. However, W is not an exact projection, first

for the simple reason that its domain and range do not coincide, so the expression “W 2”

does not make sense. Moreover, even if we consider WV or VW , which can be repeatedly

composed, one finds that (WV )2 6= WV and (VW )2 6= VW ,10 so neither VW nor WV is

a projector in general.

The decoding map W defined in eq. (5.13) has the virtue of simplicity, but it has two

disadvantages. First, the normalization factor in eq. (5.11) renders it nonlinear. Second,

the map introduces a small amount of noise, in the sense that bulk states that correspond

to excitations of |TFD(tf)〉 are not mapped onto single codewords. For example, consider

decoding the unexcited state |TFD(tf)〉 with W . This state results from encoding (i.e.,

acting with V on) the state |ψ̃〉 for which the only nonzero cαβ is the one where X̃α =

X̃β = ∅ (i.e., the initial state is |TFD(ti)〉) and then acting with U . Under the action of

eq. (5.11), the state |TFD(tf)〉 gets mapped to

|TFD(tf)〉 7→
1

C

d∑
α,β=1

〈
⊗i∈X̃α ⊗j∈X̃β O

†
A′i
O†
B′j

〉
|X̃α〉L|X̃β〉R , (5.14)

10In particular, the sets Ai and A′i are in principle different and similarly for the Bj and B′j .
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where the expectation value is with respect to |TFD(tf)〉 and where C is the required

normalization. One of the expectation values will be equal to 1, namely, the term with α

and β such that X̃α = X̃β = ∅. However, the other expectation values will generically

be nonzero, albeit very small compared to unity provided that the boundary subregions

A′i and B′j are small and far apart, since then the thermal expectation values will decay

exponentially in the distance separating any pair of subregions on the boundary. In the

case where the OA′i and OB′j result from pushing a pointlike bulk operator φ(x) all the

way to the boundary, then these other expectation values will in fact vanish. This is

because if different φ(x′i) and φ(x′j) lie on the boundary, then they are separated by infinite

geodesic distance in the bulk and so their correlator vanishes. Note that this depends on

the operators having low enough scaling dimensions so as to not be dual to bulk fields so

massive as to have nontrivial backreaction effects close to the boundary of the spacetime.

Finally, for the same reasons, it follows that the overall map N , which is the compo-

sition of encoding with V , evolving with U , and decoding with W , is only approximately

a bipartite unitary channel. Because of the nonlinearity, the noisy decoding as discussed

above, and additionally because the encoded codewords that result from acting with V are

not exactly orthogonal, the overall map N does not strictly describe a unitary rotation of

the basis vectors |X̃α〉L|X̃β〉R. While the map remains bipartite by construction, it is not

exactly unitary. This is a further price to pay for the finite-dimensional coarse-graining.

Note, however, that exact unitarity is restored in the limit of pointlike bulk operators for

light bulk fields when pushed to the boundary, as described above.

5.2.3 Two-qubit example

The overall map we have defined is quite abstract, so to conclude the subsection we present

a simple concrete example that exhibits all of the subtleties of the encoding and decoding

procedure.

Let H̃ = span{|0̃〉, |1̃〉}, and consider embedding states in H̃ into the 2-qubit Hilbert

space H according to the following linear map V : H̃ → H,

|0̃〉 7→ V |0̃〉 = |0〉 ⊗ |0〉
|1̃〉 7→ V |1̃〉 = ε |0〉 ⊗ |0〉+

√
1− ε2 |1〉 ⊗ |0〉 .

(5.15)

We take the basis states |0〉 and |1〉 to correspond to spin eigenstates in the z direction.

Here, 0 ≤ ε ≤ 1 is a parameter that controls the extent to which V deviates from being an

isometry (the case when ε = 0). Also note that this map does not preserve normalization.

We give the proper normalization below.

Let us suppose that, following encoding, the state in H undergoes unitary evolution

according to the unitary operator U = σx ⊗ σx. Then, to go back to H̃, we decode using

the linear map W : H → H̃,

W = |0̃〉 (〈1| ⊗ 〈1|) + |1̃〉
(
ε 〈1| ⊗ 〈1|+

√
1− ε2 〈0| ⊗ 〈1|

)
. (5.16)

This lets us define an overall map N : H̃ → H̃ where, for any |ψ̃〉 ∈ H̃,

|ψ̃〉 7→ N (|ψ̃〉) =
WUV |ψ̃〉
‖WUV |ψ̃〉‖

. (5.17)
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It is straightforward to show that a state |ψ̃〉 = α|0̃〉+ β|1̃〉 gets mapped to

N (α|0̃〉+ β|1̃〉) =
1

[1 + 4εRe(α∗β) + ε2]1/2
[
(α+ βε)|0̃〉+ (αε+ β)|1̃〉

]
. (5.18)

By inspection, one can see that N is neither linear nor unitary. However, N is still a

positive map, as can be checked by explicit calculation:

〈ψ̃|N (|ψ̃〉) =
1 + 2εRe(α∗β)

1 + 4εRe(α∗β) + ε2
≥ 0, (5.19)

recalling that, since |α|2 + |β|2 = 1, the minimum value of Re(α∗β) is −1/2. The map N is

strictly positive if ε < 1. Moreover, when ε = 0, N reduces to the identity operator on H̃,

which is trivially unitary. In this trivial case, states in H̃ are orthogonally embedded in H
with V and so they can still be projectively pulled back to H̃ with W following a unitary

rotation by U in H. The operators V , U , and W defined here are completely analogous to

the corresponding operators in the traversable wormhole setting.

5.3 Quantum channel capacity

For general quantum systems, including those frequently used in real-world laboratory

settings, computing or bounding the quantum channel capacity is often computationally

difficult or intractable [40]. However, in the holographic setup of the traversable wormhole,

additional geometric tools are at our disposal for this task.

Strictly speaking, the map N is only approximately a quantum channel — it lacks

linearity and complete positivity — and so it does not have a channel capacity in the

definitional sense of section 2. Nevertheless, the entanglement capacity of N is precisely

defined, since the entanglement measures used to define entanglement capacity do not

depend on the intervening map being a channel. Since N is very close to being a quantum

channel, it is interesting to still treat entanglement capacity as a bound on the asymptotic

capacity of N for quantum communication. In its unitary limit, N certainly has a channel

capacity in a strict sense, as does the map NA→B defined in eq. (5.2) for the full CFT,

which is a channel by construction.

Recall from eq. (2.14) that the entanglement capacity E
(∗,cc)
c→d,N provides a lower bound

for the channel capacity Q. Since an optimal t-shot protocol is at least as efficient as t

single uses of N for any t, it follows that the asymptotic entanglement capacity E
(∗,cc)
c→d,N is

at least as large11 as the one-shot entanglement capacity E
(1,∗)
c→d,N .

This one-shot capacity is still difficult to compute in principle. However, on classical

gravitational grounds, we can place a lower bound on the best one-shot entanglement ca-

pacity — and hence also (approximate) channel capacity — achievable with a construction

of the type described in section 5.2. Essentially, because the traversability of the wormhole

11Since the map N associated with sending signals through the wormhole, which we constructed in

sections 5.1 and 5.2, is (to a very good approximation) a bipartite unitary, it is highly plausible that

E
(∗,cc)
c→d,N = E

(1,∗)
c→d,N , per eq. (2.15). This is certainly true in the limit where N becomes an exact bipartite

unitary map and also plausible for the gravitational reasons discussed below.
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is sustained by a negative energy shock, sending signals (i.e., qubits) through the worm-

hole, which have positive energy, tends to make the wormhole nontraversable. Supposing

that Nmax qubits can be sent through the traversable wormhole before it becomes non-

traversable, these qubits can be used to share Nmax Bell pairs between the left and right

sides. Therefore, the best one-shot entanglement capacity (resulting from the most judi-

cious choice of boundary subregions, operators, etc.) must be at least as large as Nmax.

Altogether, the bound reads

Q(N ) ≥ E(∗,cc)
c→d,N ≥ E

(1,∗)
c→d,N ≥ Nmax . (5.20)

Alternatively, we can think of Nmax as providing a lower bound on the one-shot entan-

glement capacity E
(1,D)

c→d,NA→B of the channel NA→B on the full CFT, i.e., between the

infinite-dimensional Hilbert spaces corresponding to boundary subregions A and B. The

resource D denotes that we only allow the preparation of states in D(NA→B), cf. eq. (5.3).

Because we are not granted the resource (∗) here and also because the Hilbert spaces in-

volved are infinite-dimensional, we cannot invoke the additivity results for entanglement

capacities of ref. [24] to obtain a similar bound on channel capacity in this latter case.

Let us now try to estimate Nmax, as dictated by the classical gravitational dynamics

in the bulk. In this case, the optimal arrangement of signals is to group them all together

into a brief packet that is sent through the wormhole at the earliest possible time. The

reason for this burst-type algorithm is as follows. Following ref. [18], we have a minimum

bulk energy ε per pulse near the horizon, from the requirement that each pulse have

Compton wavelength small enough to let it fit inside the wormhole throat, which has size

`∆v = `α ∼ hG3e
rhtw/`

2
, so

ε & 1/hG3e
rhtw/`

2
. (5.21)

When the signal pulse, with positive null energy, is sent through the wormhole, it has

the effect of counteracting the double-trace deformation, effectively lowering α.12 Once

this happens, all subsequent pulses have a smaller window in v during which they can

traverse the wormhole. Moreover, pulses sent at later, rather than earlier, boundary times

by definition have a smaller effective wormhole window. These two effects both indicate

that the information-carrying capacity of the wormhole is optimized by sending information

through in a short burst of pulses. To maximize the number of pulses, let us take ε to

saturate this bound. Each pulse will fractionally decrease α by ∼ ε/|E|, so sending too

many pulses closes the wormhole entirely. This happens when the number of pulses goes as

Nmax ∼
|E|
ε
∼ `E2

M
erhtw/`

2 ∼ α`|E|, (5.22)

using eqs. (3.7) and (3.9). We note that this value for Nmax is much larger than the num-

ber of qubits computed in ref. [18], since we are calculating a different quantity. Unlike

12Specifically, since the signal pulse, going in the u direction, must fit though the finite aperture of the

wormhole throat in the v direction, the uncertainty relation for v implies that the pulse must carry nonzero

energy-momentum in the v direction, i.e., positive null energy in the same direction as the (negative null

energy) shock wave that opened the wormhole in the first place. Hence, the pulse contributes its own shift

in the v coordinate of the horizon, partially counteracting α. Since we are working in the shock wave

approximation for the pulse as well, these effects add linearly.
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ref. [18], we are not requiring all of the information to be sent in the time when the probe

approximation is valid. Indeed, it seems that the channel remains usable at a time during

which the probe approximation is not valid — i.e., the effect of the backreaction of the

qubits on the channel itself is not small — but that is also not at late times, suggesting a

nontrivial channel capacity during this period. That is, by sending all of the signal at once

in such a way that the wormhole is closed behind the signal, we are in effect computing the

one-shot entanglement capacity of the traversable wormhole channel, in a situation where

negligible backreaction is not a prerequisite.13

Moreover, if in computing entanglement capacity we demand that the only allowed pro-

tocols are those which manifestly have a classical gravitational description, then spacetime

structure implies that the entanglement capacity for multiple copies of N is additive. Since

our channel is composed of two disconnected asymptotic regions of spacetime connected by

a wormhole, N copies of the channel consists of N pairs of asymptotic regions, each pair

connected by a wormhole. With this gravitational restriction, there is no way to compose

individual uses of the channel by feeding outputs of a single channel use into a subsequent

input because each channel use corresponds to a disconnected region of spacetime. In

other words, the existence of a classical gravitational description for an N -shot protocol

means that only evolution by an N -fold tensor product Hamiltonian is allowed. Such a

tensor product Hamiltonian has no capacity to generate further entanglement between the

collection of boundary pairs beyond that generated between each pair individually.

We also remark that since the wormhole interiors are topologically distinct — being

disconnected regions of spacetime — physical locality implies that any additional processes

that take place within different wormholes during transmission must be independent and

uncorrelated. For example, one might envision refining the channel proposal by allowing

bulk interactions among ingoing signals or stronger gravitational backreaction, represented

via some error model. Physical locality then implies that possible errors should be uncor-

related among channel instances.

6 Entanglement witnesses

In section 4, we noted that although it is impossible to determine with certainty whether

a wormhole connects two asymptotic regions even when the wormhole can be rendered

traversable, it should nevertheless be possible to use successful signal propagation between

the two regions to learn about the initial entanglement structure between the regions.

The appropriate information-theoretic tool to make this notion precise is the entanglement

witness. In quantum information theory, an entanglement witness is an operator that

determines whether or not a state has a specific entanglement structure. Formally, a

(partial) entanglement witness is defined as follows [41].

Definition 6.1 An operator X on a bipartite Hilbert space HA ⊗HB is called a (partial)

entanglement witness if there exists at least one density matrix ρAB such that:

13Also note that this burst protocol is describable by the finite-dimensional formalism in section 5.2,

where all of the excitations are prepared at the same initial time ti. A small change to the formalism would

be necessary to describe staggered signaling, but either way, a staggered protocol is not optimal.
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i. ρAB is not separable (i.e., cannot be written as
∑

i piρ
(i)
A ⊗ ρ

(i)
B ) across the bipartition

between HA and HB.

ii. Tr[XρAB] ≤ 0.

iii. Tr[XσAB] ≥ 0 for all separable states σAB across the same bipartition.

A perfect entanglement witness — one that, given a state of unknown entanglement be-

tween two subsystems, can determine whether that state is separable across the bipartition

— cannot exist, by linearity of quantum mechanics [20]. However, partial entanglement

witnesses, capable only of distinguishing particular entangled states from separable states,

are permitted.

As a concrete example, let the factors HA and HB each describe one qubit and consider

the operator I ⊗ T , where T is the transpose operator in a particular basis. We define a

new operator X to be I ⊗ T applied to the density matrix (|00〉+ |11〉)(〈11|+ 〈00|):

X ≡ I ⊗ T (|00〉+ |11〉)(〈11|+ 〈00|) = |00〉 〈00|+ |11〉 〈11|+ |01〉 〈10|+ |10〉 〈01| . (6.1)

Viewed as a matrix, X has an eigenvector |01〉−|10〉 with eigenvalue −1. Thus, constructing

ρAB in our definition from this eigenvector, ρAB ≡ (|01〉− |10〉)(〈01| − 〈10|), indeed gives a

negative value of Tr[XρAB]. On the other hand, since T is a positive linear map, a theorem

of Peres [42] implies that acting with X on the density matrix of any separable state yields

an operator with nonnegative trace. That is, X is a partial entanglement witness capable

of differentiating the Bell state ρAB from a separable one.

Generally speaking, the information supplied by entanglement witnesses is more de-

tailed (but also more restricted) than the information supplied by generic measures of

correlation, such as entanglement entropy. Continuing the example above, suppose that an

experimenter is supplied with many copies of an unknown pure state |ψ〉. We may choose

to expand in the basis of Bell states,

|ψ〉 = c1

∣∣Φ+
〉

+ c2

∣∣Φ−〉+ c3

∣∣Ψ+
〉

+ c4

∣∣Ψ−〉 , (6.2)

where |Φ±〉 = 1√
2
(|00〉 ± |11〉) and |Ψ±〉 = 1√

2
(|01〉 ± |10〉). Notice that X acts trivially on

the other Bell states besides |Ψ−〉. It consequently follows that

Tr [X|ψ〉〈ψ|] = |c1|2 + |c2|2 + |c3|2 − |c4|2 = 1− 2|c4|2. (6.3)

Therefore, in this situation, the experimenter can deduce the magnitude |c4| by measuring

the expectation value of the entanglement witness X. An entanglement witness reveals

information about the structure of a state, which, holographically, will amount to probing

the structure of wormholes that connect black holes.

Accordingly, let us consider a holographic setup. In particular, we can consider ap-

plying local unitaries on either side of the bipartition to enact gravitational collapse, con-

verting a particular possibly-entangled pure state — for which one wants to investigate

the entanglement structure — into two black holes, one made of each subsystem, without

changing the entanglement structure between the two sides. In this construction, one can

ask whether it is possible to construct a holographic realization of entanglement witnesses

for specific patterns of entanglement.
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7 Traversable wormholes as entanglement witnesses

The traversable wormhole construction allows for repeatability: one is not constrained to

send a single signal as in the case of ref. [14], but rather can send a number of signals

proportional to the (negative) energy of the shock wave used to open the wormhole, as we

discussed in section 5.3. Thus, one is free to send multiple light pulses through the wormhole

region and to ask which (and how many) successfully make it out of the other black hole.

Using this freedom, one can achieve various different goals using the traversable wormhole.

For example, as discussed explicitly in section 5.3, one can use the traversable wormhole to

send information from the left to the right side, in which case one would choose the times of

the ingoing signals so as to maximize the information passing through and thereby optimize

the utility of the wormhole as a quantum channel (i.e., to maximize its channel capacity).

However, there are other uses for the traversable wormhole. In particular, one can ar-

range the ingoing photons in a signal sent into the wormhole in order to obtain information

about the nature of the wormhole geometry itself. That is, we can effectively implement

wormhole tomography by scanning the geometry, measuring the position and time delay of

signals sent through the wormhole at different times and angles of incidence. Furthermore,

because the structure of the wormhole is dual to the structure of entanglement between

the two black holes, the characterization of which and how many light pulses make it

through the traversable wormhole serves as a set of useful partial entanglement witnesses

that partially classifies the set of entangled states dual to traversable wormholes.

As a step towards the goal of wormhole tomography, we consider the following concrete

setup. For the wormhole geometry described in section 3, we have v = erht/`
2

on the

boundary of the right side, where both t and v increase toward the future. The double-

trace deformation is performed on both black holes simultaneously in an attempt to create

a traversable wormhole, opening up an interval in boundary time (ti, tf) during which pulses

traveling on radial geodesics, sent from the right boundary, will pass through the wormhole.

In the setup shown in figure 2, a signal released from the boundary with Kruskal coordinate

v ∈ (0, α) is able to traverse the wormhole; that is, ti = −∞ and tf = `2

rh
logα, with α given

by eq. (3.9). The goal of the experiment is to measure α, which in this setup is unknown

to the experimenter sending in the photon pulses. At some early but finite time t0, a set

of light pulses is sent into one of the black holes with time separation δt between each

pulse. If the experimenter wishes to measure α to within some given fractional precision,

then in the absence of further knowledge, they would naively wish to take δt to be as small

as possible, within the engineering constraints of their apparatus, and continue to send in

pulses until they cease to be received on the other side.

However, there are competing effects between the energy of the pulses, which will

backreact to close the wormhole faster for higher energy pulses, and their spacing. In order

to probe constant intervals in α close to the wormhole, one needs to construct pulses that

are exponentially close together at their source, since δv = (rhδt/`
2)erht/`

2
. As noted in

section 5.3, with each (positive null energy) signal pulse, the window in v for which a signal

will traverse the wormhole is decreased by εα/|E|. The ideal timing and energy distribution

of signal pulses for the purposes of measuring α would depend on the experimenter’s initial
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prior probability distribution for α. Such considerations could impact the spacing of the

pulses, the timing of the earliest pulse, and the energy of each pulse; by gaining the benefit

of short, high-energy pulses, the experimenter would pay the cost of being able to send

fewer of them before the wormhole closes. If the experimenter has a known bound on

α, then this sets the time at which the first or last pulse should be sent through. There

is an incentive to not send unnecessary pulses, so as to prevent premature closing of the

traversable wormhole. If the experimenter has access to some theoretical model-dependent

prediction for α with some uncertainty, then the pulses should be spaced in such a way as

to closely probe around this specific value, eschewing pulses that would come close to the

wormhole both significantly before or after the target time. Given a prior prediction for α,

a particular experiment yields a more-precise posterior distribution according to the usual

Bayesian framework; the experimentalist should design the experiment, i.e., the precise set

of pulses to send into the wormhole, to maximize the information learned, i.e., minimize the

entropy of the posterior distribution for α, subject to their prior and resource limitations.

The subset of light pulses that manages to traverse the wormhole demonstrates what

time window the signals must have been sent across the apparent horizon of the sender’s

black hole in order to traverse the wormhole, thus characterizing how traversable the worm-

hole was, i.e., the value of α. This information can be used by the sender to constrain the

set of unknown wormhole geometries to which the double-trace deformation could have

been applied. Of course, the experimenter can really only ever directly measure α − v0,

where v0 characterizes the unknown shift in boundary time depicted in figure 3 and dis-

cussed in section 4.14 (Equivalently, the experimenter measures a combination of α and the

boundary time at which the double-trace deformation was turned on.) This information,

in turn, can be used via the AdS/CFT correspondence to constrain the subset of entangled

states that the two black hole system could have been in, thus constructing a holographic

dual of a set of entanglement witnesses as discussed in sections 4 and 6.

It should be noted that, as constructed here, each light pulse is, by itself, an entangle-

ment witness: it will never reach the other side for a product state of the two black holes,

and it will reach the other side for some subset of entangled states. By repetition of this

process, one can gain a great deal of information constraining the kind of entangled state

that the two black hole system is in. In particular, the entangled states dual to wormholes

can be classified by the length of the wormhole in the dual picture, introducing perhaps an

alternative information-theoretic notion to the complexity that would grow with the length

of the wormhole [43].

8 Discussion

In this paper, we have analyzed the double-trace deformation that renders wormholes

traversable from a quantum information-theoretic perspective. We have argued that the

process of sending signals from one asymptotic bulk to another through the wormhole is

14In the notation of section 4, v0 would equal erh(t−t0)/`
2

, where the state |ψ(t0)〉 at some reference

boundary time t0 is |φ(t)〉 for some value t among the states given in eq. (4.1).
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best thought of as a quantum channel and that the ability to send multiple such signals

allows the experimenter to learn about the state of the wormhole.

Although our analysis builds on the detailed constructions within the AdS/CFT frame-

work of refs. [17, 18], our conclusions are largely independent of these details: all we require

is that the experimenter on the boundary have access to some operation that sources the

negative averaged null energy necessary to make a wormhole traversable. In particular,

although the double-trace deformation in the CFT description creates an excitation that

is manifestly entangled between the two sides, the gravitational construction in section 3

does not require this. It is only necessary that each shock wave carry negative averaged

null energy; in fact, in the limit that backreaction is small, we can treat the two shock

waves as entirely independent.

We have described the traversable wormhole in section 5.1 as a quantum channel that

maps an excitation localized near one boundary subregion to an excitation on the other

boundary. In the CFT, such a channel should be relatively straightforward to construct: the

evolution map, as constructed schematically in eq. (5.1), should be built only from normal

boundary time evolution, the double-trace deformation coupling the two boundaries, and

the insertion of the source at the boundary. We could imagine building up the state using

the Euclidean path-integral construction on a Riemann surface formed by two thermal

cylinders linked by the deformation. The statement that the double-trace deformation

renders the wormhole traversable means that the effect of the channel is simply to transfer

excitations from one boundary to the other (with appropriate redshift factors, etc.), which

implies a relation between time evolution and the deformation itself. This question has

recently been investigated [44, 45] in the context of AdS2 gravity and the SYK model, as

well as in explicit four-dimensional constructions [46]. It would be interesting to pursue it

in a more general CFT context.

Furthermore, we have characterized the quantum channel corresponding to passage

through the wormhole as a map between (finite-dimensional) code subspaces (section 5.2).

One of the lessons of our approach, compared to the initial discussion of refs. [17, 18], is

that it is more natural to think of the propagation of excitations from one boundary to the

other not in terms of quantum teleportation but instead as the direct, physical movement

of excitations from one boundary to the other through the bulk geometry that includes

the traversable wormhole. This picture has interesting implications on the entanglement

structure of the theory, as well as lessons for how classical bulk geometries are encoded in

the CFT, which have recently been discussed [33].

Subsequently, in section 5.3 we used the gravitational dual description of the double-

trace-deformed thermofield double state to bound the entanglement capacity (and hence

the quantum channel capacity) of the quantum channel describing the deformation. We

found that the existence of a holographic description of the state as a traversable wormhole

makes the calculation of this capacity bound tractable. Specifically, we defined a protocol

in the bulk that can be used to maximize the number of qubits that can be sent through

the traversable wormhole. It would be interesting to consider what other information-

theoretic quantities for holographic states can be computed gravitationally and whether the

channel capacity could be computed for holographic states other than the single traversable

wormhole.
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Finally, in section 7 we considered the traversable wormhole as an entanglement wit-

ness. If an experimenter has access to the traversable wormhole, but does not know the

magnitude of the double-trace deformation — that is, does not know “how open” the

wormhole is, as defined by the parameter α — then they can try to measure this quantity

by sending signals into the wormhole and checking for which signals make it through. In

doing so, the experimenter measures a combination of α and the time that the double-trace

deformation was applied. We discussed the optimal protocol for making this measurement;

its interpretation as an entanglement witness follows from sections 4 and 6.

More broadly, in this paper we have presented a quantum information-theoretical de-

scription of the bulk containing a wormhole. The presence of the wormhole can be recog-

nized by the fact that excitations sent from one side through the channel corresponding

to the bulk geometry arrive on the other side (relatively) undisturbed, having propagated

through mostly empty space. It is tempting to conjecture that this picture applies more

broadly to give a general quantum information-theoretic definition of holography. That

is, in general, if we have some strongly-coupled theory it is an extremely difficult field-

theoretic problem to determine when a dual classical bulk description exists. However, we

seem to have found a simple criterion in the language of quantum channels: such a bulk

description exists when there exists a channel that translates localized excitations from one

portion of the theory to the other in a controlled way, corresponding to the dual of the

excitation traveling through the bulk from one part of the boundary to the other. It would

be interesting to see if this criterion could be made more precise.
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