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Abstract:

We construct a large class of explicit, asymptotically flat and regular wormhole solutions
in higher order scalar tensor theories. The solutions are vacuum solutions of scalar tensor
theory and no matter (exotic or regular) is introduced in order to support them. They
are constructed via a general disformal transformation of a seed black hole solution.
The seed solutions belong to a particular Horndeski theory which requires the presence
of all extended Galileons and has a higher dimensional Lovelock origin. As a result,
the resulting wormholes are always solutions of general beyond Horndeski theory. The
particular class of wormholes we study are parametrised by their ADM mass and two
coupling constants of the theory, one related to their higher dimensional Lovelock origin
and one to the disformal transformation itself. The latter of the coupling constants affects
the throat size of the wormhole solutions, thus giving them a compact or non-compact
nature, as well as their properties.
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1 Introduction

In recent years there has been impressive quality and plethora of observational data con-
cerning compact objects. Observations are up to now compatible with General Relativity
(GR) neutron stars and black holes. The first breakthrough came with the discovery of
gravitational wave emission of compact object binaries (see in particular [1], [2], [3]) of
the LIGO and Virgo observatories. Gravity waves constitute a direct detector of gravita-
tional physics. In addition, networks of radio telescopes, constituting a virtual earth size
telescope, the Event Horizon Telescope (eg., [4]) have given a direct image of the super-
massive black hole M87 in the center of our closest galaxy. Furthermore, the GRAVITY
collaboration has measured to good accuracy the redhift and pericenter precession of the
star S2 orbiting the central black hole of our host galaxy and will continue to do so, for
S2 and neighboring orbiting stars, with improving accuracy. Additionally there are, for
example X-ray, observations of pulsars with the NICER mission [5] aiming to extract the
equation of state of neutron stars.

These are but a few of the ongoing experiments, and observational data will continue
to accumulate in the forthcoming years. It is fair to say that we are living a revolutionary
epoch in gravitational physics. It is quite natural then, as a result, that several questions
or unresolved issues arise associated to this remarkable inflow of data. These can be
questioned from within the framework of GR, but may be also extended beyond the realm
of GR. For example, what is the nature and characteristics of the secondary observed
compact object in [2]? Is it a very small black hole or a very heavy neutron star? At
the end of the day, is there a mass gap in-between neutron stars and black holes, and
what is its value? If [2] has observed a neutron star secondary, how can we explain its
resulting stiff equation of state as compared to the observation of [1]? What is the high
density equation of state of neutron stars, and how fast can they rotate before being
destabilised?

One can go further, and question if the compact object is a GR solution or not,
and how to go about measuring departure from GR. How are black holes modified in
alternative theories of gravity? Do there exist compact objects other than the standard
neutron stars and black holes, such as regular black holes (see for example [6–9] and refs
within), or horizon-less backgrounds like wormholes [10] [11] [12] [13] [14] [15] [16] [17]?
How do these exotic objects compare to their GR black hole counterparts and how can
we tell them apart (see for example [18], [19], [20], [21], [22], [23])? For example, the
hypothesis that Active Galactic Nuclei (AGN’s) are not supermassive black holes but
rather throats of macroscopic wormholes has been considered (see [24], [25] and references
within). Furthermore, theoretical work (see e.g. [18]) shows that if the gravitational
redshift is very strong at the throat, the wormhole “looks” very much like a black hole
since for a faraway observer the coordinate time becomes extremely slow near the throat.
In other words, there are cases where the throat behaves, in astrophysical terms, very
much like an event horizon, a one-way membrane.

Wormholes [10–17] are a classic example of an exotic compact object, since it is the
playground of provocative effects in GR such as time travel, exotic matter etc. They pose
indeed several theoretical problems in GR and beyond, and we may therefore ask, can
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these problems be lifted in modified or alternative theories of gravity? A large number
of works have addressed the above issues and studied wormholes in a variety of contexts.
The violation of energy conditions has thus been attributed to quantum effects [26] [27]
[28] [29], phantom fields [30] [31], k−essence fields [32] or a Chaplygin fluid [33]. At
times, this violation (see also [34]) has been either minimised or even eliminated by
the use of different class of metrics [35] [36] [37] [38] or alternative geometric theories
[39] [40] [41] [42] [43] [44]. The most intensely studied approach however is the one
according to which the energy conditions are violated not by the actual matter but
by an effective energy-momentum tensor arising in the context of a modified theory of
gravity. These theories include f(R) theories [45] [46] [47] [48] [49] [50], extra dimensions
[51] [52] [53], brane-world models [54] [55] [56] [57] [58], non-minimally coupled scalar-
tensor theories [59] [60] [61] [62] [63], or higher-derivative gravitational theories [64–72]
to mention a few indicative works. The stability behaviour of the wormhole solutions
emerging in the context of different theories has also undergone an intensive study over
the years [73] [74] [75] [76], [77] [78] resulting at times to no-go theorems [79] [80] and
forcing us to move to theories beyond GR for viable solutions.

On the theoretical front, a good starting point for physically interesting solutions are
indeed scalar tensor theories and secondly no hair theorems (or, more precisely how to
evade them). The former provide a non trivial, robust and measurable departure from
GR with higher order derivative theories evading Ostrogradski ghosts : namely Horndeski
[81], beyond Horndeski [82] or DHOST theories [83], [84]. On the second front, classical
no hair theorems concerning black holes [85], [86], [87], [88] (but also neutron stars [89]
and wormholes [80]) can be extended beyond GR and in particular to scalar tensor
theories. Most of the attention has been given to black holes, where there are several
ways to circumvent no hair theorems: as all theorems, they obey certain hypotheses
which nevertheless can be broken (see for example [90], [91], [92]). The subject of black
holes in higher order scalar-tensor theories goes back quite a long way to EFT actions
emanating from string theory such as [93], [94], [95], [96]. The nature of the solutions,
explicit or numerical, turns out to be related to the presence of certain symmetries for
the scalar field.

More recently, a new class of explicit black hole metrics have been constructed in
theories where the scalar field has shift and parity symmetry. A large subclass of these
are dubbed stealth [90], [97] in the sense that their metric is Ricci or Einstein flat, but,
with a non trivial scalar field. Due to their stealth nature, they are less easy to distin-
guish from classical GR solutions. Recently however, using techniques such as disformal
transformations, rotating black holes have been analytically constructed [98], starting
from a stealth Kerr solution [99]. These disformed Kerr metrics are solutions to specific
DHOST theories [100] and are genuinely different from Kerr – for example, they do not
obey the no hair GR relation [101]. They have several distinguishable characteristics,
which could be detectable in the near future.

On the other hand it is quite intriguing that once parity symmetry for the scalar
field is broken, analytic solution methods seem no longer efficient. In fact, although
solutions are known since a long time [93], [102], they have been constructed numerically
(see for example , [91], [103], [104], [105], [106], [107], [108], [109]) or perturbatively (see
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for example [94], [110]). Their non stealth nature on the other hand renders them very
interesting from a phenomenological point of view. In particular a large and interesting
class of these harbours the Gauss-Bonnet curvature scalar (see the discussion in [91])
which is a typical parity breaking term and is a natural term to expect from string
theoretic or other fundamental (geometric) considerations.

Amongst this on-growing plethora of solutions there is one very recently found black
hole [111], that blends together properties coming from both classes of solutions whilst
having quite unique characteristics. First of all, it is an explicit, non parity preserving,
non-stealth solution (but close enough to Schwarzschild [112], [113]). It involves all types
of Horndeski scalar tensor terms, including the Gauss Bonnet term and is asymptotically
flat. The underlying scalar tensor theory is a subclass of Horndeski [81] and the solu-
tion was originally found by Lu and Pang [111], carefully taking a singular limit [114],
of a Kaluza Klein reduction of a higher order Lovelock theory [115], [116]. Shortly af-
ter, Hennigar et al [117], constructed the same theory by generalising a 2 dimensional
construction originating from GR [118], while Fernandes interestingly found that the
theory in question has a conformally coupled scalar field [119]. Neutron stars were then
constructed presenting several intriguing properties [113] such as the absence of the
previously mentioned mass gap in between black holes and neutron stars within this
framework.

In this paper starting from the a-fore mentioned black hole, we will construct a
rather large class of analytic wormhole solutions. Previous efforts [65], [64], [67] have
given numerical solutions of wormholes within Horndeski theory (where there are in-
stability issues [80], [120], [121]) and needed, due to regularity, the presence of some
distributional source of ordinary matter. In contrast, we will show that the explicit so-
lutions found here will be everywhere regular supported solely from the scalar tensor
gravity theory with no additional matter (exotic or not). Resulting from a disformal
transformation of a solution arising in Horndeski theory they will be exact solutions of
beyond Horndeski theory. They will be parametrised (apart from their ADM mass) by
two coupling constants relating them to the seed Horndeski and the beyond Horndeski
theory. One is the coupling constant associated to their seed black hole or in a looser
sense to their higher order Lovelock origin. The latter will be associated to the beyond
Horndeski theory and will crucially parametrise their throat size and essential wormhole
properties. As such, wormholes with a throat size comparable to their seed black hole
horizon radius will constitute very compact objects similar to black holes. Alternatively,
solutions with a large throat will be far less ‘compact’ and will be characterised by small
tidal forces and acceleration effects for light or test particles.

In the next section we will present the Horndeski and beyond Horndeski theory and its
spherically symmetric equations. We will furthermore consider disformal transformations
and find how the Horndeski functionals change to the beyond Horndeski ones for the case
of spherically symmetric and static spacetimes. Starting from the Lu-Pang black hole
[111] we will then construct analytic wormhole solutions in section 3. We will establish
that these are regular and traversable by particles and light in section 4. We will then
discuss some of their important physical properties in section 5 and conclude in section
6.
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2 From Horndeski to beyond with disformal trans-

formations

We shall consider shift-symmetric Horndeski theory and beyond Horndeski theory. The
former is parametrised by four functions {Gi : i = 2, .., 5} = {G2, G3, G4, G5} which are
functions of the scalar field φ only through its kinetic density X = −1

2
∂µφ ∂

µφ. Its action
functional is given by the expression

SH =

∫
d4x
√
−g (L2 + L3 + L4 + L5) , (2.1)

with

L2 = G2(X), (2.2)

L3 = −G3(X)2φ, (2.3)

L4 = G4(X)R +G4X

[
(2φ)2 −∇µ∂νφ∇µ∂νφ

]
, (2.4)

L5 = G5(X)Gµν∇µ∂νφ− 1

6
G5X

[
(2φ)3 − 32φ∇µ∂νφ∇µ∂νφ

+ 2∇µ∂νφ∇ν∂ρφ∇ρ∂
µφ
]
.

(2.5)

The latter, the shift-symmetric beyond Horndeski theory, is given by two additional
higher-order terms,

LbH
4 = F4(X) εµνρσ εαβγσ ∂µφ ∂αφ∇ν∂βφ∇ρ∂γφ, (2.6)

LbH
5 = F5(X) εµνρσ εαβγδ ∂µφ ∂αφ∇ν∂βφ∇ρ∂γφ∇σ∂δφ, (2.7)

parametrised by the functions F4 and F5. These are not independent of the Horndeski
functions {G4, G5}; in fact, the following relation holds in order to avoid an Ostrogradski
ghost degree of freedom [122],

XG5XF4 = 3F5(G4 − 2XG4X) , (2.8)

where a subscript in X denotes a derivative with respect to X. The above theories depend
solely on the derivatives of the scalar field and as such are manifestly shift symmetric.

We will focus on static and spherically-symmetric metrics,

ds2 = −h(r) dt2 +
dr2

f(r)
+ r2dΩ2 (2.9)

with a static scalar field, φ = φ(r). The independent field equations under these sym-
metries can be obtained in all generality (see for example the Appendix of [123] modulo
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simple typos). For a start, the (tt) gravitational equation does not involve h and reads

G2 + fφ′X ′G3X +
2

r

(
1− f
r
− f ′

)
G4 +

4

r
f

(
1

r
+
X ′

X
+
f ′

f

)
XG4X

+
8

r
fXX ′G4XX +

1

r2
fφ′
[
(1− 3f)

X ′

X
− 2f ′

]
XG5X −

2

r2
f 2φ′XX ′G5XX

+
16

r
fX2X ′F4X +

8

r
f

(
4
X ′

X
+
f ′

f
+

1

r

)
X2F4

+
12

r2
f 2φ′X2

(
2f ′

f
+

5X ′

X

)
F5 +

24

r2
f 2φ′X2X ′F5X = 0.

(2.10)

The radial component of the current Jr associated to shift symmetry is given by:

Jr = −fφ′G2X − f
rh′ + 4h

rh
XG3X + 2fφ′

fh− h+ rfh′

r2h
G4X

+ 4f 2φ′
h+ rh′

r2h
XG4XX − fh′

1− 3f

r2h
XG5X + 2

h′f 2

r2h
X2G5XX

+ 8f 2φ
h+ rh′

r2h
X(2F4 +XF4X)− 12

f 2h′

r2h
X2(5F5 + 2XF5X).

(2.11)

This expression should in general be equated to zero if the primary scalar charge is set to
zero; we will consider such a solution here (for a full discussion on no hair arguments in-
volving spherical symmetry see [124]). Either way Jr = 0, solves the scalar-field equation
for spherical symmetry, which can be written as ∇µJ

µ = 0 due to shift symmetry.

Finally, rather than the (rr) gravitational equation itself, we use a linear combination
with the Jr = 0 equation as undertaken in [125]. Namely, if Err stands for the (rr)
gravitational equation, we write Err − Jr∂rφ. This combination should also be equal to
zero and leads to a simpler equation:

G2 −
2

r2h
(frh′ + fh− h)G4 +

4f

r2h
(rh′ + h)XG4X −

2

r2h
f 2h′φ′XG5X

+
8f

r2h
(rh′ + h)X2F4 +

24

r2h
f 2h′φ′X2F5 = 0.

(2.12)

Interestingly, the cubic Horndeski term G3 disappears from this combination [123]. In
summary, the three latter quite lengthy expressions (equated to zero) give the possible
spherically symmetric solutions of beyond Horndeski theories in the absence of primary
scalar hair.

The third crucial ingredient we will need are disformal transformations. It is well
known that a disformal transformation of the spacetime metric tensor, involving some
function D = D(X), takes a seed Horndeski solution to a beyond Horndeski solution
(see for example [126], [127], [128], [122]). Let us consider such a case, where by barred
quantities we will be henceforth denoting the seed “known” Horndeski solution. As such
we have φ̄, h̄, f̄ and of course X̄ = −1

2
f̄ φ̄′2 for some specific {Ḡi, i = 2, 3, 4, 5} Horndeski

theory. Then, via the disformal transformation that reads

gµν = ḡµν −D(X̄) ∇µφ̄∇νφ̄ , (2.13)
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we go to a new “image” metric tensor which is a solution of the beyond Horndeski theory
{Gi, F4, F5} with the same scalar field as solution. Given that φ is only a function of r,
we have immediately that φ = φ̄, h = h̄ whereas the only quantities that do change for
the image solution are,

f =
f̄

1 + 2D X̄
, X =

X̄

1 + 2D X̄
. (2.14)

We emphasize that by D we mean a generic function of X (or equivalently X̄).

As we vary the “disformability” function D, we span all values of the metric function
f for the given same metric function h and scalar field φ, while at the same time,
we change theory according to specific rules established in [127]. For the needs of our
analysis, though, it is important to express these rules in terms of the initial known
barred (seed) solution. Using [127], making use of the chain rule and adopting to our
conventions 4, the transformation rules read

G4 =
Ḡ4

(1 + 2X̄D)1/2
, (2.15)

G5X =
Ḡ5X̄(1 + 2X̄D)5/2

1− 2X̄2DX̄

, (2.16)

F4 = (Ḡ4 − 2X̄Ḡ4X̄)
DX̄(1 + 2X̄D)5/2

2(1− 2X̄2DX̄)
, (2.17)

F5 = X̄Ḡ5X̄

DX̄(1 + 2X̄D)7/2

6(1− 2X̄2DX̄)
. (2.18)

In the above, we have also used the relation

DX = DX̄

(1 + 2X̄D)2

1− 2X̄2DX̄

, (2.19)

while the constraint (2.8) is verified. Our seed solution will make use of all functions
of Horndeski theory, we therefore still need to figure out how G2 and G3 transform.
To do this we use the fact that the disformed metric is also a solution of the field
equations. Indeed, applying the above rules for G4, G5, F4, F5 in the field equations for
spherical symmetry, we find in addition that G2 and G3 change according to the following
rules [129]

G2 =
Ḡ2

(1 + 2X̄D)1/2
, (2.20)

G3X = Ḡ3X̄

(1 + 2X̄D)5/2

1− 2X̄2DX̄

. (2.21)

In summary, if we start from a given seed solution of Horndeski theory {Ḡi}, then
a disformal transformation of the form Eq. (2.13) for a given function D can take us to
a solution of beyond Horndeski theory {Gi, F4, F5}. In the next section, starting from a
black hole of Horndeski theory we will use this simple mapping to obtain a wormhole
solution of beyond Horndeski theory (see also very recently [130], [131]).

4In our analysis, we have defined X ≡ −fφ′2/2 while in [127] it holds that X ≡ fφ′2.
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3 Constructing a wormhole from a black hole

In order to construct a wormhole in beyond Horndeski theory, we will employ the disfor-
mal transformations on a specific Horndeski solution. As seed we use the solution found
by Lu-Pang [111] (see also [117], [132]) described by the following theory functions of
Horndeski,

G2 = 8αX̄2, G3 = −8αX̄, G4 = 1 + 4αX̄, G5 = −4α ln ¯|X|.

The solution reads [111],

h̄(r) = f̄(r) = 1 +
r2

2α

(
1±

√
1 +

8αM

r3

)
, and φ̄′ =

√
h̄± 1

r
√
h̄

, (3.1)

where the prime denotes differentiation with respect to the radial coordinate r. In what
follows, we restrict our analysis to the asymptotically flat (h̄−, φ̄−) branch. For this
choice, the above solution describes a black hole with M being the black-hole mass and
α the constant coupling parameter of the theory. The spacetime geometry is characterised
by the roots of h̄, located at r± = M ±

√
M2 − α, with the largest one being the event

horizon, rh = r+, whereby α ≤ M2. Note that, strictly speaking, the black hole inner
horizon is ill defined as the scalar becomes imaginary in the interior of the outer horizon;
this caveat can be remedied by introducing linear time dependence [113] something that
will not be important however for our construction as the horizon region will be excised
from spacetime. It is important however for our seed solution that X̄ is not a constant
so as that the disformal function D is crucially not trivial.

Indeed, under the disformal transformation (2.13), the metric functions and scalar
field become:

h = h̄ , f =
h̄

1 + 2D(X̄)X̄
≡ hW (X̄)−1 , φ = φ̄ , (3.2)

where we have defined for convenience the function W (X̄) ≡ 1 + 2D(X̄)X̄. The
above functions, are solution to a beyond Horndeski theory, given by (2.15-2.21) and
parametrized by D. The new line-element of spacetime therefore reads

ds2 = −h(r) dt2 +
dr2

h(r)W−1
+ r2 (dθ2 + sin2 θ dϕ2) . (3.3)

If W−1 never vanishes, then, grr becomes zero only when h(r) does. As a result, the new
(beyond-Horndeski) solution describes again a black hole with its horizon located at the
horizon of the initial Horndeski solution, i.e. at h(rh) = 0. In order to construct instead
a wormhole geometry, we demand that W−1 has a root, i.e.

W (X̄)−1 = 0|r=r0 , (3.4)

at a radial coordinate value r0 larger than rh. Then, the red-shift function h(r) remains
finite and non-zero in the entire region [r0,∞), while the shape function f(r) = hW−1

7



vanishes at a single point r = r0, where the wormhole throat resides [15]. Note therefore,
that in this case, the event horizon at r = rh is cut out of spacetime as we have that
r ≥ r0 and furthermore the Killing vector ∂t is globally (and not locally) static.

There is clearly a variety of choices that one could make for the disformal transfor-
mation function W−1. This function should however obey two additional constraints: (i)
W−1 > 0 for r > r0 in order to preserve the spacetime signature, and (ii) W−1 should
reduce to unity at radial infinity for an asymptotically-flat spacetime. A simple choice
that respects all of the above conditions is the following,

W (X̄)−1 = 1− r0

λ

√
−2X̄ , (3.5)

where λ is a positive dimensionless constant and the ratio b1 = r0/λ of dimension length,
parametrizes our theory and in particular the disformal transform. Taking into account
the expression (3.1) for φ̄′ in Horndeski theory, the X̄ function may be written as

X̄ = −1

2
h̄φ̄′2 = −1

2

(
√
h̄− 1)2

r2
. (3.6)

Then, the disformal transformation function becomes:

W (X̄)−1 = 1− r0

λr

(
1−
√
h
)
. (3.7)

In the above, we used the property that 0 < h ≤ 1 for r ≥ r0. Since, at the throat, we
have W (X̄(r0))−1 = 0, the above readily leads to the condition

h(r0) = (1− λ)2 . (3.8)

In order to have a wormhole throat, the above equation constrains λ to be in the range
0 < λ < 1: for λ = 0, we find h(r0) = 1 which means that r0 → ∞, and the wormhole
throat is pushed to infinity; for λ = 1, we obtain h(r0) = 0, therefore r0 = rh, and
the wormhole throat coincides with the black-hole horizon. In other words, as λ −→ 1,
the observer time t seems to be frozen as gtt −→ 0. In this region of parameter space
we expect the wormhole to be very similar or even indistinguishable from a black hole
geometry (see the nice analysis in [18]).

Solving Eq. (3.8), we may explicitly obtain the radius of the throat in terms of the
parameters (α, λ) and M , our mass integration constant5, as

r0 =
M +

√
M2 − αλ3 (2− λ)3

λ(2− λ)
. (3.9)

Therefore r0 fixes the size of the throat while the parameter λ the gravitational redshift
at the throat. We will consider α ≥ 0 in our analysis following the generic constraints
of the seed theory [112], [113]. We see therefore that the throat size is maximal in α for
α = 0 which is the GR limit in the seed solution. We will come back to this interesting

5One could readily redefine α and M so as to get rid of λ in (3.9) but not without spoiling the ADM
mass interpretation of M .
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Figure 1: The metric functions h(r) and f(r) for (a) a wormhole solution with α < M2,
and (b) a wormhole solution with α > M2.

limit in a moment. Once λ and α for the theory are fixed accordingly6, for different mass
parameter M , we have a different size throat for the wormhole solution. According to
Eq. (3.9), wormhole solutions exist for

α ≤ M2

λ3 (2− λ)3
. (3.10)

Note in passing that when M = 0 the solution is just flat spacetime. In summary, for a
large enough ADM mass M such that for given λ ∈ [0, 1] and α, (3.10) is satisfied, our
seed black hole (α < M2) of Horndeski theory is transformed into a wormhole of throat
(3.9) in beyond Horndeski theory.

A simple working example solution can be obtained, closest to GR, by considering the
expansion at α→ 0. In this case the seed metric is approximated by a GR Schwarzschild
metric. The throat resides at r0 ' 2M

λ(2−λ)
while the metric functions read,

h(r) = 1−2M

r
+O(α), f(r) =

(
1− 2M

r

)[
1− 2M

λ2(2− λ)r

(
1−

√
1− 2M

r

)]
+O(α).

(3.11)
We will be making use of this simple enough example throughout our analysis in the
forthcoming sections7

It is useful to point out the different behaviour of the metric functions in-between
the seed Lu-Pang black-hole solution and the wormhole as we do in Fig. 1. For this, we
depict the profiles of the metric functions h(r) and f(r) for two indicative values of α.
In Fig. 1(a), we take α < M2 where the seed solution is a black hole. The solid (blue)
line describes the red-shift function h(r), common to both seed and image solution,

6Although we will be using the λ parameter for practical reasons, the theory parameters are in fact
α and the ratio b1 = r0/λ. This is because r0 and λ depend individually on the mass parameter M and
therefore on the solution. One can then show that fixing the theory, α and b1, for each M satisfying
(3.10) there is a unique parameter 0 ≤ λ ≤ 1.

7Note that although the α = 0 limit exists by continuity, we nevertheless insert the O(α) notation
as the equations of motion leave the scalar field undetermined at this point.
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which vanishes only at the seed black-hole horizon rh and asymptotically approaches
unity. The dashed (red) line describes the wormhole shape function f(r): the disformal
transformation, with W−1 given by Eq. (3.7), has changed its profile and forced it to
vanish also at the point r = r0. In Fig. 1(b) on the other hand, we depict a solution with
α > M2. In this case, the seed is a naked singularity and the metric function h(r) has no
roots. The wormhole function f(r) now vanishes only at the location of the throat and
again defines, for r in [r0,∞) a wormhole metric. In other words the domain of existence
of the wormhole solutions is larger compared to the one of the seed black holes. In fact,
when α > M2 then the minimum throat size occurs at rmin0 = M

λ(2−λ)
. On the other hand

the minimum of the redshift function h occurs at r1 = (αM)1/3 where h(r1) = 1− M2/3

α1/3 .
From (3.10) we then see that rmin0 = r1 ie., the minimum throat size for α > M2 is that
of the minimum of the redshift function h.

In order to have a geometric picture of the wormhole geometry we can define the
circumferential radius Rc,

Rc =
1

2π

∫ 2π

0

√
gϕϕ|θ=π/2 dϕ . (3.12)

If we employ the proper radial distance ξ,

dξ = ± dr√
f
, (3.13)

we may write
dRc

dξ
=
dRc

dr

dr

dξ
= ±

√
f. (3.14)

Therefore, a root r0 of the metric function f(r), or equivalently a root of the disformal
transformation function W−1, corresponds to an extremum of the circumferential radius
Rc. This extremum is a wormhole throat if it is a mimimum [15], i.e. if,

d2Rc

dξ2

∣∣∣∣
r0

=
d
√
f

dr

dr

dξ

∣∣∣∣
r0

=
f ′

2
> 0 . (3.15)

As a result, a wormhole geometry may be indeed realised only if the metric function f(r)
satisfies an additional condition, the so-called “flaring-out” condition, which in our case
takes the form f ′(r0) > 0. This condition ensures that the spacetime geometry flares out
as the radial coordinate increases from the throat towards asymptotic infinity.

A useful way to visualize the wormhole geometry is as a surface embedded in three
dimensional flat space. Given our symmetries we consider t = const and θ = π/2. The
line-element then reads,

ds2 =
dr2

f
+ r2dϕ2. (3.16)

In order to find the isometric embedding, we consider a three-dimensional flat, Euclidean
hypersurface and demand that its line-element coincides with Eq. (3.16) – then, the two
manifolds have the same geometry. This yields

dr2

f
+ r2dϕ2 = dz2 + dρ2 + ρ2dϕ2, (3.17)

10
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Figure 2: (a) The embedding diagram for five wormhole solutions, and (b) the 3-D
representation of the wormhole solution with α/r2

0 = 0.02.

where z, ρ, and ϕ are a set of cylindrical coordinates on the hypersurface. Considering z
and ρ as functions of r and matching the coefficients of dϕ2 and dr2, we easily find ρ = r
as well as

dz

dr
= ±

√
1

f(r)
− 1 , (3.18)

or, equivalently,

z(r) = ±
∫ r

r0

√
1

f(r′)
− 1 dr′. (3.19)

Therefore {ρ(r), z(r)} is a parametric representation of a slice of the embedded θ = π/2-
plane for a fixed value of the ϕ coordinate. Using the analytic form of the shape function
f(r), given by Eqs. (3.2) and (3.7), in Fig. 2(a), we plot the embedding function z(r)
for five wormhole solutions parametrized by different values of α/r2

0 and λ = 0.2. A
3-D representation of the wormhole’s geometry is given by the embedding surface, which
follows by considering the revolution of z(r) over a 2π ϕ-angle around the z axis. This
surface is presented in Fig. 2(b) for the indicative case with α/r2

0 = 0.02.

We observe that the embedding surface exhibits the desired ‘flaring-out’ described
earlier. Its slope reflects the magnitude of curvature at a given point of the spacetime:
it becomes horizontal at the asymptotically-flat regime, where the curvature is zero,
and vertical at the throat, where the curvature takes its highest, albeit finite 8, value.
If we invert the function z(r) to obtain r(z), it is clear that the presence of the throat
corresponds to the existence of a minimum for the latter function. Indeed, from Eq.
(3.18), we immediately obtain that the first derivative

dr

dz
= ±

√
f(r)

1− f(r)
(3.20)

8In terms of the proper distance, which is the correct coordinate-invariant quantity, the slope of the
embedding surface is given by: dz/dξ =

√
1− f(r). This quantity goes smoothly to zero at asymptotic

infinity, where f → 1, and to unity near the throat, where f vanishes; therefore, it remains always finite.

11
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Figure 3: The metric function H(l), its first and second derivative in terms of the radial
coordinate l, for five different solutions parametrised by the value of α/r2

0.

vanishes at the throat since there f → 0. For the second derivative, we readily obtain

d2r

dz2
=

f ′(r)

2 (1− f)2
. (3.21)

Therefore, in order to have a minimum for the function r(z), and thus a throat, we should
have f ′(r0) > 0. This is again the ‘flaring-out’ condition that the shape function needs
to satisfy in order to realise the wormhole geometry.

4 Regular and traversable wormholes

The physically relevant part of the wormhole spacetime is the one described by r ≥ r0,
where f(r) ≥ 0, depicted in the embedding diagrams of Fig. 2(a). The wormhole geome-
try possesses a throat connecting two asymptotically-flat regions, as depicted in Fig. 2(b)
where ∂t is a global Killing vector. At r = r0 our coordinate system breaks down and we
need to determine if this is poor choice of coordinates or an unavoidable curvature singu-
larity. Consider the coordinate transformation r2 = l2 + r2

0, or l = ±
√
r2 − r2

0; therefore,
as r ∈ [r0,∞) we have that l ∈ (−∞,+∞). The new coordinate discards the region
r < r0 and double covers the region r ≥ r0 thus accommodating two asymptotically-
flat regions. In terms of the new coordinate l, the throat is located at l = 0 and the

12
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Figure 4: The metric function F (l), its first and second derivative in terms of the radial
coordinate l, for the same set of solutions parametrised by α/r2

0.

line-element (3.3) takes the following form:

ds2 = −H(l) dt2 +
dl2

F (l)
+ (l2 + r2

0) dΩ2, (4.1)

where

H(l) = h(r(l)), and F (l) =
f(r(l)) (l2 + r2

0)

l2
. (4.2)

As we observe in Figs. 3 and 4, the metric functions H(l) and F (l) are finite and C2.
Indeed, it turns out that in these coordinates the wormhole metric is C2 regular for
all l ∈ (−∞,+∞), including of course the throat location at l = 0. Note that, after
the coordinate change, the metric function F (l) does not vanish at l = 0 but instead
assumes a constant value. From the profiles of both metric functions, we observe that
as the coupling parameter of the theory α/r2

0 increases, the slope of the corresponding
curves at the asymptotically flat regimes increases too: this signifies that the wormhole
becomes heavier but also larger. 9

According to Figs. 3 and 4, the metric functions H(l) and F (l) as well as their
second derivatives are symmetric under the change l → −l, and assume nonvanishing

9Figures 3 and 4 have been constructed for the indicative case of λ = 0.2, however, the depicted
behaviour does not qualitatively change as the value of λ varies in the range (0, 1).
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Figure 5: The scalar field φ(l), its first and second derivative in terms of the radial
coordinate l, for the same set of solutions parametrised by α/r2

0.

values at l = 0. In contrast, their first derivatives are antisymmetic under the same
change and vanish at the throat. This is due to the fact that, close to the throat, both
metric functions may be written as power-law expansions in terms of the coordinate l
which contain only even powers, namely

H(l) = h0 + h2 l
2 +O(l4) , F (l) = f0 + f2 l

2 +O(l4), (4.3)

where (hi, fi) are functions of the parameters of the theory given in (B.2-B.5). Due to the
vanishing of H ′(l) and F ′(l) at l = 0, both metric functions reach their minimum values
at l = 0 and both increase towards the two asymptotic infinities. This behaviour allows
for a smooth transition from positive to negative l values, and no discontinuities or cusp
points appear in the metric function derivatives. An important implication of this is that
no additional distribution of matter needs to be introduced around the wormhole throat
for the smooth patching of the two l-regimes.

Finally we turn to the profile of the scalar field, the first derivative of which is also
analytically known and given in Eq. (3.1). In order to determine φ itself, we first take
the expansion of φ′(l) at l = 0 and then integrate with respect to l to find

φ(l) = φ0 + φ1 l +O(l3) , (4.4)

where

φ1 =
λ

r0(λ− 1)
,
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and given the shift symmetry we may choose φ0 = 0. Therefore, at the wormhole throat,
the scalar field vanishes whereas its first derivative is non zero. In Fig. 5, we depict
the scalar field φ(l) and its derivatives – for consistency, we use the same five solutions
employed in the construction of Figs. 3 and 4. We observe that all three quantities are
everywhere regular with the scalar field φ and its second derivative being antisymmetric
under the change l → −l, and thus vanishing at l = 0, whereas its first derivative is
symmetric in agreement with Eq. (4.4). The scalar field approaches a constant value at
the two asymptotic infinities where both of its derivatives vanish. The transition from
the positive to the negative l-regime is again smooth and the φ profile is continuous at
l = 0. We would like to note that Figs. 5(b,c) depict the numerical values of the first and
second derivative of the scalar field, however, we have verified that these are in excellent
agreement with the analytic expressions for φ′ and φ′′ following from Eq. (3.1).

In conclusion, the wormhole solution (4.2) is regular at the throat and throughout
spacetime. Due to its C2 regularity at the throat, it is also free of any additional local
(or non local sources of matter). As we will demonstrate in the next section, where the
properties of the solution are studied in detail, our wormhole is also traversable by light
and matter. In fact, a potential traveler will experience small tidal forces and acceleration
effects upon choosing particular values of the parameters of the theory.

5 Wormhole properties

Let us first make a connection to the classical wormhole analysis of Morris and Thorne
[15] as seen from the perspective of General Relativity. In order to do this we can define
an effective energy-momentum tensor such that our field equations take the suggestive
form

Gµν = T eff

µν . (5.1)

Essentially T eff
µν entails all the effects coming from the beyond Horndeski theory apart

from the GR Einstein term (which amounts to the constant term in G4). We emphasize
that T eff

µν is not ordinary matter but encompasses here collectively the effects of modified
gravity.

According to [15], the energy conditions of this effective energy-momentum tensor
have to be violated near the throat. This is in fact the outcome of the flaring-out condi-
tion, which as we showed imposes a certain behaviour on the shape function f(r) and,
through the effective Einstein’s equations, on the matter content of the theory. Let us see
how this applies in the case of our solutions. We will focus on the Null Energy Condition
(NEC) [47] [64] [67],

T eff

µν n
µnν ≥ 0, (5.2)

where nµ is any null vector satisfying nµnµ = 0. Choosing respectively nµ =

(1,
√
−gtt/grr, 0, 0) and nµ = (1, 0,

√
−gtt/gθθ, 0) while making use of (5.1) we have that

15



the NEC gives,

Gr
r −Gt

t ≥ 0, (5.3)

Gθ
θ −Gt

t ≥ 0. (5.4)

Employing the form of the line-element (3.3), we find,

Gt
t = − 1

r2
+

h

r2W
− hW ′

W 2r
+

h′

rW
, (5.5)

Gr
r −Gt

t =
hW ′

W 2r
, (5.6)

Gθ
θ −Gt

t = −W
′h′

4W 2
+

hW ′

2W 2r
+

h′′

2W
− h

Wr2
+

1

r2
. (5.7)

Using that

f ′ =
h′

W
− hW ′

W 2
, (5.8)

and the fact that h and all its derivatives take constant values at the throat where W
vanishes, we find that

(Gr
r −Gt

t)
∣∣∣
r0

= −f
′(r0)

r0

< 0, (5.9)

(Gθ
θ −Gt

t)
∣∣∣
r0

=
1

r2
0

+
W ′

2W 2

(
h

r
− h′

2

)∣∣∣∣
r0

. (5.10)

Therefore, if the metric function f satisfies the flaring-out condition f ′(r0) > 0, the first
NEC is violated at the throat. The second combination on the other hand is not sign-
definite but depends on the profile of the red-shift function h(r): if the right-hand-side
of Eq. (5.10) gives a positive number at the throat, then the second NEC is not violated.

The Weak Energy Condition (WEC) is the NEC supplemented by the positivity of
the effective energy density supplied by our modified gravity theory, ρeff ≥ 0. We find,

ρeff = −Gt
t =

1

r2
− h

r2W
+
hW ′

W 2r
− h′

rW
. (5.11)

Thus, at the throat where W−1 = 0 and h is finite,

ρeff|r0 =
1

r2
0

− f ′(r0)

r0

, (5.12)

where we have also used Eq. (5.8). The above expression is not sign-definite but depends
on the properties of the solution. For instance, for adequately large values of the throat
radius, the above is clearly positive. We note therefore that any effective violation of the
Null Energy Condition does not necessarily imply a negative ρeff. The violation may be
caused merely by the negative radial pressure, which is the one that keeps the throat open
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– indeed, from Eqs. (5.5) and (5.6), we readily obtain that at the throat the anisotropic
pressure component is

(pr)eff|r0 = − 1

r2
0

< 0.

Let us now consider geodesic motion in the equatorial plane of the wormhole. Our
analysis is not exhaustive – we only seek to point out important differences as compared
to a standard black hole geometry. For a start, consider timelike geodesics of some test
particle with rest mass m. We have that

− hṫ2 +
W

h
ṙ2 + r2θ̇2 + r2 sin θ2ϕ̇2 = −m2 (5.13)

where an overdot denotes the derivative with respect to proper time. We consider equa-
torial geodesics, θ = π/2, and our Killing symmetries yield

r2ϕ̇ = L, hṫ = E , (5.14)

where L and E are the conserved angular momentum and rest energy of the particle.
The above three, first order, differential equations describe in full the equatorial timelike
geodesics. Combining (5.13-5.14) we obtain an effective Schrodinger like equation,

(
√
Wṙ)2 +

(
1 +

L̃2

r2

)
h = Ẽ2 , (5.15)

where we have divided by m2 and thus the tilded quantities are now given per unit rest
mass (as is the curve parameter). The first term of the LHS of (5.15) can be interpreted

as the kinetic energy and the second term as the effective potential, Veff =
(

1 + L̃2

r2

)
h,

while on the RHS we have the conserved overall energy Ẽ2. This equation reduces to
the usual timelike geodesic equation for a Schwarschild black hole if we set W = 1
and h = 1 − 2M/r, as discussed in standard GR textbooks. The difference here occurs
essentially due to the wormhole function W which changes the Schrodinger variable to
dR =

√
Wdr. As a result, the zeros of kinetic energy (and therefore the extrema of the

potential) include now the throat location at r = r0. In other words, the throat location
is now a turning point or a point of equilibrium for geodesic motion parametrised by
L̃, Ẽ, the initial data for the test particle. In fact for r = r0 we have a circular orbit for
the wormhole geometry for given E0 and L0,

Ẽ0
2

= (1− λ)2

(
1 +

L̃0
2

r2
0

)
(5.16)

while
Veff,R(r0) =

√
W−1(r0)Veff,r(r0) = 0.

The sign of the second derivative tells us if the trajectory is stable or not. This is a
clear difference of the wormhole throat with respect to the absence of the black horizon
surface [18] absorbing all in-falling matter.
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Figure 6: The effective potential Veff for light geodesics as a function of the coordinate

l normalized at lp =
√
|(3M)2 − r2

0|.

We can also investigate briefly light geodesics by defining the impact parameter
b = L/E. In a similar fashion we obtain,

Wṙ2 +
h

r2
= b̃−2 , (5.17)

where the overdot is now a derivative with respect to an affine parameter, and

Veff (R) =
h(r(R))

r(R))2
.

The possible light rings (or circular light orbits) associated to this potential are again
given by the extrema of Veff , but crucially, as a function of R (and not r as for the black
hole). Indeed we have that,

Veff,R =
√
W−1

(
h(r)

r2

)′
,

therefore the throat is always an additional critical point. To get a qualitative idea of
the possible critical points, we start with the case of α → 0, whereupon h is close to
Schwarzschild. We have therefore two possible extrema, one at r = 3M and one at the
throat, r = r0. If 1 > λ > 1 − 1√

3
, we get r0 < 3M , and the throat is a stable circular

orbit while r = 3M is the unstable light ring [see, for example, the solutions with λ ≥ 0.5
in Fig. 6(a)]. If λ < 1− 1√

3
, the throat is an unstable circular orbit at r0 > 3M replacing

the (usual) light ring which is now excised from spacetime [see the solutions with λ ≤ 0.3
in Fig. 6(a)].

For the general case with α 6= 0, solving for
dVeff
dr

= 0 we get a third order polynomial,

r3 − 9M2r + 8αM = 0 , (5.18)

which can have up to three roots, two at most of which turn out to be positive. Again
starting with the familiar α → 0 case, we have that the extrema are at r = 0 and
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r = 3M . As we gradually increase α, the two extrema (r1
ext, r

2
ext), initially at (0, 3M),

start to approach each other satisfying 0 < r1
ext ≤ r2

ext < 3M , up to the point where

they become one at αcrit = 3
√

3M2

4
10. Summing it all up, we have up to three possible

critical points depending on the throat position with respect to the two possible zeros
of (5.18). This is the case if λ is sufficiently close to unity and α is quite large so that
r0 < r1

ext < r2
ext. In this case, the wormhole light structure (see also [19]) is quite intriguing

with two unstable and one stable light ring in-between [see, for example, the curve for
λ = 0.7 in Fig. 6(b)].

We can also evaluate the time it takes for a light ray to cross the wormhole throat
(see for example [18], [15]), as measured by an observer residing far away from the throat.
Let us consider a point close to the throat, l = 0, say at l = l0. We have that

∆t = 2

∫ l0

0

dξ√
h(ξ)

= 2

∫ l0

0

dl√
H(l)F (l)

=

=
1√
h0f0

[
2l0 −

l30
3

(
h2

h0

+
f2

f0

)]
. (5.19)

Here we are making use of the regular l coordinates as well as the expansions in Appendix
B11. Thus, the time interval ∆t for such a crossing depends once again on the particular
values of the parameters of the theory.

Let us now turn to the acceleration and tidal forces a potential observer would
feel while traversing the wormhole. Following the analysis of [15, 65] and performing
appropriate coordinate transformations, we may change our reference frame first to that
of a static observer at an arbitrary radial distance ` and then to the frame of the moving
traveler with basis vectors (êt̃, ê˜̀, êθ̃, êϕ̃). The acceleration felt by the traveler satisfies the
relation aµ̃ = uν̃ ∇ν̃u

µ̃, where uµ̃ is the normalised four-vector velocity, i.e. uµ̃uµ̃ = −1.
If we assume that the traveler moves radially, we have aµ̃ = aê˜̀. Working backwards, we
may express the magnitude of the acceleration a in terms of quantities employed by the
asymptotic observer, and thus write

|a| =
√
F

H
∂`

(
γ
√
H
)
, (5.20)

where γ = 1/
√

1− u2/c2. If the traveler moves with non-relativistic velocity, i.e. u� c,
we may set γ ' 1, in the above expression. By changing back to the radial coordinate r,
the above is written as

|a| = W−1/2 ∂r
√
h =

√
1− r0

λr
(1−

√
h) ∂r

√
h . (5.21)

Far away from the throat, both W−1 and h reduce to unity and the acceleration vanishes
as expected. But also at the location of the throat, where W−1 again vanishes, the
acceleration measured is zero. In the intermediate regime, the magnitude |a| depends

10Note that the seed metric is already singular at such α as αcrit > M2.
11Proper distance coordinate, ξ, agrees with l coordinates for small enough l as, ξ = l + 0(l3)
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strongly on the parameter λ. As λ decreases, and the radius of the throat r0 increases,
the acceleration is suppressed.

We may also calculate the tidal force felt by the observer between two parts of their
body. In the traveler’s reference frame, their separation vector is kµ̃ = (0, kĩ). Following
again the analysis in [15, 65], we find that the radial and transverse components of the
tidal force are

∆a
˜̀

= c2k
˜̀
F

(
−F

′H ′

4FH
+
H ′2

4H2
− H ′′

2H

)
, (5.22)

∆aθ̃ =
c2γ2kθ̃

(`2 + r2
0)

[
−`FH

′

2H
+
u2F

c2

(
r2

0

`2 + r2
0

+
`F ′

2F

)]
. (5.23)

As was the case with the acceleration, both components of the tidal force vanish in the
asymptotic limit as H and F reduce to unity and ` → ∞. Near the throat, they both
acquire constant values given by the expressions

∆a
˜̀' −c2k

˜̀ f0h2

h0

, ∆aθ̃ ' γ2u2kθ̃f0

2r2
0

, (5.24)

where we have used the expansions of the metric functions near the throat given in
Appendix B. It is straightforward to see that, as we decrease λ, and thus increase r0,
both components of the tidal force are suppressed since f0 → 1, h0 → 1 and h2 →M/r3

0.

We have shown in the previous section that the wormhole solutions are everywhere
regular. This signifies that curvature scalars are always finite. They are however indicative
for the traversability of the wormhole. Let us consider the Ricci scalar,

R =
W ′h′

2W 2
+

2hW ′

W 2r
− h′′

W
− 4h′

Wr
− 2h

Wr2
+

2

r2
. (5.25)

Focusing in particular on its behaviour at the throat, we obtain

R(r0) =
2

r2
0

− 2f ′(r0)

r0

+
W ′h′

2W 2

∣∣∣∣
r0

. (5.26)

In Fig. 7, we depict the Ricci scalar R and the Kretchmann scalar K = RµνρσR
µνρσ

for a number of wormhole solutions with fixed λ = 0.2. Both quantities, being regular
over the entire spacetime, render the wormhole traversable by particles. We also observe
that the Ricci scalar is not sign-definite at the throat but depends on the particular
solution. As Fig. 7(a) reveals, wormhole solutions with small values of the parameter
α/r2

0 have a negative Ricci scalar at the throat whereas, as α/r2
0 increases, R may adopt

either a vanishing or a positive value at this point.

In Fig. 8(a), we display the first NEC energy condition T rr − T tt in terms of the
radial coordinate l, and for a number of our wormhole solutions parametrised again by
the value of α/r2

0. We observe that the first NEC energy condition is always violated at
the throat, and this violation persists throughout the spacetime. As we discussed at the
beginning of the section, the violation of the first NEC at the location of the throat is a
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Figure 7: The Ricci scalar R and Kretchmann scalar K = RµνρσR
µνρσ for a number of

wormhole solutions with λ = 0.2.

prerequisite for the existence of the throat itself. The same holds for all of the wormhole
solutions we have found in our analysis. In Fig. 8(b), we present the domain of existence
of our solutions, i.e. the first NEC condition at the throat for the complete parameter
range of α/M2 and for several different values of the disformal parameter λ. We observe
that, as the value of λ increases, the allowed range of values of α/M2 decreases - this
readily follows from the bound of Eq. (3.10). As is expected, the violation of the first
NEC is always realised, for the wormhole geometry to emerge, however, this violation
gets milder as λ increases.

The second NEC energy condition T θθ − T tt is displayed in Fig. 9(a), and is clearly
obeyed over the entire spacetime since it remains always positive. As was discussed
earlier, this condition is not necessarily violated for a wormhole throat to emerge. Since
it involves the effective energy density ρ and transverse pressure component pθ, its non-
violation allows for the possibility that solutions with ρ > 0, which respect the WEC,
may be found. In Fig. 9(b), we thus present the domain of existence of our solutions
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Figure 8: (a) The first NEC energy condition Gr
r −Gt

t in terms of the coordinate l, and
(b) its value at the throat in terms of the parameter α/M2 and for different values of λ.
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Figure 9: (a) The second NEC energy condition Gθ
θ − Gt

t in terms of the coordinate l,
and (b) its value at the throat in terms of the parameter α/M2 and for different values
of λ.

where now the horizontal axis displays the energy density at the location of the throat
ρ(r0). The depicted behaviour resembles the one for the Ricci scalar R discussed above.
For small values of α/M2 and small λ, only solutions with ρ(r0) < 0, which violate
the WEC, are found. However, as either of these two parameters increases, we obtain
wormhole solutions with exclusively positive ρ(r0), which therefore respect the WEC. We
remind the reader that the solutions with ρ > 0 constructed in [15] had the distribution
of matter extending over the entire spacetime. Our subclass of wormholes with ρ > 0
are in contrast localised: as Fig. 7 reveals, the curvature of the spacetime around all of
our solutions reduces to very small values at distances |l| ' 2r0 and literally vanishes
at |l| ' 4r0. Therefore, our solutions comprise a family of regular, traversable, localised
wormholes respecting the WEC.

6 Discussion and Conclusions

Horndeski theory [81], the most general scalar-tensor theory of gravity leading to field
equations with only up to second-order derivatives of the scalar field and metric tensor,
has led to a number of black-hole solutions in the literature (see for example [123], [133]).
Here, we have turned our attention to the construction of wormholes, and formulated
a method to derive such solutions by employing a disformal transformation of the met-
ric tensor: starting from a well-known black-hole solution with a scalar field, namely
the Lu-Pang solution [111], and choosing appropriately the disformal function, we have
transformed the background metric to a new form which is characterised by the presence
of a throat and not an event horizon (see also the very recent works [130] and [131]). The
new theory at hand, after the disformal transformation, is in beyond Horndeski theory.
An important point concerning our seed solution is that the kinetic scalar term X is not
constant, otherwise the disformed solution is anew a black hole with rescaled parameters
(see for example [134]).

The throat corresponds to a root of the shape function of the metric, i.e. of the grr
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component, and by construction is located at a radial distance r0 larger than the seed
horizon radius rh of the original Lu-Pang black hole. We note that the presence of the
horizon for the seed metric is actually not necessary; in this case the throat must be
situated to the right of the local minimum of the seed metric component (rather than
the horizon radius). The gtt component is strictly negative throughout the wormhole
spacetime, playing the role of the red-shift function of the wormhole geometry. The
smaller the gtt component is, at the throat position, the closer the wormhole simulates
the geometry of a black hole.

By changing to a new coordinate system, we excise the irrelevant part of the seed
geometry and obtain a completely regular chart of coordinates. We have thus constructed
the complete regular wormhole geometry comprising two asymptotically-flat regions and
a regular throat located at the origin of the new spatial coordinate. Both metric functions
remain everywhere regular (of at least C2 regularity), and exhibit a smooth transition
from the positive to the negative radial coordinate, a result which renders unnecessary the
presence of any additional matter distribution at the wormhole throat. The curvature
invariants confirm that the spacetime is singularity-free, and our wormhole solutions
are therefore traversable by particles. They also reveal that certain wormholes can be
classified as localised solutions since the curvature of spacetime virtually vanishes at
distances only a few times the wormhole throat. In our parametrization of the solutions
these cases occur whenever the λ ∈ (0, 1) parameter is close to unity. This case is close
to the geometry and properties described in the paper by Damour and Solodukhin [18].
In fact, when λ = 1 the throat becomes an event horizon and the throat is a one-way
membrane. This of course as long as the Horndeski or Lovelock parameter α, present
in the seed metric, is such that α < M2, guarantying the presence of an event horizon
for the seed metric [111]. When, on the other hand, λ is closer to zero, the wormhole
approaches the zero tidal force type wormhole described in the classic Morris-Thorne
paper [15].

The disformal transformation leaves in principle unchanged the form of the scalar
field, however, its actual configuration changes implicitly as it depends on the gravita-
tional background. In the absence of a horizon or a singularity, the scalar field is also
everywhere regular: it takes its lowest value at the wormhole throat and approaches a
constant value at the two asymptotic infinities – the latter conforms with the localisation
of all energy-momentum components near the wormhole throat and the emergence of the
two asymptotically-flat regimes.

The construction of the aforementioned wormhole solutions was realised by choosing
a particular disformal function given in Eq. (2.13). By applying this to the Lu-Pang
metric tensor, we have changed not only the background metric but also the theory
itself. The disformal transformation takes a Horndeski solution to a beyond Horndeski
one. The form of the coupling functions of the new theory are given in Appendix A.
As already stated, this is not the only choice of disformal function one could make. For
example, one could consider the general form

W−1 = 1 +
1

λ

n∑
i=1

ci

(
r0

√
−2X̄

)i
, (6.1)
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where ci and λ are dimensionless parameters. Our choice (2.13) constitutes a particular
case of the above general expresion for n = 1 and c1 = 1. We have confirmed that
wormhole solutions with the same set of attractive characteristics emerge also for a
number of particular forms of the above disformal function. For example, for n = 2,
c1 = −2, and c2 = 1, we obtain

W (X̄(r0))−1 = 1 +
h(r0)− 1

λ
. (6.2)

Demanding that the above vanishes at the location of the throat leads to the constraint
h(r0) = 1 − λ. Using again the original Lu-Pang metric function h(r), we find that in
this case the throat is located at

r0 =
M ±

√
M2 − αλ3

λ
, (6.3)

which is actually a simpler expression compared to the one of Eq. (3.9). One could study
these in greater detail to see if there are any other additional effects from those described
here.

The construction method for wormhole solutions proposed in this work can be applied
to any black-hole solution arising in the framework of Horndeski theory as long as they
are not of the X-constant type12. The resulting wormholes are by construction solutions
in beyond Horndeski theory. In fact, the method may be applied to other solutions
of Horndeski theory, and not only on black holes, since the part of spacetime which
contains the event horizon (or a naked singularity) is discarded and therefore irrelevant.
It would be interesting to study the fate of black holes in beyond Horndeski theories
where wormholes are constructed. Indeed, note that once the wormhole is constructed
the seed black hole ceases to exist in the resulting theory and one would have to search
for an alternative solution. Furthermore, the most promising filter to keep or discard
solutions would seem to be the stability requirements (see [137], [138]) which are very
strict in the case of Horndeski theory [80], [139]. The construction of possible explicit
rotating wormhole solutions (see for example [140]) would also be a direction worthy
to follow; however, this seems at the moment quite a difficult task as the sole explicit
rotating black holes are of the X-constant type. Last but not least, it would also be
interesting to study in greater detail the geodesic motion of particles and light as well as
the resulting shadows and astrophysical effects of the explicit solutions described here.
Such a study could shed additional light in the differences (and similarities) regarding the
observable signatures between black hole and wormhole geometries, and provide specific
predictions which could serve as test points of modified theories of gravity.
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APPENDIX

A The beyond Horndeski theory

We use W−1(X̄) = 1− b1

√
−2X̄ with b1 = r0/λ, therefore the disformal transformation

is

D(X̄) = − b1

2b1X̄ +
√
−2X̄

. (A.1)

For simplicity we use X̄ = −y2. By substituting to Eqs. (2.15-2.18) and (2.20-2.21) we
find

G2 = 8αy4(1−
√

2b1y)1/2, G3X =
16α

(3
√

2b1y − 2)(1−
√

2b1y)1/2
, (A.2)

G4 = (1− 4αy2)(1−
√

2b1y)1/2, G5X = − 8α

y2(3
√

2b1y − 2)(1−
√

2b1y)1/2
, (A.3)

F4 =
b1

(
1− 2

√
2b1y

)
(4αy2 + 1)

23/2y3
(
3
√

2b1y − 2
) (

1−
√

2b1y
)5/2

, (A.4)

F5 = −
√

2αb1

(
1− 2

√
2b1y

)
3y5
(
3
√

2b1y − 2
) (

1−
√

2b1y
)7/2

. (A.5)

Finally from Eq. (2.14) we find

X = y2(−1 +
√

2b1y). (A.6)

B Near throat expansions

Near the throat of the wormhole (i.e. as l→ 0), the metric functions become

H(l) = h0 + h2 l
2 +O(l4) , F (l) = f0 + f2 l

2 +O(l4) , (B.1)
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where

h0 =(1− λ)2, (B.2)

h2 =
1

2α

(
1− 2αM + r3

0

r
3/2
0

√
8αM + r3

0

)
, (B.3)

f0 =
(1− λ) [αλ (3λ2 − 8λ+ 4) + (4− 3λ)r2

0]

4 (r2
0 − 2α(λ− 2)λ)

, (B.4)

f2 =
λr0Q1

32(λ− 1) (r3
0 − 2α(λ− 2)λr0) 3

, (B.5)

with

Q1 =2α3(λ− 2)3λ2(λ(λ(27λ− 76) + 58)− 12)

−3α2(λ− 2)2λ(λ(λ(27λ− 92) + 100)− 32)r2
0

+6α(λ− 2)(λ− 1)(3(λ− 3)λ+ 10)r4
0 + (λ(9λ− 32) + 26)r6

0.

We note that the requirement h2 > 0 results in the condition r0 > (αM)1/3 = rmin0

derived in section 3 by following an alternative approach.
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