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Traversable wormholes in General Relativity
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In [1] asymptotically flat traversable wormhole solutions were obtained in the Einstein-Dirac-
Maxwell theory without using phantom matter. The normalizable numerical solutions found therein
require a peculiar behavior at the throat: the mirror symmetry relatively the throat leads to the
nonsmoothness of gravitational and matter fields. In particular, one must postulate changing of the
sign of the fermionic charge density at the throat, requiring coexistence of particle and antiparti-
cles without annihilation and posing a membrane of matter at the throat with specific properties.
Apparently this kind of configuration could not exist in nature. We show that there are worm-
hole solutions, which are asymmetric relative the throat and endowed by smooth gravitational and
matter fields, thereby being free from all the above problems. This indicates that such wormhole
configurations could also be supported in a realistic scenario.

PACS numbers: 04.20.-q,04.25.dg

Introduction. Wormholes are hypothetical objects
connecting disparate points of spacetime or even different
universes [2]. Wormholes have never been observed and
even their existence and formation scenarios are highly
disputable questions. Nevertheless, the chance to have
a traversable wormhole or construct it in a laboratory
in the distant future pays off the efforts of theoreticians,
attracting a lot of attention recent years. Existence of
humanly traversable wormholes requires gravitational re-
pulsion, which usually could be supported by matter
with negative kinetic terms, restraining the throat from
shrinking. Examples of wormholes without adding such
phantom matter come at the price of modifications of
the gravitational theory [3–11]. Frequently, wormholes
in such theories are unstable against linear perturbations
[12, 13]. Miniature self-supported wormholes could possi-
bly exist due to vacuum polarization in their vicinity [14].
Cylindrical wormhole solutions found in [15] are noncom-
pact and glued with the asymptotically flat spacetime.

Therefore, the crucial question is whether asymptoti-
cally flat traversable wormholes could exist as compact
objects within the Einstein gravity without adding phan-
tom matter. In this case normal matter fields must any-
way violate the null energy conditions [16, 17]. Until the
recent work [1], no solutions of Einstein equations with
usual matter fields were known to provide existence of
such wormholes. Wormhole solutions in Einstein gravity
with added Maxwell and two Dirac fields with the usual
coupling between them were found in [1]. Two kinds of
wormhole solutions were represented there: The first one
is an analytical solution, describing symmetric relative
the throat wormhole supported by massless and neutral
fermions, which, themselves, are nonsymmetric relative
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the throat. However, the fermions do not decay at in-
finity and are, therefore, non-normalizable1. The other,
normalizable, solution was obtained numerically and cor-
responds to symmetric configuration of both the metric
tensor and matter fields. The solution was obtained by
integrating the field equations between the throat and
infinity, and requiring the mirror symmetry, what led to
other “exotic” properties (see [19] for details):

1. The throat becomes a special point where a massive
shell of some matter must be posed.

2. The infinitely thin shell separates the fermion par-
ticles and antiparticles which, therefore, must meet
at the throat without annihilation.

3. The metric tensor and matter fields are not con-
tinuously differentiable at the throat (although the
metric and Riemann tensors are continuous).

Thus, the consistent quantum description of such classi-
cal configuration is evidently impossible.

In this context, we are interested to know whether
traversable wormholes can exist in a more realistic sit-
uation, i. e., without the above exotic factors, such as
the mass shell on the throat or coexistence of particles
and antiparticles without annihilation. Here we show
that there are nonsymmetric, relative the throat, contin-
uously differentiable solutions that describe asymptoti-
cally flat, traversable wormholes supported by normaliz-
able and smooth matter fields. Thus, our solutions are
free from all of the above disadvantages of [1].

1 Note that traversable wormholes in the four-dimensional anti-de
Sitter spacetime can be supported by massless fermions, which
are localized near the throat [18].
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Basic equations. We consider the action [1]

S =
1

4π

∫ √−g
(

1

4
R+ LM + L1 + L2

)

d4x, (1)

where the Lagrangians for the Maxwell and two Dirac
fields with mass µ are defined as follows:

LM = −1

4
FµνF

µν , Fµν ≡ ∂µAν − ∂νAµ; (2)

L1 =
i

2
Ψ̄1γ

µDµΨ1 −
i

2
(Ψ̄1γ

µDµΨ1)
∗ − iµΨ̄1Ψ1; (3)

L2 =
i

2
Ψ̄2γ

µDµΨ2 −
i

2
(Ψ̄2γ

µDµΨ2)
∗ − iµΨ̄2Ψ2. (4)

A spherically symmetric configuration is given by the fol-
lowing line element and four-potential:

ds2 = −N(x)2dt2 +
r′(x)2

B(x)2
dx2 + r(x)2(dθ2 + sin2 θdϕ2),

Aµdx
µ = V (x)dt. (5a)

We employ the following ansatz for the spinors (cf. [20]):

Ψ1 = e−iωt+iϕ/2

















φ(x) cos θ
2

iκφ∗(x) sin θ
2

−iφ∗(x) cos θ
2

−κφ(x) sin θ
2

















, (5b)

Ψ2 = e−iωt−iϕ/2

















iφ(x) sin θ
2

κφ∗(x) cos θ
2

φ∗(x) sin θ
2

iκφ(x) cos θ
2

















, (5c)

with κ = ±1 and

φ(x) = eiπ/4F (x)− e−iπ/4G(x), (5d)

where F (x) and G(x) are real. The nonzero component
of the current is

j0 =
4|φ(x)|2
N(x)

=
4(F (x)2 +G(x))2

N(x)
. (6)

Varying the action (1) and substituting (5) in the field
equations, we obtain a set of the ordinary differential
equations for functions N(x), B(x), V (x), G(x) and F (x)
(see Supplemental Material for details).

Wormholes with Z2 symmetry. Junction condi-
tions at the throat lead to the choice of the opposite
signs for κ on different sides of the throat and changing
the sign of one of the fermion functions, G(x) or F (x),
at the throat, which corresponds to the transformation
φ+ → ±iφ∗− [1]. Therefore, it is convenient to associate
the two sides of space relative the throat with the oppo-
site signs of κ = ±1.

The analytic solution given in [1] suggests the
appropriate choice of the compact coordinate,

x = κ
√

1− r0/r, so that the two signs of x describe the
wormhole on both sides of the throat located at x = 0
(r = r0). Without loss of generality, we take r0 = 1 and
measure all the dimensional quantities in units of the
wormhole radius.

In order to obtain a symmetric wormhole, we solve the
field equations for x > 0 (κ = 1) and employ the above
junction condition to produce a symmetric solution. One
can check that the equations are automatically satisfied
for x < 0 (κ = −1) if

N−(x) = −N+(−x),
B−(x) = −B+(−x),
V−(x) = −V+(−x),

F−(x) = −F+(−x),
G−(x) = G+(−x),

ω− = −ω+.
(7)

Note that the mirror symmetry requires changing of
the sign of frequency ω and lapse function N(x) at the
throat. The latter implies that the charge density (6) also
changes its sign, i. e., particles and antiparticles meet at
the throat. Since the Maxwell potential is an odd func-
tion of x, the electric strength V ′(x) is even, having the
extreme value at the throat. Therefore, we require that

V ′′(0) = 0. (8)

With the additional condition (8), for the fixed field
charge q and mass µ > 0, all the series coefficients for
the functions N(x), B(x), V (x), F (x) and G(x) can be
calculated in terms of the following four parameters (see
the Appendix)

ni ≡ N(0), bi ≡ B′(0),
fi ≡ F (0)

√
r0, gi ≡ G(0)

√
r0.

(9)

We use the series expansions to calculate values of the
functions near the throat and use them as initial values
for numerical integration. In order to solve the system of
six first-order differential equations (31) it is sufficient
to use the standard Mathematica® Livermore Solver
with the quadruple-precision floating-point arithmetics.
We have checked that, within the numerical tolerance of
10−6, the explicit Runge-Kutta method with increased
floating-point precision yields the same results, including
the asymptotic behavior of the functions in a vicinity of
the singular points x = ±1. Therefore, we are convinced
that all six decimal cases in the presented numerical data
are accurate.

Considering fixed ni, bi, and fi, and varying gi, we find
that the fermion fields F (x) and G(x) diverge as

lim
x→1

F (x) = ±∞, lim
x→1

G(x) = ∓∞,

changing the sign at certain values of gi. Thus, one can
use the shooting method to find the value gi, such that
F (x) and G(x) vanish as x → 1. The convergent solu-
tion is such that B(1) = 1 and N(1) = σ, so that the
asymptotic observer time is τ = σt. The values of the
asymptotic mass M , charge Q, and post-Newtonian pa-
rameter γ can be read off from the asymptotic behavior
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of the functions

N+(x) = σ

(

1− 2M

r0
(1− x) +O (1− x)

2

)

,

B+(x) = 1− γ
2M

r0
(1− x) +O (1− x)2 ,

V ′
+(x) = σ

(

2Q

r0
+O (1− x)

)

.

(10)

It follows that variation of the parameter ni scales σ,
and we fix ni in such a way that σ = 1 (t = τ). Fol-
lowing [1], we choose fi = 0. Then bi parametrizes a
family of wormholes with Q > M , approaching the ex-
tremally charged Reissner-Nordström black hole in the
limit bi → 0. Larger bi corresponds to smaller values
of Q/r0, M/r0, and M/Q. We notice that this family
of wormholes differs from the one reported in [1], where
the condition γ = 1 was imposed instead of (8). The
condition (8) is more relevant, since the Maxwell equa-
tion (21) has no discontinuity at the throat because of
changing the sign of V ′′(0).

We conclude that the junction conditions for such sym-
metric wormholes lead to nonsmooth geometries and con-
figuration of matter fields. Although the metric tensor
and matter fields are continuous, their higher derivatives
have discontinuity at the throat. The geometries consid-
ered in [1] have additional discontinuity of V ′′(0). Never-
theless, the Riemann tensor is continuous in both cases.

Smooth asymmetric wormholes. In order to avoid
the above discontinuities, instead of the matching (7) at
the throat, we substitute

F (x) → F̃ (x) ≡ κF (x), B(x) → B̃(x) ≡ κB(x), (11)

in the Einstein-Dirac-Maxwell equations (31)2 and search
for a solution in the complete region −1 < x < 1. The
equations for the tilted functions do not depend on κ.
Therefore, we fix κ = 1 in a uniform way3 for the solu-
tion in the whole space −1 < x < 1. The obtained solu-
tions for N(x), B(x), V (x), F (x) and G(x) are smooth
functions everywhere, so that the densities of the elec-
tromagnetic and Dirac fields do not have discontinuities,
and the resulting configuration does not require posing
any shell of matter at the throat. The function B(x)
changes its sign at the throat (x = 0) where it crosses
the x-axis. The latter condition follows from the conti-
nuity of the radial vielbein (see Appendix) [21].

Since we do not have Z2 symmetry with respect to
the throat, we need to impose two asymptotic conditions
independently. For fixed values of ni and bi we find that,
depending on the choice of fi and gi, F (x) and G(x) can
have the following asymptotic behavior (see Fig. 3):

2 Equivalently, we can substitute G(x) → G̃(x) ≡ κG(x).
3 The physically equivalent solution for κ = −1 can be obtained by

changing the sign of the functions F (x) and B(x) and mirroring
the configuration by replacing x → −x.

1. lim
x→±1

G(x) = +∞, lim
x→±1

F (x) = ∓∞ (red);

2. lim
x→±1

G(x) = −∞, lim
x→±1

F (x) = ±∞ (blue);

3. lim
x→±1

G(x) = ±∞, lim
x→±1

F (x) = −∞ (magenta);

4. lim
x→±1

G(x) = ∓∞, lim
x→±1

F (x) = +∞ (green).

When F (x) and G(x) change the sign there are expo-
nentially decaying solutions, which we find by shooting
fi and gi. The resulting metric is asymptotically flat on
both sides of the throat,

N(x) = σ±

(

1− 2M±

r0
(1∓ x) +O (1∓ x)

2

)

,

B(x) = ±
(

1− γ±
2M±

r0
(1∓ x) +O (1∓ x)

2

)

, (12)

V ′(x) = σ±

(

±2Q±

r0
+O (1∓ x)

)

.

Note that, due to asymmetry, σ+ 6= σ−, two station-
ary asymptotic observers on the opposite sides of the
wormhole’s throat have relativistic time dilation (red-
shift). By scaling ni we can fix the coordinate time ac-
cording to one of the observers, so that either σ+ = 1 or
σ− = 1. In addition, unless q = 0, we have M+ 6= M−

and Q+ 6= Q−. However, for all the solutions we have
obtained, γ+ = γ− ≈ 1, at least within the numerical
accuracy.

Since the electric potential V (x) is now a smooth func-
tion everywhere, requirement V ′′(0) = 0 (8) seems not
relevant for this case. Although we have obtained the
wormholes, which have both smooth asymmetric contin-
uation and a continuous symmetric one, the most phys-
ically relevant condition on the throat is, apparently
(cf. [17]),

N ′(0) = 0, (13)

which leads to no gravitational force experienced by a
stationary observer at the throat (x = 0). The corre-
sponding time delation is given by σ0 = N(0) = ni.

Since the field equations (31) are invariant under
changing sign of the fermionic functions G(x) → −G(x)
and F (x) → −F (x), we can study only gi > 0 without
loss of generality. For a given bi there are various possi-
ble solutions, corresponding to different values fi and gi.
We compare two such solutions on Fig. 1. The largest
absolute values of gi and fi (producing asymptotically
flat solutions) with opposite signs (solution (1) in Fig. 1)
correspond to the fermion configuration with G(x) 6= 0
and F (x) 6= 0. The second largest values of gi and fi
lead to the fermion configuration, for which both G(x)
and F (x) cross zero once near the throat. The closer
the solution to the origin, the more zeroth the fermionic
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FIG. 1. Comparison of two solutions (qr0 = 0.03, µr0 = 0.2) with the same metric conditions at the throat (bi = 0.1) for
N ′(0) = 0 and different fermionic configurations: (1) gi ≈ 0.0109 (green) and fi ≈ −0.0138 (blue); (2) gi ≈ 0.0084 (magenta)
and fi ≈ 0.0058 (red). Even though the metric functions and asymptotic parameters are close for both configurations, the
electric and fermionic fields differ significantly near the throat.

functions possess and, consequently, the integration and
shooting should be performed with higher accuracy.

For fixed fermion mass µ and charge q we obtain differ-
ent wormhole solutions by varying bi. In the limit bi → 0
we approach the extreme Reissner-Nordström black hole.
The asymptotic charge of the wormholes is always larger
than the asymptotic mass for all the obtained solutions:
Q+ > M+ and Q− > M−. Unfortunately, considerable
increasing of bi makes integration less stable and requires
further increasing of precision for the whole procedure.

We also obtained the wormhole solutions supported
by uncharged fermions (qr0 = 0, µr0 = 0.2). Since the
Compton wavelength for the neutrinos can be of the or-
der of millimeters [23], such solutions include traversable
wormholes of the millimeter throat size. We have found
that the asymptotic mass and charge are the same for
both sides of the throat. However, the geometry is
asymmetric and there is a small redshift between the
asymptotic observers σ−/σ+ ≈ 0.99993. We compare
these solutions on Fig. 2. As the wormhole geometry
under consideration is quite different from that of the
Schwarzschild black hole, electromagnetic and gravita-

tional radiation in the vicinity of such wormholes could
be potentially observable and distinctive from those for
the Schwarzschild case. The first step in the direction
has been made in [24], where the shadows, quasinormal
ringing, and echoes of the wormholes were considered.
However, more realistic models must also include worm-
holes’ rotation.

Conclusions. In [1] the first classical configuration
supporting asymptotically flat traversable and symmet-
ric relative the throat wormholes in the Einstein the-
ory has been found in the presence of Maxwell and two
Dirac fields with usual (nonexotic) coupling. Neverthe-
less, those classical wormhole configurations have a num-
ber of unfeasible physical properties of matter at the
wormhole throat, such as coexistence of particles and an-
tiparticles without annihilation, nonsmoothness of mat-
ter fields, etc. Here we found solutions describing asym-
metric asymptotically flat traversable wormholes sup-
ported by smooth metric and matter fields, which, there-
fore, are free of all the above problems. This gives us the
hope that such kind of wormholes could exist in nature.

Acknowledgements. We thank J. Blázquez-Salcedo
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FIG. 2. Comparison of solutions of the same fermion mass (µr0 = 0.2) for bi = 0.03: q = 0, gi ≈ 0.003346, fi ≈ −0.004082
(black, top); qr0 = 0.03, gi ≈ 0.003286, fi ≈ −0.004131 (blue); qr0 = 0.1, gi ≈ 0.003145, fi ≈ −0.004247 (red, bottom). While
G(x), F (x), and B(x) are very close, the lapse function N(x) and the electric field V ′(x) differ significantly on one of the
asymptotics.

for sharing his numerical data, K. Bronnikov for bringing
our attention to [17], and R. Wald and R. Weinbaum for
useful discussions. We acknowledge support of the Grant
No. 19-03950S of Czech Science Foundation (GAČR).

Appendix: Supplemental Material.

The curved-space gamma matrices γµ are defined as

γµ ≡ eµαγ̂
α, (14)

where eµα is a tetrad of vectors,

eµαeνβη
αβ = gµν ,

and γ̂α are the Dirac matrices, satisfying

γ̂αγ̂β + γ̂βγ̂α = 2ηαβI. (15)

The spinor covariant derivative is

Dµ ≡ ∂µ − Γµ − iqAµ, (16)

where q is the Dirac field charge and spinor connection
matrices Γµ,

Γµ = −1

4
ωµαβ γ̂

αγ̂β , (17)

are calculated making use of the spin connection

ωµαβ = (eναΓ
ν
µρ − ∂µeρα)g

ρλeλβ , (18)

where Γν
µρ is the Levi-Civita connection,

Γν
µρ =

1

2
gνλ(∂µgρλ + ∂ρgµλ − ∂λgµρ). (19)

By varying the action (1), we find the following equa-

-0.02 -0.01 0.00 0.01 0.02

-0.02

-0.01

0.00

0.01

0.02

fi

g i

FIG. 3. Asymptotic behavior of the fermions (qr0 = 0.03,
µr0 = 0.2) for the asymmetric wormhole solutions (N ′(0) = 0)
for bi = 0.1. All the points where the above four regions meet,
i. e. both F (x) and G(x) change the sign at both spatial
infinities, correspond to the asymptotically flat solutions for
which both G(±1) = 0 and F (±1) = 0. For small values of
fi and gi, a fine structure of the regions is needed in order to
determine such points.
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bi gi fi ni/σ+ σ−/σ+ Q+/r0 Q−/r0 M+/r0 M−/r0 ωr0/σ+

0.03 0.003286 −0.004131 0.000257 0.945685 0.999894 0.999883 0.999894 0.999883 −0.0003901

0.04 0.004382 −0.005509 0.000457 0.945577 0.999811 0.999792 0.999811 0.999792 −0.0006936

0.05 0.005478 −0.006888 0.000714 0.945436 0.999705 0.999676 0.999705 0.999676 −0.0010838

0.06 0.006575 −0.008268 0.001028 0.945261 0.999575 0.999533 0.999575 0.999533 −0.0015608

0.07 0.007672 −0.009649 0.001400 0.945053 0.999422 0.999365 0.999421 0.999364 −0.0021247

0.08 0.008770 −0.011032 0.001830 0.944816 0.999246 0.999171 0.999244 0.999169 −0.0027754

0.03 0.002498 0.0017518 0.000442 0.995020 0.999743 0.999732 0.999743 0.999732 −0.0011131

0.04 0.003332 0.0023351 0.000786 0.995076 0.999543 0.999524 0.999542 0.999523 −0.0019789

0.05 0.004167 0.0029179 0.001230 0.995146 0.999285 0.999256 0.999284 0.999255 −0.0030926

0.06 0.005004 0.0035001 0.001773 0.995230 0.998970 0.998928 0.998969 0.998926 −0.0044544

0.07 0.005844 0.0040815 0.002416 0.995328 0.998598 0.998540 0.998595 0.998537 −0.0060646

0.08 0.006685 0.0046619 0.003160 0.995444 0.998169 0.998092 0.998163 0.998087 −0.0079238

TABLE I. Solution parameters (qr0 = 0.03, µr0 = 0.2) for the families of wormholes.

tions:

− 4πi√−g
δS

δΨ̄ǫ
= (γνDν − µ)Ψǫ = 0; (20)

4π√−g
δS

δAµ
=
∂ν

√−gFµν

2
√−g − qjµ = 0, (21)

jµ ≡ Ψ̄1γ
µΨ1 + Ψ̄2γ

µΨ2; (22)
8π√−g

δS

δgµν
=

1

2

(

Rµν − 1

2
gµνR

)

− Tµν = 0, (23)

where the stress-energy tensor is

Tµν = TM
µν + T 1

µν + T 2
µν ,

with the Maxwell and Dirac-field stress-energy tensors
defined as follows:

TM
µν = FµλFνρg

λρ − 1

4
gµνFλρF

λρ, (24)

T ǫ
µν = Im(Ψ̄ǫγµDνΨǫ + Ψ̄ǫγνDµΨǫ). (25)

Following [22], we choose representation for the Dirac
matrices,

γ̂0 = i

(

0 I

I 0

)

, γ̂1 = i

(

0 σ3
−σ3 0

)

,

γ̂2 = i

(

0 σ1
−σ1 0

)

, γ̂3 = i

(

0 σ2
−σ2 0

)

,

(26)

where σi denote the standard Pauli matrices,

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

.

so that

γ̂5 = iγ̂0γ̂1γ̂2γ̂3 =

(

−I 0

0 I

)

, (27)

and the projection operator P± = 1

2
(I ± γ̂5) implies that

any Dirac four-spinor is

Ψ =

(

ψ−

ψ+

)

, (28)

where ψ+ and ψ− are right- and left-handed two-spinors,
respectively.

Its Dirac adjoint is defined as

Ψ̄ ≡ −Ψ†γ̂0 = −i
(

ψ†
+ ψ†

−

)

, (29)

so that

iΨ̄Ψ = ψ†
+ψ− + ψ†

−ψ+.

We choose the tetrads

eµα =











−N(x) 0 0 0

0 r′(x)/B(x) 0 0

0 0 r(x) 0

0 0 0 r(x) sin θ











. (30)

Notice that as N(x), B(x) and r(x) are smooth across
the throat x = 0 for the asymmetric wormhole solution,
the tetrads are smooth as well.

Then, after some algebra, equations (20), (21), and
(23) are reduced to the following set of differential equa-
tions:
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F ′(x) = κ
r′(x)

B(x)

(

8F (x)2G(x)

B(x)
− F (x)

r(x)

)

− F (x)r′(x)

4B(x)2r(x)
− 3F (x)r′(x)

4r(x)
+
F (x)V ′(x)2r(x)

4N(x)2r′(x)
(31a)

+
ω + qV (x)

N(x)

r′(x)

B(x)

(

G(x) − 4F (x)r(x)
(

F (x)2 +G(x)2
)

B(x)

)

− µ
r′(x)

B(x)

(

G(x) +
4F (x)r(x)

(

F (x)2 −G(x)2
)

B(x)

)

,

G′(x) = κ
r′(x)

B(x)

(

8F (x)G(x)2

B(x)
+
G(x)

r(x)

)

− G(x)r′(x)

4B(x)2r(x)
− 3G(x)r′(x)

4r(x)
+
G(x)V ′(x)2r(x)

4N(x)2r′(x)
(31b)

−ω + qV (x)

N(x)

r′(x)

B(x)

(

F (x) +
4G(x)r(x)

(

F (x)2 +G(x)2
)

B(x)

)

− µ
r′(x)

B(x)

(

F (x) +
4G(x)r(x)

(

F (x)2 −G(x)2
)

B(x)

)

,

V ′′(x) = V ′(x)

(

r′′(x)

r′(x)
− 2r′(x)

r(x)
− κ

16F (x)G(x)r′(x)

B(x)2

)

+
8qN(x)r′(x)2

B(x)2
(

F (x)2 +G(x)2
)

(31c)

+
16V ′(x)r′(x)r(x)

B(x)2

(

ω + qV (x)

N(x)

(

F (x)2 +G(x)2
)

+
µ

2

(

F (x)2 −G(x)2
)

)

,

N ′(x) = N(x)r′(x)

(

1−B(x)2

2B(x)2r(x)
− κ

16F (x)G(x)

B(x)2

)

− V ′(x)2r(x)

2N(x)r′(x)
(31d)

+
8N(x)r′(x)r(x)

B(x)2

(

ω + qV (x)

N(x)

(

F (x)2 +G(x)2
)

+ µ
(

F (x)2 −G(x)2
)

)

,

B′(x) = r′(x)
1−B(x)2

2B(x)r(x)
− B(x)V ′(x)2r(x)

2N(x)2r′(x)
− 8r(x)r′(x)

B(x)

ω + qV (x)

N(x)

(

F (x)2 +G(x)2
)

. (31e)

It is convenient to introduce the auxiliary functions

U(x) ≡ ω + qV (x), (32)
W (x) ≡ V ′(x), (33)

therefore

U ′(x) = qW (x), (34)

and (31) is reduced to a system of ordinary differential
equations of the first order.

We introduce the compact coordinate through

r(x) =
r0

1− x2
, (35)

and assume that all the functions can be expanded in
series at the throat (x = 0).

Since r′(0) = 0, we require that B(0) = 0. When
expanding the righthand sides of (31) in series at the
throat we obtain divergent terms, which must vanish for
the regular solutions. These regularity conditions at the

throat lead to the following relations:

W (0)2 =
2N(0)2

B′(0)2

(

2−B′(0)2 (36)

+16r20µ
(

F (0)2 −G(0)2
)

− 32r0κF (0)G(0)

)

,

U(0) = − N(0)

32r20 (F (0)
2 +G(0)2)

(

B′(0)2 (37)

+16r20µ
(

F (0)2 −G(0)2
)

− 32r0κF (0)G(0)

)

.

The choice for the sign of W (0) corresponds to the sign
of the asymptotic charge. Without loss of generality we
assume that W (0) > 0. We also impose V (0) = 0 so that
U(0) = ω.

Thus, behavior of the solution at the throat (x = 0) is
completely determined by the parameters ni, bi, fi and gi
introduced in (9). The value of ni scales the units of time
and can be chosen in such a way that the coordinate t
is the time according to one of the asymptotic observers.
For given bi we find several asymptotically flat asymmet-
ric wormhole solutions, corresponding to different values
fi and gi (see Fig. 3).

The values of parameters describing the wormhole con-
figurations are given in table I. Notice that, in [1] the fam-
ily of wormhole solutions was parametrized by ω, while
we parametrize the family by bi, which does not depend
on the choice of the asymptotic time. We see that ω/σ+
depends monotonically on bi.
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