Traversals of Object Structures: Specification
and Efficient Implementation

KARL LIEBERHERR
Northeastern University
BOAZ PATT-SHAMIR
Tel-Aviv University

and

DOUG ORLEANS
Northeastern University

Separation of concerns and loose coupling of concerns are important issues in software enginnering.
In this paper we show how to separate traversal-related concerns from other concerns, how to
loosely couple traversal-related concerns to the structural concern, and how to efficiently implement
traversal-related concerns. The stress is on the detailed description of our algorithms and the
traversal specifications they operate on.

Traversal of object structures is a ubiquitous routine in most types of information processing.
Ad hoc implementations of traversals lead to scattered and tangled code and in this paper we
present a new approach, called traversal strategies, to succinctly modularize traversals. In our ap-
proach traversals are defined using a high-level directed graph description, which is compiled into
a dynamic road map to assist run-time traversals. The complexity of the compilation algorithm is
polynomial in the size of the traversal strategy graph and the class graph of the given application.
Prototypes of the system have been developed and are being successfully used to implement traver-
sals for Java and AspectJ [Kiczales et al. 2001] and for generating adapters for software components.
Our previous approach, called traversal specifications [Lieberherr 1992; Palsberg et al. 1995], was
less general and less succinct, and its compilation algorithm was of exponential complexity in some
cases. In an additional result we show that this bad behavior is inherent to the static traversal
code generated by previous implementations, where traversals are carried out by invoking methods
without parameters.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and
Features—Classes and objects; D.2.13 [Software Engineering]: Reusable Software—Reusable
libraries; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms
and Problems; H.2.1 [Database Management]: Logical Design—Schema and subschema; H.2.3
[Database Management]: Languages—Query languages

General Terms: Algorithms, Design, Languages, Performance

Research supported by Defense Advanced Projects Agency (DARPA) and Rome Laboratory under
agreements F30602-96-0239 and F33615-00-1694 and NSF Grant CCR 0098643.

Authors’ addresses: K. Lieberherr and D. Orleans, College of Computer Science, Northeastern
University, 360 Avenue of the Arts, Boston, MA 02115; email: {lieber,dougo}@ccs.neu.edu; B. Patt-
Shamir, Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel; email:
boaz@eng.tau.ac.il.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permision and/or a fee.

© 2004 ACM 0164-0925/04/0300-0370 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004, Pages 370-412.

Traversals of Object Structures . 371

Additional Key Words and Phrases: Aspect-oriented programming, adaptive programming,
structure-shy software, Low of Demeter, strategy graphs, class graphs, object graphs

1. INTRODUCTION

1.1 The Idea of Adaptive Traversals

The runtime state of application programs, particularly of object-oriented pro-
grams, can be represented as a directed graph, where objects are represented as
nodes and field references are represented as edges. To a large extent, program
execution can be viewed as traversing that graph. Examples of traversals are
that subobjects with certain properties are sought; or it may be desired to com-
pute a function of certain subobjects of a given object. In standard programming
techniques, expressing traversals involves a strong commitment to the whole
class structure traversed (since each hop in the traversal is explicitly coded as
in “a.b”), even if the task to be performed by the traversal depends only on the
start and the target objects.

We call a concern that deals with traversing objects for implementing some
behavior of those objects a traversal-related concern. A typical program oper-
ating on large sets of objects contains many traversal-related concerns. Those
traversal concerns already exist at the design level and become more refined as
we move from the design object structure to the implementation object struc-
ture. The ad hoc way for an experienced programmer to implement a traversal
concern is to write methods for each of the classes whose objects are traversed.
Unfortunately, this leads to a scattered and tangled implementation because
the methods that implement the concern are spread across multiple classes and
tangled with methods from other concerns.

In this paper we propose a new paradigm, called traversal strategies, or
strategies for short, which helps us to not only cleanly modularize traversal-
related concerns but also to minimally bind them to the structural concern;
that is, strategies allow the programmer to specify traversals in a localized
manner with minimal binding to the class structure. Informally, the idea is to
specify the high-level topology of the traversal, in which only the key “mile-
stones” are explicitly mentioned; given a concrete class structure, executable
traversal code is compiled, with all details filled in. Since the traversal is min-
imally bound to the class structure, changes to the class structure will often
require minimal or no changes to the traversal strategy.

Strategies are a generalized form of traversal specifications, which were in-
troduced in a simple form in Lieberherr [1992] and formally treated in a more
general form in Palsberg et al. [1995]. Succinct specifications of traversals are
an integral part of Adaptive Programming (AP) [Lieberherr 1996].

1.2 Example

To give amore concrete flavor for the usefulness of strategies, let us demonstrate
with the following simple example:

Consider a program simulating bus route management. For expressing class
graphs, we use the class dictionary graph graphical representation from the

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

372 o Lieberherr et al.

Yo Pusi il AT o, PusSiopLisl &
Lrogrbptot eaf = l. .I & I iyl e
L,] L
—a L |hhr&q:,&ﬂ:ﬂ.ﬂ |
| Ml rnply sl | F Yoy o
_L - el firsd
___§ A i

Empryfamnel e

Fig. 1. Bus simulation class graph. Squares and hexagons denote classes (concrete and abstract,
respectively), regular arrows denote field reference and are labeled by the field name, and heavy
arrows (labeled with ¢) denote the subclass relation (for the shading, see text).

Demeter method [Lieberherr 1996]. Alternative notations would be the UML
class diagram notation [Booch et al. 1999] or an XML schema notation [W3
Consortium n.d.]. For expressing behavior, we use standard Java and the DJ li-
brary [Lieberherr n.d.b; Lieberherr et al. 2001; Orleans and Lieberherr 2001],
a Java implementation of the algorithms in this paper (see Section 7.2.2 for
more details about DJ and our other software). Consider the class graph de-
picted in Figure 1, which defines a data structure describing a bus route. A
bus route object consists of two lists: a list of bus objects, each containing a list
of passengers; and a list of bus stop objects, each containing a list of people
waiting. Suppose that as a part of a simulation, we would like to determine the
set of person objects corresponding to people waiting at any bus stop on a given
bus route. The group of collaborating classes which is needed for this task is
shaded in Figure 1. To carry out the simulation, an object-oriented program
would contain a method for each of these shaded classes. These methods that
are scattered across several classes would traverse bus route objects. However,
using the technique of strategies, one can solve the problem in a much more
elegant way, by modularizing the code and keeping it in one place, rather than
scattered through several classes and tangled with other methods. We define a
strategy graph with nodes BusRoute, BusStop, and Person that are connected
by an edge from BusRoute to BusStop and an edge from BusStop to Person. In
our textual syntax, the strategy can be expressed as

from BusRoute via BusStop to Person

The benefit of strategies is apparent when considering the following sce-
nario: suppose that the bus route class has been modified so that the bus stops
are grouped by villages. The revised class graph is depicted in Figure 2. To
implement the same requirement of finding all people waiting for a bus, an

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 373

mml%
o | EmonEusSioglis

] a.u.:l-S .,

.-I s R o
Ay Eryieilagmles
|="|n.Eu:.|.|-:| | o J [Eatyagat | I‘} | |

e W e
| HanEmptyBusiis | f-" . :

Ernphl el

) | !'m-ﬁ' i, .._..-..l

ey | i
|
| Paean |
Fig. 2. Evolved bus simulation class graph.

object-oriented program must now contain one method for each of the classes
shaded in Figure 2, and thus the previous object-oriented implementation be-
comes invalid. The traversal strategy, however, is up-to-date and does not
require any rewriting. In fairness, the revision to the class graph must pre-
serve the class names referred to in the traversal strategy and the meaning of
the traversal strategy must be correct for the new class graph. When a class
graph is changed, it is important to check the correctness of all traversal strate-
gies that depend on that class graph. Sometimes it is necessary to refine the
strategies to make them correct in the new class graph, but this is easier than
updating all traversal methods manually [Lieberherr 1996].

The actual work on the objects is done by methods on a visitor object: these
are methods that can be associated with classes or edges in the class graph,
specifying what to do when the traversal arrives at an object of a particular type
or dereferences a particular field. Visitor objects are named after the Visitor
design pattern [Gamma et al. 1995] but are much simpler than visitor objects
described by the Visitor design pattern, since none of the scaffolding is needed—
by scaffolding we mean writing an abstract visitor class that duplicates much
information from the class graph.

Strategies effectively filter out the noise in the class graph which is irrele-
vant to the implementation of the current task. For the class graph in Figure 2,
the above strategy, which mentions only three classes, replaces methods
for 10 classes: BusRoute, VillageList, NonEmptyVillageList, Village, BusStopList,
NonEmptyBusStopList, BusStop, PersonList, NonEmptyPersonList, Person.

To show how to program with strategies, we complete the Java program
(using the DJ library) of finding all people waiting at any bus stop on a particular
bus route:

// in class BusRoute:

static ClassGraph cg = new ClassGraph();

static Strategy waiting = new Strategy("from BusRoute via BusStop
to Person");

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

374 o Lieberherr et al.

void printWaitingPersons() {
cg.traverse(this, waiting, new PrintVisitor());

¥

The program above defines a method called printwaitingPersons for the class
BusRoute. This method will execute the traversal specified by the strategy and
print the object of class BusRoute using the visitor class PrintVisitor. Note that
the definition of printWaitingPersons works without any change for both class
graphs, which is the reason for calling it an adaptive method [Lieberherr et al.
2001].

Notice that the adaptive method is expressed in plain Java using the DJ
library of which we use the classes ClassGraph and Visitor, the superclass of
all visitor classes (such as PrintVisitor). A ClassGraph-object is a graph whose
nodes are classes and whose edges are is-a and has-a relationships between
classes. Class ClassGraph provides methods to create and maintain a class
graph. The simplest way to create a ClassGraph-object is to call the construc-
tor ClassGraph() without arguments which will create the class graph using
Java reflection by taking all classes in the default package. A traversal strat-
egy may be applied to both a ClassGraph-object and a Java object. From the
point of view of a ClassGraph-object, a traversal strategy is a subgraph of the
transitive closure of the ClassGraph-object. When it is applied to a class graph
it selects a subset of the paths in the class graph. If applied to a Java object, a
traversal strategy defines a subgraph of the object graph representing the Java
object.

In this implementation of adaptive programming with DJ the class graph and
the traversals are computed dynamically. In other implementations of adaptive
programming (see Section 7.2), the traversals are computed statically.

To show the details of visitors, we write a Java method that counts (instead
of prints) all people waiting at any bus stop on a particular bus route. Because
the traversals for printWaitingPersons and countWaitingPersons are identical,
we reuse the same waiting traversal strategy. We also reuse the class graph cg:

// in class BusRoute:

int countWaitingPersons() {
Integer result = (Integer) cg.traverse(this, waiting,
new CountVisitor());
return result.intValue();

}

class CountVisitor extends Visitor {

int c;

public void start() { c = 0; }

public void before(Person p) { c++; }

public Object getReturnValue() { return new Integer(c); }
}

Class Visitor has a simple interface: with the start method we say what needs
to be done before the traversal starts. With the getReturnValue method we

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 375

express what needs to be returned when the traversal completes. With a before
method we express what needs to be done before we visit an object of a specific
class, specified by the method’s argument type. There are also after and around
methods; the complete API is documented in [Lieberherr n.d.b]. The before,
after, and around methods that are defined in a visitor class are invoked using
the Java Reflection API.

1.3 New Contributions

The contributions of this paper are threefold: an extension to the traversal spec-
ification language, a polynomial-time compilation algorithm for the extended
language that is simpler than our earlier algorithm, and a lower bound result
which explains the shortcomings of the previous algorithms. More specifically,
we allow the underlying specification of a traversal to have any topology, gen-
eralizing the series-parallel and tree topologies considered previously, and we
allow the use of a name map between nodes in the strategy graph and those
in the class graph. This name map supports the option for different nodes in
the strategy graph to be mapped to the same node in the class graph. Section 9
provides a more detailed comparison of traversal strategies and traversal spec-
ifications.

The generalization of our previous algorithm to a larger class of graphs was
not our primary goal for coming up with a better algorithm. It happened as
a side-effect: as we made the algorithm more efficient and usable for a larger
class of series-parallel graph/class graph combinations, the resulting algorithm
also naturally worked for any kind of graph.

Our new polynomial-time algorithm presented in Section 5 has the bene-
ficial property that it is simpler and easier to understand. Our earlier algo-
rithm required an unintuitive check for the short-cut and zig-zag conditions.
Those two conditions had to be checked to make sure that the traversal is cor-
rect. The short-cut and zig-zag conditions also prohibited many series-parallel
graph/class graph combinations. We notice that this paper is related to two
applications of Polya'’s inventors paradox [Polya 1949]:

(1) Although we solve a more general algorithmic problem at the programming
tool level, the algorithm becomes simpler.

(2) The algorithm supports better adaptive programming, which is about solv-
ing problems for more general data structures than the one originally given,
leading to simpler programs ([Lieberherr 1996], Section 4.1.1).

The compilation algorithm generates code whose running time may be
slightly worse than the running time of the code generated by previous com-
pilation algorithms (when they apply), since the previous algorithm generated
traversal methods which did not pass arguments at all. However, this minor
penalty in running time is unavoidable if we want the size of the traversal
code to be reasonably bounded: we prove in Section 6 that if no arguments
are passed by the traversal methods, then there are cases where the number
of distinct traversal methods must be exponential in the size of the strategy
specification.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

376 o Lieberherr et al.

1.4 Algorithm Overview

For those readers who don't need to understand all the details behind the al-
gorithms, we give a brief overview. Given a strategy S and a class graph G, we
need to provide an algorithm that decides which objects to visit from a node o
in an object graph, that is, we need to compute first(o), the set of edges that we
need to traverse from node 0. The function first(o) is computed based on answers
to reachability questions in the class graph; it contains all edges that could lead
(according to the rules of the class graph) to target objects. The “could” repre-
sents our lack of knowledge about the rest of the object graph [Lieberherr and

Wand 2001]. More precisely, first(o) contains all edges o " o such that there
exists an object graph rooted at o’ that contains a target object and that satisfies
a fixed set of constraints (expressed by S and G).

Our goal is to make the traversal efficient; therefore we don’t want to look
ahead in the object graph to decide whether going through an edge in first(o) will
eventually lead us to a target object. We only look ahead in the class graph be-
cause it gives us metainformation about the shape of objects. So first(o) will con-
tain all those edges after which, according to the class graph information, there
is still a possibility of reaching a target object. To quickly answer the reachabil-
ity questions we compute a new graph, called a traversal graph, which is basi-
cally the product of the two graphs S and G. The traversal graph stores the an-
swers to the reachability questions that we will ask during the object traversal.

The Traversal Graph Algorithm (TGA) is based on the following idea of a
reduction: for traversal strategies of the form “from A to B,” the paths defined
in the class graph can be represented by a subgraph of the class graph: com-
pute all edges reachable from A (called forward edges) and from which B can
be reached (called backward edges). This computation is called from-to compu-
tation. Edges in the intersection of the forward and backward edges form the
graph which represents the traversal. Any strategy can be reduced to a from-
to computation on a graph that is much larger than the original class graph.
This larger graph, called the traversal graph, will contain as many copies of the
class graph as the traversal strategy graph has edges. The size of the traversal
graph will be reduced by a from-to computation. In other words, the from-to
computation (which can be implemented, e.g., with a forward and a backward
depth-first search) is fundamental to computing the traversal graph. The size
of the traversal graph is a small polynomial in the size of the class graph and
the strategy graph.

The traversal graph is nondeterministic in nature: from a node there might
be two outgoing edges with the same label (leading to different nodes—there
are no parallel edges). This nondeterminism needs to be handled carefully in
order to avoid an exponential blowup in algorithm performance. The Traver-
sal Methods Algorithm (TMA) traverses an object graph, guided by a traversal
graph. To deal with the nondeterminism, we allow multiple tokens simulta-
neously to be put on the traversal graph to keep track of the legal traversal
possibilities. As the traversal progresses the number of tokens on the traversal
graph fluctuates. Fortunately, the number of simultaneous tokens is bounded
by the number of edges in the strategy graph.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 377

As suggested by Palsberg et al. [1997] and Smaragdakis [1997], these two
algorithms are about computing intersections of sets of paths. TGA is a variation
on an algorithm to compute the cross-product of two automata, while TMA is
inspired by the NFA simulation technique described in [Aho et al. 1986]. The
complications are in the constraint maps, the name maps, and the more complex
structure of the graphs: class graphs have two kinds of nodes and two kinds of
edges.

1.5 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce
the basic concepts, terminology, and notation we use throughout the paper. In
Section 3 we give a definition for the concept of traversals, based on Palsberg
et al. [1997]. In Section 4 we define the new concept of strategies. In Section 5
we specify and analyze the algorithm which translates strategies into traversal
code. In Section 6 we prove a lower bound for traversal methods that do not pass
arguments. In Section 7 we comment about some practical aspects of the imple-
mentation of the strategies approach. In Section 8 we survey related work. In
Section 9 we compare strategies with the earlier approach of traversal specifi-
cations. In Section 10 we describe some applications of strategies. In Section 11
we describe our experiences using strategies and present some empirical evi-
dence of how they are used. We give a few concluding thoughts in Section 12. In
Appendix A we prove Proposition 2.1 (see Section 2.3), and in Appendix B we
give the target language of a static complication algorithm (see Section 6.1).

2. PRELIMINARIES

In this section we formally define the basic concepts, terminology and notation
we use throughout this paper. All notions in this section are standard, with the
exception of Section 2.3.

2.1 Graphs and Paths

A directed graph is a pair (V, E) where V is a set of nodes, and E C V x V
is a set of edges. A directed labeled graph is a triple G = (V, E, L) where V
is a set of nodes, L is a set of labels, and E € V x L x V is a set of edges. If
e = (u,l,v) € E, then u is the source of e, | is the label of e, and v is the target

of e. We denote an edge (u, I, Vv) by u L

Given a directed labeled graph G = (V, E, L), a node-path is a sequence
P = (VoV1---Vp),Wherev; € V for0 <i <n,andvi_; — v; € E forsomel; € L for
all 0 < i < n. Similarly, a path is a sequence (voli1vils - - - Iqvn) where (Vg - - - V) iS
a node-path, and vi_; — vj € E for all 0 < i < n. Unlabeled graphs have only
node-paths. Paths of the form (vy) are called trivial. The first node of a path
(or a node-path) p is called the source of p, and the last node in p is called the
target of p, denoted Source(p) and Target(p), respectively. The elements other
than the source and the target of a path (nodes for a node-path, nodes, and
edges for a path) are the interior of the path. For a graph G, nodes u, v, and sets
of nodes U, V, we define Pg(u, v) to be the set of all paths in G with source u

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

378 o Lieberherr et al.

and target v and Pg(U, V) to be the set of all paths in G with source in U and
with targetin V.

If pp = (vo---livi) and p, = (vili;1---v,) are paths with the target
of p; identical to the source of p,, we define the concatenation p; - p; =
(Vo---Vi_iliviliz1Vier - - - Vi). Notice that p; - p, contains only one copy of the
meeting point vj. Concatenation of node paths is defined similarly. Let P, and
P, be sets of paths such that for some node v, Target(p;) = v for all p; € Py, and
Source(pz) = v for all p, € P,. Then we define

P1-Po={p1-p2| pr e Pirand p; € P,}.

2.2 Class Graphs and Object Graphs

In this paper we will be interested in special kinds of graphs, called class graphs
and object graphs, defined as follows:

Fix afinite set C of class names. Each class name is either abstract or concrete.
Fix a finite set £ of field names. We sometimes call field names labels. We
assume the existence of two distinguished symbols: this € £ and ¢ ¢ L. Class
graphs model the class structure of object-oriented programs. Formally, class
graphs are graphs G = (V, E, L) such that

—V CC, that is, the nodes are class names;

—L C L U{¢}, that is, edges are labeled by field names or “o”; edges labeled
by a field name are called reference edges, and edges labeled by ¢ are called
subclass edges;

—for each v € V, the field names of all edges going out from v are distinct (but
there may be many edges labeled by ¢ going out from v);

—for each v € V such that v is concrete, v iy e E;
—the set of subclass edges is acyclic.

We shall use the (reflexive) notion of a superclass: given a class graph G =
(V, E, L), we say that v € V is a superclass of u € V if there is a (possibly
empty) path of subclass edges from v to u. The collection of all superclasses of a
class v is called the ancestry of v. Multiple inheritance conflicts are disallowed:
we require that the following condition holds true:

Single inheritance condition: for all nodes v, if v has two superclasses
u and w with outgoing edges labeled by the same label, then either
u is in the ancestry of w or w is in the ancestry of u.

The set of induced references of a given class v is the set of all reference edges
going out from its ancestry, with the usual overriding rule: for each label | used
in edges going out from the ancestry of v, only the edge labeled I closest to v
is in the induced references of v. The notion of “closest” is well defined by the
Single Inheritance Condition above. Note that since a class is a superclass of
itself, the induced edges include both the direct references and the inherited
references.

Next, we define object graphs, which model the instantiations of class graphs.
An object graph is a labeled directed graph @ = (V’, E’, L'), where nodes are

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 379

called objects, and L’ € £. An object graph @ = (V/, E’, L) is an instance of
a class graph G = (V, E, L) under a given function Class mapping objects to
classes, if the following conditions are satisfied:

—For all objects 0 € V’, Class(0) is concrete;

—For each object 0 € V’, the labels of edges going out from o is exactly the set
of labels of the induced references of Class(o) (in particular, this means that
the edges going out from o have distinct labels):

—for each edge o Lo € E’, Class(o) has an induced reference edge v . usuch
that v is a superclass of Class(0) and u is a superclass of Class(0).

For the greater part of this paper, we shall assume that object graphs are acyclic.
We discuss an extension to cyclic object graphs in Section 5.4.

2.3 Nonstandard Notions

In this paper, we assume that class graphs are simple, formally defined as
follows:

Definition 2.1. Aclass graph G = (V, E, L) is simple if

(1) for all edges u Lve E, we have that | = ¢ if and only if u is abstract, and
(2) for all edges u > v € E, we have that v is concrete.

The first requirement says that all edges going out from abstract classes are
subclass edges and all edges going out from concrete classes are reference edges.
This property is called flatness. Flatness helps us map paths in a class graph G
to paths in an object graph which is an instance of G. The second requirement
says that all subclass edges are coming into concrete classes; this helps us find
all subclasses of a given class quickly. Note that no generality is lost by the
assumption that class graphs are simple, as the following proposition asserts.

ProrosiTion 2.1. Let G = (V, E, L) be an arbitrary class graph. Then there
exists a simple class graph Simplify(G) = (V’, E’, L) such that an object graph
Q is an instance of G if and only if is an instance of Simplify(G). Moreover,
IV'| = O(IV]) and |[E'| = O(|E?).

The Simplify transformation is outlined in Appendix A. Note that the output of
our compilation algorithm is a set of methods on an arbitrary class graph, that
is, it need not be simple. An existing class structure does not need to be modified
to be used with our algorithm; it is only the graph representation of the class
structure that may need to be preprocessed by the Simplify transformation.
Define a concrete path to be an alternating sequence of concrete class names
and labels (excluding ¢). We shall map paths in class graphs to concrete paths
by omitting abstract classes and subclass edges. We refer to this mapping
as the natural correspondence, and denote it by X (p), where p is a path in
a class graph G and X(p) is the corresponding concrete path. Similarly, we
denote the concrete path resulting from taking the sequence of class names
and edge labels in an object graph path p’ by Y (p’), and (overloading the term)
we call this mapping also a natural correspondence. The motivation for these

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

380 o Lieberherr et al.

definitions is that if p is a path in a class graph G, then there is some object
graph @ which is an instance of G, and a path p’ in @, such that X (p) =Y (p).
For a class graph path set P, define X (P) gef {(X(p)| pe P}.

3. DEFINITION OF TRAVERSALS

We now arrive at the central topic of this paper: traversals of object graphs.
Informally, a traversal is a (possibly infinite) set of concrete paths; when used
in conjunction with an object graph, it results in a sequence of objects, called the
traversal history. The traversal history is a depth-first traversal of the object
graph along object paths agreeing with the given concrete path set. To make
the traversal useful, each object has a special visit method attached to it; when
an object is added to the traversal history, this method is invoked. (A more
comprehensive discussion of the Visitor design pattern and visitor methods
can be found in Gamma et al. [1995] and Seiter et al. [1996, 1998].)

But first, we define traversals formally. The definition here is adapted from
the “simplified semantics” from Palsberg et al. [1997]. We use a few technical
notions. For a set of sequences R € ¥* for an alphabet X, define

head(R) = {X € X | Ja.(Xa € R)},
tail(R, x) = {« | Xxa € R for some x € X} .

Intuitively, head(R) is the set of all first elements of R, and tail(R, x) is the set
of all “tails” of sequences of R that start with x (where a tail of a sequence is
the whole sequence except its first element).

In the definition below, we assume that there exists a total order < on the set
of field names L (this assumption may be weakened somewhat). We first give
the formal definition, then explain it in words.

Definition 3.1 (from Palsberg et al. [1997]). Fix a class graph G. If Q is an
acyclic object graph which is an instance of G, o an object in 2, R a set of
concrete paths corresponding to paths of G, and H a sequence of objects, then
the judgment

QF,0:R>H
means that when traversing the object graph 2 starting with o, and guided by

the concrete path set R, then H is the traversal history.> This judgment holds
when it is derivable using the following rules:

m if tall(R, ClaSS(O)) =0, (1)

where ¢ denotes the empty history, and
Q s 0; : tail(tail(R, Class(0)), I;) > Hi; Viel.n
QFs0:R>0-Hy-...- Hy
if head(tail(R, Class(0))) = {l; | i € 1..n},

0% o isinQ,ie1.n, and 2
lj <Ikforl<j<k<n.

1The label s of the turnstile indicates “semantics.”

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 381

In other words, a traversal of an object graph Q starting with an object o guided
by a path set R is done as follows. First, the first elements of the sequences of
R are compared to Class(0): sequences beginning with another element are im-
mediately thrown out of consideration. If the remaining path set is not empty,
then o becomes the first element of the history; it is followed by the histories
resulting from starting a traversal from each descendent of o, guided by the
remainder of the path set after “peeling off” the first two elements (correspond-
ing to 0 and the edge going out to the descendent). Intuitively, this procedure
is depth-first search on Q@ with R used to determine how to prune the search.
Please note that concatenation of traversal histories does not use the same
definition as concatenation of paths; it is the usual concatenation of sequences.

Remark. Note that the guarantee made by a traversal guided by a path set
R is the following: a path p in the object graph is followed so long as there is
a path g € R such that q has a prefix which is equal to the current prefix of p
(taking the Class(0) instead of o in p). In other words, the decision whether the
traversal takes a certain branch in the object graph depends only on the portion
of the graph visited so far and on the current branch, and not on the links further
ahead. This means, for example, that even if all paths in R end with the same
class A, some of the traversal paths may end with a node o with Class(o) # A
just because the path to o is a prefix of a path in R. This relaxation is necessary
to enable efficient implementation of traversals by looking only ahead in the
class graph and not in the object graph as discussed earlier.

4. STRATEGIES: SPECIFICATION OF TRAVERSALS

In this section we define strategies, which are a graph-based language for ex-
pressing traversals. In Section 4.1 we give a basic definition of strategies and
explain how strategies express traversals. Then, in Section 4.2, we give the full
definition of strategies using the additional concept of a constraint map. This
extended notion is the one we shall be using in the remainder of the paper. In
Section 4.3, we discuss a few possible additional refinements of the concept of
strategies.

4.1 Strategies

Traversals are defined in terms of sets of concrete paths. Strategies select class
graph paths and then derive concrete paths by applying the natural correspon-
dence. Intuitively, a strategy selects class graph paths by specifying a high-level
topology which spans all paths in the selected set. Formally, strategies are de-
fined as follows:

Definition 4.1. A strategy S is a triple S = (S, s, t), where S = (C, D) is a
directed unlabeled graph called the strategy graph, where C is the set of strategy
graph nodes and D is the set of strategy graph edges, and s, t € C are the source
and target of S, respectively.

The connection between strategies and class graphs is done by a nhame map,
defined as follows.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

382 o Lieberherr et al.

Definition 4.2. Let S = (C, D) be a strategy graph and let G = (V, E, L)
be a class graph. A name map for S and G is a function N : C — V. If p is
a sequence of strategy graph nodes, then A/(p) is the sequence of class nodes
obtained by applying A to each element of p.

The basic idea of strategies is that under a name map, a path in the strategy
graph is an abstraction of a set of paths in the class graph. This is done by view-
ing each strategy graph edge a — b as representing the set of paths in the class
graph starting with node N'(a) and ending at node N (b). This representation
naturally extends to paths in the strategy graph: A path in the strategy graph
represents a set of paths in the class graph obtained by concatenating the sets
of class graph paths obtained from each strategy graph edge.

We now make this intuition formal using the concept of path expansion,
defined as follows:

Definition 4.3. Given a nontrivial sequence p, a sequence is called an ex-
pansion of p if it can be obtained by inserting one or more elements between
the elements of p. The only expansion of a trivial sequence is itself.

Note that if p’ is a path which is an expansion of another path p (possibly in
another graph), then Source(p) = Source(p’) and Target(p) = Target(p’).

We now formally define the basic way strategies express paths in object
graphs. Recall that Pg (s, t) denotes that set of all paths in G starting at s and
ending at t and X is the natural correspondence mapping class graph paths to
concrete paths.

Definition 4.4. LetS = (S, s, t) be a strategy, let G = (V, E, L) be a class
graph, and let /' be a name map for S and G. Then

S[G, NT={X(p) | p" € Pc(N(s), N(1)) and 3p
e Ps(s, t) such that p’ is an expansion of M(p)}.

Note that S[G, NV is a set of concrete paths: intuitively, first a set of class graph
paths is selected, and then the natural correspondence is applied to obtain
concrete paths. These concrete paths can be used (playing the role of “R”) in
Definition 3.1.

4.2 Using a Constraint Map

Strategies impose positive constraints on paths, in the sense that they specify
which nodes must be traversed in which order. It turns out that it is quite
useful to also have negative constraints: what nodes and edges cannot be used
between the specified milestones. We formalize this idea with the concepts of
element predicates and constraint maps.

Definition 4.5. Givenaclass graph G = (V, E, L), an element predicate EP
for G is a predicate over V U E. Given a strategy graph S, a function B mapping
each edge of S to an element predicate for G is called a constraint map for S
and G.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 383

(Of course, some predicate specification languages may be very hard to com-
pute. For computational complexity purposes, we assume that there exists a
parameter, denoted 7, such that given an element of G, determining whether it
satisfies an element predicate can be computed in no more than tr time units.)

The constraint map is used to specify, for each edge in the strategy graph,
which elements of the class graph may be used in the traversal corresponding
to that edge. Formally, we have the following definition:

Definition 4.6. Let S be a strategy graph, let G be a class graph, let N be
a name map for S and G, and let B be a constraint map for S and G. Given a
strategy graph node path p = (aga; - - - an), we say that a class graph path p’ is
a satisfying expansion of p with respect to B under A if there exist nontrivial
paths pg, ..., pn such that p’ = (M(ag)) - p1- P2 -+ pn and

(1) forall 1 <i < n, Source(p;) = M(ai_1) and Target(p;) = N (ai);
(2) for all 1 < i < n, the interior elements of p; satisfy the element predicate
B(ai,l — ai).

If n = 0, that is, p is a trivial path (ap), then its only satisfying expansion is
(N (20))-

Note that there may be many ways to decompose a path in accordance with
Condition 1 in the definition above; a path p’ is a satisfying expansion of a path
p if for one of these decompositions, Condition 2 holds as well.> Note also that
the element constraints are never applied to the ends of the subpaths.

One consequence of our definition is that every edge in a strategy graph
path corresponds to one or more class graph edges in a satisfying expansion:
if M(ai_1) = NM(a), the path p; may not be the trivial path (N (a;)). A further
consequence is that every class graph edge in a satisfying expansion satisfies
at least one element predicate in the constraint map.

Using the constraint map, we now define a more elaborate way in which a
strategy expresses paths in object graphs.

Definition 4.7. LetS = (S, s,t) be a strategy, let G = (V, E, L) be a class
graph, let N be a name map for S and G, and let B be a constraint map for S
and G. Then S[G, NV, B] is the set of concrete paths defined by

S[G, N, Bl ={X(p) | p € Pc(N(s), N(t)) and 3Fp e Ps(s,t) such that p'is
a satisfying expansion of p with respect to B}.

Note that S[G, N] = S[G, N, Bire] for the constraint map B, Which maps all
strategy graph edges to the trivial element predicate that is always TRUE.

4.3 Remarks

Encapsulated strategies. The way strategies are presented above, a con-
straint map can be specified only when the class graph is given, as the element

20ther definitions are possible, for example to require that a subpath ends when its target node
is reached. We have found the nondeterministic definition above to be the most useful. Constraint
maps can be used to reduce or eliminate the nondeterminism.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

384 o Lieberherr et al.

predicates are expressed in terms of class graph nodes and edges. An impor-
tant design consideration, however, is to encapsulate the constraint map with
the strategy and use the name map as the only interface to the class graph;
we call this approach encapsulated strategies. The advantage of encapsulated
strategies is that they allow one to have a clean interface between the strategy
and the class graph, captured completely by the name map.

We only outline the details of the concept here, since it is not central to the
algorithmic issues we focus on in the remainder of this paper. The idea is that
instead of letting the element predicates range over the (yet unspecified) class
graph, they range over variables called symbolic names. Binding to actual class
graph elements is done only later, when the name map is introduced. Techni-
cally, we have an additional level of indirection in the encapsulated strategy:
instead of explicit references to the class graph elements in the constraint map,
the element predicates are predicates over symbolic nodes and symbolic edges.
These are denoted using a set M of strings, which are used as place-holders for
class names and labels (symbolic edges are constructed from a pair of symbolic
node names and a symbolic label). More formally, an encapsulated strategy is
a tuple £ = (S, M, B'), where S is a strategy, M is a set of symbolic names,
and B’ is a function mapping edges of the strategy graph to predicates over
the symbolic elements. To support encapsulated strategies, the name map is
extended to map also symbolic names to actual class names and label names
in the class graph.

Wildcard notation in predicate specification. We left the issue of how to
specify the predicates open. One naive way of doing it is to enumerate all ele-
ments to be used, or alternatively to enumerate all elements to be excluded (cf.
“only-through” and “bypassing” clauses presented in Section 7.1). More expres-
sive power is given by allowing wildcard symbols to be used in the predicate
specification. For example, an element predicate may be raLse for all elements
of the form % %, which means that no edges labeled | can be traversed. The
unique feature of this notation is that it allows the programmer to refer to el-
ements whose identities are not necessarily known at predicate-specification
time. Even when using encapsulated strategies as above, the programmer can
only refer to symbolic names, which are later mapped to only a subset of the
elements of the actual class graph, while the wildcard notation is implicitly
mapped to all elements in the class graph as appropriate.

There is a difference between the strategies used by the algorithm, on the
one hand, and the data structures available in our implementation (described
in Section 7). In the former, strategy graph edges are general, with a restriction
only on the cost of verifying the governing condition per vertex and per edge.
In the latter, only a small set of predefined predicates are used (bypassing,
only-through). The reason for this difference is that we wanted the abstract
model to be easy to express and it turned out that a more general formulation
is easier to express. The general model can easily handle the particular edge
predicates actually in use in the implementation. For the current applications
the expressive power of the model used by our implementation is sufficient.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 385

Indeed, when the class graph is known, all strategies can be simulated by single
edge strategies using bypassing clauses bypassing sufficiently many nodes and
edges in the class graph.

Cyclic graphs. Strategy graphs may be cyclic and so may class graphs and
object graphs. However, for the purpose of dealing with traversals, it is sufficient
to consider object trees. Nonobject trees need to be addressed by appropriate
visitors. See Section 5.4 for more discussion.

5. COMPILATION ALGORITHM

In this section we show how to implement traversal strategies efficiently by
compiling them into executable programs. Formally, the compilation problem
is defined as follows:

— Input: a strategy S = (S, s, t), a simple class graph G = (V, E, L), a name
map N for S and G, and a constraint map B for S and G.

—Output: a set of methods such that for any object graph €, invoking the
traversal method at an object o in yields a traversal history H satisfying
the judgment Q s o : S[G, NV, B] > H.

Recall that S[G, NV, B] is a path set which can guide traversals of object graphs
directly. Our compilation consists of two algorithms. For an overview of the
algorithms see Section 1.4.

(1) We first invoke an algorithm (called TGA below) which uses S, G, A/, and
B to construct a graph which expresses the traversal S[G, AV, B] in a more
convenient way; we call this graph the traversal graph, and denote it by
TG(S, G, N, B).

(2) We then generate traversal methods that employ another algorithm (called
TMA below), which uses TG(S, G, NV, B)—the result of TGA—at runtime.

The remainder of this section is organized as follows. In Section 5.1 we describe
TGA. In Section 5.2 we describe TMA. In Section 5.3 we analyze the compu-
tational complexity of the algorithms. We conclude this section with numerous
extensions and variants for the basic algorithm, listed in Section 5.4.

5.1 The Traversal Graph

In this section we explain how the traversal graph is computed, based on
a strategy S = (S,s,t), a simple class graph G = (V, E, L), a name map
N for S and G, and a constraint map B for S and G. The traversal graph,
denoted TG(S, G, N, B), is created by a series of transformations based on
the class graph, the strategy, the name map, and the constraint map. The
basic idea is to replace each strategy graph edge by a copy of the class
graph appropriately pruned down to elements that satisfy the edge’s element
predicate.

The reader may follow a running example presented in Figure 3 (DJ code for
the example is given in Section 7).

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

386 o Lieberherr et al.

| ?

Fig. 3. An example of traversal graph computation (Steps referred to can be found in TGA text).
1: The input class graph. Edge labels are omitted from subsequent graphs. 2: The input strategy
(the name map is indicated). In this example, the constraint map is as follows: B(e;)(B Y Z) =
FaLse and B(e1)(x) = True for all x # B 5 Z; B(ey)(x) = trRUE for all x; B(e3)(A — D) = FaLse and
B(e3)(x) = TruE for all x # A — D; and B(e4)(x) = FaLse if x = Aorif x is an edge incident to A, and
B(e4)(x) = TrRUE otherwise. 3: G’ after Steps 1 and 2. 4: G’ after Steps 3a and 3b. Intercopy edges
are dashed. 5: G’ after Steps 3c, 3d, and 4. 6: The final traversal graph, as returned in Step 6. The
shaded A nodes are the start set Ts, and the shaded node E* is the finish set Ts.

Traversal Graph Algorithm (TGA): Let the strategy graph be S = (C, D), and let the
strategy graph edges be D = {e1, €5, ..., &}.

(1) Create a graph G’ = (V/, E’) by taking k copies of G, one for each strategy graph
edge. Denote the ith copy as G' = (Vi, E'). We will use the correspondence between
each strategy graph edge e; and G'. The nodes in V' and edges in E' will be denoted
with a superscript i, as in V', e, etc. Each class graph node v corresponds to k nodes
in V’, denoted V!, ..., vk. We extend the Class mapping to apply to the nodes of G’

by setting Class(v') & v, where vi € V/ and v e V.

(2) For each strategy graph edge e; = a — b: Let M'(a) = u and NV (b) = v. Remove from
G' the elements which do not satisfy B(e;). More precisely, set

Vi« (U, viyu{w' | B(ei)(w) = TrRuE} , and
El « {Uf Ly | B(ej)(u N V) = TRUE} U
(U 5y BE)U > y) = Blei)(y) = TRUE} U

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 387

w5 Vi | Ble)(w > v) = B(e;)(w) = TRUE} U
(W' y' | Ble)(w > y) = B(e)(w) = B(e)(y) = TRue}.

(3) (a) For each strategy graph node a € C: let | = {g; , ..., &;,} be the set of strategy
graph edges coming into a, and let O = {e,,, ..., &, } be the set of strategy graph
edges going out from a. Let M'(@) = v € V. Add to G’ n- m edges vii — v for
j=1,...,nandl =1,..., m. Call these edges intercopy edges.

(b) Add to G’ a node N (t)* and, for each edge e; coming into the target node t in S,
an intercopy edge N (t)' — N(t)*.

(c) For each node V' in G’ with an outgoing intercopy edge: add to G’ edges U Lyi
for all u” and v/ such that u' — v € Ef and v! — vl is an intercopy edge.

(d) Remove all the intercopy edges added in Steps 3a and 3b.

(4) Add to G’ a node s* and, for each edge e; going out from the source node s in S, an
edge s* — N(s)'. If s=t, add to G’ an edge s* — N (t)*.

(5) Mark all nodes and edges in G’ which are both reachable from s* and from which
N (t)* is reachable, and remove unmarked nodes and edges from G’. Call the resulting
graph G” = (V", E").

(6) Return the following objects:

—The set of all nodes v such that s* — v is an edge in G”. This is the start set,
denoted Ts.

—The graph obtained from G” after removing s* and all its incident edges. This is
the traversal graph, denoted TG(S, G, NV, B).

For the purpose of analysis, we also define the finish set of the traversal
graph, denoted T+, to be the singleton set containing the node A/ (t)*.

5.1.1 Correctness. We now prove that TGA is correct, in the sense that
the set of paths in the traversal graph (from the start set to the finish set) is
exactly the set of paths defined by the strategy. This property is formally stated
in Lemma 5.2.

First, we show a basic property of paths in the traversal graph.

Lemma 5.1. If pis a path in the traversal graph, then under the extended
Class mapping, p is a path in the class graph.

Proor. Note that for any edge u L Vi in the traversal graph, we have that

the corresponding edge u L visin the class graph. This can be verified by
inspection: the only edges added to the graph which remain after Step 6 are
added in Step 3c. O

By Lemma 5.1, we can apply the natural correspondence X to paths in the
traversal graph to obtain concrete paths. This allows us to state the main prop-
erty of the traversal graph in the following lemma.

Lemma 5.2. Let S be a strategy, let G be a class graph, let /' be a name
map, and let B be a constraint map. Let TG = TG(S, G, N, B), let T be the
start set, and let T+ be the finish set generated by TGA. Then X (P1g(Ts, Tt)) =
S[G, N, B].

Proor. Let p € Prg(Ts, Tt) be a path in the traversal graph. To see that
X(p) € S[G, N, B], we decompose p according to the different copies of G it

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

388 o Lieberherr et al.

passes through. Intuitively, we take the maximal segments of p which are con-
tained in the same copy of G, and the next node (which is in another copy).
Formally, we decompose p = (Vs) - p1 - P2--- Pn inductively by the following
algorithm:

i < 0; v < head(p)
output v
whilev ¢ T¢
i<i+1
let j(i) be such thatv e GI®
/I accumulate prefix of p until exiting G1®
pi < (V)
repeat
p <« tail(p); | < head(p)
p < tail(p); v < head(p)
pi < pi- (VIV)
V<V
untilv ¢ GI0
output p;

Suppose that the algorithm above outputs vs and n sub-paths py, ..., pn.
Fori =1,....n, letvi.y — vi = ejg with j(i) as defined by the algorithm,
that is, ej; is the edge in S corresponding to the index of the copy of G through
which pj is passing. With this notation, consider the sequence of strategy graph
nodes g = (Vovy---Vp). (If n = 0, let g = (s), where s is the source of S.) By
construction, g is a path in the strategy graph: this is because the only edges
in the traversal graph which go from one copy of G to another are created in
Step 3c of TGA, where an edge goes from G' to G only if Target(e;) = Source(e;j).
Next, note that since Source(p) € Ts, we have by Step 4 and the definition of
Ts that Class(Source(p)) = N(s), where s is the source of S, and, similarly,
Class(Target(p)) = N(t), where t is the target of S. Finally, note that p is a
satisfying expansion of g with respect to B. It therefore follows that X (p) €
S[G, N, B].

Suppose now that p € S[G, N, B]. By Definition 4.7, there exists a path p’
in the strategy graph and a path p” in the class graph such that p = X (p”)
and p” is a satisfying expansion of p’. Hence p” can be decomposed into sub-
paths p” = <N(S)> - P1 - P2--- Pn as in Definition 4.6. It is straightforward
to verify from Definition 4.6 and the specification of the traversal graph that
p” € Pro(Ts, Tr). O

5.2 Traversal Methods Algorithm

To carry out traversals, we attach a traversal method definition to each concrete
class. In this section we describe the algorithm of these methods.

Intuitively, the idea is to traverse the object graph while using the traversal
graph as a road map that tells the traversal which of the possible branches to
take. To do that, the algorithm maintains a set of tokens placed on the traver-
sal graph. When a traversal method is invoked at an object, it gets the set of
tokens as a parameter; the interpretation of a token placed on a node v in the

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 389

traversal graph is roughly “the traversal made so far may have led to v.” The
fact that there may be more than one token simultaneously is a reflection of
the fact that the path leading to an object in the object graph may be (under the
natural correspondence Y) a prefix of several distinct paths in S[G, N, B]. This
matters, because if there are several tokens, we might have more possibilities
for selecting the next traversal step.

The traversal method is denoted below by Traverse(T), where T is the set of
tokens, that is, a set of nodes in the traversal graph. When the traversal method
invokes the visit method at an object, that object is added to the traversal history.
The description below is generic in the sense that the same method is used
for all objects; it can be used for different traversals, using different traversal
graphs.

We assume that each object can find its class name and can iterate through
all its constituent fields at run time. This assumption can be fulfilled either by
some minor preprocessing or by reflection.

Traversal Methods Algorithm (TMA): Traverse(T), guided by a traversal graph TG.
(1) Define a set of traversal graph nodes T’ by

T’ < {v|Class(v) = Class(this) and Ju€ T such thatu =voru S visan edge in TG}.
(2) If T' =0, return.
(3) Call this.visitQ).

(4) Let Q be the set of labels which appear both on edges going out from a node in T’ in
T G and on edges going out from this in the object graph. For each label | € Q, let

T ={v|u—|>veTGf0rsomeueT’}.
(5) Call this.l.Traverse(T;) for all | € Q, ordered by “<”, the ordering of the labels.

Step 1 of TMA makes sure that the token set corresponds to the class of
the current object: the tokens in T placed on concrete classes appear in T’
only if they are placed on a node corresponding to Class(this). And the to-
kens in T placed on abstract classes are moved in T’ to their subclass node
whose class is Class(this) (if there is one; otherwise, they are simply dis-
carded). In any event, all tokens in T’ are placed on nodes corresponding to
Class(this).

An example run of the algorithm is given in Figure 4, based on the traversal
graph of Figure 3. The following remarks help to understand Figure 4:

—For simplicity, child order is assumed alphabetical.

—1In Step 3, the traversal from B to D passes through the abstract class Z (and
similarly in other steps).

—Step 4 could also derive a step to D if there were such a child, but there is no
such child in the object graph.

—Step 6 represents the second child of the original token A in Step 1. However,
the token set is empty because the A—C edge is missing in copies 1 and 3 of
the class graph. Note that in Step 1 only the A in copies 1 and 3 is shaded.

—The process hits the target node in Steps 5 and 9.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

390 o Lieberherr et al.

@%@
=Y

1
YN

]
[}~

Bl
[=]
E~El=E

[El={al=]=] |
== |

[E}fz}=E=(x]

=

3
-
ol i’
-

:J i 2] 'lJl'r
?—-h.:_
il 'E?rl

- : =

-
=2

(L7

[g el =

|

7

|"||'|l‘lul -
=l
izt

Fig. 4. An example of an execution of traversal using the traversal of Figure 3. At each step, the
left-hand side shows the object tree with the currently active object shaded, and the right-hand
side shows the traversal graph with the token set shaded.

Correctness. The following lemma states the main property of the traversal
algorithm.

LeEmvma 5.3. Let Q be an object tree, and let o be an object in Q2. Suppose that
the Traverse methods are guided by a traversal graph TG with finish set Ts.
Let H(o, T) be the sequence of objects which invoke visit while o.Traverse(T) is
active, where T is a set of nodes in TG. Then

QFs0: X(Pra(T, Ts))>H(, T).

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 391

Proor. By inductionon |H(o, T)|. For the base case, suppose that H(o, T) =
€. By the algorithm, this can occur only if after Step 1, T’ = ¢, which means
that for all concrete nodes v € T, Class(v) # Class(0), and that no abstract
node in T has a child whose class is Class(0). It follows from Definition 3.1
that tail(X (Pt (T, T¢)), Class(0)) = ¥ and hence Q - 0 : X(P1g(T, T¢)) > €, as

required.

For the induction step, assume that |[H(o, T)| > 0. Let I4,...,1, be the
set of labels of traversal graph edges which start with a node in T’, and
let oj = ol; fori = 1,...,n. In this case, by the algorithm we have that

H(o, T) = 0-H(o01, T1)--- H(on, Tn), where T; is the set of traversal graph nodes
v such that u 25 v for some u e T’ and such that o % o’ is an edge in the ob-
ject graph. It is follows directly from the definitions that X (Prg(Ti, T¢)) =
tail(tail(X (Pt (T, T¢)), Class(0)), Ii), and hence, by the induction hypothesis,
QFso0: X(Pra(Ti, T¢)) > H(oj, Tj) and we are done. O

We summarize in the following theorem.

THeorem 5.4. Let S be a strategy, let G be a class graph, let A" be a name
map, and let B be a constraint map. Let TG be the traversal graph generated
by TGA, and let Ts and T; be the start and finish sets, respectively. Let be an
object tree and let o0 be an object in Q. Let H be the sequence of nodes visited
when o.Traverse is called with argument Tg, guided by TG. Then

QFs0: X(S[G, N, B]) > H.

Proor. By Lemma 5.3, the judgment Q@ s o : X(Ptg(Ts, T¢))> H holds
true. The claim of the theorem follows from the fact that S[G, N, B] =
X(PTG(S,G,/\/,B)(TS’ T¢)) by Lemma 5.2, and from the definitions of the start
set T and the finishset T¢y. O

From the theorem above it is clear how to start a traversal at an object o:
Call o.Traverse with argument T, where Ts is the start set of the traversal.

Remarks. Note the following:

—Closed-world assumption. The class graph provided as input to TGA is as-
sumed to be the entire class graph of the program. If an object whose class
is not in G is encountered while executing TMA, even a subclass of a class
in TG, Step 1 of TMA will produce an empty T’, and Step 2 will stop the
traversal from continuing out of this instance.

—Non-simple-class graphs. While the class graph G is assumed to be simple,
and thus the edges whose labels are in Q (computed in Step 4) go out of
Class(this), the Traverse methods are equally suitable for a non-simple-class
graph whose simplification is G, because these edges are induced references,
that is, fields inherited from the ancestry of Class(this).

—Null references. Our definition of object graphs disallows null references
(though they may be simulated using something like the Null Object pat-
tern [Woolf 1996]), but in a language such as Java or C++ that permits null

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

392 o Lieberherr et al.

references, Step 5 should check that each this.l is nonnull before invoking
Traverse on it.

5.3 Computational Complexity of the Algorithm

It is easy to see that the time complexity of TGA is polynomial in the size of its
input. All steps run in time linear in the size of their input and output. Steps 1
and 2 take time linear in |G’| = O(|S] - |G]) and in 7, where t is the time bound
for evaluating an element predicate for a given element. To bound the size of the
traversal graph, let d, be the maximal number of edges going out from a node
in the class graph. Note that all edges added in Step 3 correspond to class graph
edges. It follows that the number of outgoing edges added to a traversal graph
node in Step 3 is d, times the number of copies of G in G’. Hence Step 3 may
increase the size of of the graph to O(|S|? - |G| - d,) in the worst case. Steps 3b,
4, and 5 run in time linear in |G”| = O(|S|? - |G| - dy).

As for TMA, we note that the size of the argument T is bounded by the size
of the strategy graph. This follows from the observation that in all recursive
invocations of Traverse made by the algorithm, for all v,u € T we have that
Class(v) = Class(u). Since each copy of the class graph in the traversal graph
contains at most one node of each class, it follows that the number of nodes in
T is never more than the number of edges in the strategy graph.

The proper way to describe the complexity of TMA is to express it in terms
of the number of edges in the object graph and to consider the traversal graph
size and the token set size as a constant. For each edge in the object graph we
query a traversal graph edge and, when the object graph edge is selected, we
need to manipulate the token set. The complexity of TMA is proportional to the
number of edges in the object graph.®

5.4 Extensions

5.4.1 Multiple Sources and Targets. As evident in the statement of
Lemma 5.3, the initial set of nodes in the traversal graph from which the traver-
sal starts can be arbitrary: the set of paths traversed would change, but in
accordance with the traversal strategy, using an appropriate definition. In par-
ticular, one may have more than one start node in the strategy graph, which
is interpreted as several optional “entry points”; it may be the case that the
same traversal is sometimes started with a node of class A and at another time
with a node of class B (or, more generally, with different nodes in the strategy
graph). Similarly, it may be the case that we don’t need all traversal paths to
end with the same target node. This can be useful, for example, if we want to
traverse a tree of classes, rather than traverse all paths leading towards the
same target class.

This situation of multiple sources and targets can be easily handled by our
algorithm: suppose that we have a set A of source nodes and a set B of target

3Note that if we allow users to call the initial traversal with arbitrary values of T (to allow multiple
sources; see Section 5.4), then it may be the case, at the first call only, that | T| is greater than the
number of strategy graph edges.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 393

nodes for the strategy. All we need to do is to change Steps 3b and 4 of TGA to
be the following:

(3b") Foreacht € B, add to G’ a node A/(t)* and, for each edge e; coming into t
in S, an intercopy edge N (t)' — N/(t)*.
(4) Add to G’ a node s* and, for each edge e =s — v € D wheres € A, an
edge s* — N(s)'. For eacht € AN B, add to G’ the edges s* — N(t)*.

The finish set T is then defined to be the set of nodes N (t)* for all t € B.

The extension to multiple targets is particularly useful when the target of
the traversal is an abstract class: suppose we want to traverse to a class A
which happens to be abstract. The natural interpretation is that the traversal
should end at whatever subclass of A which happens to be in the object graph.
However, with the semantics specified above, if the target of the strategy is A,
then the object (whose class is concrete) substituting for A is not visited. To
visit the object substituting for A regardless of its actual class, we can simply
state that the target of the strategy is the set of all subclasses of A.

5.4.2 “Before,” “After,” and “Around” Methods. The semantics presented in
Section 3 imposes a pre-order of visiting the objects selected by the traversal,
as evident in TMA: first the object is verified to be on a traversal path, then it
is visited, and then the traversal proceeds down the tree. We call such visitor
methods before visitor methods. It is sometimes useful to have the visitor meth-
ods invoked in postorder, namely, first descend down the tree and then invoke
the visitor method. These visitor methods are accordingly called after visitor
methods. It is a simple exercise to adapt the definition of traversals to deal with
after visitor methods.

Both before and after visitor methods are generalized by the notion of around
visitor methods, whose code is interleaved with the traversal method code of
TMA. This allows for before and after methods (which can communicate directly
by shared data structures), and it also allows the visitor to directly manipulate
the traversal, for example, by invoking it multiple times, or by pruning it.

5.4.3 Cyclic Object Graphs. One of the apparent disadvantages of the ap-
proach presented in the current paper is that it deals only with tree (or forest)
object graphs. This problem can be solved in many ways, depending on the in-
tended semantics. In the current implementations, we use visitor methods to
make sure that a visited node is not revisited in directed acyclic or in cyclic ob-
ject graphs. The main point is that we already have all the machinery to carry
out a depth-first traversal of a part of the object graph as selected by the strat-
egy, so it is quite easy to vary the implementation slightly to accommodate for
our needs. In a sense, what we need is a specialized around method (see above).

For example, one reasonable choice is that no object is visited twice. This
can be easily implemented by associating a “visited” bit with each object (or
alternatively a hash table), and using it as expected, namely to execute the
following as the first step in the traversal method (TMA) (initially, 0.visited =
raLse for all objects o):

0. If this.visited = TRUE, return. Else this.visited <« TRUE.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

394 o Lieberherr et al.

6. THE LIMITS OF STATIC TAVERSAL CODE

One appealing approach to compiling executable code from traversal strategies
is to use only static analysis: in this context, this means that only method invo-
cations are used to traverse the graph, with no further computation while the
program is running. The advantage of the static approach is that the runtime
overhead due to traversals is minimal. The possible disadvantages are larger
compile time and higher space requirement for the executable code—but how
large can they be? Early implementations of traversals were static, but they
suffered from either being limited in scope [Palsberg et al. 1995, 1997], or inef-
ficient. in particular, the automata-based algorithm presented in Palsberg et al.
[1997] may result in exponential compilation time and exponential number of
traversal methods in the executable code.

In this section we show that this phenomenon is not accidental: for some
strategies and class graphs, static compilation algorithms must output expo-
nentially many methods, thereby making the space requirement of the code, as
well as the running time of the compiler, infeasible in the worst case. We remark
that our proof technique is similar to the standard technique of simulating non-
deterministic finite automata in polynomial space and time [Aho et al. 1986].

To state the result formally, we first define the notion of static traversal
compilation. We then give an example of a traversal strategy and a class graph
where static compilation must result in an exponential number of methods. We
remark that the strategy graph we use is not cyclic; in fact, a tree strategy is
sufficient to prove the same result.

6.1 The Target Language

An algorithm is said to compile a traversal strategy and a class graph to static
traversal code if it generates traversal code in a language which supports only
method invocation without parameter passing. The target language of a static
compilation algorithm is formally defined in Palsberg et al. [1995, 1997], and
is given in Appendix B. Informally, a program attaches method definitions to
each class, and a method body is a list of (qualified) method names. There are
no arguments passed to the methods and no return values. Executing a method
in a given object graph is done simply by unfolding the method definition. To
perform a traversal starting with a given object, a special method attached to
this object is invoked. When a method is invoked, the corresponding object may
be added to the traversal history.

6.2 The Lower Bound
We now prove the main result of this section.
THeOREM 6.1. For any n > O there exists a traversal strategy S, with |S,| =

O(n) and a class graph G, with |G| = O(n) such that the number of methods
in a static traversal code corresponding to S, and G, is at least 2".

Proor. By contradiction. Consider the strategy graph and the class graph
depicted in Figure 5. Intuitively, starting with an object of class A, an object
of class C; can be visited only if it has an ancestor of class B;. The strategy

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 395

Fig. 5. Example considered in lower-bound proof. Left: the strategy graph. The source of the
strategy is the node labeled A and the target is the node labeled D. Middle: the class graph.
The name map is indicated by the node labels on the strategy graph. Right: a typical object tree.
The shaded regions represent a recursive occurrence of the tree.

graph has 2n + 2 nodes and 3n edges; The class graph has 2n + 3 nodes and
4n + 2 edges. Note that we can construct object trees where an A-object has
any desired set of B-ancestors. We claim that in a static traversal code, there
are at least 2" methods attached to objects of class A. For suppose not. Then
there exists a set Sg € {Cq, Co, ..., C,} such that there is no method attached
to A which consists of calls precisely to the methods in the objects pointed to
by the elements of Sy. Let I be the set of indices in Sp. Consider an object tree
containing an object o with Class(o) = A such that o has an ancestor of class B;
if and only if i € lg. Put differently, we think of an object tree which satisfies
the following condition:

{Class(0’) | o’ is an ancestor of 0} N {By, B, ..., By} = {Bi | Cj € Sp} .

As noted before, such an object graph exists. By definition, when o is invoked,
it should call precisely those children whose class is in Sg. But by assumption,
no such method is attached to A. O

We note that the strategy graph in the proof of Theorem 6.1 is acyclic (in fact,
itis a series-parallel graph expressible in the syntax for traversal specifications
of Palsberg et al. [1997]). The proof extends directly to the case of tree strategies
(see Section 5.4) by omitting the node corresponding to D in the strategy graph.

It may be instructive to see how the algorithm described in Section 5 avoids
the exponential lower bound. In that algorithm, the traversal graph serves as a
“road map,” and whenever a traversal method is called in an object o, it gets as
an input argument a set of “tokens.” The token set reflects the current location
of the traversal, that is, what prefixes of paths have already been covered when
the traversal reached o. This set controls the next traversal actions while being
updated as the traversal continues. As the argument of Theorem 6.1 implies, the
number of possible continuations of the traversal may be exponential; however,

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

396 o Lieberherr et al.

this only means that the number of possible configurations of the token set
must be exponential, which can be achieved with an argument whose size is
linear in the size of the strategy graph.

7. IMPLEMENTATION NOTES

In this section we describe some of the practical issues and design decisions
taken in the course of development of the Demeter software [Lieberherr n.d.b],
based on the idea of traversal strategies as described in this paper.

7.1 User-Level Representation

An LL(1) grammar has been developed to support textual representation of
strategies. The syntax of strategies is given as an edge list between curly brack-
ets, with the source and target nodes prefixed with source: or target:, respec-
tively. The default name map associates a strategy node with a class with the
same label.

Example.
{source: A -> B B->C C -> target: D}.

If a strategy’s graph is a line graph, we may also use from-via—to syntax; the
above strategy could also be written as

from A via B via C to D

In fact, the textual representation is a much more effective way to specify the
constraint map. Specifically, each strategy edge may be followed by an element
predicate expressed with any of the following forms:

bypassing {A, B}
bypassing -> *,1,%
only-through -> A,1,B

The first predicate is true for all elements except for nodes A and B. The second
predicate is true for all elements except for edges whosle label is I. The third
predicate is false for all elements except for the edge A — B.

The expression for the strategy given in Pane 2 of Figure 3, including the
constraint map, is given below:

{source: A -> D bypassing -> B,z,Z
D -> target: E
A->7Z bypassing -> A,d,D
Z ->E bypassing A }

7.2 Tool Responsibilities

The Demeter software [Lieberherr n.d.b] includes several different tools and
libraries, all using the technology described in this paper. We briefly describe
the responsiblities of those tools, how they relate, and what their limits are.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 397

7.2.1 AP Library. The AP Library is a Java implementation of TGA. Itin-
cludes a set of Java interfaces and default implementations (including parsers)
for the concepts of class graphs, traversal strategies, name maps, and constraint
maps, as well as a Traversal class that represents a traversal graph constructed
from these four objects. The AP Library includes a number of enhancements to
the basic structures and algorithms defined in this paper; one recent enhance-
ment is the ability to intersect two strategies, which is efficiently implemented
by computing two traversal graphs which can be traversed in parallel, only
moving ahead in the object graph when both traversal graphs allow it. More
details about this and other enhancements will appear in a future paper.

7.2.2 DJ. The idea of the DJ library [Lieberherr et al. 2001; Orleans and
Lieberherr 2001] is to add traversal strategies to Java without extending the
language; instead, traversal is done using an API that computes traversal
graphs at runtime (using the AP Library) and interprets them using TMA.
A vector of Visitor objects can be carried along the traversal to perform behavior
along the way. The Java Reflection API is used to create class graphs, traverse
object graphs, and invoke visitor methods.

DJ also integrates generic programming with adaptive programming. DJ
supports the adaptive definition of iterators that are used by generic algorithms.
The tool works with the Java collection classes and offers the capability to use
strategies to view an object graph as a list even though the paths to the objects
in the list may be complex.

7.2.3 Demeterd. Demeterd [Lieberherr and Orleans 1997], is our oldest
Java tool improving on our C++ implementation described in Lieberherr [1996].
DemeterJ takes as input a class dictionary file and a set of behavior files, which
contain plain Java methods, traversal strategies, and visitor methods. It then
generates Java source code for the traversals that implements TMA, invoking
the visitor methods along the way. DemeterJ is often used after a project has
been prototyped using the DJ library because DemeterJ generates traversal
code, which is faster than traversing with reflection.

The class dictionary syntax is a concise way of defining a class graph, includ-
ing its fields and accessor methods. For example, the class dictionary for the
class graph of Pane 1 of Figure 3 can be expressed as follows:

A = "a" B <c> C <d> D.

B = "b" <z> Z.
D = "d" <y> Y.
C = <e> E.

Y : A | B.
Z:DIE.

E = "e".

Essentially, the graph is represented as a list of nodes, where each node is
represented by a list of its outgoing edges, with the edge labels in angle brackets.
The class dictionary is annotated with some syntactic sugar in double quotes
to make an LL(1) grammar which is used to generate a parser that creates an

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

398 o Lieberherr et al.

object graph for a given input sentence. For example, assuming the above class
dictionary, the object graph in Figure 4 can be created with the following Java
code:

A a=Aparse("fabdbeedbe");

DemeterJ also generates several utility visitors from a class dictionary, such
as for printing, copying, or comparing object graphs or tracing traversals.

7.2.4 DAJ. DAJ [Orleans n.d.a.; Sung 2002] is our latest tool and it takes
AspectJ [Kiczales et al. 2001], rather than Java, as the starting point. DAJ per-
forms a similar task as DemeterJ, taking as input a set of class dictionaries and
aspects (augmented with declarations of strategies and traversals) and using
the AP Library to generate traversal code that implements TMA. Integrating
with AspectJ allows the user to benefit from both adaptive programming and
aspect-oriented programming [Elrad et al. 2001] in the same program. All of the
current features of Demeterd will eventually be available in DAJ, and future
development will be geared toward enhancing DAJ, DJ, and the AP Library.

See Section 10 for other ways traversal strategies can fit into AspectJ.

8. RELATED WORK

It is surprising to see that despite the universality of traversals in program-
ming, only very little work has been done in this direction, although the pace
is picking up. Until recently, the automation of traversal of object structures
using succinct representations has been unique to Demeter ([Lieberherr et al.
1994]; see above); the rising popularity of markup languages in general, and
XML in particular, created a new interest in traversals. In this section we list
some work relevant to traversals.

XML is a new standard for defining and processing markup languages for the
web [Bray et al. 1998]. XML uses grammars (also called document type defini-
tions or schemas) to define a markup language for a class of documents. To select
subsets of XML document elements, the W3 Consortium recently introduced a
language called XPath [Clark and DeRose 1999]. The way elements are selected
in XPath is by navigation, somewhat resembling the way one selects files from
an interactive shell, but with a much richer language. Recently McWhirter and
Strachan [2001] proposed XPath as input to a universal object model walker for
arbitrary Java objects. XPath expressions are used to describe sets of objects,
in the sense that the value of an expression is an unordered collection of ob-
jects without duplicates. This is in contrast to traversals, whose value is a set
of paths, so that the objects of each path are explictly ordered and may appear
more than once, even on the same path. It is quite easy to implement XPath
using strategies, using specialized “visitors.” The converse, however, does not
hold, due to the lack of structure in XPath expression values. While XPath is
a powerful language to address parts of an XML document, there are cases in
which strategies can be used to select the same sets with exponentially shorter
representation than the representation of XPath.

A bad example for XPath is (currently) as follows (XPath is in the process of
being extended moving closer to the traversal strategy model to make this also

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 399

easily expressible). Take a strategy graph with start node S and target node
T and nodes A; and B; for i from 1 to n and nodes C; for j from 1 ton — 1.
There are edges from S to A; and By; from C; to Aj;; and Bj,; and from A;
and B; to C; for i from 1 to n — 1; from A, and B, to T. Note that there are
exponentially many paths from S to T and, if we want to express the T nodes
that we want to select in XPath, we have to enumerate all those paths using
the XPath notation. The size of the strategy graph solution is linear, while the
size of the XPath solution is exponential.

This example may lead to exponential running times for some input objects
both for the XPath and the traversal strategy case. It is the responsibility of
the programmer to recognize this possibility and deal with it using appropriate
visitor objects.

In the context of object-oriented databases, traversals are heavily used. Some
automation of traversal has been suggested in loannidis and Lashkari [1994],
Kifer et al. [1992], Markowitz and Shoshani [1993], Neuhold and Schrefl [1988],
and Van den Bussche and Vossen [1993]. Roughly speaking, the idea in these
papers is to traverse to a target without specifying the full path leading to it.
Cast in our terms, one can view these techniques as a variant of line-graph
strategies (i.e., strategy graphs with a single path); however, their goal is to
allow the user to abbreviate the laborious specification of a full query, and their
main concern is how to complete the abbreviation when it is ambiguous, some-
times using heuristics. Another complication these approaches confront is that
gueries are specified on-line and can therefore refer to runtime structures. By
contrast, our approach ignores the ambiguity problem by traversing all quali-
fied objects, and requires traversal specifications to refer only to compile-time
structures. On the other hand, strategies allow for general graph specification,
and entail (when combined with visitors) the power of a full-fledged program-
ming language.

In the context of programming languages, traversals are frequently used as
a part of attribute grammars, for traversing abstract syntax trees [Waite and
Goos 1984]. Using conventional programming techniques, the details of traver-
sals must be hard-coded in the attribute grammar; this fact makes attribute
grammars hard to maintain, say in the case of some modifications in the gram-
mar Kastens and Waite [1994]. In the Eli system Gray et al. [1992], this problem
is addressed by separating the details of the grammar from the underlying algo-
rithm, using traversal specifications which basically correspond to single edge
strategy graphs. There are papers dealing with a more modular, component-
based approach to attribute grammars, such as Farrow et al. [1992]. This allows
traversals for different aspects or phases to be separated, partially addressing
the concerns of scattering and tangling of traversal code. However, the mapping
from specific attribute grammars to high-level attribute grammars needed in
a modular attribute grammar approach could be expressed more conveniently
with traversal strategies.

Meta-programming techniques have also been developed for traversals. For
example, in Cameron and Ito [1984], a simple kind of traversal (corresponding
to a one layer tree graph) is used in a metaprogram; this traversal scans all
objects and executes the specified code at the desired targets.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

400 o Lieberherr et al.

Strategic programming (SP) [Lammel et al. 2003] provides the programmer
with full traversal control with traversal schemes that can be built up modularly
using a rich set of combinators. A key difference between SP and AP is that
traversals in SP may follow paths in an object graph that can never lead to target
classes; no reachability computation is done. In general, this is undecidable in
SP, because the traversal combinators form a Turing-complete language.

The Visitor design pattern is discussed in many software-engineering works
(e.g., Gamma et al. [1995]). While this approach identifies and isolates the task
of traversal, no mechanism to automate the task and make it adaptive was
previously proposed. Moreover, no formal treatment of traversal was offered.
As a side remark from the software engineering perspective, we note that our
approach of separating the traversal task from the class-structure of an object-
oriented program can be viewed as a special case of aspect-oriented program-
ming [Elrad et al. 2001], where the idea is to try to align different conceptual
aspects of programming with actual code modules.

Visitor generators have been around for a while (e.g., Bravenboer and Visser
[2001], Jay and Palsberg [1998], Stirewalt and Dillon [2001]), usually generat-
ing a default DepthFirst visitor with before and after hooks. Since these visitors
only need to be manually specialized for selected types of the visited class hi-
erarchy, they are adaptive to some degree. But visitor generators fall short of
the accomplishments of our approach for the following reason: they don't take
advantage of a high-level approach to specifying traversals and instead the gen-
erated visitor goes everywhere. For example, to implement a traversal “from A
to B” with a visitor generator, we would have to specialize the visitor manually
for all classes between A and B where we don’t need to visit all outgoing edges.
A visitor generator generates traversals of the form “from A to *” and then we
have to simulate bypassing clauses using subclassing.

An important tool for aspect-oriented programming is AspectJ from Xerox
PARC Kiczales et al. [2001]. Generally speaking, AspectJ allows the program-
mer to manipulate pointcuts, which are a collection of points in the execution.
In Section 10 we describe two applications of traversals to AspectJ. A traversal
defines a structured set of join points (calls of the traversal methods) while
in AspectJ a much richer set of join points is used. Visitors are advice on the
traversals.

The idea behind succinct specifications of mathematical structures [Galperin
and Wigderson 1984] is to exploit regularity. If there is no regularity, succinct-
ness will not work. In Galperin and Wigderson [1984] Boolean circuits are used
to represent graphs succinctly. We instead use traversal strategies to define
subgraphs succinctly.

9. COMPARISON TO TRAVERSAL SPECIFICATIONS

In this section, by Lo p we mean the traversal specification language of
Lieberherr [1992] and Palsberg et al. [1995], and by £Lnew We mean the traversal
specification language for strategies presented in this paper.

The comparison between Lo p and Lnew is delicate but Lyew is an impor-
tant improvement over Lo p. Some traversal specifications are equally easy to

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 401

Servicelncome

Company Domestic/vo Money
O——»0

source target

Goodslncome

Fig. 6. A series-parallel traversal strategy.

Domestic Servicelncome

Company —O Money

source target

Foreign Goodslincome

Fig. 7. A non-series-parallel traversal strategy.

express in Loip as in Lnew, other Lyew traversal specifications are impossible

to

express in Lo p, and some traversal specifications expressed in Lygw can be

expressed in Lo p but are exponentially longer.

1)

(2)

We discuss the following three points in detail:

Any traversal specification in Lo p is a directed series-parallel graph
[Eppstein 1992] and can be expressed as a strategy in Lnew. In other
words, we have upward compatibility. Example: the Lo p Style traversal
specification

[Company,Domestic]-([Domestic,Servicelncome]-[Servicelncome,Money]
+ [Domestic,GoodsIncome]-[Goodsincome,Money])

is expressed as the strategy shown in Figure 6. The translation maps each
“from-to” part of the form [X, Y] to an edge in the strategy.

Some of the traversal specifications in Lo p can be expressed much more
succinctly as a strategy in Lnew-. Consider the Lo p traversal specification

[Company,Domestic]-([Domestic,Servicelncome]-[Servicelncome,Money]
+ [Domestic,GoodsIncome]-[Goodsincome,Money])
+ [Company,Foreign]-[Foreign,GoodsIncome]-[GoodsIincome,Money],

which duplicates [Goodsincome,Money]. The traversal specification will
traverse to all Money objects. The domestic and the foreign parts of the com-
pany are treated differently: for domestic parts we traverse both into Ser-
vicelncome and Goodsincome while for foreign parts we traverse only into
Goodslincome. In the corresponding traversal strategy given in Figure 7,
this duplication is not needed.

Remembering the motivation that a traversal strategy with source s and
target t defines a set of paths from s to t, we can always replace a strategy

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

402 o Lieberherr et al.

®)

source target
Fig. 8. A non-series-parallel strategy with n nodes and O(2") paths (n = 7 here).

flights routes

Flight City BusRoute

* *
cities cities

Fig. 9. Class graph for a transportation network.

that is a dag by a set of paths that are merged together. Because the number
of paths from s to t may be exponential in the size of the dag and there may be
no shorter possibility than enumerating all of them, the old representation
may be exponentially longer. Consider the following strategy with n nodes
A1, Az, ..., An. There are edges Aj — Ai g fori =1,...,n— 1 and edges
Ai — Ao fori =1,...,n— 2. Figure 8 shows this strategy with n = 7.
The resulting graph is not series-parallel and the only way to express the
set of paths from source A; to target A, using only join and merge is to
enumerate a number of paths that grows exponentially in n. We can use a
series-parallel construction for some of the paths but overall we will have an
exponential number of paths and therefore a traversal strategy that grows
exponentially in n.

There are cyclic strategies (expressed in Lyew) Which cannot be simulated
by LoLp. Consider the following traversal that cannot be simulated by a
traversal specification in Lo p. For a given city, we want to find all other
cities reachable through zero or more bus routes. Consider this specification
in the context of the class graph in Figure 9. Using this class graph, we can
start at a city and follow paths of the form

(City (routes BusRoute cities City)*)

to find all cities connected to it by bus routes only. We are not interested in
the cities reachable through flights. We can use the cyclic strategy shown
in Figure 10, which selects the desired City objects. But this cyclic strategy
cannot be expressed by a series-parallel graph. We could try:

from City bypassing City via BusRoute bypassing City to City
but this allows only cities reachable through an immediate bus route.

To summarize: the new language is exponentially more expressive in some

cases and combined with the exponential algorithmic improvement presented

in

this paper the new approach is considerably more efficient than the old

approach.

10

. APPLICATIONS OF TRAVERSAL STRATEGIES

This paper focuses on succinctly definining behavior for traversing through ob-
ject graphs and on efficient implementations of the traversals. However, our

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 403

bypassing City

City BusRoute
sourceooetarget
bypassing City

Fig. 10. A cyclic strategy.

traversal theory (the expressive model and the efficient algorithms) is applica-
ble in a much wider context, which we outline in this section.

The traversal theory relies on three layers of graphs: top, middle, and bottom.
The bottom layer consists of trees that we want to traverse to select subtrees.
Each bottom-layer tree has a graph from the middle layer associated with it
that contains metainformation about the bottom-layer tree. The metainforma-
tion expresses that certain edges must or may exist. Each middle-layer graph
is associated with at least one top-layer graph. The top-layer graph is basi-
cally a subgraph of the transitive closure of the middle-layer graph, decorated
with additional information attached to the edges. The purpose of the top-layer
graph is to define subtrees of the bottom-layer graphs. In other words, when
the bottom-layer graph is traversed, the top-layer graph tells us at each node
which outgoing edges to traverse. The purpose of the middle-layer graph is to
act as an abstraction barrier between the top and bottom layers. At the middle
layer we program the specification given by the top layer and we use the middle
layer to reduce the search space.

The top-layer graphs are an abstraction A of the associated middle-layer
graphs and the middle-layer graphs are an abstraction B of the associated
bottom-layer graphs. The abstractions A and B, however, are different. Abstrac-
tion A involves the transitive closure and abstraction B involves compatibility
rules where relations at the middle layer imply relations at the bottom layer.

The traversal theory is also useful if we only use the top and the middle
layers. In this case we are interested in defining succinctly a set of paths in the
graph in the middle layer. Sometimes we are not interested in the details of the
path set, just the subgraph or set of nodes that all those paths in the set cover.

This general description fits many practical situations of which we mention
a few, all of them of interest to aspect-oriented programming.

—The standard application. Top: strategy graph, middle: class graph, bottom:
object trees. The strategy graph serves as a specification of a set of intro-
ductions of new traversal methods into the class graph. This standard ap-
plication is used extensively in DemeterJ and DAJ. DJ also falls into this
standard application; however, the traversal behavior is created at runtime
by specializing a generic traversal algorithm.

If we focus on the top and middle layer only, we need only our Traversal
Graph Algorithm described in Section 5.1. One application of TGA is to use
it to succinctly specify a set of types. In Aspectd, type patterns could benefit
from using strategies to specify a set of types succinctly.

A second application of TGA is the adapter generation approach by
Bart Wydaeghe and Wim Vanderperren [Vanderperren 2001; Wydaeghe
2002; Wydaeghe and Vanderperren 2001]. The components that need to be

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

404 o Lieberherr et al.

connected might not match and therefore an adapter has to be generated. The
idea is that a traversal graph that is constructed by TGA succinctly describes
all possible adapters from which the programmer can choose the most suit-
able one. The top-layer graph represents the interactions of a high-level com-
ponent and the middle-layer graph represents the interactions of a low-level
component that offers more detail than the other component asks for. The
PacoSuite is a tool in which those ideas have been successfully implemented
and tested in an industrial context. The application uses the full power of
traversal strategies, including bypassing clauses and the name maps.

—The call graph application. Top: computational pattern, middle: static call
graph, bottom: call tree.

Static call graph. This is derived from the program source as follows. The
nodes correspond to methods and the edges to method invocation expressions
(e.g., a.foo(b,c)) contained in the methods. There are two types of methods:
concrete and abstract. A concrete method has an outgoing edge for every
method the method calls or might call. Some of the outgoing edges are marked
required and others are marked optional. The required edges are to calls of
other methods that are reached unconditionally while optional edges corre-
spond to calls that are reached conditionally (some conditional statement
might prevent the execution of the call, e.g., an if, loop, or switch statement).
An abstract method has several outgoing edges marked as virtual edges.
Each leads to one of the method calls that might happen as a result of the
virtual method call. A static call graph has the shape of a class graph.

Dynamic call tree. This is a tree conforming to a static call graph. The nodes
are calls of methods (called join points) and the edges represent immediate
method call nesting. Conformance means that

(1) the dynamic call graph can only contain instances of call sites appearing
in the static call graph;

(2) the dynamic call graph can only contain edges prescribed by the static
call graph;

(3) if in the static call graph a required edge exits a call site then the edge
must be in the dynamic call graph; and

(4) acall of a virtual method is not shown in the dynamic call graph; instead
it shows the concrete method that actually gets called.

A dynamic call tree has the shape of an object tree where call nodes corre-
spond to object nodes and immediately nested calls correspond to immedi-
ately nested objects. As an example, consider the set of all method calls that
might happen between a call to f and a call to g. For each of those method
calls we would like to print some information and we would like to know how
the join points are related. In other words, we want to know the structure
of the dynamic call tree between calls to f and calls to g. We would like to
describe this slice of the dynamic call tree as from pcl to pc2, where pcl =
call(* f(..)) and pc2 = call(* g(..)). (The pointcuts pcl and pc2 specify that both
fand g may return any type and both may have arguments of any types.)

In a second example, we want to know for a thread and a resource type
R all the read, write, lock, and unlock calls that happen during the thread.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 405

Furthermore, we want to check that none of those primitives call each other;
for example, we want to disallow that write calls lock directly.

We consider four kinds of nodes in the static call graph corresponding to
calls of the four primitives.

pointcut read(): call(Object R.read(..));

pointcut write(): call(void R.write(..));

pointcut lock(): call(void R.lock(..));

pointcut unlock(): call(void R.unlock(..));

pointcut primitive(): read() || write() || lock() || unlock();

The pointcut start contains a node in the static call graph where the compu-
tation starts. We consider the following two strategies:

sl = from start() to primitive(),

s2 = from start() bypassing primitive() to primitive().
(Note that bypassing a node does not bypass that node if it is a start or end
point.)

The primitives don’t call each other iff, for the given static call graph, s1 =
s2 (more precisely, if the traversal graphs determined by the two strategies
are equal).

This second example is interesting because it shows that strategies are
useful to formulate architectural properties of call graphs at a high level of
abstraction.

Finally, we present a use of the call graph application in serializa-
tion/marshaling which is a very common example of object traversal. A seri-
alizer is a tool transforming partial graphs of objects into a stream of bytes.
In Lopes [1996], simple traversal directives (which are single edge strategy
graphs) are used to specify which parts of a compound object should be copied
and which should be passed by reference when using remote method invoca-
tions. Our work on traversals is useful to current work in object serialization
[Bartoli 1997; Hoschka and Huitema 1994; Phillipsen et al. 2000] in the fol-
lowing way: a common concern in serialization is how to generate serialization
code with minimal impact on the code size of the application, or alternatively,
how to arrange dynamic traversal with minimal runtime impact. We addressed
this concern by showing in Section 6 that if the traversal methods are not gen-
erated carefully from a partial object specification (as described in this paper),
one might end up with exponential code size. Our implementation of DJ shows
how to arrange dynamic traversal and the DemeterJ and DAJ implementations
show how to generate efficient code efficiently. We also show a general way to
specify partial objects. This paper solves the problem by using a marshaling
language (our traversal strategy language) to specify partial object graphs.

11. EXPERIENCE AND EMPIRICAL EVIDENCE

The algorithms described in this paper have been used extensively in our tools
and tools developed by others. Surprisingly, neither the exponential algorithmic
improvements nor the more general model seem to be so important for the
applications where we used traversals so far. The earlier compilation algorithm,

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

406 o Lieberherr et al.

Table 1. Distribution of the Ratio of the Length of Call Path Versus the Length of Strategy

| Range of the ratios [0, 2) [2, 4) [4, 6) [6, 8) [8, 10) [10, 12) [12, 00)
| Number of traversals 11 26 19 13 4 5 2

called the Xiao-algorithm, described in Palsberg et al. [1995], worked very well
in practice and the exponentially bad cases described in this paper did not seem
to appear in practice. But the Xiao-algorithm is challenging to program and
occasionally requires the programmer to rewrite the traversal specifications in
case the algorithm cannot handle the combination of current strategy and class
graph. The threat of slow performance and the lack of generality made us to
switch to the algorithm described in this paper.

The remark that the Xiao algorithm worked well in practice is supported by
the following statistics for Demeterd, which is implemented in its own language.
The entire tool uses 236 strategies of which only 32 strategies are multiedge.
This gives an average of 1.144 edges per strategy. The largest strategy has
four edges. (It should be remarked that in a redesign of DemeterJ the average
would be higher because, due to tool limitations, some strategies make use of
bypassing instead of using more strategy edges.) Because strategies are small
in DemeterJ, the efficiency of our new algorithm is not so important for the
DemeterJ application. The complete set of strategies used in DemeterJ are
available in Orleans [n.d.b].

Traversal strategies are usually much smaller than the corresponding
traversal graph. Mitchell Wand and Pengcheng Wu have done some statistics
collecting by implementing and applying another traversal generating algo-
rithm [Lieberherr and Wand 2001] with the same traversal strategy syntax as
ours on the traversals used in DemeterJ’s generate package source files, which
have 80 traversals in total. Table | lists the distribution of the ratio of the
length of traversal methods call path versus the length of strategy for the 80
traversals. As you can see from the table, of the 80 traversals, over 40 traversals
have ratios bigger than 4, which reflects the size difference between traversal
strategy and traversal graph. More detailed data is available in Wand and Wu
[n.d.].

An industrial project at Verizon which uses DemeterJ was presented at
the first International Conference on Aspect-Oriented Software Development
(AOSD) in April 2002 [Blando and Minwalla 2002] as an example of successful
use of AOSD technology in industry. The traversal specifications worked very
well in this project over a period of 5 years. The evolution history of the project
is available on the Web [Blando 2002].

Further evidence that traversal strategies work can be obtained from the suc-
cessful use of the Demeter/C++ system [Lieberherr 1996]. Demeter/C++ was
used at Northeastern University from 1992 to 1996, and in other places, in-
cluding at Citibank, IBM, Bell Northern Research, Credit Suisse, and several
universities. See Lieberherr [n.d.b] for an extensive description of the system
and relevant references. The first version of Demeter allowed only very sim-
ple traversals (corresponding to single-edge strategy graphs with bypassing
clauses), and generated code in C++. Demeter/C++ compiles traversals which

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 407

can be described by a series-parallel graph, but only for a restricted set of class
graph/strategy combinations.

Hewlett-Packard has reported a positive experience in using the traver-
sal/visitor style of programming for writing installation software for the HP
printers family [Lieberherr n.d.a].

Finally, another piece of empirical evidence is that the Law of Demeter
[Lieberherr and Holland 1989] is still considered to be a good idea [Hunt and
Thomas 2000]. However, writing all of the methods needed to forward calls is
tedious and error prone. Traversal strategies may be used to specify the for-
warding calls at a high level of abstraction.

12. CONCLUSION

Traversals are fundamental to object-oriented programming and programming
in general. In order to process an object we need to traverse through a part of
it and perform appropriate actions during the traversal. The importance of
traversals of object structure is well recognized in the literature. For exam-
ple, the Visitor design pattern [Gamma et al. 1995] and its variants [Jay and
Palsberg 1998; Vlissides 1995, 1996] attest to this fact. We believe that the no-
tion of strategies is a significant contribution to software developers—both by
providing a more intuitive and conceptually simpler programming model, and
by automating the frequent-and-tedious task of programming traversals.

In this paper we have extended the state of knowledge regarding traversals
by providing a general definition as well as an efficient implementation and
a working prototype. We improve on all previous implementations and at the
same time we present a model that is more general than previous traversal
models. In addition, the lower bound result improves the understanding of the
inherent properties of run-time traversals, whose implementation has been
notoriously tricky.

U.S. patent 5,946,490 covers the algorithms in this paper.

APPENDIX A. CLASS GRAPH SIMPLIFICATION

In this appendix we prove Proposition 2.1. For the convenience of the reader,
we reproduce the text of proposition here:

ProrosiTion 2.1. Let G = (V, E) be an arbitrary class graph. Then there
exists a simple class graph Simplify(G) = (V’, E’) such that an object graph
Q is an instance of G if and only if Q is an instance of Simplify(G). Moreover,
IV/| = O(IV]) and |E'| = O(IE).

Proor. The proposition is proven by the following transformation algorithm
(see example in Figure 11).

(1) For each concrete class v € V with an outgoing subclass edge v = u € E,
add a new abstract node v’ into V, along with the following changes of the
edge set:

—Divert all edges coming into v to end at v'. That is,

E<—EU{u—'>v/|u—'>veE}\{u—'>v|u—'>veE}.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Fig. 11. Anexample of class graph simplification. A: the original class graph. Concrete classes are
depicted as squares, and abstract classes are hexagons. Reference edges are regular, and subclass
edges are heavy. B: after Step 1. C: after Step 2. D: after Step 3 (for steps referred to here, see
Appendix A text).

—Divert all subclass edges going out from v to originate at v'. That is,
E <—Eu{v/—<>>u|v—°>ue E}\{vﬁ>u|v—°>u}.
—Make v a subclass of v':
E<EU {v/ 5 v})
When this step is completed, no concrete class has subclass edges going out
from it.

(2) For each concrete class v: add edges so that the set of edges going out from
v is exactly the induced edges of v. Then, delete all reference edges going
out from abstract classes.

(3) Contract long inheritance chains. For each abstract class v: find all concrete
classes u which can be reached from v using subclass edges only, and add a
subclass edge v =5 uiif one does not exist already. Finally, delete all subclass
edges leading to abstract classes.

Informally, Step 1 decouples the subclassing role from concrete classes by
introducing an additional abstract class for each class which has both subclass
and reference edges going out from it.

Step 2 unfolds inherited reference edges by pushing them down the subclass
hierarchy. This can be done efficiently by traversing the subclass edges in a top-
down fashion, starting with nodes with no subclass edges coming into them, and
“collecting” reference edges as we go down. Details are omitted.

Step 3 can be viewed as taking the transitive (nonreflexive) closure of the
subclass relation. This step can be done in parallel with Step 2.

For the bound on the size of the resulting graph, note first that only Step 1
may change the number of nodes by at most doubling it. Next, note that since
Steps 2 and 3 do not change the connectivity structure of the graph, we can deal
with each connected component separately. Consider such a component with n
nodes. Since it is connected, there are at least n — 1 nodes in the component
before Steps 2 and 3. Since these steps do not introduce nodes or parallel edges,
they may introduce at most O(n?) new edges. We may therefore conclude that
the number of nodes in Simplify(G) is at most doubled and the number of edges
is at most squared.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 409

APPENDIX B. TARGET LANGUAGE FOR STATIC COMPILATION

Static traversal compilers compile strategies and class graphs into an object-
oriented program where the sequence of methods invoked by an object depends
only on the object structure and the method name (no parameter passing is
allowed). Formally, the language is defined as follows.

A program in the target language is a partial function which maps a class
name and a method name to a method. A method is a tuple of the form
(I..mq, ..., ln.my), where l;---1, € £ and my ---m, are method names. When
invoked, such a method executes by invoking I;.m; in order. We distinguish
two kinds of methods: visiting and nonvisiting, prescribed by a predicate visit
defined on the set of method names.

An invocation of a program is defined as follows. If Q is an object graph, o
a node in 2, m a method name, P a program in the target language, and H a
sequence of objects, then the judgment

QF.o:m:P>H

means that when sending the message m to o, we get a traversal of the object
graph © starting in o so that H is the traversal history. Formally, this holds
when the judgment is derivable using the following rules:

QbFc0i:mj: P> H; Vie l.n if P(Class(0), m) = {I;.my---1,.my), and
QFco:m:P>o-Hp-...- Hy visit(m), and o LN ojisinQforalliel.n,
and
QFc0i:mj:P>H; Vie l.n if P(Class(0), m)= (I;.my---1,.my), and
QF.,o:m:P>Hp-...- Hy =visit(m), and o L> ojisinQforalliel.n.

The label c of the turnstile indicates “code.” Intuitively, the rule says that when
sending the message m to o, we check if o understands the message, and if
so, we invoke the method. The object o is added to the traversal history only
if visit(m) is true. Notice that for n = 0, the rule is an axiom; in the case that
visit(m) is true, it is simply

Qroo:m:poo | P(Class@).m) =,

and if visit(m) is false, then it is

if P(Class(o), m) = (),
QF.0:m:Pp>e it P((©).m) =0
where ¢ denotes the empty history.

Given a program in the target language, it is straightforward to generate,
for example, a C++ or a Java program.

ACKNOWLEDGMENTS

We wish to thank Dean Allemang, James Deikun, Lars Hansen, Johan Ovlinger,
Jens Palsberg, Kedar Patankar, Salil Pradhan, Binoy Samuel, Benedikt Schulz,
and Mitch Wand for numerous discussions and suggestions. Special thanks are
due to Michal Young, for bringing Aho et al. [1986] to our attention. Many
thanks to the ACM reviewers for their detailed and helpful feedback.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

410 o Lieberherr et al.

REFERENCES

AHo, A. V., SeETHI, R.,, anD ULiman, J. D. 1986. Compilers—Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 126-127 (Algorithm 3.4).

BarToLl, A. 1997. A novel approach to marshaling. Softw.—Pract. Exp 27, 1(Jan.), 63—-85.

Branpo, L. 2002. Mission critical verizon project using demeterJ. Tech. rep., Verizon. Available
online at at http://www.ccs.neu.edu/research/demeter/evaluation/gte-labs/.

BLANDO, L. AND MINwALLA, N. 2002. Commercial AOSD deployment in action: Five years and count-
ing. In First International Conference on Aspect-Oriented Software Development (Enschede, The
Netherlands), G. Kiczales, Ed.

BoocH, G., RumBAuGH, J., AND JacoBson, |. 1999. The Unified Modeling Language User Guide.
Object Technology Series. Addison Wesley. Reading, MA.

BRrAVENBOER, M. AND Visser, E. 2001. Guiding visitors: Separating navigation from computation.
Tech. Rep., Institute of Information and Computing Sciences, Utrecht University, Utrecht, The
Netherlands.

BRrav, T., PaoLl, J., AND SPERBERG-MCcQUEEN, C. M. (Eps.) 1998. Extensible Markup Language. Avail-
able online at http://www.w3.0rg/TR/REC-XML.

CamMERON, R. D. anD ITo, M. R. 1984. Grammar-based definition of metaprogramming systems.
ACM Trans. Programm. Lang. Syst. 6, 1 (Jan.), 20-54.

CLARK, J. AND DEROsE, S. (Eps.). 1999. XML Path Language (XPath), version 1.0. Available online
at http://www.w3.org/TR/XPath.

ELrAD, T., FiLMAN, R., AND BADER, A. 2001. Aspect-oriented programming. Commun. ACM 44, 10,
28-97.

EppsTEIN, D. 1992. Parallel recognition of series-parallel graphs. Inform. Computat. 98, 1, 41—
55.

Farrow, R., MarLow, T. J., aND YELLIN, D. M. 1992. Composable attribute grammars: Support
for modularity in translator design and implementation. In ACM Symposium on Principles of
Programming Languages. ACM Press, New York, NY, 223-234.

GaLPeRIN, H. AnD WiGDERsON, A. 1984. Succinct representation of graphs. Inform. Contr. 56, 3
(Mar.), 183-198.

GaAmMMA, E., HELM, R., JoHNsON, R., AND ViissiDEs, J. 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA.

GraAY, R. W,, HEURING, V. P., LEvI, S. P., SLoANE, A. M., AND WaiTe, W. M. 1992. Eli: A complete,
flexible compiler construction system. Commun. ACM 35, 2 (Feb.), 121-131.

HoscHka, P. anD HuiTEmA, C. 1994 Automatic generation of optimized code for marshaling rou-
tines. In IFIP TC6/WG6.5 International Working Conference on Upper Layer Protocols, Architec-
tures and Applications (Barcelona), N. Boreustein and M. Medina, Eds. North-Holland, Amster-
dam, The Netherlands, 131-146.

HunT, A. anD THomas, D. 2000. The Pragmatic Programmer. Addison-Wesley, Reading, MA.

loanniDis, Y. E. AND LasHkARI, Y. 1994. Incomplete path expressions and their disambiguation.
In Proceedings of ACM/SIGMOD Annual Conference on Management of Data. ACM Press, New
York, NY, 138-149.

Jav, B. AND PALsBERG, J. 1998. The essence of the visitor pattern. In 22nd Annual International
Computer Software and Applications Conference (COMPSAC’98, Vienna), 9-15.

KasTens, U. anD WaITE, W. M. 1994. Modularity and reusability in attribute grammars. Acta
Informatica 31, 601-627.

KiczaLes, G., HiLsDALE, E., HucuNIN, J., KERSTEN, M., PALM, J., AND GriswoLD, W. 2001. Anoverview
of Aspectd. In European Conference on Object-Oriented Programming (Budapest), J. Knudsen,
Ed. Springer-Verlag, Berlin, Germany.

KiFer, M., Kim, W,, AND Sacly, Y. 1992. Querying object-oriented databases. In Proceedings of
ACM/SIGMOD Annual Conference on Management of Data (San Diego, CA), M. Stonebraker,
Ed., ACM Press, New York, NY, 393-402.

LAMMEL, R., VissER, E., AND Visser, J. 2003. Strategic programming meets adaptive programming.
In Proceedings of AOSD’03. ACM Press, New York, NY.

LieBerHERR, K. n.d.a. Communication with Hewlett-Packard. Available online at http://www.ccs.
neu.edu/research/demeter/evaluation/conventional-env/hp.html.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

Traversals of Object Structures . 411

LieBerHERR, K. n.d.b. Demeter home page. Available online at http://www.ccs.neu.edu/research/
demeter/. Continuously updated.

LIEBERHERR, K., ORLEANS, D., AND OVLINGER, J. 2001. Aspect-oriented programming with adaptive
methods. Commun. ACM 44, 10, 39-41.

LieBerRHERR, K. AND WanD, M. 2001. Traversal semantics in object graphs. Tech. Rep. NU-CCS-
2001-05, Northeastern University, Boston, MA.

LieBerHERR, K. J. 1992. Component enhancement: An adaptive reusability mechanism
for groups of collaborating classes. In Information Processing '92, 12th World Computer
Congress (Madrid, Spain), J. van Leeuwen, Ed. Elsevier, Amsterdam, The Netherlands, 179—
185.

LieBerHERR, K. J. 1996. Adaptive Object-Oriented Software: The Demeter Method with Prop-
agation Patterns. PWS Publishing Company, Boston, MA. Entire book at www.ccs.neu.edu/
research/demeter.

LieBERHERR, K. J. AND HoLLanD, I. 1989. Assuring good style for object-oriented programs. IEEE
Softw. 6, 5 (Sept.), 38—48.

LieBERHERR, K. J. AND ORLEANS, D. 1997. Preventive program maintenance in Demeter/Java (re-
search demonstration). In International Conference on Software Engineering (Boston, MA). ACM
Press, New York, NY, 604—605.

LIEBERHERR, K. J., SiLva-LEPE, I, AND Xiao, C. 1994. Adaptive object-oriented programming using
graph-based customization. Commun. ACM 37, 5 (May), 94-101.

Lores, C. V. 1996. Adaptive parameter passing. In 2nd International Symposium on Object Tech-
nologies for Advanced Software (Kanazawa, Japan, Mar.) Springer-Verlag, Berlin, Germany, 118—
136.

MarkowiTz, V. M. AND SHosHANI, A. 1993. Object queries over relational databases: Language,
implementation, and application. In 9th International Conference on Data Engineering. IEEE
Press, Los Alamitos, CA, 71-80.

MCcWHIRTER, B. AND STrRAcHAN, J. 2001. Extensible Markup Language. Available online at
http://jaxen.org/.

NEeuHoLD, E. J. AND ScHRerL, M. 1988. Dynamic derivation of personalized views. In Proceedings
of the 14th VLDB Conference, 183-194.

OrLEANS, D. n.d.a. DAJ home page. Available online at http://daj.sf.net/. Continuously updated.

ORrLEANS, D. n.d.b. DemeterJd strategy statistics. Available online at http://www.ccs.neu.edu/
research/demeter/DemeterJ/strategy-usage-in-DemeterJ. txt.

ORLEANS, D. AND LIEBERHERR, K. 2001. DJ: Dynamic adaptive programming in Java. In Reflection
2001: Meta-level Architectures and Separation of Crosscutting Concerns (Kyoto, Japan). Springer-
Verlag, Berlin, Germany.

PALSBERG, J., PATT-SHAMIR, B., AnND LIEBERHERR, K. 1997. A new approach to compiling adaptive
programs. Sci. Comput. Programm. 29, 3, 303-326.

PALsBERG, J., Xiao, C., anD LIEBERHERR, K. 1995. Efficient implementation of adaptive software.
ACM Trans. Programm. Lang. Syst. 17, 2 (March), 264-292.

PHiLLiPsEN, M., HAUMACHER, B., anD NEsTER, C. 2000. More efficient serialization and RMI for
Java. Concurrency: Pract. Exp. 12, 7 (May), 495-518.

Powva, G. 1949. How to Solve It. Princeton University Press, Princeton, NJ.

SEITER, L. M., PALSBERG, J., AND LIEBERHERR, K. J. 1996. Evolution of object behavior using context
relations. In Symposium on Foundations of Software Engineering, SIGSOFT (San Francisco), D.
GarLaN, Ed. ACM Press, New York, NY, 46-57.

SEITER, L. M., PALSBERG, J., AND LIEBERHERR, K. J. 1998. Evolution of object behavior using context
relations. IEEE Trans. Softw. Eng. 24, 1 (Jan.), 79-92.

SmARAGDAKIS, Y. 1997. Personal communication.

STIREWALT, K. AnD DiLLon, L. K. 2001. Generation of visitor components that implement program
transformations. In ACM SIGSOFT Symposium on Software Reusability, 86—94.

Sung, J. 2002. Aspectual concepts. Tech. Rep. NU-CCS-02-06, Northeastern University, Boston,
MA. Also a Master's thesis, available online at http://www.ccs.neu.edu/home/lieber/theses-
index.html.

VAN DEN BusscHE, J. AND Vossen, G. 1993. An extension of path expressions to simplify navigation
in object-oriented queries. In Deductive and Object-Oriented Databases (Phoenix, AZ), S. Ceri, K.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

412 o Lieberherr et al.

Tanaka, and S. Tsur, Eds. Lecture Notes in Computer Science, vol. 760. Springer-Verlag, Berlin,
Germany, 267-282.

VanDerPERREN, W. 2001. Applying aspect-oriented programming ideas in a component based con-
text: Composition adapters. In Proceedings of GCSE (Erfurt, Germany).

Vuissipes, J. 1995. Visiting rights. C++ Rep. Sept.

Vuissipes, J. 1996. The trouble with observer. C++ Rep. Sept.

Wa3. ConsorTium. n.d. XML schema home page. Available online at http://www.w3.org/XML/
Schema/. Continuously updated.

Waite, W. anp Goos, G. 1984. Compiler Construction. Springer-Verlag, Berlin, Germany.

WanD, M. ano Wy, P. n.d. Part of the statistics of traversing methods generated for DemeterJ
source code. Available online at http://www.ccs.neu.edu/home/wupc/statistics/statistics.htm.

WooLF, B. 1996. The null object pattern. In Pattern Languages of Program Design. Addison-
Wesley, Reading, MA.

WvbpaEGHE, B. 2002. PACOSUITE: Component composition based on composition patterns and
usage scenarios. Ph.D. dissertation. Free University of Brussels, Brussels, Belguim.

WYDAEGHE, B. AND VaNDERPERREN, W. 2001. Towards a new component composition process. In
Proceedings of ECBS (Washington, April).

Received November 2001; revised July 2002; accepted February 2003

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.

