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Abstract

Path queries on a knowledge graph can

be used to answer compositional ques-

tions such as “What languages are spoken

by people living in Lisbon?”. However,

knowledge graphs often have missing facts

(edges) which disrupts path queries. Re-

cent models for knowledge base comple-

tion impute missing facts by embedding

knowledge graphs in vector spaces. We

show that these models can be recursively

applied to answer path queries, but that

they suffer from cascading errors. This

motivates a new “compositional” training

objective, which dramatically improves all

models’ ability to answer path queries, in

some cases more than doubling accuracy.

On a standard knowledge base comple-

tion task, we also demonstrate that com-

positional training acts as a novel form of

structural regularization, reliably improv-

ing performance across all base models

(reducing errors by up to 43%) and achiev-

ing new state-of-the-art results.

1 Introduction

Broad-coverage knowledge bases such as Free-

base (Bollacker et al., 2008) support a rich array

of reasoning and question answering applications,

but they are known to suffer from incomplete cov-

erage (Min et al., 2013). For example, as of May

2015, Freebase has an entity Tad Lincoln (Abra-

ham Lincoln’s son), but does not have his ethnic-

ity. An elegant solution to incompleteness is using

vector space representations: Controlling the di-

mensionality of the vector space forces generaliza-

tion to new facts (Nickel et al., 2011; Nickel et al.,

2012; Socher et al., 2013; Riedel et al., 2013; Nee-

lakantan et al., 2015). In the example, we would

hope to infer Tad’s ethnicity from the ethnicity of

his parents.

Figure 1: We propose performing path queries

such as tad lincoln/parents/location (“Where

are Tad Lincoln’s parents located?”) in a parallel

low-dimensional vector space. Here, entity sets

(boxed) are represented as real vectors, and edge

traversal is driven by vector-to-vector transforma-

tions (e.g., matrix multiplication).

However, what is missing from these vector

space models is the original strength of knowledge

bases: the ability to support compositional queries

(Ullman, 1985). For example, we might ask

what the ethnicity of Abraham Lincoln’s daugh-

ter would be. This can be formulated as a path

query on the knowledge graph, and we would like

a method that can answer this efficiently, while

generalizing over missing facts and even missing

or hypothetical entities (Abraham Lincoln did not

in fact have a daughter).

In this paper, we present a scheme to answer

path queries on knowledge bases by “composi-

tionalizing” a broad class of vector space mod-

els that have been used for knowledge base com-

pletion (see Figure 1). At a high level, we inter-

pret the base vector space model as implementing

a soft edge traversal operator. This operator can

then be recursively applied to predict paths. Our

interpretation suggests a new compositional train-

ing objective that encourages better modeling of
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paths. Our technique is applicable to a broad class

of composable models that includes the bilinear

model (Nickel et al., 2011) and TransE (Bordes et

al., 2013).

We have two key empirical findings: First, we

show that compositional training enables us to

answer path queries up to at least length 5 by

substantially reducing cascading errors present in

the base vector space model. Second, we find

that somewhat surprisingly, compositional train-

ing also improves upon state-of-the-art perfor-

mance for knowledge base completion, which is a

special case of answering unit length path queries.

Therefore, compositional training can also be seen

as a new form of structural regularization for ex-

isting models.

2 Task

We now give a formal definition of the task of an-

swering path queries on a knowledge base. Let

E be a set of entities and R be a set of binary

relations. A knowledge graph G is defined as a

set of triples of the form (s, r, t) where s, t ∈ E
and r ∈ R. An example of a triple in Freebase is

(tad lincoln, parents, abraham lincoln).
A path query q consists of an initial anchor en-

tity, s, followed by a sequence of relations to be

traversed, p = (r1, . . . , rk). The answer or deno-

tation of the query, JqK, is the set of all entities that

can be reached from s by traversing p. Formally,

this can be defined recursively:

JsK
def
= {s}, (1)

Jq/rK
def
= {t : ∃s ∈ JqK, (s, r, t) ∈ G} . (2)

For example, tad lincoln/parents/location is a

query q that asks: “Where did Tad Lincoln’s par-

ents live?”.

For evaluation (see Section 5 for details), we de-

fine the set of candidate answers to a query C(q)
as the set of all entities that “type match”, namely

those that participate in the final relation of q at

least once; and let N (q) be the incorrect answers:

C (s/r1/ · · · /rk)
def
= {t | ∃e, (e, rk, t) ∈ G} (3)

N (q)
def
= C (q) \JqK. (4)

Knowledge base completion. Knowledge base

completion (KBC) is the task of predicting

whether a given edge (s, r, t) belongs in the graph

or not. This can be formulated as a path query

q = s/r with candidate answer t.

3 Compositionalization

In this section, we show how to compositional-

ize existing KBC models to answer path queries.

We start with a motivating example in Section 3.1,

then present the general technique in Section 3.2.

This suggests a new compositional training objec-

tive, described in Section 3.3. Finally, we illus-

trate the technique for several more models in Sec-

tion 3.4, which we use in our experiments.

3.1 Example

A common vector space model for knowledge

base completion is the bilinear model (Nickel et

al., 2011). In this model, we learn a vector xe ∈
R

d for each entity e ∈ E and a matrix Wr ∈ R
d×d

for each relation r ∈ R. Given a query s/r (ask-

ing for the set of entities connected to s via relation

r), the bilinear model scores how likely t ∈ Js/rK
holds using

score(s/r, t) = x⊤
s Wrxt. (5)

To motivate our compositionalization tech-

nique, take d = |E| and suppose Wr is the ad-

jacency matrix for relation r and entity vector xe

is the indicator vector with a 1 in the entry corre-

sponding to entity e. Then, to answer a path query

q = s/r1/ . . . /rk, we would then compute

score(q, t) = x⊤
s Wr1

. . . Wrk
xt. (6)

It is easy to verify that the score counts the number

of unique paths between s and t following rela-

tions r1/ . . . /rk. Hence, any t with positive score

is a correct answer (JqK = {t : score(q, t) > 0}).

Let us interpret (6) recursively. The model be-

gins with an entity vector xs, and sequentially

applies traversal operators Tri
(v) = v⊤Wri

for

each ri. Each traversal operation results in a

new “set vector” representing the entities reached

at that point in traversal (corresponding to the

nonzero entries of the set vector). Finally, it ap-

plies the membership operator M(v, xt) = v⊤xt

to check if t ∈ Js/r1/ . . . /rkK. Writing graph

traversal in this way immediately suggests a useful

generalization: take d much smaller than |E| and

learn the parameters Wr and xe.

3.2 General technique

The strategy used to extend the bilinear model of

(5) to the compositional model in (6) can be ap-

plied to any composable model: namely, one that
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has a scoring function of the form:

score(s/r, t) = M(Tr(xs), xt) (7)

for some choice of membership operator M : R
d×

R
d → R and traversal operator Tr : R

d → R
d.

We can now define the vector denotation of a

query JqKV analogous to the definition of JqK in

(1) and (2):

JsKV

def
= xs, (8)

Jq/rKV

def
= Tr (JqKV) . (9)

The score function for a compositionalized

model is then

score(q, t) = M(JqKV, JtKV). (10)

We would like JqKV to approximately represent

the set JqK in the sense that for every e ∈ JqK,

M (JqKV, JeKV) is larger than the values for e 6∈
JqK. Of course it is not possible to represent all

sets perfectly, but in the next section, we present a

training objective that explicitly optimizes T and

M to preserve path information.

3.3 Compositional training

The score function in (10) naturally suggests a new

compositional training objective. Let {(qi, ti)}
N
i=1

denote a set of path query training examples with

path lengths ranging from 1 to L. We minimize

the following max-margin objective:

J(Θ) =

N
∑

i=1

∑

t′∈N (qi)

[

1 − margin(qi, ti, t
′)
]

+
,

margin(q, t, t′) = score(q, t) − score(q, t′),

where the parameters are the membership opera-

tor, the traversal operators, and the entity vectors:

Θ = {M} ∪ {Tr : r ∈ R} ∪
{

xe ∈ R
d : e ∈ E

}

.

This objective encourages the construction of

“set vectors”: because there are path queries of

different lengths and types, the model must learn

to produce an accurate set vector JqKV after any

sequence of traversals. Another perspective is

that each traversal operator is trained such that

its transformation preserves information in the

set vector which might be needed in subsequent

traversal steps.

In contrast, previously proposed training objec-

tives for knowledge base completion only train on

queries of path length 1. We will refer to this spe-

cial case as single-edge training.

In Section 5, we show that compositional train-

ing leads to substantially better results for both

path query answering and knowledge base com-

pletion. In Section 6, we provide insight into why.

3.4 Other composable models

There are many possible candidates for T and M.

For example, T could be one’s favorite neural net-

work mapping from R
d to R

d. Here, we focus on

two composable models that were both recently

shown to achieve state-of-the-art performance on

knowledge base completion.

TransE. The TransE model of Bordes et al.

(2013) uses the scoring function

score(s/r, t) = −‖xs + wr − xt‖
2
2. (11)

where xs, wr and xt are all d-dimensional vectors.

In this case, the model can be expressed using

membership operator

M(v, xt) = −‖v − xt‖
2
2 (12)

and traversal operator Tr(xs) = xs + wr.

Hence, TransE can handle a path query q =
s/r1/r2/ · · · /rk using

score(q, t) = −‖xs + wr1
+ · · · + wrk

− xt‖
2
2.

We visualize the compositional TransE model in

Figure 2.

Bilinear-Diag. The Bilinear-Diag model of

Yang et al. (2015) is a special case of the bilinear

model with the relation matrices constrained to be

diagonal. Alternatively, the model can be viewed

as a variant of TransE with multiplicative interac-

tions between entity and relation vectors.

Not all models can be compositionalized. It

is important to point out that some models are

not naturally composable—for example, the latent

feature model of Riedel et al. (2013) and the neu-

ral tensor network of Socher et al. (2013). These

approaches have scoring functions which combine

s, r and t in a way that does not involve an inter-

mediate vector representing s/r alone without t,
so they do not decompose according to (7).
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WordNet Freebase

Relations 11 13

Entities 38,696 75,043

Base
Train 112,581 316,232

Test 10,544 23,733

Paths
Train 2,129,539 6,266,058

Test 46,577 109,557

Table 1: WordNet and Freebase statistics for base

and path query datasets.

3.5 Implementation

We use AdaGrad (Duchi et al., 2010) to optimize

J(Θ), which is in general non-convex. Initial-

ization scale, mini-batch size and step size were

cross-validated for all models. We initialize all

parameters with i.i.d. Gaussians of variance 0.1 in

every entry, use a mini-batch size of 300 examples,

and a step size in [0.001, 0.1] (chosen via cross-

validation) for all of the models. For each exam-

ple q, we sample 10 negative entities t′ ∈ N (q).
During training, all of the entity vectors are con-

strained to lie on the unit ball, and we clipped the

gradients to the median of the observed gradients

if the update exceeded 3 times the median.

We first train on path queries of length 1 until

convergence and then train on all path queries until

convergence. This guarantees that the model mas-

ters basic edges before composing them to form

paths. When training on path queries, we explic-

itly parameterize inverse relations. For the bilinear

model, we initialize Wr−1 with W⊤
r . For TransE,

we initialize wr−1 with −wr. For Bilinear-Diag,

we found initializing wr−1 with the exact inverse

1/wr is numerically unstable, so we instead ran-

domly initialize wr−1 with i.i.d Gaussians of vari-

ance 0.1 in every entry. Additionally, for the bi-

linear model, we replaced the sum over N (qi) in

the objective with a max since it yielded slightly

higher accuracy. Our models are implemented us-

ing Theano (Bastien et al., 2012; Bergstra et al.,

2010).

4 Datasets

In Section 4.1, we describe two standard knowl-

edge base completion datasets. These consist of

single-edge queries, so we call them base datasets.

In Section 4.2, we generate path query datasets

from these base datasets.

4.1 Base datasets

Our experiments are conducted using the sub-

sets of WordNet and Freebase from Socher et al.

(2013). The statistics of these datasets and their

splits are given in Table 1.

The WordNet and Freebase subsets exhibit sub-

stantial differences that can influence model per-

formance. The Freebase subset is almost bipartite

with most of the edges taking the form (s, r, t) for

some person s, relation r and property t. In Word-

Net, both the source and target entities are arbi-

trary words.

Both the raw WordNet and Freebase contain

many relations that are almost perfectly correlated

with an inverse relation. For example, WordNet

contains both has part and part of, and Freebase

contains both parents and children. At test time,

a query on an edge (s, r, t) is easy to answer if the

inverse triple (t, r−1, s) was observed in the train-

ing set. Following Socher et al. (2013), we ac-

count for this by excluding such “trivial” queries

from the test set.

4.2 Path query datasets

Given a base knowledge graph, we generate path

queries by performing random walks on the graph.

If we view compositional training as a form of reg-

ularization, this approach allows us to generate ex-

tremely large amounts of auxiliary training data.

The procedure is given below.

Let Gtrain be the training graph, which consists

only of the edges in the training set of the base

dataset. We then repeatedly generate training ex-

amples with the following procedure:

1. Uniformly sample a path length L ∈
{1, . . . , Lmax}, and uniformly sample a start-

ing entity s ∈ E .

2. Perform a random walk beginning at entity s
and continuing L steps.

(a) At step i of the walk, choose a relation

ri uniformly from the set of relations in-

cident on the current entity e.

(b) Choose the next entity uniformly from

the set of entities reachable via ri.

3. Output a query-answer pair, (q, t), where q =
s/r1/ · · · /rL and t is the final entity of the

random walk.
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In practice, we do not sample paths of length 1 and

instead directly add all of the edges from Gtrain to

the path query dataset.

To generate a path query test set, we repeat

the above procedure except using the graph Gfull,

which is Gtrain plus all of the test edges from the

base dataset. Then we remove any queries from

the test set that also appeared in the training set.

The statistics for the path query datasets are pre-

sented in Table 1.

5 Main results

We evaluate the models derived in Section 3 on

two tasks: path query answering and knowledge

base completion. On both tasks, we show that the

compositional training strategy proposed in Sec-

tion 3.3 leads to substantial performance gains

over standard single-edge training. We also com-

pare directly against the KBC results of Socher et

al. (2013), demonstrating that previously inferior

models now match or outperform state-of-the-art

models after compositional training.

Evaluation metric. Numerous metrics have

been used to evaluate knowledge base queries, in-

cluding hits at 10 (percentage of correct answers

ranked in the top 10) and mean rank. We evaluate

on hits at 10, as well as a normalized version of

mean rank, mean quantile, which better accounts

for the total number of candidates. For a query q,

the quantile of a correct answer t is the fraction of

incorrect answers ranked after t:

|{t′ ∈ N (q) : score(q, t′) < score(q, t)}|

|N (q)|
(13)

The quantile ranges from 0 to 1, with 1 being opti-

mal. Mean quantile is then defined to be the aver-

age quantile score over all examples in the dataset.

To illustrate why normalization is important, con-

sider a set of queries on the relation gender. A

model that predicts the incorrect gender on ev-

ery query would receive a mean rank of 2 (since

there are only 2 candidate answers), which is fairly

good in absolute terms, whereas the mean quantile

would be 0, rightfully penalizing the model.

As a final note, several of the queries in the

Freebase path dataset are “type-match trivial” in

the sense that all of the type matching candidates

C(q) are correct answers to the query. In this case,

mean quantile is undefined and we exclude such

queries from evaluation.

Overview. The upper half of Table 2 shows

that compositional training improves path query-

ing performance across all models and metrics on

both datasets, reducing error by up to 76.2%.

The lower half of Table 2 shows that surpris-

ingly, compositional training also improves per-

formance on knowledge base completion across

almost all models, metrics and datasets. On Word-

Net, TransE benefits the most, with a 43.3% re-

duction in error. On Freebase, Bilinear benefits

the most, with a 38.8% reduction in error.

In terms of mean quantile, the best overall

model is TransE (COMP). In terms of hits at 10, the

best model on WordNet is Bilinear (COMP), while

the best model on Freebase is TransE (COMP).

Deduction and Induction. Table 3 takes a

deeper look at performance on path query answer-

ing. We divided path queries into two subsets: de-

duction and induction. The deduction subset con-

sists of queries q = s/p where the source and tar-

get entities JqK are connected via relations p in the

training graph Gtrain, but the specific query q was

never seen during training. Such queries can be

answered by performing explicit traversal on the

training graph, so this subset tests a model’s abil-

ity to approximate the underlying training graph

and predict the existence of a path from a collec-

tion of single edges. The induction subset consists

of all other queries. This means that at least one

edge was missing on all paths following p from

source to target in the training graph. Hence, this

subset tests a model’s generalization ability and its

robustness to missing edges.

Performance on the deduction subset of the

dataset is disappointingly low for models trained

with single-edge training: they struggle to answer

path queries even when all edges in the path query

have been seen at training time. Compositional

training dramatically reduces these errors, some-

times doubling mean quantile. In Section 6, we

analyze how this might be possible. After com-

positional training, performance on the harder in-

duction subset is also much stronger. Even when

edges are missing along a path, the models are able

to infer them.

Interpretable queries. Although our path

datasets consists of random queries, both datasets

contain a large number of useful, interpretable

queries. Results on a few illustrative examples are

shown in Table 4.
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Bilinear Bilinear-Diag TransE

Path query task SINGLE COMP (%red) SINGLE COMP (%red) SINGLE COMP (%red)

WordNet
MQ 84.7 89.4 30.7 59.7 90.4 76.2 83.7 93.3 58.9

H@10 43.6 54.3 19.0 7.9 31.1 25.4 13.8 43.5 34.5

Freebase
MQ 58.0 83.5 60.7 57.9 84.8 63.9 86.2 88 13.0

H@10 25.9 42.1 21.9 23.1 38.6 20.2 45.4 50.5 9.3

KBC task SINGLE COMP (%red) SINGLE COMP (%red) SINGLE COMP (%red)

WordNet
MQ 76.1 82.0 24.7 76.5 84.3 33.2 75.5 86.1 43.3

H@10 19.2 27.3 10.0 12.9 14.4 1.72 4.6 16.5 12.5

Freebase
MQ 85.3 91.0 38.8 84.6 89.1 29.2 92.7 92.8 1.37

H@10 70.2 76.4 20.8 63.2 67.0 10.3 78.8 78.6 -0.9

Table 2: Path query answering and knowledge base completion. We compare the performance of

single-edge training (SINGLE) vs compositional training (COMP). MQ: mean quantile, H@10: hits at 10,

%red: percentage reduction in error.

Interpretable Queries Bilinear SINGLE Bilinear COMP

X/institution/institution−1/profession 50.0 93.6

X/parents/religion 81.9 97.1

X/nationality/nationality−1/ethnicity−1 68.0 87.0

X/has part/has instance−1 92.6 95.1

X/type of/type of/type of 72.8 79.4

Table 4: Path query performance (mean quantile) on a selection of interpretable queries. We compare

Bilinear SINGLE and Bilinear COMP. Meanings of each query (descending): “What professions are there

at X’s institution?”; “What is the religion of X’s parents?”; “What are the ethnicities of people from the

same country as X?”; “What types of parts does X have?”; and the transitive “What is X a type of?”.

(Note that a relation r and its inverse r−1 do not necessarily cancel out if r is not a one-to-one mapping.

For example, X/institution/institution−1 denotes the set of all people who work at the institution X

works at, which is not just X.)

Path query task WordNet Freebase

Ded. Ind. Ded. Ind.

Bilinear
SINGLE 96.9 66.0 49.3 49.4

COMP 98.9 75.6 82.1 70.6

Bi-Diag
SINGLE 56.3 51.6 49.3 50.2

COMP 98.5 78.2 84.5 72.8

TransE
SINGLE 92.6 71.7 85.3 72.4

COMP 99.0 87.4 87.5 76.3

Table 3: Deduction and induction. We compare

mean quantile performance of single-edge training

(SINGLE) vs compositional training (COMP). Length

1 queries are excluded.

Comparison with Socher et al. (2013). Here,

we measure performance on the KBC task in terms

of the accuracy metric of Socher et al. (2013).

This evaluation involves sampled negatives, and is

hence noisier than mean quantile, but makes our

results directly comparable to Socher et al. (2013).

Our results show that previously inferior models

such as the bilinear model can outperform state-

of-the-art models after compositional training.

Socher et al. (2013) proposed parametrizing

each entity vector as the average of vectors of

words in the entity (wtad lincoln = 1
2(wtad +

wlincoln), and pretraining these word vectors us-

ing the method of Turian et al. (2010). Table 5

reports results when using this approach in con-

junction with compositional training. We initial-

ized all models with word vectors from Penning-

ton et al. (2014). We found that composition-

ally trained models outperform the neural tensor

network (NTN) on WordNet, while being only

slightly behind on Freebase. (We did not use word

vectors in any of our other experiments.)

When the strategy of averaging word vectors to

form entity vectors is not applied, our composi-

tional models are significantly better on WordNet

and slightly better on Freebase. It is worth noting

that in many domains, entity names are not lexi-

cally meaningful, so word vector averaging is not
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Accuracy WordNet Freebase

EV WV EV WV

NTN 70.6 86.2 87.2 90.0

Bilinear COMP 77.6 87.6 86.1 89.4

TransE COMP 80.3 84.9 87.6 89.6

Table 5: Model performance in terms of accu-

racy. EV: entity vectors are separate (initialized

randomly); WV: entity vectors are average of word

vectors (initialized with pretrained word vectors).

always meaningful.

6 Analysis

In this section, we try to understand why com-

positional training is effective. For concrete-

ness, everything is described in terms of the bi-

linear model. We will refer to the compositionally

trained model as COMP, and the model trained with

single-edge training as SINGLE.

6.1 Why does compositional training

improve path query answering?

It is tempting to think that if SINGLE has accurately

modeled individual edges in a graph, it should ac-

curately model the paths that result from those

edges. This intuition turns out to be incorrect, as

revealed by SINGLE’s relatively weak performance

on the path query dataset. We hypothesize that this

is due to cascading errors along the path. For a

given edge (s, r, t) on the path, single-edge train-

ing encourages xt to be closer to x⊤
s Wr than any

other incorrect xt′ . However, once this is achieved

by a margin of 1, it does not push xt any closer to

x⊤
s Wr. The remaining discrepancy is noise which

gets added at each step of path traversal. This is

illustrated schematically in Figure 2.

To observe this phenomenon empirically, we

examine how well a model handles each interme-

diate step of a path query. We can do this by

measuring the reconstruction quality (RQ) of the

set vector produced after each traversal operation.

Since each intermediate stage is itself a valid path

query, we define RQ to be the average quantile

over all entities that belong in JqK:

RQ (q) =
1

|JqK|

∑

t∈JqK

quantile (q, t) (14)

When all entities in JqK are ranked above all in-

correct entities, RQ is 1. In Figure 3, we illustrate

how RQ changes over the course of a query.

Figure 2: Cascading errors visualized for

TransE. Each node represents the position of an

entity in vector space. The relation parent is

ideally a simple horizontal translation, but each

traversal introduces noise. The red circle is where

we expect Tad’s parent to be. The red square is

where we expect Tad’s grandparent to be. Dotted

red lines show that error grows larger as we tra-

verse farther away from Tad. Compositional train-

ing pulls the entity vectors closer to the ideal ar-

rangement.

Given the nature of cascading errors, it might

seem reasonable to address the problem by adding

a term to our objective which explicitly encour-

ages x⊤
s Wr to be as close as possible to xt. With

this motivation, we tried adding λ‖x⊤
s Wr − xt‖

2
2

term to the objective of the bilinear model and a

λ‖xs +wr −xt‖
2
2 term to the objective of TransE.

We experimented with different settings of λ over

the range [0.001, 100]. In no case did this addi-

tional ℓ2 term improve SINGLE’s performance on

the path query or single edge dataset. These re-

sults suggest that compositional training is a more

effective way to combat cascading errors.

6.2 Why does compositional training

improve knowledge base completion?

Table 2 reveals that COMP also performs better on

the single-edge task of knowledge base comple-

tion. This is somewhat surprising, since SINGLE

is trained on a training set which distributionally

matches the test set, whereas COMP is not. How-

ever, COMP’s better performance on path queries

suggests that there must be another factor at play.

At a high level, training on paths must be provid-

ing some form of structural regularization which

reduces cascading errors. Indeed, paths in a

knowledge graph have proven to be important fea-

tures for predicting the existence of single edges

(Lao et al., 2011; Neelakantan et al., 2015). For

example, consider the following Horn clause:

parents (x, y)∧ location (y, z) ⇒ place of birth (x, z) ,
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Figure 3: Reconstruction quality (RQ) at each step

of the query tad lincoln/parents/place of birth/

place of birth−1/profession. COMP experiences

significantly less degradation in RQ as path length

increases. Correspondingly, the set of 5 highest

scoring entities computed at each step using COMP

(green) is significiantly more accurate than the set

given by SINGLE (blue). Correct entities are bolded.

which states that if x has a parent with location

z, then x has place of birth z. The body of the

Horn clause expresses a path from x to z. If COMP

models the path better, then it should be better able

to use that knowledge to infer the head of the Horn

clause.

More generally, consider Horn clauses of the

form p ⇒ r, where p = r1/ . . . /rk is a path type

and r is the relation being predicted. Let us focus

on Horn clauses with high precision as defined by:

prec(p) =
|JpK ∩ JrK|

|JpK|
, (15)

where JpK is the set of entity pairs connected by p,

and similarly for JrK.

Intuitively, one way for the model to implicitly

learn and exploit such a Horn clause would be to

satisfy the following two criteria:

1. The model should ensure a consistent spa-

tial relationship between entity pairs that are

related by the path type p; that is, keeping

x⊤
s Wr1

. . . Wrk
close to xt for all valid (s, t)

pairs.

2. The model’s representation of the path type p
and relation r should capture that spatial re-

lationship; that is, x⊤
s Wr1

. . . Wrk
≈ xt im-

plies x⊤
s Wr ≈ xt, or simply Wr1

. . . Wrk
≈

Wr.

We have already seen empirically that SINGLE does

not meet criterion 1, because cascading errors

cause it to put incorrect entity vectors xt′ closer

to x⊤
s Wr1

. . . Wrk
than the correct entity. COMP

mitigates these errors.

To empirically verify that COMP also does a bet-

ter job of meeting criterion 2, we perform the

following: for a path type p and relation r, de-

fine dist(p, r) to be the angle between their corre-

sponding matrices (treated as vectors in R
d2

). This

is a natural measure because x⊤
s Wrxt computes

the matrix inner product between Wr and xsx
⊤
t .

Hence, any matrix with small distance from Wr

will produce nearly the same scores as Wr for the

same entity pairs.

If COMP is better at capturing the correlation be-

tween p and r, then we would expect that when

prec(p) is high, compositional training should

shrink dist(p, r) more. To confirm this hypothe-

sis, we enumerated over all 676 possible paths of

length 2 (including inverted relations), and exam-

ined the proportional reduction in dist(p, r) caused

by compositional training,

∆dist(p, r) =
distCOMP(p, r) − distSINGLE(p, r)

distSINGLE(p, r)
.

(16)

Figure 4 shows that higher precision paths indeed

correspond to larger reductions in dist(p, r).

7 Related work

Knowledge base completion with vector space

models. Many models have been proposed for

knowledge base completion, including those re-

viewed in Section 3.4 (Nickel et al., 2011; Bor-

des et al., 2013; Yang et al., 2015; Socher et al.,

2013). Dong et al. (2014) demonstrated that KBC

models can improve the quality of relation extrac-

tion by serving as graph-based priors. Riedel et

al. (2013) showed that such models can be also be

directly used for open-domain relation extraction.

Our compositional training technique is an orthog-

onal improvement that could help any composable

model.

Distributional compositional semantics. Pre-

vious works have explored compositional vector

space representations in the context of logic and

sentence interpretation. In Socher et al. (2012), a

matrix is associated with each word of a sentence,

and can be used to recursively modify the mean-

ing of nearby constituents. Grefenstette (2013) ex-
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Figure 4: We divide paths of length 2 into high

precision (> 0.3), low precision (≤ 0.3), and not

co-occuring with r. Here r = nationality. Each

box plot shows the min, max, and first and third

quartiles of ∆dist(p, r). As hypothesized, com-

positional training results in large decreases in

dist(p, r) for high precision paths p, modest de-

creases for low precision paths, and little to no de-

creases for irrelevant paths.

plored the ability of tensors to simulate logical cal-

culi. Bowman et al. (2014) showed that recursive

neural networks can learn to distinguish impor-

tant semantic relations. Socher et al. (2014) found

that compositional models were powerful enough

to describe and retrieve images.

We demonstrate that compositional representa-

tions are also useful in the context of knowledge

base querying and completion. In the aforemen-

tioned work, compositional models produce vec-

tors which represent truth values, sentiment or im-

age features. In our approach, vectors represent

sets of entities constituting the denotation of a

knowledge base query.

Path modeling. Numerous methods have been

proposed to leverage path information for knowl-

edge base completion and question answering.

Nickel et al. (2014) proposed combining low-rank

models with sparse path features. Lao and Cohen

(2010) used random walks as features and Gard-

ner et al. (2014) extended this approach by us-

ing vector space similarity to govern random walk

probabilities. Neelakantan et al. (2015) addressed

the problem of path sparsity by embedding paths

using a recurrent neural network. Perozzi et al.

(2014) sampled random walks on social networks

as training examples, with a different goal to clas-

sify nodes in the network. Bordes et al. (2014) em-

bed paths as a sum of relation vectors for question

answering. Our approach is unique in modeling

the denotation of each intermediate step of a path

query, and using this information to regularize the

spatial arrangement of entity vectors.

8 Discussion

We introduced the task of answering path queries

on an incomplete knowledge base, and presented a

general technique for compositionalizing a broad

class of vector space models. Our experiments

show that compositional training leads to state-of-

the-art performance on both path query answering

and knowledge base completion.

There are several key ideas from this paper: reg-

ularization by augmenting the dataset with paths,

representing sets as low-dimensional vectors in

a context-sensitive way, and performing function

composition using vectors. We believe these three

could all have greater applicability in the develop-

ment of vector space models for knowledge repre-

sentation and inference.
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