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Abstract

The notion of graph traversal is of fundamental importance to solving many com-

putational problems. In many modern applications involving graph traversal such

as those arising in the domain of social networks, Internet based services, fraud

detection in telephone calls etc., the underlying graph is very large and dynam-

ically evolving. This thesis deals with the design and engineering of traversal

algorithms for such graphs.

We engineer various I/O-efficient Breadth First Search (BFS) algorithms for mas-

sive sparse undirected graphs. Our pipelined implementations with low constant

factors, together with some heuristics preserving the worst-case guarantees makes

BFS viable on massive graphs. We perform an extensive set of experiments to

study the effect of various graph properties such as diameter, initial disk layouts,

tuning parameters, disk parallelism, cache-obliviousness etc. on the relative per-

formance of these algorithms.

We characterize the performance of NAND flash based storage devices, including

many solid state disks. We show that despite the similarities between flash mem-

ory and RAM (fast random reads) and between flash disk and hard disk (both are

block based devices), the algorithms designed in the RAM model or the exter-

nal memory model do not realize the full potential of the flash memory devices.

We also analyze the effect of misalignments, aging, past I/O patterns, etc. on

the performance obtained on these devices. We also consider I/O-efficient BFS

algorithms for the case when a hard disk and a solid state disk are used together.

We present a simple algorithm which maintains the topological order of a directed

acyclic graph with n nodes under an online edge insertion sequence in O(n2.75)
time, independent of the number m of edges inserted. For dense DAGs, this is

an improvement over the previous best result of O(min{m 3
2 logn,m

3
2 +n2 logn}).

While our analysis holds only for the incremental setting, our algorithm itself is

fully dynamic.
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We also present the first average-case analysis of online topological ordering algo-

rithms. We prove an expected runtime of O(n2 polylog(n)) under insertion of the

edges of a complete DAG in a random order for various incremental topological

ordering algorithms.



Kurzfassung

Die Traversierung von Graphen ist von fundamentaler Bedeutung für das Lösen

vieler Berechnungsprobleme. Moderne Anwendungen, die auf Graphtraversierung

beruhen, findet man unter anderem in sozialen Netzwerken, internetbasierten Di-

enstleistungen, Betrugserkennung bei Telefonanrufen. In vielen dieser Anwen-

dungen ist der zugrunde liegende Graph sehr gross und ändert sich kontinuierlich.

Wir entwickeln mehrere I/O-effiziente Breitensuch-Algorithmen für massive, dünnbe-

siedelte, ungerichtete Graphen. Im Zusammenspiel mit Heuristiken zur Einhal-

tung von Worst-Case-Garantien, ermöglichen unsere pipeline-basierten Imple-

mentierungen die Praktikabilität von Breitensuche auf massiven Graphen. Wir

führen eine Vielfalt an Experimente durch, um die Wirkung unterschiedlicher

Grapheigenschaften zu untersuchen, wie z.B. Graph-Durchmesser, anfängliche

Belegung der Festplatte, Tuning-Parameter, Plattenparallelismus.

Wir charakterisieren die Leistung von NAND-Flash basierten Speichermedien,

einschliesslich vieler solid-state Disks. Wir zeigen, dass trotz der Ähnlichkeiten

von Flash-Speicher und RAM (schnelle wahlfreie Lese-Zugriffe) und von Flash-

Platten und Festplatten (beide sind blockbasiert) Algorithmen, die für das RAM-

Modell oder das Externspeicher-Modell entworfenen wurden, nicht das volle Po-

tential der Flash-Speicher-Medien ausschöpfen. Zusätzlich analysieren wir die

Wirkung von Ausrichtungsfehlern, Alterung, vorausgehenden I/O-Mustern, usw.,

auf die Leistung dieser Medien. Wir berücksichtigen auch I/O-effiziente Breitensuch-

Algorithmen für die gleichzeitige Nutzung von Festplatten und solid-state Disks.

Wir stellen einen einfachen Algorithmus vor, der beim Online-Einfügen von Kan-

ten die topologische Ordnung von einem gerichteten, azyklischen Graphen (DAG)

mit n Knoten beibehält. Dieser Algorithmus hat eine Laufzeitkomplexität von

O(n2.75) unabhängig von der Anzahl m der eingefügten Kanten. Für dichte DAGs

ist dies eine Verbesserung des besten, vorherigen Ergebnisses von O(min{m 3
2 logn,

m
3
2 +n2 logn}). Während die Analyse nur im inkrementellen Szenario gütlig ist,
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ist unser Algorithmus völlständig dynamisch.

Ferner stellen wir die erste Average-Case-Analyse von Online-Algorithmen zur

Unterhaltung einer topologischen Ordnung vor. Für mehrere inkrementelle Al-

gorithmen, welche die Kanten eines kompletten DAGs in zufälliger Reihenfolge

einfügen, beweisen wir eine erwartete Laufzeit von O(n2 polylog(n)).
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Chapter 1

Introduction

A theory must be tempered with reality.

— Jawaharlal Nehru

A graph is one of the most useful objects in discrete mathematics. It can be used

to represent physical networks such as electrical circuits, roadways or organic

molecules as well as less tangible interactions as might occur in ecosystems, so-

ciological relationships, databases or in the flow of control in a computer pro-

gram. It therefore comes as no surprise that graph theory finds applications in

physics, chemistry, communication science, computer science, electrical and civil

engineering, architecture, operational research, genetics, psychology, sociology,

economics, anthropology and linguistics. The theory is also intimately related to

many branches of mathematics, including group theory, matrix theory, numerical

analysis, probability, topology, and combinatorics. In fact, graph theory serves as

a mathematical model for any system involving a binary relation.

The notion of graph traversal is nearly as old and as important as the notion of

a graph itself. One of the most celebrated results in graph traversal dates back

to 1736 when Leonhard Euler solved the famous Seven Bridges of Königsberg

problem using a graph traversal technique called Euler tour. A surprisingly large

number of optimization problems from many different domains can be reduced to

traversing graphs in a structured way.
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Graph traversal algorithms have therefore received considerable attention in the

computer science literature. Simple linear time algorithms have been developed

for Breadth-First Search (BFS), Depth-First Search (DFS), computing connected

and strongly connected components on directed graphs, and topological ordering

of directed acyclic graphs [51]. Also, there exist near-linear time algorithms for

computing Minimum Spanning Trees (MST) [45, 88, 128] of undirected graphs.

Dijkstra’s algorithm [61] with Fibonacci heaps [71] can solve the Single-Source

Shortest-Paths (SSSP) [61, 71] problem on directed graphs with non-negative

weights in O(m + n logn), where n is the number of nodes and m is the number

of edges in the graph. For All-Pair Shortest-Paths (APSP), the naı̈ve algorithm of

computing SSSP from all nodes takes O(m · n + n2 logn). It has been improved

to O(m · n + n2 loglogn) [127] for sparse graphs and O(n3/ logn) [44] for dense

graphs.

1.1 Large graphs

In many applications involving graph traversal, the underlying graph is too big

to fit in the internal memory of the computing device. Consider the following

examples:

• The World Wide Web (WWW) can be looked upon as a massive graph

where each web-page is a node and the hyperlink from one page to an-

other is a directed edge between the nodes corresponding to those pages.

As of August 2008, it is estimated that the indexed web contains at least 27

billion webpages [53].

Typical problems in the analysis (e.g., [35, 95]) of WWW graphs include

computing the diameter of the graph, computing the diameter of the core

of the graph, computing connected and strongly connected components and

other structural properties such as computing the correct parameters for the

power law modeling of WWW graphs. There has also been a lot of work on

understanding the evolution of such graphs.

Computing Page rank [36] (the basis of the Google search engine) is con-

sidered to be a very important problem with respect to webgraphs, owing

to its immense usage in search engines, classification and many other ma-

chine learning applications. A key challenge here is that since the webgraph

is continuously evolving, recomputing Page rank every time there is a mi-

nor modification in the webgraph is considered to be “increasingly infeasi-

ble” [59].
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• Social networking websites such as Facebook, Orkut, MySpace, LinkedIn

etc. also provide massive and continuously evolving graphs. The nodes here

refer to the profiles of people and an edge refers to an acknowledgement of

acquaintance between two people. Typical problems on these graphs are

computing similarity based clustering to find communities of people.

• Citation graphs of scientific papers from specific domains, where nodes are

the publications and a directed edge from one paper to the other reflects

a citation is yet another such graph class. The main problem here is to

understand the nature of scientific collaboration and identify communities.

• Automatic classification of data items, based on training samples, can be

boosted by considering the neighborhood of data items in a graph struc-

ture [16]. This is particularly useful when the objects to be classified are im-

ages (in web-sites such as Flickr) or videos (in web-sites such as YouTube).

The tags associated with these pictures and videos are hardly enough for

their classification. The graph structure containing the likings and dislik-

ings of different users provides important clues that can improve the clas-

sification accuracy significantly. Such graphs can often be quite huge. For

example, the online photo sharing network Flickr that started in 2004 had

more than two billion pictures as of November 2007 [70] and claims that

three to five million photos are updated daily on its network.

• There have also been attempts (e.g., [98]) to improve the results of web

search by using the implicit feedback obtained from query logs. The under-

lying assumption behind these approaches is that by clicking (or ignoring)

the results provided by the search engines for a particular query, users mark

the relevance of clicked (or ignored) pages with respect to their query. The

graph here is huge as the set of nodes consists not only of the web-pages,

but also of all the queries posted by users to the search engine. There is an

edge between a node representing a query q and a node representing a web-

page w if a user searches for the query q, the search engine shows him/her

the web-page w as a result, and he/she clicks on it.

• Telephone call graphs: Telephone call graphs have the telephone numbers

operated by a company as nodes and there is a directed edge between two

nodes if and only if there has been a call from one to another in a certain

time-frame. The call graphs managed by telecom companies like AT&T

can be massive. Typical problems on telephone call graphs are fraud de-

tection and searching for local communities (e.g., by detecting maximum

cliques [1]).
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• GIS terrain data: Remote sensing has made massive amounts of high res-

olution terrain data readily available. Terrain analysis is central to a range

of important geographic information systems (GIS) applications concerned

with the effects of topography. Typical problems in this domain involve

flow routing and flow accumulation [22].

• Route planning on small PDA devices [76, 141]: The PDA devices used to

compute the shortest/fastest routes have very small main memory. Although

the street maps of even continents are only a few hundred MBs in size, they

are too large to fit into the small main memory of these devices.

• State space search in Artificial Intelligence [64]: In many applications of

model checking, the state space that needs to be searched is too big to fit in

the main memory. In these graphs, the different configuration states are the

nodes and the edge between two nodes represent the possibility of a transi-

tion from one state to another in the course of the protocol/algorithm being

checked. Typical problems in this domain are reachability analysis (to find

out if a protocol can ever enter into a wrong state) [84], cycle detection (to

search for liveness properties) [63], or just finding some path to eventually

reach a goal state (action planning).

• Semantic graphs (e.g., [99]), where the nodes represent entities and the

edges represent relationship between two entities can also be quite huge.

Typical problems in the analysis of semantic graphs include determining

the nature of the relationship between nodes in the graph. Such queries can

be answered by finding shortest paths or computing Steiner trees. Another

key area of interest on semantic graphs is community analysis.

• Purchase graph from electronic commerce (e-commerce) companies such

as the online book-shop Amazon is yet another example of massive and

continuously evolving graph. Here, the bipartite graph consists of the prod-

ucts (such as books) and the buyers as the nodes and a purchase as an edge.

There has been a lot of work in building a personalized recommendation

system to show those products to users that they may also like. This is typ-

ically based on their past purchases. The key idea here is to identify other

users whose purchasing behavior is similar and recommend the appropri-

ately weighted sum of their other purchases.

• Frameworks for keyword querying of relational databases (e.g., [28]) may

also involve traversing large graphs.

• Many problems arising in VLSI design, XML query processing, querying
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ontology DAGs, Delaunay triangulation of meshes in computer graphics, vi-

sualization of biological networks such as protein-protein interactions, and

molecular data mining also involve traversing large graphs.

While some solutions for these problems are based on sparse-matrix dense-vector

multiplications, or approximating the solution using integer linear programming,

a large number of solutions rely on traversing graphs. For example, a community

detection algorithm by Newman and Girman [119] uses all-pair BFS as a sub-

routine to identify edges with high “betweenness”, where betweenness is some

measure that favors edges that lie between communities and disfavors those that

lie inside communities. Removal of these edges reveal the inherent “natural” di-

vision of the network into groups.

1.2 Realistic setting for traversing large

graphs

Since, the standard linear or near-linear time algorithms for graph traversal are

also reasonably simple, it is tempting to use them directly in real applications

involving large and massive graphs as well. Unfortunately, the real world offers

many more challenges than the ones for which our simple algorithms are designed.

First and foremost, these algorithms are designed and analyzed in the von Neu-

mann or RAM model of computation. This model assumes a unit cost access to

any memory location. In reality, the computer architecture is far more complex.

There is a sophisticated memory hierarchy (cf. Section 2.4.2) and the cost of data

access depends on the level of memory where the data is currently residing. In

particular, the cost of accessing the data from the disk is about a million times

more than that of accessing it from the L1 cache.

As the storage requirements of the input graph reaches and exceeds the size of the

main memory available, the running time of the simple linear or near-linear time

algorithms deviates significantly from their predicted asymptotic performance in

the RAM model. Furthermore, on massive graphs (with a billion or more edges),

these algorithms are simply non-viable as they require many months or years for

the requisite graph traversal. The main cause for such a poor performance of these

algorithms on massive graphs is the number of I/Os (transfer of data from/to the

external memory) they incur.

Figure 1.1 displays the results of experiments with the commonly used BFS rou-
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Figure 1.1: Time (in seconds) required by BFS from the LEDA graph package on

random graphs with m = 4n edges.

tine of the LEDA [107] graph package on random graph [66, 67] G(n,m) with

m = 4n. These experiments were done on a machine with Intel Xeon 2.0 GHz pro-

cessor, 1 GB RAM and 2 GB swap space on a Seagate Baracuda hard-disk [142].

On random graphs with 3.6 million nodes (and 14.4 million edges), it takes around

10 hours as compared to just 10 seconds for graphs with 1.8 million nodes (and

7.2 million edges).

With the advent of solid state disks and other flash memory based storage medi-

ums, the memory hierarchy is likely to become even more sophisticated as the

read-write characteristics of these devices can be very different from the tradi-

tional hard disks. Since the storage devices significantly affect the practical per-

formance of traversal algorithms when running on large graphs, we would like

to exploit the I/O characteristics of these devices to design graph traversal algo-

rithms that perform better in practice. For this, it is important to first properly

characterize these disks.

Another important challenge when dealing with real world applications is that

the input graphs are often dynamically changing. For instance, the World Wide

Web graph, social networking graphs, purchase graphs, and scientific collabora-

tion graphs are all continuously evolving. The telephone call graphs are also con-

tinuously changing. Even the street maps for route planning applications which

may seem static most of the time are actually quite dynamic once the traffic jam

and other road-block information is accounted in. The naı̈ve way of recomput-

ing all the information every time there is a minor modification in the original
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graph is inefficient and for large and massive graphs, often impractical. Ideally,

we would like to bound the amount of work needed to recompute the required

traversal-related solution by a function of some measure of change done in the

input graphs and the change in the output solution [132]. Since this is not always

possible, our next best hope is to bound the required work in an amortized sense.

In other words, while some updates may necessiate a lot of work, we would like to

bound the sum of the time required for recomputing the solution over a sequence

of graph updates.

While most of the algorithm design is done keeping the worst case complexity in

mind, the worst case graphs for many of these algorithms are quite rare. Most ap-

plication requirements are already met if an algorithm performs good on average.

In short, the simple graph traversal algorithms are often inappropriate for real ap-

plications involving massive graphs owing to the problems with the computation

model, the noise and dynamicity of the input and the need for a different complex-

ity measure (worst-case vs. average case).

Since most static algorithms analyzed for worst-case RAM complexity are im-

practical for massive graphs, one often relies on heuristics, pre-computations or

exploiting special graph properties of underlying graphs. Such solutions are usu-

ally tailored for particular domains and are often application-specific. For each

new application, one needs to design and implement different heuristics from

the scratch. There is clearly a need for algorithms that will not only give nice

theoretical guarantees for general graphs (without assuming any domain-specific

knowledge), but also perform good in practise. This thesis focuses on the design,

analysis and engineering of such algorithms.

1.3 Our contribution

The main contributions of this thesis are:

• We consider the problem of I/O-efficient Breadth-First Search (BFS) on

massive sparse undirected graphs. We engineer the MR BFS algorithm by

Munagala and Ranade [115] into a practical implementation with low con-

stant factors in the I/O complexity. Our pipelined implementation based on

the external memory library STXXL can use multiple disks to further alle-

viate the I/O bottleneck. With this implementation, we are able to compute

the BFS level decomposition of a web-crawl based graph of around 130

million nodes and 1.4 billion edges in less than 3 hours, using 4 disks.
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We also engineer the o(n)-I/O MM BFS algorithm [106] by Mehlhorn and

Meyer. Our experiments suggest that while on small diameter graphs, MR BFS

performs quite well, MM BFS performs significantly better on moderate

to large diameter graphs. The usage of some heuristics further improves

the running time of the faster variant of MM BFS, while at the same time

preserving the worst-case asymptotic I/O-complexity of MM BFS. Demon-

strating the viability of our BFS implementations [7, 9, 13] on various syn-

thetic and real world benchmarks, we show that BFS level decompositions

for large graphs (around a billion edges) can be computed on a cheap ma-

chine in a few hours, even if the underlying graph has large diameter.

We also present the design and engineering of simple I/O-efficient algo-

rithms for generating large input graphs (of various graph classes) and a

BFS decomposition verifier. As a part of our BFS implementations, we also

look into the past engineering efforts on list ranking, Euler tour, minimum

spanning forest and connected components, and adapt some of these imple-

mentations to the faster STXXL framework.

Furthermore, we compare the building blocks of our implementation with

their corresponding cache-oblivious implementations and demonstrate that

in the context of BFS on massive graphs, the cache-oblivious implementa-

tion is likely to be at least a factor of 4-5 slower than our implementation.

The key engineering ideas in our implementations also form the starting-

point for implementing other I/O-efficient algorithms like Single-Source

Shortest-Paths and Dynamic BFS. A significant chunk of our code is likely

to be re-used for these implementations.

• Flash memory is fast becoming the dominant form of end-user storage in

mobile computing. Since storage devices play a crucial role in the perfor-

mance of (traversal) algorithms when the input (graph) data does not fit

in the main memory, it is important to understand the I/O-characteristics

of the storage devices to be able to predict the real running times of these

algorithms. Such an understanding can also be exploited to design algo-

rithms that are faster in practice. We characterize [10, 11] the performance

of NAND flash based storage devices, including many solid state disks. We

show that these devices have better random read performance than hard

disks, but much worse random write performance. We also analyze the ef-

fect of misalignments, aging, past I/O patterns, etc. on the performance

obtained on these devices. We show that despite the similarities between

flash memory and RAM (fast random reads) and between flash disk and

hard disk (both are block based devices), the algorithms designed in the
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RAM model or the external memory model do not realize the full potential

of the flash memory devices.

In the scenario when a solid state disk is used as an additional secondary

storage rather than replacing the traditional hard disk, we engineer the I/O-

efficient BFS implementation to exploit the comparative advantages of both

the disks. We show that this is at least 25% faster than randomly striping

the data on the two disks.

• We present a simple algorithm [8, 12] which maintains the topological order

of a directed acyclic graph with n nodes under an online edge insertion

sequence in O(n2.75) time, independent of the number m of edges inserted.

For dense DAGs, this is an improvement over the previous best result of

O(min{m 3
2 logn,m

3
2 +n2 logn}) by Katriel and Bodlaender [91]. While our

analysis holds only for the incremental setting, our algorithm itself is fully

dynamic.

We also provide an empirical comparison of our algorithm with other algo-

rithms for dynamic topological sorting.

The externalization of our algorithm provides interesting new results for

dynamic topological ordering in external memory.

We also present the first average-case analysis [5, 6] of online topological

ordering algorithms. We prove an expected runtime of O(n2 polylog(n))
under insertion of the edges of a complete DAG in a random order for the

algorithms of Alpern et al. [15], Katriel and Bodlaender [91], and Pearce

and Kelly [124].

1.4 Organization of the thesis

The rest of this thesis is organized as follows: Chapter 2 formally defines a graph

and various notations used in the remaining chapters. It also shows the various

computation models used to capture memory hierarchy and presents the basic

tools and techniques for the design and engineering of I/O-efficient algorithms.

Chapter 3 presents our work in engineering the I/O-efficient BFS algorithms. We

also describe the related design and engineering of I/O-efficient algorithms for list

ranking, Euler tour, directed breadth-first search, depth-first search, and topolog-

ical ordering, and undirected connected components, minimum spanning forest,

single-source shortest paths, dynamic BFS, and diameter approximation.
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In Chapter 4, we show the characterization of flash memory devices including

solid state disks. We also describe our efforts for tuning our I/O-efficient BFS al-

gorithms to handle the case when the computing machine uses both the traditional

hard disks as well as solid state disks for storage.

In Chapter 5, we present our O(n2.75) algorithm for online topological ordering.

We also show some open problems that can help tighten the analysis of our algo-

rithm. Also, we show how to externalize our algorithm to obtain interesting new

results on dynamic topological ordering in external memory. Furthermore, we

present our results for the average-case analysis of the online topological ordering.

We show that the algorithms by Alpern et al. [15], Katriel and Bodlaender [91],

and Pearce and Kelly [124] require an expected runtime of O(n2 · polylog(n)) for

maintaining the topological ordering, when edges of a complete DAG are inserted

in a random order. We also briefly describe some recent advances in improving

our bounds for this problem.



Chapter 2

Basic tools and techniques

Intelligence is the faculty of making artificial objects, especially tools to make

tools.

— Henri Bergson

We start this chapter (Section 2.1) by giving the formal definitions and notations

used in the remaining chapters. Section 2.2 provides some basic facts about prob-

ability theory and Section 2.3 presents some random graph models. Section 2.4

describes the real architecture and various computational models used to capture

the memory hierarchy and Sections 2.5 and 2.6 present the tools and techniques

used in the design and engineering of I/O-efficient algorithms. A reader famil-

iar with the standard graph terminology, basic probability theory, random graph

models, and the computation models capturing memory hierarchies may wish to

skip sections 2.1, 2.2, 2.3 and 2.4, respectively.

2.1 Preliminary definitions

Formally, a graph G is an ordered pair of disjoint sets (V,E) such that E is a

subset of the set of unordered pairs of V . In this manuscript, we only consider

finite graphs, that is V and E are always finite (though they are often very large).

The set V is the set of vertices and E is the set of edges. If G is a graph then
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V = V (G) is the vertex set of G and E = E(G) is the edge set. An edge {x,y} is

said to join the vertices x and y. The vertices x and y are the end-vertices of this

edge. If {x,y} ∈ E, then x and y are adjacent or neighboring vertices of G and the

vertices x and y are incident with the edge {x,y}. Two edges are adjacent if they

have exactly one common end-vertex. We also use the notation G(V,E) to refer

to a graph G = (V,E) and G(V,E,w(·)) to refer to a weighted graph G = (V,E),
where each edge e := {x,y} ∈ E is associated with a weight w(e) (or w(x,y)).

The set of neighbors of a vertex v in G is denoted by NG(v), or briefly by N(v).
More generally for U ⊆ V , the neighbors in V \U of vertices in U are called

neighbors of U ; their set is denoted by N(U). The degree d(v) of a vertex v is the

number |E(v)| of edges at v; this is equal to the number of neighbors of v. A vertex

of degree 0 is isolated. The number δ(G) := min{d(v)|v ∈ V} is the minimum

degree of G, the number ∆(G) := max{d(v)|v ∈ V} denotes its maximum degree.

The number d(G) := 1
|V |∑v∈V d(v) =

2|E|
|V | is the average degree of G. Clearly,

δ(G)≤ d(G)≤ ∆(G).

An independent set in G = (V,E) is a set of nodes V ′ ⊆ V such that if u,v ∈ V ′,
{u,v} /∈ E i.e., no two nodes of V ′ are adjacent in G. A maximal independent set

is an independent set which is not contained in any larger independent set.

We say that G′ = (V ′,E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. In

this case, we write G′ ⊆ G. If G′ contains all edges of G that join two vertices in

V ′ then G′ is said to be the subgraph induced by V ′ and is denoted by G[V ′]. A

subgraph G′ of G is an induced subgraph if G′ = G[V (G′)]. G′ ⊆G is a spanning

subgraph of G if V ′ spans all of G, i.e. if V ′ = V . We say G′ spans G.

A self-loop is an edge that connects a vertex to itself. A simple graph is an undi-

rected graph that has no self-loops and no more than one edge between any two

different vertices. In this thesis, we will only be dealing with simple graphs. A

complete graph is a simple graph in which every pair of distinct vertices is con-

nected by an edge. An empty graph on n nodes consists of n isolated nodes with

no edges.

A path P from u to w in a graph G is a node sequence (v0,v1, . . . ,vk) for some

k ≥ 1, such that the edges {v0,v1},{v1,v2}, . . . ,{vk−1,vk} are part of E, v0 = u,

and vk = w. If all nodes vi on P are pairwise distinct then we say that the path

is simple. Cycles are those paths where the starting point and the endpoint are

identical. The weight of a path P = (v0, . . . ,vk) from u to v in a weighted graph

G(V,E,w(·)) is defined to be ∑k−1
i=0 w(vi,vi+1).

A non-empty graph G is called connected if any two of its vertices are linked
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by a path in G. A maximal connected subgraph of G is called a component or

a connected component of G. An acyclic graph, one not containing any cycles,

is called a forest. A connected forest is called a tree. The vertices of degree 1

in a tree are its leaves. The weight of a forest (tree) is defined to be the sum of

the weights of all the edges in the forest (tree). A forest F (tree T ) that spans G

is a spanning forest (spanning tree) of G. A spanning forest (spanning tree) of

minimum weight is called minimum spanning forest (minimum spanning tree).

The distance d(x,y) in G (also referred as dG(x,y)) of two vertices x,y is the

minimum weight of a path from x to y in G; if no such path exists, we set d(x,y) :=
∞. The greatest distance between any two vertices in G is the diameter of G,

denoted by diam(G). Sometimes it is convenient to consider one vertex of a tree

as special; such a vertex is then called a root of this tree. A tree with a fixed root

is a rooted tree.

An edge set E of a directed graph consists of ordered pairs of nodes: an edge e

from node u to node v is denoted by e = (u,v). Here u is also called the tail, v the

head, and both nodes are called endpoints of (u,v). Furthermore, (u,v) is referred

to as one of u’s outgoing edges or one of v’s incoming edges, as an edge leaving

u or an edge entering v. The number of edges leaving (entering) a node is called

the out-degree (in-degree) of this node. The degree of a node is the sum of its

in-degree and out-degree.

A path P from u to w in a directed graph G is a node sequence (v0,v1, . . . ,vk)

for some k ≥ 1, such that the edges (v0,v1),(v1,v2), . . . ,(vk−1,vk) are part of E,

v0 = u, and vk = w. The nodes v0 and vk are called the starting point and endpoint

of P, respectively. If all nodes vi on P are pairwise distinct then we say that the

path is simple. Cycles are those paths where the starting point and the endpoint

are identical. A graph is called acyclic if it does not contain any directed cycle.

A linear order is a relation that is reflexive, transitive, antisymmetric, and total. A

topological order T of a directed graph G(V,E) is a linear ordering of its nodes

such that for all directed paths from x ∈ V to y ∈ V (x 6= y), it holds that T (x) <
T (y). A directed graph has a topological ordering if and only if it is acyclic.

A walk is an alternating sequence of vertices and edges, beginning and ending

with a vertex, in which each vertex is incident to the two edges that precede and

follow it in the sequence, and the vertices that precede and follow an edge are the

end vertices of that edge. A walk is closed if its first and last vertices are the same,

and open if they are different.

A trail is a walk in which all the edges are distinct. A closed trail is called a tour
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or a circuit. Euler tour is a tour which contains all the edges exactly once. A

graph that contains an Euler tour is an Eulerian graph.

Graph traversal refers to the problem of visiting all the nodes in a graph in a

particular (structured) manner. Popular examples of graph traversal are Breadth-

First Search, Depth-First Search, A*, and Dijkstra’s algorithm. Tree traversal is a

special case of graph traversal. Examples of tree traversal include pre-order, post-

order, and in-order traversal. A pre-order traversal visits all nodes of a tree by

processing the root, then recursively processing all subtrees rooted at its children

from left to right. A post-order traversal first recursively processes all subtrees

from left to right and then processes the node. An in-order traversal on binary

trees first processes the left subtree, then the root and finally the right subtree.

2.2 Basic probability theory

In this section we review a few basic definitions and facts for the probabilistic

analysis of algorithms.

The sample space, often denoted Ω of an experiment or random trial is the set of

all possible outcomes. Any subset ε ⊆Ω of the sample space is usually called an

event. A probability measure P is a function that satisfies the following three con-

ditions: 0≤ P[ε]≤ 1 for each ε ⊆Ω, P[Ω] = 1, and P[∪iεi] = ∑i P[εi] for pairwise

disjoint events εi. A sample space together with its probability measure build a

probability space. For a problem of size n, we say that an event ε occurs with

high probability (w.h.p.) if P[ε]≥ 1−O(n−α ) for an arbitrary but fixed constant

α ≥ 1. The conditional probability P[ε1|ε2] =
P[ε1∩ε2]

P[ε2]
refers to the probability of

an event ε1 to occur when we already know that another event ε2 happens. Two

events ε1 and ε2 are called independent if P[ε1|ε2] = P[ε1].

Any real valued numerical function X = X(Ω) defined on a sample space Ω
may be called a random variable. If X maps elements in Ω to R+ ∪ {0} then

it is called a nonnegative random variable. A discrete random variable only

takes isolated values with nonzero probability. Typical representatives for dis-

crete random variables are binary random variables, which map elements in Ω to

{0,1}. Two random variables X and Y are called independent if, for all x,y ∈ R,

P[X = x|Y = y] = P[X = x].

The expectation of a discrete random variable X is given by E[X ] = ∑x∈R x ·P[X =
x]. Here are a few important properties of the expectation for arbitrary random

variables X and Y :

• If X is nonnegative, then E[X ]≥ 0.
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• |E[X ]| ≤ E[|X |].

• E[c ·X ] = c ·E[X ] for any c ∈ R.

• E[X +Y ] = E[X ]+E[Y ] (Linearity of expectation).

• If X and Y are independent, then E[X ·Y ] = E[X ] ·E[Y ].

Frequently, we are interested in the probability that random variables do not devi-

ate too much from their expected values. The Markov Inequality for an arbitrary

nonnegative random variable X states that P[X ≥ k] ≤ E[X ]
k

for any k > 0. The

Chebyshev Inequality states that if a random variable X has an expected value µ
and finite variance σ2, then for any real number k > 0,

P[|X−µ| ≥ k ·σ ]≤ 1

k2
.

In our average case analysis of online topological ordering algorithms, we will

use an alternative formulation of this inequality:

P[|X−µ| ≥ ν ]≤ σ2

ν2
.

More powerful tail estimates exist for the sum of independent random variables.

Here is one version of the well-known Chernoff bound: Let X1, . . . ,Xk be inde-

pendent binary random variables and µ = E[∑k
j=1 X j]. Then it holds for all δ > 0

that

P[
k

∑
j=1

X j ≥ (1+δ) ·µ]≤ e−min{δ2,δ}·µ/3.

Furthermore, it holds for all 0 < δ < 1 that

P[
k

∑
j=1

X j ≤ (1−δ) ·µ]≤ e−δ2·µ/2.

2.3 Random Graph Model

Random graph models are important tools for the average-case analysis of graph

traversal algorithms. Furthermore, since most real-world phenomenon have a ran-

dom component, many important properties of real-world graphs are similar to

those of random graphs. For instance, our experiments suggests that the perfor-

mance of various external memory BFS algorithms on webgraphs is similar to that

on random graphs.
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Erdős and Rényi [66, 67] introduced and popularized random graphs. They de-

fined two closely related models: G(n, p) and G(n,m). The G(n, p) model (0 <
p < 1) consists of a graph with n nodes in which each edge is chosen indepen-

dently with probability p. On the other hand, the G(n,m) model assigns equal

probability to all graphs with n nodes and exactly m edges. Each such graph oc-

curs with a probability of 1
/(

N
m

)

, where N :=
(

n
2

)

.

For our study of online topological ordering algorithms, we use the random DAG

model of Barak and Erdős [26]. They obtain a random DAG by directing the edges

of an undirected random graph from lower to higher indexed vertices. Depending

on the underlying random graph model, this defines the DAG(n, p) and DAG(n,M)
model.

The set of all DAGs with n nodes is denoted by DAGn. For a random variable f

with probability space DAGn, EM [ f ] and Ep [ f ] denotes the expected value in the

DAG(n,M) and DAG(n, p) model, respectively.

The following theorem shows that in most investigations the models G(n, p) and

G(n,m) are practically interchangeable, provided m is close to p ·N.

Theorem 1 Given a function f : Gn→ [0,a] with a > 0 and f (G)≤ f (H) for all

G ⊆ H and functions p and m of n with 0 < p < 1, q := 1− p, N :=
(

n
2

)

, and

m ∈ N,

1. If lim
n→∞

pqN = lim
n→∞

pN−m√
pqN

= ∞, then EM [ f ]≤ Ep [ f ]+o(1).

2. If lim
n→∞

pqN = lim
n→∞

m− pN√
pqN

= ∞, then Ep [ f ]≤ EM [ f ]+o(1).

A closer look at the proof for it given by Bollobás [33] reveals that the probabilistic

argument used to show the close connection between G(n, p) and G(n,M) can

be applied in the same manner for the two random DAG models DAG(n, p) and

DAG(n,M).

Theorem 2 Given a function f : DAGn→ [0,a] with a > 0 and f (G)≤ f (H) for

all G ⊆ H and functions p and m of n with 0 < p < 1, q := 1− p, N :=
(

n
2

)

, and

m ∈ N,

1. If lim
n→∞

pqN = lim
n→∞

pN−m√
pqN

= ∞, then EM [ f ]≤ Ep [ f ]+o(1).

2. If lim
n→∞

pqN = lim
n→∞

m− pN√
pqN

= ∞, then Ep [ f ]≤ EM [ f ]+o(1).
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2.4 Computation models capturing memory

hierarchies

We start this section by describing the RAM model which is one of the most

popular computation models for designing algorithms.

2.4.1 RAM model or von Neumann model

The running time of an algorithm is traditionally analyzed by counting the num-

ber of executed primitive operations or “instructions” as a function of the in-

put size n. The implicit underlying model of computation is the one-processor,

random-access machine (RAM) model. The RAM model or the “von Neumann

model of computation” consists of a computing device attached to a storage de-

vice (or “memory”). The following are the key assumptions of this model:

• Every instruction takes the same amount of time, at least up to small con-

stant factors.

• Unbounded amount of available memory.

• Memory stores words of size O(logn) bits where n is the input size.

• Any desired memory location can be accessed in unit time.

The above assumptions greatly simplify the analysis of algorithms and allow for

expressive asymptotic analysis.

2.4.2 Real Architecture

Unfortunately, modern computer architecture is not as simple. Rather than having

an unbounded amount of unit-cost access memory, we have a hierarchy of storage

devices (Figure 2.1) with very different access times and storage capacities. Mod-

ern computers have a microprocessor attached to a file of registers. The first level

(L1) cache is usually only a few kilobytes large and incurs a delay of a few clock

cycles. Often there are separate L1 caches for instructions and data. Nowadays,

typical second level (L2) cache has a size of about 32-64 KB and access latencies

around ten clock cycles. Some processors also have a rather expensive third level

(L3) cache of up to 256 MB made of fast static random access memory cells. A
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SpeedSize

Caches

Main Memory

Hard Disk

Registers
< 1 KB

< 8 GB

10 ms

< 256 MB

1 ns

10 ns

5-70 ns

> 20 GB

Figure 2.1: Memory Hierarchy in modern computer architecture.

cache consists of cache lines that each store a number of memory words. If an

accessed item is not in the cache, it and its neighbor entries are fetched from the

main memory and put into a cache line. These caches usually have limited asso-

ciativity, i. e. an element brought from the main memory can be placed only in

a restricted set of cache lines. In a direct-mapped cache the target cache line is

fixed and only based on the memory address, whereas in a full-associative cache

the item can be placed anywhere. Since the former is too restrictive and the latter

is expensive to build and manage, a compromise often used is a set-associative

cache. There, the item’s memory address determines a fixed set of cache lines

into which the data can be mapped, though within each set, any cache line can be

used. The typical size of such a set of cache lines is a power of 2 in the range

from 2 to 16. For more details about the structure of caches the interested reader

is referred to [122] (in particular its Chapter 7).

The main memory is made out of dynamic random access memory cells. These

cells store a bit of data as a charge in a capacitor rather than storing it as the state

of a flip-flop which is the case for most static random access memory cells. It

requires practically the same amount of time to access any piece of data stored in

the main memory, irrespective of its location, as there is no physical movement

(e. g. of a reading head) involved in the process of retrieving data. Main memory
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is usually volatile, which means that it loses all data when the computer is powered

down. At the time of writing this thesis, the main memory size is usually between

512 MB and 8 GB and a typical RAM memory has an access time of 5 to 70

nanoseconds.

Magnetic hard disks offer cheap non-volatile memory with an access time of

10 ms, which is 106 times slower than a register access. This is because it takes

very long to move the access head to a particular track of the disk and wait until

the disk rotates into the seeked position. However, once the head starts reading or

writing, data can be transfered at the rate of 35-105 MB/s [80]. Hence, reading

or writing a contiguous block of hundreds of KB takes only about twice as long

as accessing a single byte, thereby making it imperative to process data in large

chunks.

Apart from the above mentioned levels of a memory hierarchy, there are instruc-

tion pipelines, an instruction cache, logical/physical pages, the translation look-

aside buffer (TLB), magnetic tapes, optical disks and the network, which further

complicate the architecture.

The reasons for such a memory hierarchy are mainly economical. The faster mem-

ory technologies are costlier and, as a result, fast memories with large capacities

are economically prohibitive. The memory hierarchy emerges as a reasonable

compromise between the performance and the cost of a machine.

Disadvantages of the RAM Model

The beauty of the RAM model lies in the fact that it hides all the messy details of

computer architecture from the algorithm designer and at the same time, it encap-

sulates the comparative performance of algorithms remarkably well. It strikes a

fine balance by capturing the essential behavior of computers while being simple

to work with. The performance guarantees in the RAM model are not architecture-

specific and therefore robust. However, this is also the limiting factor for the suc-

cess of this model. In particular, it fails significantly when the input data or the

intermediate data structure is too large to reside completely within the internal

memory.

For most (traversal) problems on large (graph) data sets, the dominant part of the

running time of algorithms is not the number of “instructions”, but the time these

algorithms spend waiting for the data to be brought from the hard disk to internal

memory. The I/Os or the movement of data between the memory hierarchies (and

in particular between the main memory and the disk) are not captured by the RAM
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model and hence, the predicted performance on the RAM model may increasingly

deviate from the actual performance.

Future Trends

The problem is likely to aggravate in the future. In following with the Moore’s

law, the number of transistors double every 18 months. As a result, the CPU

speed continues to improve at nearly the same pace, i.e., an average performance

improvement of 1% per week. Besides, the usage of parallel processors and multi-

cores makes the computations even faster. On the other hand, random access

memory speeds and hard drive seek times improve at best a few percentages per

year. Although the capacity of the random access memory doubles about every

two years, users double their data storage every 5 months. The Internet applica-

tions like social networks and e-commerce companies (cf. Section 1.1) are also

extending their user and product base at a very fast pace.

2.4.3 External Memory Model

D · B

Memory M

CPU

Disk 1 Disk i Disk D

Figure 2.2: The external memory model

The I/O model or the external memory (EM) model (depicted in Figure 2.2) as in-

troduced by Aggarwal and Vitter [3] assumes a single central processing unit and

two levels of memory hierarchy. The internal memory is fast, but has a limited size

of M words. In addition, we have an external memory which can only be accessed
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using I/Os that move B contiguous words between internal and external memory.

For graph traversal problems, the notation is slightly altered: we assume that the

internal memory can have up to M data items of a constant size (e.g., vertices or

edges), and in one I/O operation, B contiguous data items move between the two

memories. At any particular time, the computation can only use the data already

present in the internal memory. The measure of performance of an algorithm is

the number of I/Os it performs. An algorithm A is better than another algorithm

A′ if A requires less I/Os than A′.

Although we mostly use the sequential variant of the external memory model, it

also has an option to express disk parallelism. There can be D parallel disks and in

one I/O, D arbitrary blocks can be accessed in parallel from the disks. The usage

of parallel disks helps us alleviate the I/O bottleneck.

2.4.4 Parallel Disk Model

Memory M

CPU

Disk 1 Disk i Disk D

BBBBB BBB

Figure 2.3: Parallel Disk Model

The parallel disk model (depicted in Figure 2.3) by Vitter and Shriver [152] is

similar to the external memory model, except that it adds a realistic restriction

that only one block can be accessed per disk during an I/O, rather than allowing

D arbitrary blocks to be accessed in parallel. The parallel disk model can also be

extended to allow parallel processing by allowing P parallel identical processors

each with M/P internal memory and equipped with D/P disks.

Sanders et al. [140] gave efficient randomized algorithms for emulating the exter-

nal memory model of Aggarwal and Vitter [3] on the parallel disk model.
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2.4.5 Ideal Cache Model

In the external memory model we are free to choose any two levels of the mem-

ory hierarchy as internal and external memory. For this reason, external memory

algorithms are sometimes also referred to as cache-aware algorithms (“aware” as

opposed to “oblivious”). There are two main problems with extending this model

to caches: limited associativity and automated replacement. As shown by Sen and

Chatterjee [143], the problem of limited associativity in caches can be circum-

vented at the cost of constant factors. Frigo et al. [73] showed that a regular algo-

rithm causes asymptotically the same number of cache misses with LRU or FIFO

replacement policy as with optimal off-line replacement strategy. Intuitively, an

algorithm is called regular if the number of incurred cache misses (with an op-

timal off-line replacement) increases by a constant factor when the cache size is

reduced to half.

Similar to the external memory model, the ideal cache model assumes a two level

memory hierarchy, with the faster level having a capacity of storing at most M ele-

ments and data transfers in chunks of B elements. In addition, it also assumes that

the memory is managed automatically by an optimal off-line cache-replacement

strategy, and that the cache is fully associative.

2.4.6 Cache-Oblivious Model

In practice, the model parameters B and M need to be finely tuned for an optimal

performance. For different architectures and memory hierarchies, these values can

be very different. This fine-tuning can be at times quite cumbersome. Besides,

we can optimize only one memory hierarchy level at a time. Ideally, we would

like a model that would capture the essence of the memory hierarchy without

knowing its specifics, i.e. values of B and M, and at the same time be efficient on

all hierarchy levels simultaneously. Yet, it should be simple enough for a feasible

algorithm analysis. The cache oblivious model introduced by Frigo et al. [73]

promises all of the above. In fact, the immense popularity of this model lies in its

innate simplicity and its ability to abstract away the hardware parameters.

The cache-oblivious model also assumes a two level memory hierarchy with an

internal memory of size M and block transfers of B elements in one I/O. The per-

formance measure is the number of I/Os incurred by the algorithm. However, the

algorithm does not have any knowledge of the values of M and B. Consequently,

the guarantees on I/O-efficient algorithms in the cache-oblivious model hold not

only on any machine with multi-level memory hierarchy but also on all levels of
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the memory hierarchy at the same time. In principle, they are expected to perform

well on different architectures without the need of any machine-specific optimiza-

tion.

The cache-oblivious model assumes full associativity and optimal replacement

policy. However, as we argued for the ideal cache model (cf. Section 2.4.5), these

assumptions do not affect the asymptotics on realistic caches.

However, note that cache-oblivious algorithms are usually more complicated than

their cache-aware I/O-efficient counterparts. As a result, the constant factors hid-

den in the complexity of cache-oblivious algorithms are usually higher and on

large external memory inputs, they are slower in practice.

2.4.7 Various streaming models

In the data stream model [116], input data can only be accessed sequentially in

the form of a data stream, and needs to be processed using a working memory that

is small compared to the length of the stream. The main parameters of the model

are the number p of sequential passes over the data and the size s of the working

memory (in bits). Since the classical data stream model is too restrictive for graph

algorithms and even the undirected connectivity requires s× p = Ω(n) [82] (where

n is the number of nodes in a graph), less restrictive variants of streaming models

have also been studied. These include stream-sort model [4] where sorting is also

allowed, W-stream model [58] where one can use intermediate temporary streams

and semi-streaming model [68], where the available memory is O(n · polylog(n))
bits.

2.4.8 Other memory hierarchy models

Recently, Arge et al. [23] have proposed Parallel External-Memory model as a nat-

ural parallel extension of the external-memory model of Aggarwal and Vitter [3],

to private-cache chip multiprocessors.

There are still a number of issues not addressed by these models that can be critical

for performance in practical settings, e. g. branch mispredictions [87], TLB misses

etc. For other models on memory hierarchies, refer to [4, 25, 94, 114, 131].
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2.5 Basic tools for designing external memory

graph traversal algorithms

Many different tools and techniques have been developed for graph algorithms

in external memory in the last couple of decades. In this Section, we describe

some of the commonly used building blocks for the design of I/O-efficient graph

traversal algorithms.

2.5.1 Parallel scanning

Scanning many different streams (of data from the disk) simultaneously is one of

the most basic tools used in I/O-efficient algorithms. This can be used, for exam-

ple, to copy some information from one stream to the other. Sometimes, different

streams represent different sorted sets and parallel scanning can be used to com-

pute various operations on these sets such as union, intersection, or difference.

Given k = O(M/B) streams containing a total of O(n) elements, we can scan them

“in parallel” in scan(n) = O(n/B+ k) I/Os. This is done by simply keeping O(1)
blocks of each stream in the internal memory. When we need a block not present

in the internal memory, we remove (or write back to the disk) the existing block

from the corresponding stream and load the required block from the disk.

2.5.2 Sorting

Sorting is fundamental to many I/O-efficient graph traversal algorithms. In partic-

ular, sorting can be used to rearrange the nodes on the disk so that a graph traversal

algorithm does not have to spend Ω(1) I/Os for loading the adjacency list of each

node into the internal memory.

Sorting n elements in the external memory requires sort(n) = Θ( n
B

logM
B

n
B
) I/Os [3].

There exist many different algorithms for I/O-efficient sorting. The most com-

monly used external memory sorting algorithm is based on (M/B)-way merge

sort. It first scans through the input data, loading M elements at a time, sorting

them internally and writing them back to disk. In the next round, we treat each

of these chunks as a stream and merge O(M/B) streams at a time using “parallel

scanning” to produce sorted chunks of size O(M2/B). By repeating this process

for O(logM
B

n
B
) rounds, we get all the elements sorted.



2.5 Basic tools for designing external memory graph traversal

algorithms 25

External memory libraries such as STXXL [56, 57] and TPIE [21] provide fast im-

plementations of external memory sorting routines. STXXL also has specialized

functions for sorting elements with integer keys and sorting streams.

In the cache-oblivious setting, funnel-sort [73] and lazy funnel-sort [39], also

based on a merging framework, lead to sorting algorithms with the same I/O com-

plexity of Θ( n
B

logM
B

n
B
) I/Os. Brodal et al. [41] show that a careful implementa-

tion of this algorithm outperforms several widely used library implementations of

quick-sort on uniformly distributed data. For the largest instances in the RAM,

this implementation outperforms its nearest rival std::sort from the STL library

included in GCC 3.2 by 10-40% on many different architectures like Pentium III,

Athlon and Itanium 2.

2.5.3 PRAM simulation

A Parallel Random Access Machine (PRAM) is a basic model of computation that

consists of a number of sequential processors, each with its own memory, working

synchronously and communicating between themselves through a common shared

memory.

Simulating a PRAM algorithm [48] on the external memory model is an impor-

tant tool in the design of I/O-efficient graph algorithms. A PRAM algorithm that

uses p processors and O(p) (shared memory) space and runs in time T (p) can be

simulated in O(T(p) · sort(p)) I/Os.

Each step taken by a PRAM involves each processor independently reading a

data element, computing on it and writing some output. In order to simulate it

on the external memory model, the read requests of all the processors are sorted

according to the location of the required data. Afterwards, one scan of the entire

data of the shared memory is enough to fetch all the requisite data. This is then

sorted back according to the processor ids. Thereafter, in one scan of the fetched

data, we perform all the computations by all the processors and collect the output

data (together with its location) that would have been produced by each processor.

This is then sorted according to the memory location and written back to the disk.

Thus, each step of the O(p)-processor PRAM algorithm requiring O(p) space can

be simulated by a constant number of sorts and scans, i.e., O(sort(p)) I/Os.

PRAM simulation is particularly appealing as it translates a large number of

PRAM-algorithms into I/O-efficient and sometimes I/O-optimal algorithms.

Even without directly using the simulation, I/O-efficient algorithms can be ob-

tained by appropriately translating PRAM algorithms, as many of the ideas ap-
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plied in parallel computing for reducing a problem into many independent sub-

problems are also useful for designing external memory algorithms. For many

problems, the bounds obtained by appropriately translating PRAM algorithms are

much better than those obtained by direct simulation.

2.5.4 Algorithms on trees

Efficient external memory algorithms are known for many different problems on

undirected trees. These include rooting a tree, computing pre-order, post-order

or in-order traversal, computing the depth of each node, least common ancestor

queries, etc. Most of these algorithms (e.g., the tree traversal algorithms in [48])

are efficient translations of their PRAM counterparts.

2.5.5 Priority queues

A priority queue is an abstract data structure that stores an ordered set of keys and

allows efficient insertion, search of the minimum element (find min) and deletion

of the minimum element (delete min). Sometimes operations such as deleting

an arbitrary key and decreasing the value of the key are also supported. Prior-

ity queues are fundamental to many graph traversal algorithms, particularly for

computing single-source shortest-paths.

One way of implementing efficient external memory priority queues is using

buffer trees [17]. Buffer trees are useful for batched operations, i.e., when the

answers to the queries are not required immediately but eventually.

A buffer tree has degree Θ(M/B). Each internal node is associated with a buffer

containing a sequence of up to Θ(M) updates and queries to be performed in its

subtree. Leaves contain Θ(B) keys. Updates and queries are simply performed

by inserting the appropriate signal in the root node buffer. If the buffer is full, the

signal buffer is flushed to its children. This process may need to be repeated all the

way down to the leaves. Since flushing the buffer requires Θ(M/B) I/Os (which

is done after inserting Θ(M) signals) and the tree has O(logM/B n/B) levels, the

amortized cost of the update and query operations is O((1/B) · logM/B (n/B)) I/Os.

It can be shown that the re-balancing operations for maintaining the tree can also

be done within the same bounds.

In order to use buffer trees as a priority queue, the entire buffer of the root node

together with the O(M/B) leftmost leaves (all the leaves of the leftmost internal
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node) is kept in internal memory. We maintain the invariant that all buffers on

the path from the root to the leftmost leaf are empty. Thus, the element with the

smallest priority always remains in internal memory. The invariant is maintained

by flushing out all buffers in the leftmost path whenever the root buffer is flushed,

at a total cost of O((M/B) · logM/B (n/B)) I/Os. The amortized cost of updates

and queries still remains O((1/B) · logM/B (n/B)) I/Os.

Note that the buffer tree based priority queue can not efficiently perform a de-

crease key of an element, if we do not know its old key. For efficient but lazy

decrease key operations, we can use tournament trees [93]. On an I/O-efficient

tournament tree with n elements, any sequence of z operations each of them being

either a delete, delete min or an update, requires at most O((z/B) · log2 (n/B))
I/Os. The update operation referred here is a combined insert and decrease key

operation.

Cache-oblivious priority queues with amortized O((1/B) · logM/B (n/B)) I/O in-

sertion, deletion and delete min operations have also been developed [20, 38].

The cache-oblivious bucket heap based priority queue [40] provides amortized

O((1/B) · log2 (n/B)) update, delete and delete min operations, where the update

operation is similar to the one provided by tournament trees.

2.5.6 Time forward processing

Time forward processing [17, 48] is an elegant technique for solving problems

that can be expressed as a traversal of a directed acyclic graph (DAG) from its

sources to its sinks. Let G be a DAG and φ(v) be a label associated with the node

v. The goal is to compute another labelling ψ(v) for all nodes v ∈ G, given that

ψ(v) can be computed from labels φ(v) and ψ(u1), . . . ,ψ(uk), where u1, . . . ,uk

are the in-neighbors of v.

Time forward processing on an n-node DAG can be solved in external memory in

O(sort(n)) I/Os if the following conditions are met:

1. The nodes of G are stored in topologically sorted order.

2. ψ(v) can be computed from φ(v) and ψ(u1), . . . ,ψ(uk) in O(sort(k)) I/Os.

This bound is achieved by processing the nodes in the topologically sorted order

and letting each node pass its label ψ to its out-neighbors using a priority queue.

Each node u inserts ψ(u) in the priority queue for each out-neighbor v with the

key being the topological number of v, T (v). We ensure that before we process v,
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we extract all the nodes with priority T (v) and therefore, get all the necessary

information to compute ψ(v).

2.5.7 Graph contraction

The key idea in graph contraction is to reduce the size of the input graph G while

preserving the properties of interest. Such a procedure is often applied recursively

till either the number of edges or the number of nodes are reduced by a factor of

O(B) or the number of nodes is reduced to O(M). In the first case, the algorithm

can afford to spend O(1) I/Os per remaining node to solve the problem. In the

latter case, an efficient semi-external algorithm is used to solve the problem.

Graph contraction is particularly useful for problems like connected components

and minimum spanning forests, where the connectivity information is preserved

(see e.g. [18]) during the edge contraction steps.

2.5.8 Graph clustering

Clustering a graph refers to decomposing the graphs into disjoint clusters of nodes.

Each cluster contains the adjacency lists of a few nodes. These nodes should be

close in the original graph. Since each cluster is connected and small, if a node of

the cluster is visited during BFS, SSSP or APSP, the other nodes of the cluster will

also be visited “shortly”. This fact can be exploited to design better algorithms

(see e.g. [106], [112]) for these problems.

2.5.9 Ear decomposition

An ear decomposition ε = (P0,P1,P2, . . . ,Pk) of a graph G = (V,E) is a partition

of E into an ordered collection of edge-disjoint simple paths Pi with endpoints si

and ti. Ear P0 is an edge. For 1≤ i≤ k, ear Pi shares its two endpoints si and ti, but

none of its internal nodes, with the union P0∪ . . .Pi−1 of all previous ears. A graph

has an ear decomposition if and only if it is two-edge connected, i.e., removing

any edge still leaves a connected subgraph.

An ear decomposition of a graph can be computed in O(sort(n)) I/Os in external

memory [103].
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2.6 Tools for engineering external memory

graph traversal algorithms

In the last decade, many techniques have evolved for engineering external memory

graph traversal algorithms. Libraries specifically containing fundamental algo-

rithms and data structures for external memory have been developed. Techniques

such as pipelining can save some constant factors from the I/O complexity of the

external memory implementations, which can be significant for making the imple-

mentation viable. In this section, we describe some of these tools and techniques.

2.6.1 External memory libraries

External memory libraries play a crucial role in engineering algorithms running

on large data-sets. These libraries not only reduce the development time for exter-

nal memory algorithms, but also speed up the implementations themselves. The

former is done by abstracting away the details of how an I/O is performed and pro-

viding ready-to-use building blocks including algorithms such as sorting and data

structures such as priority queues. The latter is done by offering frameworks such

as pipelining (described ahead in this section) that can reduce the constant factors

in the I/O complexity of an implementation. Furthermore, the algorithms and data

structures provided are optimized and perform less internal memory work.

STXXL

STXXL [56, 57] is an implementation of the C++ standard template library STL [147]

for external memory computations. Since the data-structures and algorithms in

STXXL have a well known generic interface similar to STL interface, it is easy

to use and the existing applications based on STL can be easily made to work

with STXXL. STXXL supports parallel disks, overlapping between disk I/O and

computation and the pipelining technique that can save a significant fraction of

the I/Os. It provides I/O-efficient implementations of various containers (stack,

queue, deque, vector, priority queue, B+-tree, etc.) and algorithms (scanning,

sorting using parallel disks, etc.). It is being used both in academic and industrial

environments for a range of problems including text processing, graph algorithms,

computational geometry, Gaussian elimination, visualization, and analysis of mi-

croscopic images, differential cryptographic analysis, etc.
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TPIE

TPIE [21] or “Transparent Parallel I/O Environment” is another C++ template li-

brary supporting out-of-core computations. The goal of the TPIE project has been

to provide a portable, extensible, flexible, and easy to use programming envi-

ronment for efficiently implementing I/O-efficient algorithms and data structures.

Apart from supporting algorithms with a sequential I/O pattern (i.e., algorithms

using primitives such as scanning, sorting, merging, permuting and distributing)

and basic data structures such as B+-tree, it supports many more external memory

data structures such as (a,b)-tree, persistent B-tree, Bkd-tree, K-D-B-tree, R-tree,

EPS-tree, CRB-tree etc. It is used for many geometric and GIS implementations.

2.6.2 Pipelining

Conceptually, pipelining is a partitioning of the algorithm into practically indepen-

dent parts that conform to a common interface, so that the data can be streamed

from one part to the other without any intermediate external memory storage. This

may reduce the constant factors in the I/O complexity of the algorithm. It leads

to better structured implementations, as different parts of the pipeline only share

a narrow common interface. On the other hand, it may also increase the compu-

tational costs as in a stream, searching an element can’t be done by exponential

or binary search, but by going through potentially all the elements in the stream.

This means that the correct extent of pipelining needs to be carefully determined.

Usually, a pipelined code requires more debugging efforts and hence, significantly

more development time. For more details on the usage of pipelining as a tool to

save I/Os, refer to [55].
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Breadth first search on massive

graphs

Debugging is twice as hard as writing the code in the first place. Therefore, if you

write the code as cleverly as possible, you are, by definition, not smart enough to

debug it.

–Brian W. Kernighan

Breadth-First Search (BFS) is an archetype for many important graph problems.

Many real world problems involve BFS (and some of its generalizations like short-

est paths or A∗) traversal on large graphs. These applications (cf. Section 1.1 for

more details) include crawling and analyzing the WWW [118, 144], route plan-

ning using small navigation devices with flash memory cards [76], state space

exploration [64], and community detection [119].

Given a large undirected graph G(V,E) (n := |V |,m := |E|) and a source node s,

the goal of BFS is to decompose the set of nodes V into disjoint subsets called BFS

levels, such that the level i comprises of all nodes that can be reached from s via

i edges, but no less. The problem of computing the BFS level decomposition can

also be viewed as computing single source shortest paths on unweighted graphs.

BFS is well-understood in the RAM model. There exists a simple linear time

algorithm [51] (hereafter referred as IM BFS) for the BFS traversal in a graph.

However, as discussed in Section 1.2, this algorithm (as implemented in LEDA)

performs quite badly when the input graph does not fit in the main memory. Fur-



32 Chapter 3: Breadth first search on massive graphs

thermore, on massive graphs (with a billion or more edges), these algorithms are

simply non-viable as they require many months or years for the requisite graph

traversal.

External memory algorithms for computing BFS have therefore been studied. For

general undirected graphs, Munagala and Ranade proposed a simple algorithm

(MR BFS) that incurs O(n + sort(m)) I/Os. Mehlhorn and Meyer proposed the

first o(n) I/O algorithm (MM BFS) that improves the results for sparse graphs.

In this chapter, we focus on engineering these external memory BFS algorithms.

Since most of the large real world graphs are sparse, we mainly concentrate on the

problem of computing a BFS level decomposition for massive sparse undirected

graphs. Demonstrating the viability of our BFS implementations on various syn-

thetic and real world benchmarks, we show that BFS level decompositions for

large graphs (around a billion edges) can be computed on a cheap machine in a

few hours.

The rest of the chapter is organized as follows: We review some related work

in Section 3.1. In Section 3.2, we describe the external memory algorithms for

list ranking, computing Euler tours on trees, minimum spanning forests and con-

nected components on general undirected graphs. These form the building blocks

in the external memory BFS algorithms presented in Section 3.3. Sections 3.4 –

3.7 present our implementations of MR BFS and MM BFS. We also designed and

engineered I/O-efficient frameworks for generating massive graphs and checking

if the BFS decomposition is correct. These are discussed in Section 3.8 and Sec-

tion 3.9, respectively. Section 3.10 describes the evolution of our BFS codes into

a software package. Our detailed empirical study is presented in Section 3.11.

Section 3.12 discusses the extensions of BFS to SSSP and dynamic BFS in exter-

nal memory. It also describes the recent advances in approximating the diameter

of the graph that can help us decide which BFS algorithm to use. Section 3.13

concludes with related open problems.

Note that in this chapter, the term “adjacency list” refers to the set of all adjacent

edges of a node, and not to some list data structure containing this set.

3.1 Related prior work

External-memory BFS algorithms are known for special graphs classes like trees,

grid graphs [19], planar graphs [101], outer-planar graphs [100], and graphs of

bounded tree width [102]. These algorithms use special graph properties such as
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planar separators, planar and outerplanar embeddings, and tree-decompositions.

For graphs with small separators (not necessarily planar), we can represent the

graph [30, 31] in a more compact way that minimizes the I/Os required by the

standard algorithms.

Very little is known for traversing general directed graphs in external memory.

The main result known in this direction is the O((n +m/B) log2
n
B

+ sort(m)) I/O

algorithm [43] for computing Breadth-First Search (BFS), and Depth-First Search

(DFS) on general directed graphs and topological ordering on general directed

acyclic graphs. These algorithms crucially rely on a data structure called buffered

repository tree [43] for removing edges leading to visited nodes.

3.1.1 Engineering Directed DFS in external memory

Owing to the O(n log2
n
B
) term in the I/O complexity, these algorithms are consid-

ered impractical for general sparse directed graphs. Since real world graphs are

usually sparse, it is unlikely that these algorithms will improve the running time

significantly as compared to the internal memory traversal algorithms. As such,

there has been no engineering attempt (up to the best of our knowledge) for these

algorithms.

Sibeyn et al. [146] showed an implementation of semi-external DFS (i.e., comput-

ing DFS when M ≥ c ·n for some small constant c) based on the batched process-

ing framework. We assume that the internal memory can contain up to 2n edges.

We maintain a tentative DFS tree throughout the algorithm in the internal memory

and proceed in rounds. In each round, all the edges of the graph are processed in

cyclic order. A round consists of m/n phases and in each phase we load a batch of

n edges and compute the DFS of the 2n edges in the internal memory. The DFS

computation can be made faster by the following heuristics [146]:

• Rearrange the tree after every round so as to find the global DFS tree more

rapidly. For each node, we visit its children (in the tree) in descending

order of their sub-tree sizes. Thus, after rearrangement the leftmost child of

any node has more descendants than any other child, thereby heuristically

reducing the number of forward (left to right) cross edges.

• Reduce the number of nodes and edges “active” in any round so as to leave

more space in the internal memory for loading new edges. Since nodes on

the leftmost path are not going to change their place in the tree anymore

(unless they are rearranged), they can be marked “passive” and removed
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from consideration. Furthermore, we can mark all nodes u that satisfy the

following conditions passive:

– All nodes on the path from root node to u are already marked passive.

– There is no edge from any node with smaller pre-order number (in the

current tree) to any node with pre-order number equal to or larger than

that of u.

Together with these heuristics, the batched processing framework manages to

compute DFS on a variety of directed graphs (such as random graphs and 2-

dimensional random geometric graphs) with very few (3–10) average accesses

per edge (and hence few I/Os). It can compute strongly connected components

(using the DFS) of an AT&T call graph with around 9.9 million nodes and 268.4

million edges in around 4 hours on a Pentium III machine with a 1 GHz processor.

3.1.2 Engineering external memory A*

A* [81] is a goal-directed graph traversal strategy that finds the least-cost path

from a given source node to a target node. A* is similar to Dijkstra’s famous

shortest path algorithm [61], except that it visits the node with the minimum sum

of distance from the source node and the heuristic distance to the target node rather

than the node with the minimum distance from the source.

A* can be solved using external memory priority queues in O(n+m/B·log2 (m/B))
I/Os. For implicit unweighted graphs, a suitably modified version of the external

memory BFS algorithm MR BFS by Munagala and Ranade [115] (cf. Section 3.3

for more details) helps computing A* in O(sort(m)) I/Os [64]. This is because

in implicit graphs accessing the adjacency list of a node does not require I/Os to

fetch it from the disk, but only internal memory computation to generate it.

The practical performance of A* crucially depends on the heuristic estimate of the

distance between target node and a given node. This estimate in turn is heavily

application-dependent.

Edelkamp et al. [85] engineered the variant of external memory A* for implicit

undirected unweighted graphs and used it for many different model checking ap-

plications. They improved the practical performance of external memory A* for

their applications further by the following heuristics:

• Delayed duplicate detection: Unlike MR BFS, duplicates are not removed
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till the nodes are actually visited.

• The nodes with equal value of the sum of distances from the source and the

target node, are visited in increasing order of their distance from the source

node.

External A* as incorporated in the External SPIN model checker software was

used to detect the optimal path to a deadlock situation in an Optical Telegraph

protocol involving 14 stations. This problem required 3 Terabytes of hard disk

space (with 3.6 GB RAM) and took around 8 days with 4 instances of Parallel

External SPIN running on 4 AMD Opteron dual processor machines with NFS

shared hard disk. In model checking applications involving a massive state space,

finding such deadlocks can be critical for the correct performance of the protocol

and hence, even running-times of weeks are considered acceptable.

However, this implementation as well as the heuristics used are specific to A* on

implicit graphs and are unlikely to yield good results for BFS on general graphs.

3.2 Basic building blocks

In the RAM model, graph problems like connected components etc. can be effi-

ciently solved by graph traversal strategies such as Depth-First Search (DFS) and

Breadth-First Search (BFS). However, the picture is very different in the mem-

ory hierarchy models. Algorithms for connected components, minimum spanning

tree, Euler tour and list ranking are asymptotically faster than the currently best

ones for BFS and DFS. Hence, many algorithms for graph traversal strategies like

BFS and DFS use connected components, minimum spanning forests, Euler tour

and list ranking as sub-routines. In this section, we review the algorithms for these

building blocks.

3.2.1 Euler tour of a bi-directional tree

An Euler tour of a (bi-directional) tree T = (V,E) traverses every edge exactly

twice, once in each direction. Such a traversal produces a linear list of edges

or vertices capturing the structure of the tree. In order to compute such a tour,

we choose an order of the edges {v,w1}, . . . ,{v,wk} incident to each node v of T .

Then, we mark the successor of {wi,v} to be {v,wi+1} and the successor of {wk,v}
to be {v,w1}. We break the resulting circular list at some node r by choosing an
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edge {v,r} with successor {r,w}, setting the successor of {v,r} to be null, and

choosing {r,w} to be the first edge of the traversal.

An Euler tour of a (bi-directional) tree can be computed in O(sort(n)) I/Os.

3.2.2 List ranking

A list L is a collection of elements x1, . . . ,xn such that each element xi, except the

last element of the list, stores a pointer to its successor, no two elements have the

same successor and every element can reach the last element by following succes-

sor pointers. Given a list L of elements kept in an arbitrary order on the disk and

a pointer to the first element and weights w on all edges, the list ranking problem

is that of computing for every element xi, its distance from the first element.

The external memory list ranking algorithm [48] computes an independent set I

of size Ω(n). All elements xi ∈ I are removed from L by marking succ(xi) as the

successor of pred(xi), where succ(xi) and pred(xi) are the successor and prede-

cessor of xi in L. The weight of the new edge {pred(xi),succ(xi)} is the sum

of the weights of {pred(xi),xi} and {xi,succ(xi)}. The problem on the com-

pressed list is recursively solved. For each node xi ∈ I, its distance from the

head is equal to the sum of the distance of pred(xi) (computed for the com-

pressed list) and the weight of the edge {pred(xi),xi}. All operations for com-

pressing the list incur O(sort(n)) I/Os and thus the total cost of list ranking is

I(n) = I(α ·n)+O(sort(n)) = O(sort(n)) I/Os, for some constant 0 < α < 1.

Note that any maximal independent set of a list has size at least n/3. Thus in

order to compute the independent set I of size Ω(n), we just need to compute a

maximal independent set. A maximal independent set I of a graph G(V,E) can

be computed simply by a greedy algorithm in which the nodes are processed in

an arbitrary order. When a node v ∈ V is visited, we add it to the set I if none of

its neighbors is already in I. This can be done in O(sort(n +m)) I/Os using time

forward processing (cf. Section 2.5.6). A list of length n can thus be ranked in

O(sort(n)) I/Os.

3.2.3 Minimum Spanning Forest

Given an undirected connected graph G, a spanning tree of G is a subgraph which

is a tree and connects all the nodes. A minimum spanning tree is a spanning

tree with minimum weight. For a general undirected graph (not necessarily con-
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nected), we define a minimum spanning forest (MSF) to be the union of the mini-

mum spanning trees for its connected components. Computing a minimum span-

ning forest of a graph G is a well-studied problem in the RAM model.

The first algorithm for this problem is due to Boruvka [34]. This algorithm runs in

phases; in each phase we find the lightest edge incident to each node. These edges

are output as a part of the MSF. Contracting these edges leads to a new graph with

at most half of the nodes. Since the remaining MSF edges are also in the MSF

of the contracted graph, we recursively output the MSF edges of the contracted

graph.

The most popular algorithms for MSF in the RAM model are Kruskal’s and Prim’s

algorithms. Kruskal’s algorithm [92] looks at the edges in increasing order of their

weight and maintains the minimum spanning forest of the edges seen so far. A new

edge is output as a part of the MSF if its two endpoints belong to different compo-

nents in the current MSF. The necessary operations can be performed efficiently

using a disjoint set (union-find) data structure [75]. The resultant complexity for

this algorithm is O(n ·α (n)) [149], where α (·) is the inverse Ackermann function.

Unlike Kruskal’s algorithm which maintains potentially many different MSTs at

the same time, Prim’s algorithm [86, 130] works by “growing” one MST at a

time. Starting with an arbitrary node, it searches for the lightest edge incident to

the current tree and outputs it as a part of the MST. The other end-point of the

edge is then added to the current tree. The candidate edges are maintained using

Fibonacci heaps [71], leading to an asymptotic complexity of O(m + n logn). If

there is no edge between the nodes in and outside the current MST, we “grow” a

new MST from an arbitrarily chosen node outside the MSF “grown” so far.

Semi-external Kruskal’s algorithm

In the semi-external version of Kruskal’s algorithm, an external memory sorting

algorithm is used to sort the edges according to their edge weights. The minimum

spanning forest and the union-find data structure are kept in the internal memory

(as both require O(n) space). The I/O complexity of this algorithm is O(sort(m)).

External memory Prim’s algorithm

In order to externalize Prim’s algorithm, we use an external memory priority

queue (cf. Section 2.5.5) for maintaining the set of candidate edges to grow the
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current minimum spanning tree. This results in an I/O complexity of O(n +
sort(m)). The O(n) term comes from the unstructured accesses to the adjacency

lists, as we spend O(1 +d(v)/B) (d(v) being the degree of v) I/Os to get hold of

edges incident to the node v that need to be inserted into the priority queue.

External memory Boruvka steps

In most external memory algorithms, a Boruvka step like contraction method is

used to reduce the number of nodes to either O(M) or O(m/B). In the first case,

semi-external Kruskal’s algorithm or other semi-external base cases are used. In

the latter case, any external algorithm like Prim’s algorithm or MR BFS can be

used as we can afford one I/O per node in the contracted graph.

We initialize the adjacency lists of all nodes by sorting the edges first according to

their tail node and that being equal, by their weight. In each EM Boruvka phase,

we find the minimum weight edge for each node and output it as a part of MSF.

This can easily be done by scanning the sorted adjacency lists. This partitions the

nodes into pseudo-trees (a tree with one additional edge). The minimum weight

edge in each pseudo-tree is repeated twice, as it is the minimum weight edge in-

cident to both its end-points. Such edges can be identified in O(sort(m)) I/Os.

By removing the repeated edges, we obtain a forest. We select a leader for each

tree in the forest and let each node u ∈ V know the leader L(u) of the tree con-

taining it. This can be done by variants of external memory list ranking algorithm

(cf. Section 3.2.2) or by using time forward processing (cf. Section 2.5.6) and can

be done in O(sort(n)) I/Os. We then replace each edge (u,v) in E by an edge

(L(u),L(v)). At the end of the phase, we remove all isolated nodes, parallel edges

and self loops. Again, this requires a constant number of sorts and scans of the

edges.

The Boruvka steps as described here reduce the number of nodes by at least a

factor of 2 in one phase and costs O(sort(m)) I/Os. Thus, it takes log n·B
m

phases

to reduce the number of nodes to O(m/B), after which the externalized version

of Prim’s algorithm or BFS algorithm can be used. This gives a total I/O com-

plexity of O(sort(m) · log n·B
m

). Alternatively, we can have O(log n
M

) phases of

Boruvka algorithm to reduce the number of nodes to O(M) in order to apply semi-

external Kruskal’s algorithm afterwards. This will result in a total I/O complexity

of O(sort(m) · log n
M

).

An O(sort(m) · loglog(n·B
m

)) I/O algorithm

Arge et. al. [18] improved the asymptotic complexity of the above algorithm by

dividing the O(log n·B
m

) phases of Boruvka steps into O(loglog n·B
m

) super-phases

requiring O(sort(m)) I/Os each. The idea is that rather than selecting only one
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edge per node, we select
√

Si lightest edges for contraction in each super-phase,

where Si := 2(3/2)i
(= S

3/2
i−1). If a node does not have that many adjacent edges, all

its incident edges are selected and the node becomes inactive. The selected edges

form a graph Gi. We apply log
√

Si phases of Boruvka steps on Gi to compute a

leader L(u) for each node u ∈ V . At the end of the super-phase, we replace each

edge (u,v) in E by an edge (L(u),L(v)) and remove isolated nodes, parallel edges

and self loops.

The number of active nodes after phase i is at most n/(Si · Si−1 · · · S0) = n/(Si ·
S

2/3
i · · · S0) ≤ n/S

5/3
i ≤ n/Si+1 and thus, O(loglog n·B

m
) super-phases suffice to

reduce the number of nodes to O(n ·B/m).

Note that in super-phase i, there are log
√

Si phases of Boruvka steps on Gi. Since

Gi has at most n/Si nodes at the beginning of phase i and n
√

Si/Si edges (as each

of the n/Si nodes selects
√

Si edges around it), total cost of all these Boruvka

phases is O(sort(n/
√

Si) · log
√

Si) = O(sort(n)) I/Os. The cost of replacing the

edges by the contracted edges and other post-processing is O(sort(m)) I/Os.

Since each super-phase takes O(sort(m)) I/Os, the total I/O complexity of the

algorithm is O(sort(m) · loglog(n·B
m

)).

Arge et al. [20] propose a cache-oblivious minimum spanning tree algorithm that

uses a cache-oblivious priority queue to achieve the I/O complexity of O(sort(m) ·
loglogn).

Connected components Minimum spanning forest also contains the information

regarding the connected components of the graph. For directly computing con-

nected components, one can use the above algorithm by modifying the compara-

tor function for edge weights (since the weights on the edges can be ignored for

connected components computation) – an edge is smaller than the other edge if

either the head node has a smaller index or the two head nodes are equal, but the

tail node has a smaller index.

Randomized CC and MSF

Abello et. al. [2] proposed a randomized algorithm for computing connected com-

ponents and minimum spanning tree of an undirected graph in external memory

in O(sort(m)) expected I/Os. Their algorithm uses Boruvka steps together with

edge sampling and batched least common ancestor (LCA) queries in a tree.
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Figure 3.1: A phase in the BFS algorithm of Munagala and Ranade.

3.3 Algorithms

There are two main problems associated with running an internal memory BFS

algorithm for computation on an externally stored graph:

• Remembering visited nodes needs Θ(m) I/Os in the worst case

• Unstructured access to adjacency lists, i.e., random I/Os to fetch adjacent

edges may result in Θ(n) I/Os

3.3.1 Munagala and Ranade’s algorithm

The algorithm (MR BFS) by Munagala and Ranade [115] (as depicted in Fig-

ure 3.1) solves the first problem by exploiting the fact that in an undirected graph,

the edges from a node in BFS level t lead to nodes in BFS levels t−1, t or t +1

only. Thus, in order to compute the nodes in BFS level t + 1, one just needs to

collect all neighbors of nodes in level t, remove duplicates and remove the nodes

visited in levels t − 1 and t. Except the unstructured accesses to the adjacency

lists, all steps can be done in Θ(sort(m)) I/Os. The total number of I/Os required

by this algorithm is Θ(n+sort(m)) as it may incur Ω(n) random I/Os (for reading

the adjacency lists) in the worst-case.

3.3.2 Mehlhorn and Meyer’s algorithm

In order to solve the problem of unstructured accesses to adjacency lists, Mehlhorn

and Meyer [106] (MM BFS) propose a pre-processing step in which the input

graph is rearranged on the disk. The preprocessing phase involves clustering the
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input graph into small disjoint groups of nodes that are close in the input graph.

The edges incident to all nodes of a cluster are contiguously stored on the disk.

This is useful as once a node from the cluster is visited, other nodes in the clus-

ter will also be visited soon (owing to their proximity in the original graph). By

spending only one random access (and possibly, some sequential accesses de-

pending on the cluster size) for loading the whole cluster and then keeping the

cluster data in some efficiently accessible data structure (hot pool) until it is all

used up, the total number of I/Os can be reduced by a factor of up to
√

B on sparse

graphs. The neighboring nodes of a BFS level can be computed simply by scan-

ning the hot pool and not the whole graph. Though some edges may be scanned

multiple times in the hot pool, unstructured I/Os for fetching adjacency lists are

considerably reduced, thereby decreasing the total number of I/Os.

The input graph is decomposed into O(n/µ) clusters of diameter Õ(µ)1 for some

parameter µ to be fixed later. This can be done in two ways – “parallel cluster

growing” and “Euler tour chopping”.

“Parallel cluster growing” variant

This variant (hereafter referred as MM BFS R) works by randomly choosing n
µ

master nodes. The source node s is also chosen to be a master node. Thereafter,

we run a local BFS from all master nodes “in parallel”. In each round, each master

node tries to capture all unvisited neighbors of its current sub-graph. The ties can

be resolved arbitrarily.

Capturing new nodes on the fringes of all clusters can be done by sorting the

neighbors of the nodes captured in the previous round and then scanning the ad-

jacency lists of the input graph. Each round i thus takes O(sort(mi) + scan(m))
I/Os, where mi is the number of edges adjacent to nodes captured in round i−1.

The total number of clusters is at most 1+n/µ and the number of rounds (number

of edges in a shortest path between any node and its cluster center) is O(logn ·µ)
with high probability (w.h.p.). Thus the total complexity for this clustering is

O(sort(n + m) + scan(m) · µ · logn) w.h.p. and it produces O(n/µ) clusters of

diameter O(logn ·µ) w.h.p.

1Just as O notation hides constant factors in the complexity, Õ hides the polylogarithmic factors
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Euler tour based clustering

In this variant (MM BFS D), we first use the connected components (CC) algo-

rithm to identify the component of the graph containing the source node s. The

nodes outside this component are output with BFS level ∞ and can be safely ig-

nored, as they do not affect the BFS level of any other node. Then, we compute a

spanning tree of nodes in this connected component. Considering the undirected

edges of this tree as bi-directional edges, we compute an Euler tour on these (up

to 2n−2) edges. We then employ the list ranking algorithm to store the nodes on

the disk in the order of their appearance in the Euler tour. Note that the internal

nodes of the spanning tree may appear multiple times in this tour. The nodes ar-

ranged in this way are then chopped into 2n−2
µ clusters of size µ . After removing

the duplicates from this node sequence, we get the requisite clustering of nodes.

Since CC/MST can be computed in O((1 + log log n·B
m

) · sort(n + m)) I/Os and

the Euler tour and list ranking of O(n) elements can both be done in O(sort(n))
I/Os, the total complexity of this preprocessing is O((1+ loglog n·B

m
) ·sort(n+m))

I/Os. If the randomized expected O(sort(m)) I/O algorithm for CC/MST is used

instead, we get a total expected I/O complexity of O(sort(m)) for the Euler tour

based clustering.

BFS phase

The actual BFS computation is similar to MR BFS, but with one crucial differ-

ence: the adjacency lists of nodes in the current level t are no longer accessed

directly from the input graph using random I/Os. Instead, the nodes in BFS level

t are scanned in parallel with the nodes in the hot pool H to compute the cluster

indices of all nodes in BFS level t whose adjacency lists are not already there

in H. The multi-set of these cluster indices is then sorted and duplicates are re-

moved from the sorted multi-set. The clusters corresponding to the resultant set

of indices are then merged into H. A next round of scanning the nodes in BFS

level t in parallel with the hot pool H fetches all the required adjacency lists.

Since each cluster is merged exactly once, it requires O(n/µ + scan(m)) I/Os to

load these clusters into H. For the Euler tour based approach, each adjacency

list in H is scanned for at most O(µ) rounds as the distance between any two

nodes in the cluster is O(µ). Thus the total number of I/Os required for the

BFS phase by the Euler tour based variant of MM BFS is O(n/µ + µ · scan(n +

m) + sort(n + m)). By choosing µ = max

{

1,
√

n
scan(n+m)

}

, we get a total I/O
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complexity (including the pre-processing) of O(
√

n · scan(n+m)+ sort(n+m)+
ST (n,m)) I/Os for MM BFS D, where ST(n,m) is the number of I/Os required

to compute a spanning tree (of the connected component containing the source

node) of a graph with n nodes and m edges. Using the randomized algorithm

for MST/CC with O(sort(n+m)) expected I/O complexity, MM BFS D requires

expected O(
√

n · scan(n+m)+ sort(n+m)) I/Os.

For the “parallel cluster growing” variant, an adjacency list stays in H for O(µ ·
logn) levels w.h.p. Since there are at most 1 + n

µ clusters and each cluster is

loaded at most once, loading them into H requires O( n
µ +scan(m)) I/Os. The total

complexity for MM BFS R is thus O(n/µ + µ · logn · scan(n+m)+ sort(n+m))

I/Os w.h.p. Choosing µ = max

{

1,
√

n
scan(n+m)·logn

}

, we get an I/O complexity

of O(
√

n · scan(n+m) · logn+ sort(n+m)) I/Os w.h.p. for MM BFS R.

3.4 Engineering MR BFS

One of the first decisions in designing any external memory implementation is to

decide whether or not to use an external memory library (cf. Section 2.6.1). The

advantage of using these libraries is that they reduce the development time by ab-

stracting away the details of how an I/O is performed and providing ready-to-use

efficient implementations of basic algorithms and data structures. We decided to

work with STXXL [56, 57] because of the geographic proximity of its develop-

ment2 and its easy to use STL interface. Over the course of this project, many

bugs were discovered and fixed in STXXL and quite a few additional features

were requested and added. These bug-fixes and features have helped making the

library more usable.

Although certain special features of STXXL are crucial to deal with some extreme

graph classes, we believe that modulo some constant factors, the performance of

our implementation should be the same on most graphs even with other external

memory libraries, such as TPIE [21].

2The development of STXXL started in 2002 at Max Planck Institut für Informatik,

Saarbrücken
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3.4.1 STXXL

The key component of STXXL used by us is the stream sorter, which runs in two

phases – the Runs Creator (RC) Phase and the Runs Merger (M) Phase. In the

runs creator phase, the input vector/stream is divided into chunks of M elements

and each chunk is sorted within itself. These chunks are thereafter written to the

disk space. In the runs merger phase, the first blocks of all the sorted chunks

are brought to internal memory and merged there to produce the output stream

which does not necessarily have to be stored on the disk. In case the sorting

requires more than two rounds, the runs merger phase merges the sorted chunks

recursively. For better efficiency, it is recommended to choose the block size and

the internal memory available in such a way that the sorting does not require more

than one round of merging.

Our data structures are implemented using the STXXL vector data-type. A vector

in STXXL is organized as a collection of blocks residing on the parallel disks

(or any other external storage). Each vector maintains a fully associative cache

in internal memory. The vector cache consists of some fixed amount of pages.

Each page in turn consists of P external blocks. A random access to an element

in the vector involves P I/Os and therefore, in order to make full use of the disk

parallelism, it is recommended that P be some multiple of the number of parallel

disks.

When accessing an element, if the page which the requested element belongs to, is

in the vector cache, a reference to the element in the cache is returned. Otherwise,

the page is first brought into the cache. If there is no free space in the cache,

some page needs to be evicted. Each vector maintains its own paging strategy that

decides which page is to be evicted. STXXL currently provides LRU and random

paging strategies.

Each vector also has its own allocation strategy that decides how the vector will be

stored across multiple disks. STXXL supports many different allocation strategies

that stripe the data across disks (usually in some randomized way).

We also developed our own allocation strategies to deal with the case of heteroge-

nous disks (e.g., when a hard disk and a solid state disk are used in parallel).

This has been particularly useful when we ran our BFS implementation in such a

setting (cf. Section 4.4).

STXXL vector also maintains a dirty flag with each page in the cache. The pur-

pose of the flag is to track whether any element of the page is modified and there-

fore the page needs to be written to the disk(s) when it has to be evicted from the
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cache. STXXL distinguishes between constant and non-constant accesses to the

element, as the dirty flag is set when non-constant reference to one of the page’s

elements is returned.

3.4.2 Graph representation

Our main consideration in choosing our graph representation was to keep it as

compact as possible. This is important as the I/O volume of our BFS implemen-

tations involves scanning the graph representation multiple times and a compact

representation can save significant constant factors in I/Os. At the same time, we

want to be able to access the adjacency list of an arbitrary node v in O(1+d(v)/B)
I/Os and able to scan all the edges of the graph in O(m/B) I/Os.

In our graph representation, nodes are assumed to have implicit unsigned integer

labels in the range from 0 to n− 1. The representation consists of two STXXL

vectors – N and E. The ith entry in N contains the index to the beginning of the

adjacency list of node i in E. Note that this index is not the same as keeping a

pointer to the appropriate location on disk, which may require up to 12 bytes of

storage. Each edge {u,v} is stored twice in E – once as v in the adjacency list of

u and once as u in the adjacency list of v. Note that an element of the node vector

N contains only the index of an element in E. In particular, it does not contain the

node label itself. An element of the edge vector E contains only the node label of

the adjacent node and not of the node itself. If a node label is 4-bytes (number of

nodes less than 232−1) and an index in E is 8-bytes (number of edges less than

263−1), the total storage requirement of our graph representation for MR BFS is

8n+4m bytes.

Although we minimize the amount of information kept with node and edge el-

ements in this data-structure, our implementation is still generic: it can handle

graphs with arbitrary number of nodes (by appropriately modifying the data-type

of a node label) and the graph template is basic and can be used for other graph

algorithms as well.

In order to get the adjacency list of node i, we first load the page containing the ith

and (i+1)th entry in N into its vector cache. This gives us the necessary indexes

in E. We then load all the pages containing elements in this range into E’s cache

one by one and output the required adjacency list. Note that in order to efficiently

handle the last node, N contains a dummy node at the end that marks the end of

E.
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From an unordered list of edges, we can obtain the above graph representation in

O(sort(m)) I/Os as follows: For each edge {u,v} we enter two entries – (u,v) and

(v,u) into a STXXL vector. We then sort this vector with respect to the first node

in the ordered tuple, remove duplicates (if there are any) and initialize the node

vector N with the correct indexes of adjacency lists in this vector. The edge vector

E is then obtained by removing the label of the first node from each edge element.

Our output format that stores the BFS decomposition is similar. The two vectors,

referred as L and NL, represent the BFS levels and the nodes in those levels,

respectively. The ith entry in vector L merely contains the index to a location in

vector NL where the nodes in the ith BFS level are stored. This ensures that we do

not spend one I/O per level when storing the output which is a major performance

consideration for large diameter graphs (cf. Section 3.4.5).

3.4.3 Implementing MR BFS

We present the details of our software using flow-charts. The circular or elliptical

blocks in these flow-charts represent storage on the external media, the arrows

leading to these blocks correspond to write I/Os and the arrows leading away from

these blocks correspond to read I/Os. Figure 3.2 shows the flow-chart of MR BFS.

Let L(t) denote the set of nodes in BFS level t, E(t) be the adjacency lists of the

nodes in L(t), A(t) be the multi-set of neighbors of nodes in L(t) and N(S) denote

the set of neighbors of nodes in a set S. Given L(t−1), L(t) and N(L(t)) computed

in the previous iteration, we compute L(t +1) in the current iteration. This is done

by reading the nodes in sorted sets L(t− 1), L(t) and N(L(t)) from the disk and

scanning them in parallel to compute L(t + 1) = {N(L(t)) \ (L(t − 1)∪ L(t))}.
The set L(t +1) so produced is also sorted. It is then written back to the disk. We

collect the adjacency lists of all nodes in L(t +1) from the disk (using potentially

random I/Os) as E(t + 1). Note that since L(t + 1) is sorted, this step requires

O(scan(m)) I/Os. Using E(t + 1), we compute the multi-set A(t + 1) which is

written to the disk. A(t + 1) is then passed as an input to the runs creator (the

first phase of STXXL sorting) which produces sorted runs (sorted chunks of M

elements). These runs are read from the disk and merged (second phase of STXXL

sorting). Duplicates are removed from this sorted set to compute N(L(t + 1))
which is written to the disk. This forms the set N(L(t)) for the next BFS level

(t := t +1) or the next iteration.

Summing over all BFS levels, the worst case number of I/Os for this implementa-

tion of MR BFS (assuming a single merge pass in sorting) is given by the follow-
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Figure 3.2: Flow-chart of MR BFS implementation.
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ing expression:

n+scan(∑
t

(|L(t)|+|L(t−1)|+2· |L(t +1)|+|E(t +1)|+6· |A(t +1)|+2· |N(L(t))|))

The factor 2 for scanning L(t + 1) and N(L(t)) stems from summing the read-

ing and writing costs and the factor 6 for A(t +1) comes from reading and writ-

ing A(t + 1), sorted runs of A(t + 1) and sorted A(t + 1). Since ∑t |L(t)| ≤ n,

∑t |E(t)| ≤ 2m, ∑t |A(t)| ≤ 2m, and ∑t |N(L(t))| ≤ ∑t(|L(t−1)|+ |L(t)|+ |L(t +
1)|)≤ 3n, the worst case total number of I/Os is n+ scan(10n+14m).

3.4.4 Pipelined MR BFS

Recall from Section 2.6.2 that an engineering technique called pipelining is of-

ten employed in external memory algorithms to save constant factors in the I/O

complexity. The key idea behind pipelining is to connect a given sequence of al-

gorithmic steps with an interface so that the data can be passed-through from one

algorithm to another without needing any external memory intermediate storage.

Figure 3.3 shows the flow-chart of a coalesced MR BFS algorithm.

Figure 3.3: Flow-chart of pipelined MR BFS implementation.



3.4 Engineering MR BFS 49

The complexity of the pipelined MR BFS mainly lies in its scanner. The scanner

receives the stream of sorted multi-set A(t). While looking at the elements one

at a time, it determines if it is a duplicate by checking with the stored previous

element of the stream. If not, it checks if this element is in L(t) or L(t−1) reading

these sets from the disk as sorted streams. If not, it collects this element into the

L(t +1) buffer and reads its adjacency list from the disk (represented as E(t +1)
in the figure) to form the stream A(t +1). The stream A(t +1) is passed directly

to runs creator and sorted runs are written on the disk. These are later merged and

passed to the scanner as sorted multi-set A(t) for the next level.

In this case, the worst case number of I/Os (again assuming a single merge pass)

is given by the following expression:

n+ scan(∑
t

(|L(t−1)|+ |L(t)|+ |L(t +1)|+ |E(t +1)|+2 · |A(t)|))

Since ∑t |L(t)| ≤ n, ∑t |E(t)| ≤ 2m, and ∑t |A(t)| ≤ 2m, the worst case total num-

ber of I/Os for pipelined MR BFS is n + scan(3n + 6m). Thus, for MR BFS,

pipelining reduces the worst case number of I/Os from n + scan(10n + 14m) to

n + scan(3n + 6m). This is particularly significant for graphs that do not force

MR BFS to incur n I/Os for reading adjacency lists.

3.4.5 Dealing with large diameter graphs

Consider the case of large diameter graphs with a good layout on disk such as a

list where the nodes are stored on the disk in the order the BFS algorithm needs

to traverse them. Theoretically, MR BFS should require O(n/B) I/Os on these

graphs as reading the graph stored in this way and storing the output can both be

done in O(n/B) I/Os. Our preliminary implementation however took Ω(n) I/Os.

We discovered that the reason for this has been that the initialization of the runs

creator for sorting N(L(t)) (even if it contained only one node) and converting a

vector into stream (even if the vector contained only one element) both required

Ω(1) I/Os. Since for each level, a new instance of runs creator is initialized and

a vector is converted into a stream, this causes Ω(n) I/Os for the list graphs. The

reason for this behavior is that STXXL was designed to handle external memory

data and it was not conceived that in the course of it, it may also have to sort

streams with k < B elements without incurring any I/Os.

New features were added to STXXL to handle these problems. The STXXL

stream sorter (from version 0.75 onwards) does not need any I/O (with the ap-

propriate flag) if k < B. Also, for this case, the internal work is proportional to
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n logn, independent of B. Converting a vector into a stream or initialization of

runs creator or runs merger do not cause any I/O.

While these new features helped reduce the I/O time, the computation time re-

mained quite high. This was because of the overhead associated with initializing

the external sorters, which involved allocating appropriate amount of memory. In

the pipelined version of MR BFS, we do not know in advance the exact number

of elements to be sorted and hence, we can’t switch between the external and

the internal sorter so easily. In order to get around this problem, we first buffer

the first B elements and initialize the external sorter only when the buffer is full.

Otherwise, we sort it internally.

Overall, these add-ons reduced the I/O and the computation cost for running

MR BFS on large diameter graphs significantly and helped achieving the theoret-

ical bounds for this case. The BFS phase of MM BFS inherits these optimizations

and hence, does not suffer from Ω(1) I/O and high computation cost per level.

3.5 Engineering MM BFS R

In this section, we first present the graph representation that we use both for

MM BFS R and MM BFS D. We then describe our pipelined implementation of

MM BFS R.

3.5.1 Graph representation

We consider here the graph representation to store the preprocessed input graph.

Together with the nodes and edges, we also need to store the clustering infor-

mation. From this representation, we should be able to collect all nodes in an

arbitrary cluster in O(1)+ cluster size
B

I/Os. Each edge needs to keep not only

the labels of both the adjacent nodes, but also their cluster indices, so that we can

efficiently determine whether or not the cluster of the adjacent node is in the hot

pool.

Rather than having each cluster consist of an adjacency array containing nodes

and edges belonging to it, we store the partitioned input graph as three vectors

F , N, and E (as shown in Figure 3.4). Vectors N and E contain the nodes and

adjacency lists, respectively. Vector N is kept sorted according to cluster indices

of the nodes and that being equal, according to the node labels. Edges in vector
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E

N

F

Figure 3.4: I/O-efficient data structure to represent a partitioned graph.

E are kept sorted with respect to the cluster index of the first node and that being

equal, according to the first node label. The ith entry in vector F contains only an

index of vector N representing the beginning of the set of nodes in the ith cluster.

Elements in N contain the node label as well as an index of vector E where the

adjacency list of a particular node starts. Each edge in E contains the labels of

both the adjacent nodes as well as their cluster indices.

In order to facilitate accessing all nodes in the last cluster and the adjacency list

of the last node, we keep dummy nodes at the end of vectors F and N to mark the

last element of N and E, respectively.

3.5.2 Pipelined MM BFS

Figure 3.5 shows the flow-chart of the pipelined version for the “parallel clus-

ter growing” phase of MM BFS R. This phase begins with randomly selecting

n/µ nodes to be master nodes. The main scanner (SCAN 1) of this phase takes

the stream of the sorted sequence of the nodes on the fringe of expanding clus-

ters and stores the cluster index (by including the fringe nodes into their corre-

sponding clusters) with these nodes. It also reads the adjacency lists of these

nodes to compute the new sequence of fringe nodes to be sent to the two-phase

sorter. After the partitioning of nodes into clusters is complete, SCAN 2 stores

the cluster index of the tail node with each edge. We then sort E with respect

to the head node label. The next scanner (SCAN 3) then stores the cluster in-

dex of the head node with each edge. We then sort N and E with respect to

the cluster index (of the tail node) and that being equal, according to the (tail)

node label. SCAN 4 then adjusts the cluster and the node iterators (which are

indexes in N and E respectively) appropriately. Since the diameter of any cluster

is less than µ · logn w.h.p., the total number of I/Os for this phase is bounded by

scan
(

16m+6n+ n
µ +2 · (m+n) · logn ·µ

)

w.h.p.
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Figure 3.5: Flow-chart for the “parallel cluster growing” phase of MM BFS R.
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Figure 3.6: Flow-chart for the BFS phase of MM BFS.
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In the pipelined BFS phase of MM BFS (which is common to both MM BFS R

and MM BFS D) shown in Figure 3.6, the first scanner (SCAN 1) receives the

sorted sequence N(L(t)) of neighbor nodes of L(t) from the merger stream com-

puted in the previous iteration. It reads L(t − 1) and L(t) from the disk and the

adjacency lists of nodes in L(t) from the hot pool H(t) (at level t) and computes

F(t + 1) – the multi-set of cluster indices of nodes in L(t + 1) – and in the pro-

cess, also writes (sorted) L(t + 1) to disk. The second scanner (SCAN 2) takes

the sorted stream F(t + 1) and eliminates duplicates from it. It then checks if

the cluster (corresponding to the element in F(t + 1)) is already loaded into the

hot pool H(t). If not, it reads the cluster edges from the graph partitioning data

structure and outputs these edges as the stream to the two-phase sorter. The next

scanner (SCAN 3) reads the sorted sequence of edges that need to be merged

into the hot pool, removes the adjacent edges of nodes in L(t +1) and computes

H(t + 1) := (H(t)∪Merged cluster edges) \Adj(L(t + 1)), where Adj(S) repre-

sents the edges adjacent to nodes in a set S. In the process, this third scanner also

outputs the multi-set N(L(t + 1)). This is then sorted and passed on to the next

round as sorted N(L(t)).

The total number of I/Os for this phase is bounded by #clusters + scan(8m ·
cluster diameter + 10m + 6n). Since for MM BFS R, each cluster diameter is

bounded by µ · logm w.h.p. and the number of clusters is 1 + n
µ , the total I/O

complexity is bounded by 1 + n
µ + scan(10m + 6n + 8m logm · µ) w.h.p. For

MM BFS D, the cluster diameter is bounded by µ and the number of clusters

is at most 2n
µ . So, the total number of I/Os required by MM BFS D is bounded by

2n
µ + scan(10m+6n+8m ·µ).

3.6 Engineering MM BFS D

As discussed in Section 3.3, the key components of the Euler tour based prepro-

cessing of MM BFS include minimum spanning tree, list ranking and the Euler

tour of a tree. In this section, we discuss the various design choices for each of

these components.

3.6.1 Engineering minimum spanning forest

Dementiev et al. [54] carefully engineered an external memory MSF algorithm.

Their implementation is based on a sweeping paradigm to reduce the number of
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nodes to O(M) and then running the semi-external Kruskal’s algorithm. The node

contraction phase consists of repeatedly choosing a node at random and contract-

ing the lightest edge incident to it. In external memory, selecting random nodes

can be done by using I/O-efficient random permutation (e.g., [139]) and looking

at the nodes in that order. In contracting the edges, one needs to “inform” all the

other neighbors of the non-leader node about the leader node. This can be done by

time-forward processing (cf. Section 2.5.6) using external memory priority queues

or using a bucket structure. This MSF implementation uses STXXL for sorting,

priority queue and other basic data structures.

Dementiev et al. [54] showed that with their tuned implementation, massive min-

imum spanning tree problems filling several hard disks can be solved “overnight”

on a low cost PC-server with 1 GB RAM. They experimented with many different

graph classes – random graphs, random geometric graphs and grid graphs. In gen-

eral, they observed that their implementation of semi-external Kruskal’s algorithm

only loses a factor of 2 in the execution time per edge as compared to the inter-

nal memory algorithm. Running on disks, their external memory implementation

merely loses an additional factor of 2.

Our experiments confirmed that this implementation is quite fast in practice and

despite the fact that the underlying graph representation in it is different than ours,

it is well-suited for our application.

3.6.2 Engineering List Ranking

The list ranking algorithm by Sibeyn [145] has low constant factors (for realistic

input size) in its I/O complexity and is therefore, more practical than the algo-

rithm [48] (described in Section 3.2.2) based on independent set removal. The

algorithm splits the input list into sublists of size O(M) and goes through the data

in a wave-like manner. For all elements of the current sublist, it follows the links

leading to the elements of the same sublist and updates the information on their

final element and the number of links to it. For all elements with links running

outside the current sublist, the required information is requested from the sublists

containing the elements to which they are linked. The algorithm uses bucketing

and lazy processing of the requests and the answers to the sublists, i.e., it stores

them in one common stack and processes them only when the wave through the

data hits the corresponding sublist.

Unfortunately, Sibeyn’s implementation relies on the operating system for I/Os

and does not guarantee that the top blocks of all the stacks remain in the internal
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Figure 3.7: The bi-directed tree (shaded circles and solid lines) and the closed

linked list of its edges (dashed lines) on the left. The order of the vertices and

their partitioning before and after the duplicates removal on the right.

memory, which is a necessary assumption for the asymptotic analysis of the algo-

rithm. Besides, its reliance on internal arrays and swap space puts a restriction on

the size of the lists it can rank. We re-implemented this algorithm using STXXL

stacks and vectors. The deeper integration of the algorithm in the STXXL frame-

work makes it possible to obtain a scalable solution, which could handle graph

instances of the size we require while keeping the theoretical worst case bounds.

Our implementation of this algorithm in the STXXL framework is quite fast in

practice and takes only around 20 minutes for a list of 229 elements.

3.6.3 Euler tour

Recall from Section 3.2 that in order to construct the Euler tour around the bi-

directional minimum spanning tree (Figure 3.7), each node chooses a cyclic order

of its neighbors. For every edge (u,v), its successor is defined to be the edge

(v,w) (u may be the same as w) such that in the cyclic order of neighors of v, u

is followed by w. In one scan of the edges of the bi-directional tree, each edge

is linked to its successor. The linear ordering induced by the successor function

constitutes the Euler tour. This tour is then split at the source node s by marking

an edge leading away from s in the circuit as the starting edge of the tour.

The position of an edge in the Euler tour is computed using list ranking. These

edges are then sorted such that they are stored on the disk in the order of their

position in the tour. While scanning the nodes in the order they appear in the

tour (some nodes may be repeated), we subdivide the tour into chunks of size
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max{1,
√

n·B
n+m
} nodes. Thereafter, we remove the duplicate nodes using the sort-

ing routine of STXXL and get the partitioning of the input graph.

3.7 A heuristic for maintaining the pool

In this section, we propose a heuristic for efficient management of the hot pool.

This heuristic is aimed at speeding up the practical performance of MM BFS D,

particularly for large diameter graphs. At the same time, it preserves the worst

case I/O bounds of MM BFS.

For many large diameter graphs, the pool fits into the internal memory most of

the time. Although in this case, the number of edges in the pool is not so large,

scanning all the edges in the pool for each level can still be computationally quite

expensive. Hence, we keep a portion of the pool that fits in the internal memory

as a multi-map hash table. Given a node as a key, it returns all the nodes adjacent

to the current node. Thus, to get the neighbors of a set of nodes we just query the

hash table for those nodes and then delete them from the hash table. For loading

the cluster, we just insert all the adjacency lists of the cluster in the hash table,

unless the hash table has already Θ(M) elements.

Recall that after the deterministic preprocessing, the adjacency lists are stored

on the disk in the order in which their corresponding nodes appear on the Eu-

ler tour around a spanning tree of the input graph. The Euler tour is chopped

into clusters with max
{

1,
√

n·B
n+m

}

nodes (before the duplicate removal) ensur-

ing that the maximum distance between any two nodes in the cluster is at most

max
{

1,
√

n·B
n+m

}

−1. However, the fact that the contiguous adjacency lists on the

disk have their corresponding nodes closer in terms of BFS levels is not restricted

to intra-cluster nodes. The adjacency lists that come alongside the requisite cluster

will also be required soon and by caching these other adjacency lists, we can save

some I/Os in the future. This caching is particularly beneficial when the pool fits

in the internal memory. Note that we still load the max
{

1,
√

n·B
n+m

}

node clusters

in the pool, but keep the remaining elements of the block in the pool-cache. For

MM BFS D on linked lists, this means that we load O(
√

B) nodes in the inter-

nal pool, while keeping the remaining O(B) adjacency lists which we get in the

same block, in the pool-cache, thereby reducing the I/O complexity for the BFS

traversal on linked lists to that of scanning a list stored in the ranked order.

Recall that we represent the adjacency lists of nodes in the graph as a STXXL
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Figure 3.8: Scheme depicting an example run of the implementation of our heuris-

tic. The dark regions denote the clusters that need to be loaded into the hot pool.

The entire block containing the two clusters is first loaded into the vector-cache.

At this juncture, the internal hot-pool (a multi-map hash table) can only hold one

more cluster. Therefore, one of the clusters goes into the internal pool and the

other cluster is stored on the external hot-pool.

vector. STXXL already provides a fully associative cache with every vector. Be-

fore doing an I/O for loading a block of elements from a vector, it first checks if

the block is already there in the vector-cache. If so, it avoids the I/O and provides

the elements from the cache instead. Increasing the vector-cache size of the ad-

jacency list vector with a layout computed by the Euler tour based preprocessing

and choosing the replacement policy to be LRU provides us with an implemen-

tation of the pool-cache. Figure 3.8 depicts the implementation of our heuristic.

3.8 External memory graph generator

For the purpose of this study, we designed and implemented a pipelined version of

an I/O efficient framework for generating large graphs of many different classes.

Our graph generator can be easily de-coupled from our graph representation and

is therefore, of independent interest. Since it can generate massive graphs quickly,

it was one of the few graph generators recommended for the DIMACS implemen-

tation challenge on shortest paths [62].

Our graph generator first produces a stream of edges (each undirected edge is rep-

resented as a pair of directed edges, one in each direction), randomly permutes the

node labels if required by the graph class, sorts the edge-sequence, removes du-

plicates, and converts it into our graph representation. For an I/O-efficient random

permutation needed in the generation process of many graphs, we use [139].
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3.8.1 Graph classes.

We consider the following graph classes covering a broad spectrum of different

characteristics influencing the performance of external memory BFS algorithms:

Random Graph

The random graph model G(n, p) [66, 67] (cf. Section 2.3) refers to graphs with n

nodes in which each edge is chosen independently with probability p. Generating

such a graph by considering whether or not an edge exists between every pair

would take Ω(n2) time. So, we consider a different notion of random graphs in

which all the m edges are chosen with having tail and head nodes picked randomly,

i.e., on n node graphs, we randomly select m edges with replacement. We make

sure that the randomly chosen tail and head nodes are not the same to avoid self

loops. From the multi-set of edges so generated, we remove duplicates to avoid

parallel edges. The random graph so obtained is equivalent to a random graph

G(n, p) with p = 1−
(

1− 1

(n
2)

)m

. For our experiments, we mostly work with

m = 4n which corresponds to p∼ 4
n−1

.

A random graph G(n, p) has a giant connected component with a small diameter

w.h.p. if p = Ω( logn
n

). In conformity with the theoretical results, we observed that

on large random graphs with m around 4n, there is a big connected component

(containing more than 0.99n nodes) with 10–15 BFS levels starting from a random

node.

B-level random graph

Given n, m and B, consider the graph in Figure 3.9. The graph consists of n nodes,

and with the exception of the source node s they are spread over B levels of n−1
B

nodes each. These B levels approximate the BFS levels, as edges in this graph

only connect nodes between consecutive levels. The source node is connected to

all nodes in the first BFS level. The
m− n−1

B

B−1
edges between any two consecutive

levels i and i+1 have their one end-point from level i and the other end-point from

level i+1 chosen randomly with a uniform probability distribution.

The following layout of this graph on the disk causes MR BFS to incur its worst

case of Ω(n) I/Os: For each level, the nodes are arranged in the node vector
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Figure 3.9: B-level random graph

such that each node in the level resides in a different block. For this, we choose

the node labels such that the ith level Li = {u|u mod B = i}. Since these levels

approximate BFS levels and MR BFS involves accessing these nodes in the node

vector together, it will cause MR BFS to incur ∼ n−1
B

I/Os for every BFS level.

Summing over all B BFS levels, it will cause MR BFS to have Ω(n) I/Os.

We consider B-level random graphs with m = 4n. They have a giant connected

component and the levels correspond very well with the actual BFS levels.

One can also generate the above graph with a random layout on the disk. The

performance of external memory BFS algorithms on the two layouts is similar.

B-level spider web graph

Figure 3.10: B-level spider web graph

This graph class (as shown in Figure 3.10) is a specialization of web graph (not to
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Figure 3.11: MM BFS worst graph

be confused with the power-law graphs used to simulate WWW or WWW crawls)

defined in [153]. It also consists of B levels, each having n−1
B

nodes. All nodes in a

level are connected in a cyclic fashion and a node has an edge to its corresponding

node in the level before and after. The initial layout of the nodes on the disk is

random. A similar graph with
√

B levels is also supported by our generator.

MM BFS worst graph

Given two parameters n and µ (closely related to the MM BFS parameter with

the same notation), this graph [37] shown in Figure 3.11 consists of a source

node s and a node t connected by k :=
√

n independent paths of length L :=
log1−1/µ (1/

√
n). Furthermore, t is connected to n independent nodes u1, . . . ,un

by an edge. The total number of nodes and edges in this graph is O(n). This graph

is so named as it causes MM BFS R to incur its worst case of Θ
(

n ·
√

logn
B

+ sort(n)

)

I/Os w.h.p. on sparse graphs.

Grid Graph

Given x, y and p, a grid graph consists of an x× y grid where each edge of this

grid is chosen independently with a probability p. The layout of this graph on the

disk is random. We mostly consider the case with p = 1, x = ⌈√n⌉ and y = ⌊√n⌋.
For this case, the grid graph has a diameter of ⌈√n⌉+ ⌊√n⌋.
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We also consider long and narrow grids in two dimensions as well as grids in three

and four dimensions as examples of large diameter graphs.

List graphs

A list graph consists of n nodes and n− 1 edges such that there exist two nodes

u and v, with the path from u to v consisting of all the n−1 edges. We consider

three different initial layouts – simple, in which consecutive nodes in the list ap-

pear contiguous on the disk; B-interleaved in which consecutive nodes are all in

different but consecutive blocks; random in which the arrangement of nodes on

disk is given by a random permutation.

Webgraph

As an instance of a real world graph, we consider an actual crawl of a part of the

world wide web in 2001 [150], where an edge represents a hyperlink between two

sites. Although this is a directed graph, we treat it as undirected. This graph has

around 130 million nodes and 1.4 billion edges. It has a core which consists of

most of its nodes and behaves like a random graph.

Our graph generator also includes a translator to read this webgraph, make it undi-

rected (by inserting an edge in the other direction) and convert it into our graph

representation.

Other graph classes

There are many other graph classes supported by our generator such as geometric

graphs where the nodes are associated with points in some space and the proba-

bility of an edge to exist between two nodes in the graph is inversely proportional

to the Euclidean distance between their corresponding points.

3.9 External memory BFS decomposition

verifier

As another side tool, we designed an I/O efficient verifier routine to determine

whether or not a BFS level decomposition is correct for a given graph.
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For an undirected connected graph, the following are necessary and sufficient con-

ditions for a BFS level labeling to be correct:

1. BFS level 0 contains the source node s only.

2. Every node v ∈V , v 6= s has a unique BFS level bfs level(v) > 0.

3. ∀(u,v) ∈ E, |bfs level(u)−bfs level(v)| ≤ 1.

4. ∀u ∈V in BFS level k (k > 0), ∃ edge(u,v) such that v is in BFS level k−1.

Next, we show how to check all these conditions in O(sort(n + m)) I/Os in a

pipelined way. Figure 3.12 shows the flow-chart of our pipelined implementation

of the BFS checker. Recall that the representation of the BFS output consists of

two vectors – L and NL. In NL, the nodes of the graph are kept sorted according

to their BFS levels. The ith entry in L contains the index of an element in NL from

where the nodes in the ith BFS level begin.

The first scanner (SCAN 1) checks the first condition and forms tuples of the form

< node label, bfs level > from the BFS output representation. These tuples are

then sorted according to node label and passed on to the second scanner (SCAN

2). SCAN 2 checks the second condition. It also does a parallel scan of the sorted

(w.r.t. the tail node label) set of edges and stores the BFS level of the first end-

point with each edge. The set of edges is then sorted according to the label of the

other end-point (head node of each edge). SCAN 3 then scans this sorted edge

set in parallel with the sorted tuple list and stores the BFS level of the head node

with each edge. In the process, it also checks if the third condition is satisfied.

The set of edges is then sorted according to the BFS level of the tail node and that

being equal with the BFS level of the head node. The last scanner (SCAN 4) then

checks the last condition on this sorted set of edges. A BFS level decomposition

is correct only if it satisfies all the conditions checked by the scanners.

3.10 BFS software package

The software isn’t finished until the last user is dead.

–Anonymous

Our code for the experimental study of external memory BFS algorithms has now

evolved into a software package that can be used as a black-box for many applica-

tions. We eventually plan to integrate this code into a library of external memory
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Figure 3.12: Flow-chart of the pipelined BFS checker.
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algorithms dealing with massive graphs.

Many features for easing the usability of the code (both for a naı̈ve and an expert

user) have been integrated in this package. The software currently supports many

different input graph formats such as a list of edges or the DIMACS shortest path

challenge graph format (with adaptors to convert them into our graph represen-

tation in O(sort(m)) I/Os). It can also output the BFS results in many different

formats such as a BFS tree, BFS levels of all nodes and all nodes in a particular

BFS level (both in binary and ASCII format).

Our implementation can be used on many different 32-bit and 64-bit architec-

tures with single or multi-core processors and single or multiple (homogenous or

heterogenous) external disks. In order to efficiently use our external memory im-

plementations on different machines, one needs to tune the values of block size,

number of external disks, and available main memory size based on the underlying

hardware.

This package has been continously evolving for the last four years. The latest

stable version of our code is available from the SVN repository https://svn.mpi-

inf.mpg.de/AG1/EM/ajwani/embfs/trunk. Apart from many bug-fixes, it includes

many features requested by the users of our software package.

The download page of an earlier version of our code was visited more than 300

times in the last two years. We released this code under GNU General Public

License (GPL) version 2 as freely downloadable and did not keep any statistics

about our users. From the log of feature requests, we found that there have been

attempts to use (an older version of) our code for at least the following applica-

tions:

• Processing large semantic graphs in order to build a scalable parallel data

management system.

• Searching in social network graphs.

• A graph visualization project dealing with large graphs.

3.10.1 Goals

Our most important goal in engineering these BFS algorithms has been to make

BFS viable on massive graphs. Constant factors in the I/O complexity are partic-

ularly important in an external memory setting as they can make the difference
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between an implementation running overnight and one that takes a month. When-

ever we had a trade-off between saving I/Os and more development time, we

always chose to optimize our code by saving I/Os. Pipelining involves more de-

velopment time, makes the code less readable and makes it difficult to debug, but

since optimization has been our key priority we continue to rely on it heavily.

Our next goal has been reusability. The extensive use of templates provides a lot

of flexibility with respect to using our code in different applications.

Last but not least, reliability is an important consideration. Not only the imple-

mentation should result in a correct output, but it should also not terminate before

giving the output (e.g., with an error message or segmentation fault). This is par-

ticularly important for external memory implementations as they may take hours

and days of running. In this context, errors that happen infrequently constitute

the main problems. We have put a lot of effort to make this code as bug-free as

possible.

3.11 Results of our experimental study

In this section, we present the main results of our extensive experimental study

with external memory BFS algorithms. For comparing the different algorithms,

we consider the total running time and the I/O wait time – the total time spent by

an implementation waiting for an I/O to complete, and not I/O time – the total

time spent by an implementation on I/Os. This distinction is necessary as STXXL

maximizes the overlap of I/O with computation.

The external memory BFS algorithms require hours, days and sometimes even

months for computing BFS on various graph classes. As such, some of the results

presented in this section (specifically those requiring months) have been interpo-

lated using the symmetry in the graph structure.

3.11.1 Configuration

We have implemented the algorithms in C++ using the g++ compiler (optimiza-

tion level –O3) on the Debian GNU/Linux distribution with a Linux kernel and the

external memory library STXXL. Table 3.1 summarizes the configuration of the

three machines on which we ran our experiments. Note that for chronological rea-

sons, Config A had only partial support for large diameter graphs, a 16-byte edge
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Config A Config B Config C

Processor Intel Opteron Opteron

Processor speed 2.0 GHz 2.0 GHz 2.5 GHz

Cache 512 KB 1 MB 1 MB

RAM 1 GB 1 GB 2.5 GB

Disk Model ST3250823A ST3250823A ST3500320AS

Disk capacity 250 GB 250 GB 500 GB

Disk Buffer cache 8 MB 8 MB 32 MB

Disk: Sustained data

transfer rate (outer zone) 65 MBps 65 MBps 105 MBps

Disk: Average latency 4.16 msec 4.16 msec 4.16 msec

Disk: Spindle Speed 7200 rpm 7200 rpm 7200 rpm

Disk: Random read

seek time <11.0 msec <11.0 msec < 8.5 msec

Disk: Random write

seek time <12.0 msec <12.0 msec < 9.5 msec

Disk: Connecting

interface PATA PATA SATA 3Gbps

g++ version 3.3.2 4.0.2 4.1.2

Linux kernel 2.4 2.6 2.6

STXXL version 0.77 0.77 1.1.1

STXXL support for

large diameter graphs Partial Complete Complete

EMBFS Heuristic No Yes Yes

MR BFS edge

size 16 8 4

Table 3.1: Configuration of different machines used for experimenting with EM

BFS algorithms.

representation for MR BFS and no heuristic included in MM BFS. Also note that

with the hard disks used in all of these machines, it takes many hundreds of hours

for 228 (most common value of n in our experiments) random reads and writes.

The relative performance of different algorithms does not vary much across dif-

ferent architectures. In this section, we therefore present various performance

measures on different configurations to illustrate the key features of our results.
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3.11.2 Fine-tuning Parameters

Most practitioners of external memory algorithms know that the block size B is a

parameter that needs to be finely tuned for optimal performance. This is all the

more relevant in the STXXL design framework, as the STXXL vector is organized

as a collection of blocks (of size B) residing on the external storage media (parallel

disks). Recall from Section 3.4.1 that access to the external blocks is organized

through the fully associative cache which consists of a few (Pg Nr) in-memory

pages where a page is a collection of a few (P) logically consecutive blocks. Apart

from Pg Nr and P, another important parameter to be fine-tuned is the internal

memory reserved for a runs creator and a runs merger. While tuning these param-

eters, a key constraint is that the internal memory allocated for all the vectors, runs

creators and runs mergers active simultaneously, at any time, should be less than

the main memory available for the user. Typically, half of the main memory is

kept for OS requirements. The allocation strategy of blocks over disks in a multi-

disk setting and the page replacement policy of a vector cache are some other

parameters to be considered. For our implementations, we chose B = 512 KB/1

MB (depending on the machine), Pg Nr = 4, P = number of parallel disks in use,

allocation strategy = randomized cyclic striping and LRU page replacement strat-

egy.

Another important parameter to be optimized for MM BFS is µ which is re-

lated to the diameter of the clusters. For worst case optimality, we choose µ :=

max

{

1,
√

n
scan(n+m)

}

for MM BFS D and µ := max

{

1,
√

n
scan(n+m)·log(n)

}

for

MM BFS R. On the other hand, if some a priori information is available about

the graph structure, one can use it to reduce the random or sequential accesses by

appropriately modifying µ . We consider both the cases – one in which we choose

our µ value independent of the graph-structure (common µ) and one in which we

assume a priori knowledge of the graph diameter (graph-structure dependent µ).

3.11.3 IM BFS looses fast

Figure 3.13 shows the total running time of IM BFS, MR BFS, MM BFS R, and

MM BFS D on random graphs of varying sizes (keeping m = 4n) on config A

(cf. Table 3.1). An important point to note here (also see Figure 1.1) is that even

when half of the graph fits in internal memory, the performance of IM BFS is

much worse than that of the external BFS algorithms. For this case (222 nodes

and 224 edges), the I/O wait time of IM BFS (8.09 hours) dominates the total
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Figure 3.13: Variation of running time of IM BFS, MR BFS, MM BFS R, and

MM BFS D (in logarithmic scale) on random graph with n nodes (also in loga-

rithmic scale) and m = 4n edges.

running time (8.11 hours), thereby explaining the worse behavior of IM BFS.

On the other hand, MR BFS, MM BFS R, and MM BFS D have much less I/O

wait time (0.70, 5.15 and 4.36 minutes respectively) and consequently, the total

running time (0.97, 11.11 and 10.23 minutes respectively) is also small. This

further establishes the need for efficient implementations of external memory BFS

algorithms.

3.11.4 Single disk – common µ

Table 3.2 shows the I/O wait time and running time (in hours) for different graphs

in the single disk common µ case. Note that MR BFS does not use µ in any way.

First, observe that for these large graphs, even the efficient implementations of ex-

ternal memory algorithms are I/O dominant. This is particularly true for MR BFS

as the I/O wait time for MR BFS on most graph classes accounts for most of its

total running time.



70 Chapter 3: Breadth first search on massive graphs

MR BFS MM BFS R MM BFS D

Graph class n m I/O wait Total I/O wait Total I/O wait Total

Time Time Time Time Time Time

Random 228 230 0.9 1.0 4.5 8.0 4.4 8.3

Webgraph ∼ 227 1.4 ·109 1.7 1.8 5.2 8.4 3.0 6.4

2D-Grid 228 ∼ 229 3300 3300 30.9 34.9 11.6 16.0

4D-Grid 228 ∼ 230 23.5 23.6 21.1 24.9 12.4 16.5

B-level random 228 230 5000 5000 37.1 52.6 2.9 7.2

Table 3.2: I/O wait time and total running time (in hours) of MR BFS,

MM BFS R, and MM BFS D on various graph classes on Config C.

Let us first consider the case of random graphs. The total time for BFS traversal

(particularly MR BFS) on random graphs is much less than that for most other

graph classes. This is explained by the fact that there are very few BFS levels

in random graphs (typically 10–15 for the graph sizes we studied). In fact, it is

known [135] that a random graph G(n,c/n) has an expected diameter O(logn).
Both MR BFS and MM BFS benefit from the low diameter of the graph, though

to a different degree.

MR BFS directly benefits from fewer BFS levels as it incurs O(sort(n+m)) I/Os

per level, thus avoiding the expensive O(n) factor. MM BFS benefits from low di-

ameter as the cluster diameters are small (at least smaller than the graph diameter)

and consequently, nodes do not stay in the hot pool for too long. For MM BFS R,

this also means that the preprocessing time is less. Furthermore, the clusters get

loaded in fewer sort steps and as such MM BFS need not incur Ω(1) I/Os for

loading each cluster. Nonetheless, owing to its more compact data structures and

its inherent simplicity, MR BFS not only outperforms MM BFS (on low diameter

graphs) in terms of I/O wait time by a factor of around five, but also in terms of

total running time by a factor of around eight.

While MR BFS performs better than the other two on random graphs saving a

few hours, MM BFS D with the heuristic outperforms MR BFS and MM BFS R

on moderate (O(
√

n) or O(
√

B) diameter) to large (O(n)) diameter graphs with

a non-simple3 layout on disk saving a few months and a few days, respectively.

This performance behavior on large diameter graphs is mainly because of the

different asymptotic I/O complexities of these algorithms. On (⌈√n⌉ × ⌊√n⌋)
2D-grid graphs and B-level random graphs, MR BFS incurs close to its worst

3By a simple layout of a graph, we mean that the adjacency lists of nodes are kept on the disk

sorted according to the BFS level of these nodes.
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case I/O complexity of Ω(n) I/Os for loading the adjacency lists.

Apart from diameter, another important consideration affecting the relative per-

formance of the two algorithms is the initial graph layout on the disk. The prepro-

cessing phase of MM BFS neutralizes the impact of an adverse layout. So, while

we observe that on Config A, the I/O wait time of MR BFS (0.6 hours) is much

less than 84.8 hours of MM BFS R (dominated by the 84.3 hours in the prepro-

cessing phase) on a simple list graph, the I/O wait time of MR BFS (167.6 and

177.7 days) is much more than that of MM BFS (4.2 and 4.1 days) on random

and B-interleaved layouts. Thus, preprocessing makes MM BFS provide better

worst case guarantees (saving months) at the cost of loosing out on simple layouts

(loosing days).

3.11.5 Two phases of MM BFS

Let’s analyze the performance of MM BFS in terms of its two phases. Tables 3.3

and 3.4 show the results of the preprocessing and the BFS phase of the two

MM BFS variants. The preprocessing time of MM BFS D only depends on the

graph size and not its structure. The I/O wait time for the Euler tour based prepro-

cessing of graphs with around 229 edges is around 2 hours, while that for graphs

with 230 edges is around 2.7 hours. This is because Euler tour computation fol-

lowed by list ranking only requires O(sort(m)) I/Os independent of the diameter

of the graph.

MM BFS R MM BFS D

Graph class n m I/O wait Total I/O wait Total

Time Time Time Time

Random 228 230 2.3 3.0 2.6 3.7

Webgraph ∼ 227 1.4 ·109 3.7 4.3 1.9 2.6

2D-Grid 228 ∼ 229 5.1 5.4 2.2 3.0

4D-Grid 228 ∼ 230 2.7 3.4 2.7 3.7

B-level random 228 230 2.3 3.0 2.7 4.0

Table 3.3: I/O wait time and total running time (in hours) of the preprocessing

phase of the two MM BFS variants on Config C.

On the other hand, the “parallel cluster growing” preprocessing in the worst case

scans the graph Ω
(

√

n
scan(n+m)

)

times, and thus incurring Ω(
√

n · scan(n+m))
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MM BFS R MM BFS D

Graph class n m I/O wait Total I/O wait Total

Time Time Time Time

Random 228 230 2.2 5.0 1.8 4.6

Webgraph ∼ 227 1.4 ·109 1.5 4.1 1.1 3.8

2D-Grid 228 ∼ 229 25.8 29.5 9.4 13.0

4D-Grid 228 ∼ 230 18.4 21.5 9.7 12.8

B-level random 228 230 34.8 49.6 0.2 3.2

Table 3.4: I/O wait time and total running time (in hours) of the BFS phase of the

two MM BFS variants on Config C.

Graph class n m MM BFS R MM BFS D

Random graph 228 230 500 630

Random List 228 228−1 10500 480

Table 3.5: I/O volume (in GB) required in the preprocessing phase by the two

variants of MM BFS on Config A.

I/Os w.h.p. But if the diameter of the graph is small, no two nodes in a cluster are

further than the diameter and hence, MM BFS R needs to scan the graph fewer

times. Thus, while the I/O volume of the “parallel cluster growing” preprocessing

on random graphs is around 500 GB, it is more than 10.5 TeraBytes on a random

list graph (cf. Table 3.5). As for MM BFS D preprocessing, the I/O volume is

less for the random list graph because it has fewer number of edges. Therefore,

while the preprocessing time increases for MM BFS R from 3.0 hours for random

graphs to 4.8 hours on a O(
√

n) diameter square grid graph, it decreases from 3.7

hours to 2.6 hours for MM BFS D (cf. Table 3.3).

Except for some special cases, BFS phase dominates the running time of MM BFS.

The BFS phase itself is a balance between the random I/Os to load the clusters into

the hot pool and the sequential I/Os to update and scan the hot pool. For small

diameter graphs, we do not need Ω(1) random I/Os to load a cluster. All clusters

are loaded in a span of a few BFS levels and the cost for this is thus, subsumed

by I/Os required to scan the graph a few times. Hence in this case, the scan-

ning of hot pools dominate the running time. For large diameter graphs, the hot

pool almost always fits in the internal memory and no I/Os are required to scan

it. MM BFS also significantly benefits from our heuristics in this case. So for

large diameter graphs, the random I/Os to load the clusters dominates the running

time of the BFS phase. The moderate diameter graphs are the key challenge for

the BFS phase as here, we need to incur I/Os both for loading the clusters and for
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scanning the hot pool.

As compared to MM BFS R, MM BFS D provides dual advantages: First, the

preprocessing itself is faster and second, for most graph classes, the partition-

ing is also more robust, thus leading to better worst-case running-times (cf. Ta-

ble 3.4) in the BFS phase. The later is because the clusters generated by Euler

tour based preprocessing are of diameter at most max

{

1,
√

n
scan(n+m)

}

, while the

ones generated by “parallel cluster growing” preprocessing can have a larger di-

ameter of O
(√

n·logn

scan(n+m)

)

causing adjacency lists to be scanned more often. Also,

MM BFS D benefits much more from our caching heuristic than MM BFS R as

Euler tour based preprocessing gathers neighboring clusters of the graph on con-

tiguous locations in the disk.

3.11.6 Effect of Disk parallelism

MR BFS MM BFS R

Graph class n m Single Four Single Four

Disk Disks Disk Disks

Random 228 230 3.4 1.3 9.6 4.4

B-level Random 228 230 3994.8 2105.1 49.7 26.0

B-level Spider Web 228 ∼ 229 3366.5 1497.9 39.8 17.1

MM Worst 225 ∼ 225 25.4 13.7 32.4 10.5

Random list 228 228 4167.7 4156.2 283.3 239.9

B-interleaved list 228 228 4222.6 1258.7 280.8 239.9

Table 3.6: The running times (in hours) of MR BFS and MM BFS R on Config

A in the single-disk and multi-disk settings.

Phase 1 Phase 2

Graph class n m Single Four Single Four

Disk Disks Disk Disks

Random 228 230 5.1 2.5 4.5 1.9

B-level random 228 230 5.1 2.5 44.6 23.5

B-level Spider Web 228 ∼ 229 7.3 3.2 32.5 13.9

Random list 228 228 80.4 50.5 200.4 189.4

Table 3.7: The running times (in hours) of the two phases of MM BFS R on

Config A in the single-disk and multi-disk settings.
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In the multi-disk setting, we ran our experiments with the same parameters, except

that the vectors are randomly striped over four disks. Although the usage of mul-

tiple disks allows us to handle larger volumes of data, herein we restrict ourselves

to smaller sizes for better comparison with the single disk case.

As Tables 3.6 and 3.7 show, the usage of parallel I/O channels alleviates the I/O

problem further. In general, we see a performance improvement by a factor of two

to three with four disks as compared to the single-disk case. For many graphs,

the computation time starts becoming the bottleneck, in particular for MM BFS,

which seems to gain more from the parallel I/O channels. However, with some

new features of STXXL like a SMP multi-processor version of sorting routines,

we hope to bring down the total running time fairly close to the I/O wait time.

Besides, the computation speed increases at a much faster rate than the external

memory throughput, thereby reducing the computation time relative to the I/O

wait time.

While MR BFS on random list graphs hardly seems to have any benefit from the

multiplicity of disks, it is almost four times better with four disks on B-interleaved

list graphs. This is because a random access to a block brings the neighboring

blocks on other disks automatically to the internal memory and therefore, the

access to the adjacency lists of the next three nodes (located on the other three

disks) comes without any extra I/Os.

3.11.7 Exploiting a priori information about graph diam-

eter

Recall from Section 3.11.5 that the BFS phase of MM BFS for small diameter

graphs is dominated by sequential accesses to the hot pool and for large diameter

graphs is dominated by the random I/Os for loading the clusters. Since we choose

µ to balance the random I/Os to load the clusters and sequential accesses to the

hot pool, it makes sense to choose a very low value of µ for small diameter graphs

(to ensure that an adjacency list stays for a really short time in hot pool) and very

high value of µ for large diameter graphs (as the hot pool stays internal and we

want to reduce the random I/Os to load the clusters).

Tables 3.8 and 3.9 show the I/O wait time and running time for the two algorithms

in the single disk case, where µ could be optimized based on the graph structure.

With a low value of µ (µ ∼ 1.5), the I/O wait time and the total running-time

of the BFS phase of MM BFS R on random graphs is less than that of MR BFS

on Config A. In general, with an appropriate µ value chosen to balance the I/O
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MR BFS MM BFS R

Graph class n m I/O wait Total I/O wait Total

Time Time Time Time

Random 228 230 2.4 3.4 5.5 7.9

B-level Random 228 230 3989.8 3994.8 10.0 16.6

B-level Spider Web 228 ∼ 229 3364.2 3366.5 25.1 29.3

Table 3.8: Single Disk, Graph structure dependent µ – I/O wait time and running

time (in hours) of MR BFS and MM BFS on Config A.

MM BFS R Phase 1 MM BFS R Phase 2

Graph class n m I/O wait Total I/O wait Total

Time Time Time Time

Random 228 230 3.3 4.9 2.2 3.0

B-level Random 228 230 4.0 5.5 6.0 11.1

B-level Spider Web 228 ∼ 229 12.9 13.7 12.2 15.6

Table 3.9: Single Disk, Graph structure dependent µ – I/O wait time and running

time (in hours) of the two phases of MM BFS on Config A.

time of the two phases of MM BFS, one can save a significant factor in the I/O

complexity. Our experiments with graph-dependent µ and disk parallelism sug-

gest that when used together, they can significantly alleviate the I/O bottleneck for

MM BFS.

3.11.8 Results on the webgraph

MR BFS MM BFS R MM BFS R

Common µ Graph dep µ
I/O wait Total I/O wait Total I/O wait Total

Time Time Time Time Time Time

Single disk 3.7 4.0 7.4 9.4 6.3 8.4

Multiple disk 2.0 2.3 2.7 4.8 2.3 4.5

Table 3.10: I/O wait time and running time (in hours) of the two algorithms on a

web graph on Config A.

As an instance of a real world graph, we consider an actual crawl of the world

wide web [150], where an edge represents a hyper-link between two sites. This
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graph has around 130 million nodes and 1.4 billion edges. The bulk of the nodes

are contained in the core of this web graph spanning 10–12 BFS levels (similar

to random graphs). The remaining nodes are spread out over thousands of levels

with 2–3 nodes per level (which behaves more like a list graph). However, the

I/O wait time as well as the total running time for BFS traversal is dominated by

the core of this graph and hence, the results are similar to the ones for random

graphs. As Table 3.10 shows for Config A, both MR BFS and MM BFS can

compute the BFS decomposition of this graph in a matter of a few hours. In fact

as Table 3.2 shows, MR BFS requires merely 1.8 hours on Config C with a single

disk, owing to its more compact edge-representation there. Similar to random

graphs, MR BFS outperforms both MM BFS R and MM BFS D on webgraph.

3.11.9 Penalty for cache-obliviousness

Brodal et al. [40] gave a cache-oblivious undirected BFS algorithm (CO BFS)

that has a complexity of O(sort(m)+ (m/B) · logn +
√

n ·m/B+ST (n,m)) I/Os,

where ST (n,m) is the complexity of computing a spanning tree of a graph with

n nodes and m edges in a cache-oblivious way. The currently best cache-oblivious

algorithms for computing a spanning tree require O(sort(m) · loglog(n)) I/Os de-

terministically and O(sort(m)) I/Os randomized.

Christiani [49] gave a prototypical cache-oblivious implementation of MR BFS

and the preprocessing phase of MM BFS R and MM BFS D. These implemen-

tations use cache-oblivious algorithms for sorting, minimum spanning tree and

list ranking. In this subsection, we provide evidence that even though the cache-

oblivious BFS algorithms have the same asymptotic I/O complexity as their ex-

ternal memory counterparts, they are slower in practice for graphs that do not fit

in the main memory.

Sorting

While CO SORT provides tight asymptotic guarantees on all levels of memory

hierarchy, it is a factor three to four slower than STXXL SORT in practice for

data-sizes that do not fit in the main memory. Our results shown in Table 3.11 are

in conformity with that of Brodal et al. [41], where it is shown that the external

memory sorting algorithm in the library TPIE [151] is better than their carefully

implemented cache-oblivious sorting algorithm, when run on disk.
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n CO SORT STXXL SORT

256×106 21 8

512×106 46 13

1024×106 96 25

Table 3.11: Timing in minutes for sorting n elements using either CO SORT or

STXXL SORT on Config B.

Graph class CO MST EM MST

Random graph;

n = 228, m = 230 107 35

List graph with contiguous

disk layout (Simple List); n = 228 38 16

List graph with random

disk layout (Random List); n = 228 47 22

Table 3.12: Timing in hours (on Config B) required by Euler tour based prepro-

cessing of Christiani’s implementation using either CO MST or EM MST.

Spanning forest

The Euler tour based preprocessing of Christiani [49] uses the cache-oblivious

MST (CO MST) algorithm [2]. Table 3.12 shows the total time required by

Christiani’s MM BFS D preprocessing [49] using CO MST and the one in which

CO MST is replaced by the external memory MST implementation (cf. Section 3.6.1).

List ranking and Euler tour

The cache-oblivious implementation [49] uses the algorithm based on indepen-

dent set removal [48] for list ranking. While it takes around 14.3 hours for ranking

229 element random list using 3 GB RAM on Config B, our adaptation of Sibeyn’s

algorithm (cf. Section 3.6.2) takes less than 40 minutes in the same setting.

MM BFS D comparison

We compared the performance of our implementation of MM BFS D with Chris-

tiani’s implementation [49] based on cache-oblivious subroutines. Table 3.13

show the preprocessing time for the two extreme graph classes – random graphs
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and list graphs with random layout on disk. We observe that on both graph classes,

the preprocessing time required by our implementation is significantly less than

the one by Christiani.

Graph class n m CO BFS MM BFS D

Random graph 228 230 107 5.2

Random List 228 228−1 47 3.2

Table 3.13: Timing in hours for computing Euler tour based preprocessing of

MM BFS by the two implementations of MM BFS D on Config A.

We suspect that the performance losses in Christiani’s CO BFS implementations

are inherent in cache-oblivious algorithms to a certain extent and will be carried

over to any cache-oblivious BFS implementation.

3.11.10 Remark on the shape of the spanning tree

The shape of the computed spanning tree can have a significant impact on the

clustering and the disk layout of the adjacency list after Euler tour based pre-

processing, and consequently on the BFS phase. For instance, in the case of the

square grid graphs, a spanning tree containing a list with elements in a snake-like

row major order produces long and narrow clusters, while a “random” spanning

tree is likely to result in clusters with low diameters. Such a “random” spanning

tree can be obtained by assigning random weights to the edges of the graph and

then computing a minimum spanning tree or by randomly permuting the indices

of the nodes. The nodes in the long and narrow clusters tend to stay longer in

the pool and therefore, their adjacency lists are scanned more often. This causes

the pool to grow external and results in larger I/O volume. On the other hand,

low diameter clusters are evicted from the pool sooner and are scanned less often

reducing the I/O volume of the BFS phase. Consequently as Table 3.14 shows,

the BFS phase of MM BFS D takes only 28 hours on Config B with clusters pro-

duced by “random” spanning tree, while it takes 51 hours with long and narrow

clusters.

Graph class n m Long clusters Random clusters

Grid(214×214) 228 229 51 28

Table 3.14: Time taken (in hours) by the BFS phase of MM BFS D with long and

random clustering on Config B.



3.12 Recent work related to EM BFS 79

3.11.11 Summary

Graph class n m MR BFS MM BFS R MM BFS D

Random 228 230 1.4 7× 6×
Webgraph ∼ 227 1.4 ·109 2.6 3.5× 2×

Grid (214×214) 228 229 2.5× 1.25× 21

Grid (221×27) 228 ∼ 229 >100× >10× 4.0

Grid (227×2) 228 ∼ 228 +227 >500× >25× 3.8

Simple List 228 228−1 0.4 7× 7×
Random List 228 228−1 >1300× >75× 3.6

Max ∼ 1/2 year ∼ 1 week < 1 day

Table 3.15: The best total running time (in hours) for BFS traversal on different

graphs on Config B with the best external memory BFS implementations; Entries

like > 25× denote that this algorithm takes more than 25 times the time taken by

the best algorithm for this input instance.

Table 3.15 points to the current state of the art implementations of external mem-

ory BFS on different graph classes (on Config B). Our MR BFS implementation

outperforms the other external memory BFS implementations on low diameter

graphs or when the nodes of a graph are arranged on the disk in the order required

for BFS traversal. For random graphs with 256 million nodes and a billion edges,

MR BFS performs BFS in just 1.4 hours. Similarly, MR BFS takes only 2.6 hours

on webgraphs (whose runtime is dominated by the short diameter core) and 0.4

hours on list graph with contiguous layout on disk. For large diameter graphs like

random list graphs, MM BFS D along with our heuristic computes the BFS in just

about 3.6 hours, which would have taken MR BFS a few months, an improvement

by a factor of more than 1300. In general, if there is no a priori information about

the graph structure or its layout on the disk, one should use MM BFS D as it has

better asymptotic worst case guarantee.

3.12 Recent work related to EM BFS

In this section, we review some recent work related to external memory BFS.

Meyer and Osipov [111] have extended our work to external memory single-

source shortest paths (SSSP). We briefly review this extension together with other

known results on EM SSSP in Section 3.12.1. Meyer recently proposed algo-

rithms for dynamic BFS [110] and approximating the diameter of an undirected
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graph [109]. We review these algorithms in Section 3.12.2 and Section 3.12.3, re-

spectively. We believe that the key ideas and the code in our work can also easily

be extended to implement dynamic BFS and to approximate the diameter. Effi-

ciently approximating the diameter of the graph can in turn help determine which

BFS algorithm to use and with what parameters.

3.12.1 Single-Source Shortest Paths

The single-source shortest paths (SSSP) problem takes as an input a large weighted

undirected graph G(V,E) and a source node s and computes the shortest path dis-

tance d(s,v) for all nodes v ∈V . It can be computed in O(n logn+m) in internal

memory using Dijkstra’s algorithm [61] with a Fibonacci heap [71] based priority

queue. Dijkstra’s algorithm relies heavily on the priority queue.

Kumar and Schwabe proposed an O(n+m/B · log2 (m/B)) I/O algorithm [93] that

relies on I/O-efficient tournament trees for priority queue operations. Once again,

the O(n) term comes from unstructured accesses to adjacency lists and because of

it, this algorithm is unlikely to yield good results on real-world massive graphs,

which are usually sparse. Furthermore, due to edge weights, there are typically

many more “levels”.

As regards resolving the problem of unstructured accesses to adjacency lists,

Meyer and Zeh [112] proposed an algorithm MZ SSSP that has a preprocessing

phase where the adjacency lists are re-arranged on the disk. Unlike BFS where

the edges are all unweighted, MZ SSSP distinguishes between edges with differ-

ent weights and separates the edges into categories based on their weights. The

total I/O complexity of this algorithm is O(
√

(n ·m · logW )/B+MST (n,m)) I/Os,

where W is the ratio between the weights of the heaviest and the lightest edge and

MST (n,m) is the number of I/Os required to compute a minimum spanning tree

of a graph with n nodes and m edges.

Meyer and Zeh [113] extended this framework to handle the case of unbounded

edge-weights. Their algorithm for SSSP with unbounded edge-weights requires

O((
√

n ·m/B) · logn+MST(n,m)) I/Os.

Brodal et al. [40] showed that SSSP can be computed in O(n+ sort(m)) I/Os with

a cache-oblivious algorithm relying on a cache-oblivious bucket heap for prior-

ity queue operations. Allulli et al. [14] gave a cache-oblivious SSSP algorithm

improving the upper bound to O(
√

(n ·m · logW )/B +(m/B) · logn + sort(m)+
MST (n,m), where W is the ratio between the smallest and the largest edge weight

and MST (n,m) is the I/O complexity of the cache-oblivious algorithm computing
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a minimum spanning tree of a n node and m edge graph.

Engineering EM SSSP

Recently, some external memory SSSP approaches (similar in nature to the one

proposed in [93]) have been implemented [46, 138] and tested on graphs of up

to 6 million nodes. However, in order to go external and still not produce huge

running times for larger graphs, these implementations restrict the main memory

size to rather unrealistic 4 to 16 MB.

Meyer and Osipov [111] extended our work to engineer a practical I/O-efficient

single-source shortest-paths algorithm on general undirected graphs where the ra-

tio between the largest and the smallest edge weight is reasonably bounded. Their

implementation is semi-external as it assumes that the main memory is big enough

to keep some constant bits of information per node. This assumption allows them

to use a bit vector of size n kept in the internal memory for remembering settled

nodes.

In order to get around the lack of optimal decrease key operation in current exter-

nal memory priority queues, it allows up to d(v) (degree of node v) many entries

for a node v in the priority queue at the same time and when extracting them, it

discards all but the first one with the help of the bit vector. As regards accessing

the adjacency lists in an unstructured way, they do a preprocessing similar to the

Euler tour based variant of MM BFS (i.e., without considering the edge weights

at all) to form clusters of nodes. For integer edge weights from {1, . . . ,W} and

k = log2W , the algorithm keeps k “hot pools” where the i-th pool is reserved for

edges of weight between 2i−1 and 2i−1. It loads the adjacency lists of all nodes

in a cluster into these “hot pools” as soon as the first node in the cluster is settled.

In order to relax the edges incident to settled nodes, the hot pools are scanned and

all relevant edges are relaxed. The algorithm crucially relies on the fact that the

relaxation of large weight edges can be delayed because for such an edge (even

assuming that it is in the shortest path), it takes some time before the other incident

node needs to be settled. The hot pools containing higher weight edges are thus

touched less frequently than the pools containing short edges.

Similar to the implementation of MM BFS, it partially maintains the pool in the

internal memory hash table for efficient dictionary look up rather than computa-

tionally quite expensive scanning of all hot pool edges. The memory can be shared

between “hot pools” either uniformly or in an exponentially decreasing way. The

latter makes sense as the hot pools with lighter edges are scanned more often.
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When the clusters are small enough, the algorithm caches all neighboring clusters

that are anyway loaded into the main memory while reading B elements from the

disk.

For random edge weights uniformly distributed in [1, . . . ,W ], the expected num-

ber of I/Os incurred by this algorithm is O(
√

(n ·m · logW )/B+MST (n,m)), the

same as that for MZ SSSP.

Similar to our implementations, their pipelined implementation makes extensive

use of STXXL algorithms and data structures such as stream sorting.

SSSP in practice

As predicted theoretically, this SSSP approach is acceptable on graphs with uni-

formly distributed edge weights. For random graphs (228 nodes and 230 edges)

with uniformly random weights in [1, . . . ,232], it requires around 40 hours to com-

pute SSSP (with 1 GB RAM). On a US road network graph with around 24 million

nodes and around 29 million edges, it requires only around half an hour for com-

puting SSSP, even when the node labels are randomly permuted before. On many

difficult graph classes for BFS, the running time of this SSSP approach is within

a factor of two to the BFS implementation [106].

The final performance of this algorithm has been shown to be significantly depen-

dent on the quality of the spanning tree and the way space is allocated in the main

memory among different “hot pools”.

3.12.2 Dynamic BFS in external memory

In many real-world applications, the underlying input graph keeps on evolving

continuously (cf. Section 1.1). Since even the best of the carefully tuned imple-

mentations of external memory graph algorithms usually take hours and days of

time (for massive graphs), it is difficult to re-compute everything from scratch

every time there is any modification in the input graph.

Very few results are known for dynamic graph algorithms in external memory.

Meyer [110] shows an interesting result for computing BFS on general undirected

graphs in incremental or decremental setting. They prove an amortized high-

probability bound of O(n/B2/3 + sort(n) · logB) I/Os per update under a sequence

of either Θ(n) edge insertions, but no deletions or Θ(n) edge deletions, but no
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insertions.

Recall that the deterministic preprocessing in the static BFS [106] works by com-

puting an Euler tour around a spanning tree of the input graph and dividing it

into chunks of size µ where 1 < µ = O(
√

B). The nodes belonging to different

clusters can be assigned to any of them. This can potentially cause many clusters

with O(1) adjacency lists. For dynamic BFS, this is modified such that each clus-

ter (except possibly the last) contains an expected Ω(µ) nodes. This is done by

exploiting the following observation: In the sequence of nodes in the Euler tour

of a spanning tree, an intermediate visit of a node is directly preceded by the last

visit to one of its children and followed by the first visit to some other child. This

means that in any chunk half of the nodes are either the first or the last visit of

a node. Thus, if rather than assigning nodes to different chunks arbitrarily (as in

static BFS), we make a node belong to the chunk corresponding to its first and last

visit each with probability one half, the expected number of adjacency lists per

cluster will be at least µ/8.

For the BFS phase, lets consider the insertion of the ith edge (u,v) in incremental

setting and refer to the graph (and the shortest path distances from the source in

the graph) before and after the insertion of this edge as Gi−1 (di−1) and Gi (di). We

first run an external memory connected component algorithm in order to check if

the insertion of (u,v) enlarges the connected component Cs of the source node s.

If so, we run the MR BFS algorithm on the nodes in the new component starting

from node v (assuming w.l.o.g. that u ∈Cs) and add di(u)+1 (di(u) = di−1(u) in

this case) to all the distances obtained.

Otherwise, we run the BFS phase of MM BFS, with the difference that the ad-

jacency list for v is added to H when creating BFS level max{0,di−1(v)−α} of

Gi, for a certain advance α > 1. For nodes with di−1(v)− di(v) > α , we import

the whole clusters containing their adjacency lists into H using random I/Os. If

it requires more than α · n/B random cluster accesses, we increase α by a factor

of two, compute a new clustering for Gi−1 with larger chunk size and start a new

attempt by repeating the whole approach with the increased parameters.

The decremental version is similar, except that rather than advancing the adja-

cency lists, we let them be in hot pool for α BFS levels. For nodes v with

di(v)− di−1(v) > α , we use random I/Os to get the cluster containing v’s adja-

cency list later on.

The analysis relies on the fact that there can be only be very few updates in which

the BFS levels change significantly for a large number of nodes. As such, most of

the updates will require few random I/Os in early attempts with little advance.
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We believe that our work can easily be extended to engineer an implementation of

this algorithm.

3.12.3 External memory approximation graph algorithms

One of the major approximation challenges in external memory graph traver-

sal has been to compute approximate diameter of an undirected sparse graph in

o(n/
√

B) I/Os. For unweighted graphs, BFS from an arbitrary node already gives

a 2-approximation to the diameter of a connected graph. As noted in Section 3.3,

BFS on undirected sparse graphs (m = O(n)) can be computed in external memory

in O(n/
√

B+ sort(n)) I/Os.

Recently, Meyer [109] proposed an algorithm that computes an expected O(
√

k)-
approximation for the diameter of a sparse undirected and unweighted graph with

n nodes and m = O(n) edges using O(n ·
√

logk/(k ·B)+ k · scan(n)+ sort(n))
I/Os. This is done by reducing this problem to that of computing exact shortest

paths on a graph G′ with O(n/k) nodes and O(m) edges.

Graph G′ is computed using a preprocessing similar to the “parallel cluster grow-

ing” variant of MM BFS as follows: We first choose each node to be a master

node with a probability 1/k. Then, we select every k-th node in the Euler-tour

traversal around an arbitrary spanning tree of G, to also be a master node. There-

after, we grow the clusters “in parallel”. In each round, each master node tries to

capture all unvisited neighbors of the current cluster. This is done by first sorting

the nodes at the fringes of the clusters and then scanning the adjacency-lists of the

nodes in the yet unexplored graph. Ties are broken arbitrarily.

Let C(u) be the cluster containing u. An edge {u,v} ∈ G results in an edge

{C(u),C(v)} ∈ G′ if C(u) 6= C(v). The weight of the created edge {C(u),C(v)}
is dc(u)+ 1 + dc(v), where dc(u) is the distance of u from its cluster center. We

remove the parallel edges by keeping only the lightest edge between C(u) and

C(v).

We run single source shortest path from an arbitrary node s in G′ and output

the maximum distance from s to any other node in G′. Note that this is a 2-

approximation to the weighted diameter of G′. It can easily be shown that the

weighted diameter of G′ DG′ is more than DG. Next, in order to show that DG′ is

a O(
√

k) approximation of the diameter of G (DG), we consider two cases:

• DG ≤ 2
√

k. Consider any edge (u,v) replaced by {C(u),C(v)} in G′. The

shortest path between any two nodes in G is at most 2
√

k and therefore,
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dc(u)≤ 2
√

k−1 for any node u ∈G. The weight of {C(u),C(v)} is at most

4
√

k−1. The weighted diameter of G′ can thus be at most (4
√

k−1) ·DG.

• DG > 2
√

k. Consider any path P ∈ G of length p such that
√

k ≤ p≤ 2
√

k

and consider u ∈ P such that dc(u) is minimum. Note that for all v ∈ P,

dc(v)≤ dc(u)+d(u,v), as otherwise the master node of u can also capture

v during the cluster growing phase. Also, if C(u) 6= C(v), there have to be

node disjoint paths from u and v to the cluster centers. Consider larger and

larger neighborhoods around P until we find the first level with a cluster

center at distance dc(u). Since each node has been chosen to be a clus-

ter center with uniform probability 1/k, the expected number of nodes we

have to check till reaching the first cluster center is k. Recall that each edge

{u,v} ∈G leads to an edge {C(u),C(v)}∈G′ with weight dc(u)+dc(v)+1.

Thus, there should exist a path P′ ∈G′ with expected weight O(k).
For longer paths Pl ∈G of length pl , we consider sub-paths of length Θ(

√
k).

For each such sub-path the corresponding path P′ ∈G′ has expected weight

O(k). Using linearity of expectation, we can show that the corresponding

path P′l ∈ G′ has expected weight
√

k · pl . This implies that the weighted

diameter of G′ can be at most
√

k ·DG.

Since each k-th node on the Euler tour is a master node, each node u ∈ G is

at most distance k away from a master node and the clusters are grown for at

most k rounds. Each cluster growing round requires O(scan(m)) I/Os to scan

the adjacency lists of the unexplored graph and each node appears only once as

a fringe node of some cluster leading to a total of O(sort(n)) I/Os. Thus, the

total complexity of computing G′ is O(k · scan(n +m)+ sort(n +m)+ST (n,m))
I/Os, where ST (n,m) is the I/O complexity of computing a spanning tree of an

n node and m edge undirected graph. Computing single source shortest path

on a graph with O(n/k) nodes and O(m) edges with the ratio between max-

imum and minimum edge weight being k requires O(
√

(n ·m · log2 k)/(k ·B)+
sort(n +m)+ST (n,m)) I/Os. The total I/O complexity for this algorithm is thus

O(
√

(n ·m · log2 k)/(k ·B)+ k · scan(n+m)+ sort(n+m)+ST(n,m)) I/Os.

We believe that our implementation can be extended to approximate the graph

diameter using the above algorithm.

I/O-efficient heuristics for approximating graph diameters

Brudaru [42] implemented a heuristic to I/O-efficiently approximate the number

of BFS levels from a given source node s in a large undirected unweighted graph.
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This heuristic first computes an arbitrary spanning tree T of the undirected graph,

roots it at the source node by computing dT (s,v) for all v ∈V and then iteratively

computes a new tree T ′ such that dT ′(s,v) ≤ dT (s,v) ∀v ∈ V . These iterations

come in the following variants:

• “Offline variant”: For each v∈V and {u,v}∈E, we compute minu{dT (s,u)+
1} and if it is less than dT (s,v), we mark the edge {v,P(v)} (P(v) being the

parent of v in rooted T ) for deletion and the edge leading to the shortest

distance for insertion in the next iteration.

• “Online variant”: In this variant, as the new tree is being computed and

dT (s,v) reduces, this information is communicated to the neighbors that

will be processed ahead (without waiting for the round to finish). We use

time-forward processing (cf. Section 2.5.6) to do this communication. We

first process the nodes in increasing order of dT (s,v) and then in decreasing

order of dT (s,v).

Both of these variants are shown to converge fast to a BFS tree. While the “offline

variant” requires less time per iteration, it may need a higher number of iterations.

Empirical evidence [42] suggests that just one round of iterations is enough to

determine whether the number of BFS levels is O(logn), O(
√

n) or O(n).

This is particularly useful for our BFS software. If we can quickly determine

the number of BFS levels to be O(
√

n
scan(n+m)

), we can either use MR BFS or

MM BFS D with µ := n
diamapp(G)·scan(n+m) , where diamapp(G) is the approxi-

mated diameter of the graph. Recall that for each level, MR BFS incurs O(sort(m))
I/Os and therefore, MR BFS requires O(diam(G) · sort(m)) I/Os. Similarly for

MM BFS D, the I/O complexity (cf. Section 3.3) is O(n/µ + µ · scan(n + m) +
sort(n + m)). The term µ · scan(n + m) comes from the fact that each edge may

be scanned O(µ) times. However, no edge can be scanned more often than the

total number of BFS levels (O(diam(G))). Thus, the total complexity becomes

O(n/µ +diam(G)·scan(n+m)+sort(n+m)). Substituting µ = n
diamapp(G)·scan(n+m)

and assuming diam(G) = O(diamapp(G)), we get a complexity of O(diam(G) ·
scan(n+m)+sort(n+m)) I/Os. On the other hand, if the diameter is Ω

(

√

n
scan(n+m)

)

,

we can use MM BFS D with the worst-case value of µ := max{1,
√

n
scan(n+m)}

for a total I/O complexity of O(
√

n · scan(n+m)+ sort(n+m)).
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3.13 Discussion

Problems Best known upper bounds

MST/CC (on undirected graphs) O(sort(m) · loglog(n ·B/m))
MST/CC (randomized

on undirected graphs) O(sort(m))
List ranking O(sort(m))
Euler Tour O(sort(m))

BFS (on undirected graphs) O(
√

n · scan(m)+
sort(m)+MST(n,m))

BFS, DFS and Topological O(min{n+ ⌈n/M⌉ · scan(m),
ordering (on directed graphs) (n+ scan(m)) · log2 n, m})
SSSP (on undirected graphs

with integer weights) O(
√

n · scan(m) · logW +MST (n,m))
SSSP (on undirected graphs

with unbounded weights) O(
√

n · scan(m) · logn+MST(n,m))
APSP (on unweighted

undirected graphs) O(n · sort(m))
APSP (on undirected graphs

with non-negative weights) O(n · (
√

n · scan(m)+ scan(m) · log(m/B)))

Table 3.16: I/O complexity of state-of-the-art algorithms (assuming m ≥ n) for

graph traversal problems.

We implemented external memory BFS algorithms and showed their comparative

analysis. Together with pipelining, disk parallelism, and our heuristic for main-

taining the pool, our implementations provide viable BFS traversal on different

classes of massive sparse graphs. In particular, we reduced the running time of

a few months for many graph classes required by IM BFS to a few hours using

EM BFS. We believe that our results can be further improved by fast analysis of

graph structure (such as I/O-efficient approximation of graph diameter) and using

it to tune parameters for external memory BFS algorithms.

Empirical evidence suggests that MR BFS performs better on small diameter

random graphs. However, the better asymptotic worst-case I/O complexity of

MM BFS D helps it to outperform MR BFS for moderate to large diameter sparse

graphs with non-simple disk layout, where MR BFS incurs close to its worst case

of Ω(n) I/Os.

Extending our work to external-memory single-source shortest-paths may benefit



88 Chapter 3: Breadth first search on massive graphs

many real world applications. Our code can also be useful for engineering I/O-

efficient dynamic BFS algorithms.

In general, the design and analysis of external memory graph traversal algorithms

has greatly improved the worst case upper bounds for the I/O complexity of many

graph traversal problems. Table 3.16 summarizes the state-of-the-art in external

memory graph traversal algorithms on general graphs.

Engineering some of these algorithms has extended the limits of the graph size

for which a traversal can be computed in “acceptable time”. This in turn means

that optimization problems of larger and larger sizes are becoming viable with

advances in external memory graph traversal algorithms. We plan to eventually

integrate these implementations into an external memory library for graph algo-

rithms.

Many of these algorithms are still far from optimal. Similarly, while implemen-

tations of these algorithms provide good results on simple (low or high diameter)

graph classes, it is still far from satisfactory for the difficult graph classes. More

work is required both in designing and engineering these algorithms, particularly

for directed graphs, to make traversal on even larger graphs viable.



Chapter 4

Characterizing the performance

of Flash memory storage

devices

As knowledge advances, we are able to invent better and better models, which

reproduce more and more features of the real world, more and more accurately.

Nobody knows whether there is some natural end to this process, or whether it will

go on indefinitely. In trying to understand common sense, we shall take a similar

course...

– Edwin Thompson Jaynes (Probability Theory: The Logic of Science, 1993)

Flash memory is a form of non-volatile computer memory that can be electrically

erased and reprogrammed. Flash memory devices are lighter, more shock resis-

tant, consume less power and hence are particularly suited for mobile computing.

Initially used in digital audio players, digital cameras, mobile phones, and USB

memory sticks, flash memory may become the dominant form of end-user stor-

age in mobile computing: Some producers of notebook computers have already

launched models (Apple MacBook Air, Sony Vaio UX90, Samsung Q1-SSD and

Q30-SSD) that completely abandon traditional hard disks in favor of flash mem-

ory (also called solid state disks). Market research company In-Stat predicted [83]

in July 2006 that 50% of all mobile computers would use flash (instead of hard

disks) by 2013.
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Frequently, the storage devices (be it hard disks or flash) are not only used to

store data but also to actually compute on it if the problem at hand does not com-

pletely fit into main memory (RAM); this happens on both very small devices (like

PDAs used for online route planning) and high-performance compute servers (for

example when dealing with huge graphs like the web). Thus, it is important to

understand the characteristics of the underlying storage devices in order to predict

the real running time of algorithms, even if these devices are used as an external

memory. In case of hard disks, the access cost depends on the current position

of the disk-head and the location that needs to be read/written. This has been

well researched; and there are good computation models (cf. Section 2.4) such

as the external memory model [3] and the cache-oblivious model [73] that can

help in realistic analysis of algorithms that run on hard disks. We would like to

have a similar understanding of various access patterns on disks based on flash

memory and to come up with computation models capturing the performance of

algorithms on these disks. In this chapter, we show our attempt to characterize the

performance (read/writes; sequential/random) of flash memory devices by analyz-

ing the effects of random writes, misalignment, aging, past I/O patterns etc. on

the access cost. We also discuss the implications of flash memory characteristics

on the real running time of basic algorithms.

State of the art for flash memories.

Recently, there has been growing interest in using flash memories to improve the

performance of computer systems [29, 96, 117]. This trend includes the experi-

mental use of flash memories in database systems [96, 117], in Windows Vista’s

use of USB flash memories as a cache (a feature called ReadyBoost), in the use of

flash memory caches in hard disks (e.g., Seagate’s Momentus 5400 PSD hybrid

drives, which include 256 MB on the drive’s controller), and in proposals to inte-

grate flash memories into motherboards or I/O busses (e.g., Intel’s Turbo Memory

technology).

Most previous algorithmic work on flash memory concerns operating system algo-

rithms and data structures that were designed to efficiently deal with flash memory

cells wearing out, e.g., block-mapping techniques and flash-specific file systems.

A comprehensive overview on these topics was recently published by Gal and

Toledo [74]. The development of application algorithms tuned to flash memory is

in its absolute infancy. We are only aware of very few published results beyond

file systems and wear leveling:

Wu et al. [154, 155] proposed flash-aware implementations of B-trees and R-trees
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without file system support by explicitly handling block-mapping within the ap-

plication data structures.

Goldberg and Werneck [76] considered point-to-point shortest-path computations

on pocket PCs where preprocessed input graphs (road networks) are stored on

flash-memory; due to space-efficient internal-memory data-structures and local-

ity in the inputs, data manipulation remains restricted to internal memory, thus

avoiding difficulties with unstructured flash memory write accesses. Recently,

Sanders et al. [141] also consider this problem. Their algorithm also consists of a

preprocessing where “contraction hierarchies” of the road network are computed.

The preprocessed external memory graph representation is then stored on the flash

disks. However since querying for point-to-point shortest paths involves only read

I/Os, they are also able to avoid unstructured writes on the flash memory.

Goals.

Our first goal is to see how standard algorithms and data structures for basic al-

gorithms like scanning, sorting and searching designed in the RAM model or the

external memory model perform on flash storage devices. An important question

here is whether these algorithms can effectively use the advantages of the flash de-

vices (such as faster random read accesses) or there is a need for a fundamentally

different model for realizing the full potential of these devices.

Our next goal is to investigate why these algorithms behave the way they behave

by characterizing the performance of more than 20 different low-end and high-end

flash devices under typical access patterns presented by basic algorithms. Such a

characterization can also be looked upon as a first step towards obtaining a model

for designing and analyzing algorithms and data structures that can best exploit

flash memory. Previous attempts [96, 117] at characterizing the performance of

these devices reported measurements on a small number of devices (1 and 2, re-

spectively), so it is not yet clear whether the observed behavior reflects the flash

devices, in general. Also, these papers didn’t study if these devices exhibit any

second-order effects that may be relevant.

Our next goal is to produce a benchmarking tool that would allow its users to mea-

sure and compare the relative performance of flash devices. Such a tool should not

only allow users to estimate the performance of a device under a given workload

in order to find a device with an appropriate cost-effectiveness for a particular ap-

plication, but also allow quick measurements of relevant parameters of a device

that can affect the performance of algorithms running on it.
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These goals may seem easy to achieve, but they are not. These devices employ

complex logical-to-physical mapping algorithms and complex mechanisms to de-

cide which blocks to erase. The complexity of these mechanisms and the fact that

they are proprietary mean that it is nearly impossible to tell exactly what factors

affect the performance of a device. A flash device can be used by an algorithm de-

signer like a hard disk (under the external memory or the cache-oblivious model),

but its performance may be far more complex.

It is also possible that flash memory becomes an additional secondary storage

device, rather than replacing the hard disk. Our last, but not least, goal is to

find out how one can exploit the comparative advantages of both in the design of

application algorithms, when they are used together.

Outline.

The rest of this chapter is organized as follows. In Section 4.1, we develop a

basic understanding of the architecture of flash disks. In Section 4.2, we show

how the fundamental algorithms like merge-sort and binary search perform on

flash memory devices and how appropriate are the standard computation mod-

els in predicting these performances. In Section 4.3, we present our experimen-

tal methodology, and our benchmarking program, which we use to measure and

characterize the performance of many different flash devices. We also show the

effect of random writes, misalignment, controllers and aging on the performance

of these devices. In Section 4.4, we provide an algorithm design framework for

the case when flash devices are used together with a hard disk. We also show the

results of engineering the external memory BFS algorithms for this setting. We

conclude with a preliminary computation model for predicting the performance of

algorithms on flash memory devices in Section 4.5.

4.1 Basics of flash memory disks

Large-capacity flash memory devices use NAND flash chips. All NAND flash

chips have common characteristics, although different chips differ in performance

and in some minor details. The memory space of the chip is partitioned into blocks

called erase blocks. The only way to change a bit from 0 to 1 is to erase the entire

unit containing the bit. Each block is further partitioned into pages, which usually

store 2048 bytes of data and 64 bytes of meta-data (smaller chips have pages

containing only 512+16 bytes). Erase blocks typically contain 32 or 64 pages.
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Bits are changed from 1 (the erased state) to 0 by programming (writing) data onto

a page. An erased page can be programmed only a small number of times (one

to three) before it must be erased again. Reading data takes tens of microseconds

for the first access to a page, plus tens of nanoseconds per byte. Writing a page

takes hundreds of microseconds, plus tens of nanoseconds per byte. Erasing a

block takes several milliseconds. Finally, erased blocks wear out; each block can

sustain only a limited number of erasures. The guaranteed numbers of erasures

range from 10,000 to 1,000,000. To extend the life of the chip as much as possible,

erasures should therefore be spread out roughly evenly over the entire chip; this is

called wear leveling.

Because of the inability to overwrite data in a page without first erasing the entire

block containing the page, and because erasures should be spread out over the

chip, flash memory subsystems map logical block addresses (LBA) to physical

addresses in complex ways [74]. This allows them to accept new data for a given

logical address without necessarily erasing an entire block, and it allows them to

avoid early wear even if some logical addresses are written to more often than

others. This mapping is usually a non-trivial algorithm that uses complex data

structures, some of which are stored in RAM (usually inside the memory device)

and some on the flash itself.

The use of a mapping algorithm within LBA flash devices means that their per-

formance characteristics can be worse and more complex than the performance of

the raw flash chips. In particular, the state of the on-flash mapping and the volatile

state of the mapping algorithm can influence the performance of reads and writes.

Also, the small amount of RAM can cause the mapping mechanism to perform

more physical I/O operations than would be necessary with more RAM.

4.2 Implications of flash devices for algorithm

design

In this section, we look at how the RAM model and external memory model algo-

rithms behave when running on flash memory devices. In the process, we try to

ascertain whether the analysis of algorithms in either of the two models also carry

over to the performance of these algorithms obtained on flash devices.

In order to compare flash memory with DRAM memory (used as main memory),

we ran a basic RAM model list ranking algorithm on two architectures – one with

8 GB RAM memory and the other with 2 GB RAM, but 32 GB flash memory.
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Recall from Section 2.5 that in the list ranking problem, we are given a list with

individual elements randomly stored on disk and our goal is to find the distance

of each element from the head of the list. The sequential RAM model algorithm

consists of just hoping from one element to its successor, and thereby computing

the distances of nodes from the head of the list. Here, we do not consider the cost

of writing the distance labels of each node.

We stored a 230-element list of long integers (8 Bytes) in random order, i.e. the

elements were kept in the order of a random permutation generated beforehand.

While ranking such a list took minutes in RAM, it took days with flash. This

is because even though the random reads are faster on flash disks than the hard

disk, they are still much slower than RAM. Furthermore, similar to the case of

BFS on hard disk (cf. Figure 1.1), the performance of the RAM model algorithm

significantly deviates from its predicted linear time behavior, when the size of

the input list approaches and exceeds the available internal memory. Thus, we

conclude that the RAM model is not useful for predicting the performance (or

even relative performance) of algorithms running on flash memory devices and

that some standard RAM model algorithms leave a lot to be desired if they are to

be used on external flash devices.

Algorithm Hard Disk Flash

Generating a random double and writing it 0.2 µs 0.37 µs

Scanning (per double) 0.3 µs 0.28 µs

External memory Merge-Sort (per double) 1.06 µs 1.5 µs

Random read 11.3 ms 0.56 ms

Binary Search 25.5 ms 3.36 ms

Table 4.1: Runtime of basic algorithms when running on Seagate Barracuda

7200.11 hard disk as compared to 32 GB Hama Solid State Disk.

As Table 4.1 shows, the performance of basic algorithms when running on hard

disks and when running on flash disks can be quite different, particularly when it

comes to algorithms involving random read I/Os such as binary search on a sorted

array. While such algorithms are extremely slow on hard disks necessitating B-

trees and other I/O-efficient data structures, they are much faster on flash devices.

On the other hand, algorithms involving write I/Os such as merge sort (with two

read and write passes over the entire data) run much faster on hard disk than on

flash.

It seems that the algorithms that run on flash have to achieve a different tradeoff

between reads and writes and between sequential and random accesses than hard

disks. Since the cost of accesses does not drop or rise proportionally over the
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entire spectrum, the algorithms running on flash devices need to be qualitatively

different from the one on hard disk. In particular, they should be able to tradeoff

write I/Os at the cost of extra read I/Os. Standard external memory algorithms that

assume same cost for reading and writing fail to take advantage of fast random

reads offered by flash devices. Thus, there is a need for a fundamentally different

model for realistically predicting the performance of algorithms running on flash

devices.

4.3 Characterization of flash memory devices

In order to see why the standard algorithms behave as mentioned before, we char-

acterize more than 20 flash storage devices. This characterization can also be

looked at as a first step towards a model for designing and analyzing algorithms

and data structures running on flash memory. We start this section by describing

our hardware and software resources that were designed for this characterization.

4.3.1 Configuration

Our tests were performed on many different machines:

• A 1.5GHz Celeron-M with 512 MB RAM

• A 3.0GHz Pentium 4 with 2 GB RAM

• A 2.0Ghz Intel dual core T7200 with 2 GB RAM

• A 2 × Dual-core 2.6 GHz AMD Opteron with 2.5 GB RAM

All of these machines were running a 2.6 Linux kernel.

The devices included USB sticks, compact-flash and SD memory cards and solid

state disks (of capacities 16 GB and 32 GB). They include both high-end and low-

end devices. The USB sticks were connected via a USB 2.0 interface, memory

cards were connected through a USB 2.0 card reader (made by Hama) or PCMCIA

interface, and solid state disks with IDE interface were installed in the machines

using a 2.5 inch to 3.5 inch IDE adapter and a PATA serial bus.
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Our benchmarking tool and methodology.

Standard disk benchmarking tools like zcav [108, 156] fail to measure character-

istics that are important in flash devices (e.g., write speeds, since they are similar

to read speeds on hard disks, or sequential-after-random writes); and commercial

benchmarks tend to focus on end-to-end file-system performance, which does not

characterize the performance of the flash device in a way that is useful to algorithm

designers. Therefore, we decided to implement our own benchmarking program

that is specialized (designed mainly for LBA flash devices), but highly flexible

and can easily measure the performance of a variety of access patterns, including

random and sequential reads and writes, with given block sizes and alignments,

and with operation counts or time limits.

Our benchmarking software (running under linux) performs a series of experi-

ments on a given block devices according to instructions in an input file. Each

line in the input file describes one experiment, which usually consists of many

reads or writes. Each experiment can consist of sequential or random reads or

writes with a given block size. The accesses can be aligned to a multiple of the

block size or misaligned by a given offset. Sequential accesses start at a random

multiple of the block size. Random accesses generate and use a permutation of the

possible starting addresses (so addresses are not repeated unless the entire address

space is written). The line in the input file describes the number of accesses or

a time limit. An input line can instruct the program to perform a self scaling ex-

periment [47], in which the block size is repeatedly doubled until the throughput

increases by less than 2.5%.

The buffers that are written to flash include either the approximate age of the

device (in number of writes) or the values 0x00 to 0xff, cyclically.

The block device is opened with the O DIRECT flag, to disable kernel caching.

We did not use raw I/O access, which eliminates main memory buffer copying

by the kernel, because it exhibited significant overheads with small buffers. We

assume that these overheads were caused by pinning user-space pages to physical

addresses. In any case, buffer copying by the kernel probably does not have a

large influence at the throughput of flash memories (we never measured more

than 30 MB/s).

We used this program to run a standard series of tests on each device. The first

tests measure the performance of aligned reads and writes, both random and se-

quential, at buffer sizes that start at 512 and double to 8 MB or to the self-scaling

limit, whichever comes last. For each buffer size, the experiment starts by sequen-
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tially writing the entire device using a 1 MB buffer, followed by sequential reads

at the given buffer size, then random reads, then sequential writes, and finally ran-

dom writes. Each pattern (read/write, sequential/random) is performed 3 times,

with a time limit of 30 seconds each (90 seconds total for each pattern).

We also measure the performance of sequential writes following bursts of random

writes of varying lengths (5, 30, and 60 seconds). As in the basic test, each such

burst-sequential experiment follows a phase of sequentially writing the entire de-

vice. We measure and record the performance of the sequential writes at a higher

resolution in this test, using 30 phases of 4 seconds each, to assess the speed at

which the device recovers from the random writes. We tested random bursts of

both 2 KB writes and of random writes at the same buffer size as the subsequent

sequential writes.

Finally, we also measure the performance of misaligned random writes. These

experiments consisted of 3 phases of 30 seconds for each buffer size and for each

misalignment offset.

Entire-device sequential writes which separate different experiments are meant

to bring the device to roughly the same state at the beginning of each test. We

cannot guarantee that this always returns the logical-to-physical mapping to the

same state (it probably does not), but it allows the device some chance to return to

a relatively simple mapping.

We also used the program to run endurance tests on a few devices. In these exper-

iments, we alternate between 1000 sequential writes of the entire logical address

space and detailed performance tests. In the detailed phases we read and write

on the device sequentially and randomly, in all relevant buffer sizes 3 times 30

seconds for each combination. The phases consisting of 1000 writes to the en-

tire address space wear out the device at close to the fastest rate possible, and the

detailed experiments record its performance as it wears out.

It is possible that there are other factors that influence performance of some LBA

flash devices. However, since many modifications to the benchmarking methodol-

ogy can be implemented simply by editing a text file, the benchmarking program

should remain useful even if more behaviors need to be tested in the future. Of

course, some modifications may also require changes to the program itself (e.g.,

the alignment parameter was added relatively late to the program).
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4.3.2 Result and Analysis

Performance of steady, aligned access patterns.

Figure 4.1: Performance (in logarithmic scale) of the 1 GB Toshiba TransMemory

USB flash drive.

Figures 4.1 and 4.2 show the performance of two typical devices under the aligned

access patterns. The other devices that we tested varied greatly in the absolute

performance that they achieved, but not in the general patterns; all followed the

patterns shown in Figures 4.1 and 4.2.

In all the devices that we tested, random writes using small block sizes were

slower than all the other access patterns. The difference between random writes

and other access patterns is particularly large at small buffer sizes, but it is usu-

ally still evident even on fairly large block sizes (e.g., 256 KB in Figure 4.1 and

128 KB in Figure 4.2). In most devices, small-buffer random writes were at least

10 times slower than sequential writes with the same buffer size, and at least

100 times slower than sequential writes with large buffers. Table 4.2 shows the

read/write access time with two different block sizes (512 Bytes and 2 MB) for

sequential and random accesses on some of the devices that we tested.

We believe that the high cost for random writes of small blocks is because of the

LBA mapping algorithm in these devices. These devices partition the virtual and
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Figure 4.2: Performance (in logarithmic scale) of the 1 GB Kingston compact-

flash card.

physical address spaces into chunks larger than an erase block; in many cases

512 KB. The LBA mapping maps areas of 512 KB logical addresses to physical

ranges of the same size. On encountering a write request, the system writes the

new data into a new physical chunk and keeps on writing contiguously in this

physical chunk till it switches to another logical chunk. The logical chunk is now

mapped twice. Afterwards, when the writing switches to another logical chunk,

the system copies over all the remaining pages in the old chunk and erases it. This

way every chunk is mapped once, except for the active chunk, which is mapped

twice. On devices that behave like this, the best random-write performance (in

seconds) is on blocks of 512 KB (or whatever is the chunk size). At that size,

the new chunk is written without even reading the old chunk. At smaller sizes,

the system still ends up writing 512 KB, but it also needs to read stuff from the

old location of this chunk, so it is slower. We even found that on some devices,

writing randomly 256 or 128 KB is slower than writing 512 KB, in absolute time.

In most devices, reads were faster than writes in all block sizes. This typical be-

havior is shown in Figure 4.1. But as Figure 4.2 shows, this is not a universal

behavior of LBA flash devices. In the device whose performance is shown in Fig-

ure 4.2, large sequential writes are faster than large sequential reads. This shows

that designers of such devices can trade off read performance and write perfor-
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DEVICE Buffer size 512 Bytes Buffer size 2 MB

NAME SIZE SR RR SW RW SR RR SW RW

KINGSTON DT SECURE 512 MB 0.97 0.97 0.64 0.012 33.14 33.12 14.72 9.85

MEMOREX MINI

TRAVELDRIVE 512 MB 0.79 0.79 0.37 0.002 13.15 13.15 5.0 5.0

TOSHIBA TRANSMEMORY 512 MB 0.78 0.78 0.075 0.003 12.69 12.69 4.19 4.14

SANDISK U3 CRUZER

MICRO 512 MB 0.55 0.45 0.32 0.013 12.8 12.8 5.2 4.8

M-SYSTEMS MDRIVE 1 GB 0.8 0.8 0.24 0.005 26.4 26.4 15.97 15.97

M-SYSTEMS MDRIVE 100 1 GB 0.78 0.78 0.075 0.002 12.4 12.4 3.7 3.7

TOSHIBA TRANSMEMORY 1 GB 0.8 0.8 0.27 0.002 12.38 12.38 4.54 4.54

SMI FLASH DEVICE 1 GB 0.97 0.54 0.65 0.01 13.34 13.28 9.18 7.82

KINGSTON CF CARD 1 GB 0.60 0.60 0.25 0.066 3.55 3.55 4.42 3.67

KINGSTON DT ELITE

HS 2.0 2 GB 0.8 0.8 0.22 0.004 24.9 24.8 12.79 6.2

KINGSTON DT ELITE

HS 2.0 4 GB 0.8 0.8 0.22 0.003 25.14 25.14 12.79 6.2

MEMOREX TD

CLASSIC 003C 4 GB 0.79 0.17 0.12 0.002 12.32 12.15 5.15 5.15

120 × CF CARD 8 GB 0.68 0.44 0.96 0.004 19.7 19.5 18.16 16.15

SUPERTALENT SOLID

STATE FLASH DRIVE 16 GB 1.4 0.45 0.82 0.028 12.65 12.60 9.84 9.61

HAMA SOLID STATE

DISK 2.5” IDE 32 GB 2.9 2.18 4.89 0.012 28.03 28.02 24.5 12.6

IBM DESKSTAR

HARD DRIVE 60 GB 5.9 0.03 4.1 0.03 29.2 22.0 24.2 16.2

SEAGATE BARRACUDA

7200.11 HARD DISK 500 GB 6.2 0.063 5.1 0.12 87.5 69.6 88.1 71.7

Table 4.2: The tested devices and their performance (in MBps) under sequential

and random reads and writes with block size of 512 Bytes and 2 MB. The notations

SR, RR, SW and RW stand for sequential reads, random reads, sequential writes

and random writes, respectively.

mance. Optimizing for write performance can make sense for some applications,

such as digital photography where write performance can determine the rate at

which pictures can be taken. To professional photographers, this is more impor-

tant than the rate at which pictures can be viewed on camera or downloaded to a

computer.
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Poor random-write performance is not a sign of poor design, but part of a trade-

off. All the devices that achieve sequential-write performance of over 15 MB/s

(on large buffers) took more than 100 ms for small random writes. The two de-

vices with sub-10ms random writes achieved write bandwidths of only 6.9 and

4.4 MB/s. The reason for this behavior appears to be as follows. To achieve

high write bandwidths, the device must avoid inefficient erasures (ones that re-

quire copying many still-valid pages to a new erase block). The easiest way to

ensure that sequential writes are fast is to always map contiguous logical pages to

contiguous physical pages within an erase block. That is, if erase blocks contain,

say 128 KB, then each contiguous logical 128 KB block is mapped to the pages

of one erase block. Under aligned sequential writes, this leads to optimal write

throughput. But when the host writes small random blocks, the device performs a

read-modify-write of an entire erase block for each write request, to maintain the

invariant of the address mapping.

On the other hand, the device can optimize the random-write performance by

writing data to any available erased page, enforcing no structure at all on the

address mapping. The performance of this scheme depends mostly on the state of

the mapping relative to the current access pattern, and on the amount of surplus

physical pages. If there are plenty of surplus pages, erasures can be guaranteed

to be effective even under a worst-case mapping. Suppose that a device with n

physical pages exports only n/2 logical pages. When it must erase a block to

perform the next write, it contains n/2 obsolete pages, so on at least one erase

block half the pages are obsolete. This guarantees a 50% erasure effectiveness. If

there are only few surplus pages, erasures may free only a single page. But if the

current state of the mapping is mostly contiguous within each erase block and the

access pattern is also mostly contiguous, erasures are effective and do not require

much copying.

This tradeoff spans a factor of 10 or more in random-write performance and a

factor of about 4 or 5 in sequential-write performance. System designers selecting

an LBA flash device should be aware of this tradeoff, decide what tradeoff their

system requires, and choose a device based on benchmark results.

Another nearly-universal characteristic of the flash devices is the fact that sequen-

tial reads are not faster than random reads. The read performance does depend on

block size, but usually not on whether the access pattern is random or sequential.

On a few exceptional devices where the sequential reads are faster than random

reads, the difference between the two access patterns (for 2 MB block size) is very

small.

The performance in each access pattern usually increases monotonically with the
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Figure 4.3: Speeds of the 512 MB Toshiba TransMemory USB flash device. This

device achieves its maximum write speed at a 64 KB buffer size.

block size, up to a certain saturation point. Reading and writing small blocks

is always much slower than the same operation on large blocks. But Figure 4.3

shows an exception. The best sequential-write performance of this occurs with

blocks of 64 KB; on larger blocks, performance drops (by more than 20%).

Comparison to hard disks. Quantitatively, the only operation in which LBA

flash devices are faster than hard disks is random reads of small buffers. Many

of these devices can read a random page in less than a millisecond, sometimes

less than 0.5ms. This is at least 10 times faster than current high-end hard disks,

whose random-access time is 5-15ms. Even though the random-read performance

of LBA flash devices varies, all the devices that we tested exhibited better random-

read times than those of hard disks.

In all other aspects, most of the flash devices tested by us are inferior to hard

disks. The random-write performance of LBA flash devices is particularly bad and

particularly variable. A few devices performed random writes about as fast as hard

disks, e.g., 6.2ms and 9.1ms. But many devices were more than 10 times slower,

taking more than 100ms per random write, and some took more than 300ms.

Even under ideal access patterns, flash devices we have tested provide smaller I/O

bandwidths than hard disks. One flash device reached read throughput approach-

ing 30 MB/s and write throughput approaching 25 MB/s. Hard disks can achieve

well over 100 MB/s for both reads and writes. Even disks designed for laptops
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can achieve throughput approaching 60 MB/s. Flash devices would need to im-

prove significantly before they outperform hard disks in this metric. The possible

exception to this conclusion is large-capacity flash devices utilizing multiple flash

chips, which should be able to achieve high throughput by writing in parallel to

multiple chips.

Performance of large number of random writes.

Figure 4.4: Total time taken by large number of random writes on a 32 GB Hama

Solid state disk.

We observed an interesting phenomenon (Figure 4.4) while performing large num-

ber of random writes on a 32 GB Hama (2.5” IDE) solid state disk. After the first

3000 random writes (where one random write is writing a 8-byte real number at

a random location in a 8 GB file on flash), we see some spikes in the total run-

ning time. Afterwards, these spikes are repeated regularly after about every 2000

random writes. This behavior is not restricted to the Hama solid state disk but is

observed in many other flash devices too.

We believe that it is because the random writes cause many updates in the page

table. After a while, the controller rearranges the pages in the blocks to simplify

the LBA mapping. This process takes 5-8 seconds while really writing the data

on the disk takes less than 0.8 seconds for 2000 random writes, causing the spikes

in the total time.
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Figure 4.5: Graphs showing the effect of random writes on subsequent sequential

writes on Toshiba 1 GB TransMemory USB flash drive.

Effect of random writes on subsequent operations.

On some devices, a burst of random writes slows down subsequent sequential

writes. The effect can last a minute or more, and in rare cases hours (of sustained

writing). No such effect was observed on subsequent reads.

Figure 4.5 presents the performance of one such device. In these experiments, we

performed t seconds of random writing, for t = 5,30 and 60. We then measured

the performance of sequential writes during each 4 second period for the next 120

seconds. The two graphs in Figure 4.5 show the median performance in these

30 4-second periods relative to the steady-state performance of the same pattern

(read or write and with the same block size). As we can see, for very small blocks

the median performance in the two minutes that follow the random writes can

drop by more than a factor of two. Even on larger blocks, performance drops by

more than 10%. Figure 4.6 presents the performance of a device in which random

writes slow down subsequent sequential operations. In these experiments, we

performed t seconds of random writing, for t = 5,30 and 60. We then measured

the performance of sequential writes during each 4 second period for the next 120

seconds. The two graphs in the middle show the median performance in these 30

4-second periods relative to the steady-state performance of the same pattern (read

or write and with the same block size). As we can see, for very small blocks the

median performance in the two minutes that follow the random writes can drop

by more than a factor of two. Even on larger blocks, performance drops by more

than 10%.

The two graphs in the middle row of Figure 4.6 differ in the block size during the

t seconds of random writes. In the middle-left graph, the random writes were of

the same size as the subsequent operation, whereas in the middle-right graph the

random writes were always of 2 KB buffers. The behavior of this particular device
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Figure 4.6: Toshiba TransMemory USB flash drive results. The top two graphs

show the speeds. The two graphs in the middle show how the device is affected

by random writes. The bottom left graph shows the time it takes to return back to

60% of the median speed. The bottom right graph shows the effect of misaligned

calls on random writes.
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in the two cases is similar, but on other devices later the two cases differ. When

the two cases differ, random writes of 2 KB usually slow down subsequent writes

more than random writes of larger blocks. This is typified by the results shown in

Figure 4.7.
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Figure 4.7: Results of the M-Systems mDrive 100 USB device, showing a con-

stant decrease in the sequential write speed, with no recovery time.
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Figure 4.8: A time line showing the sequential write performance with 32 KB

blocks of the device in Figure 4.6. The time line starts at the end of 5 or 30

seconds of random writes (again with a 32 KB buffer size). The markers show the

write bandwidth in each 4-second period following the random writes.
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Figure 4.9: An example of extreme recovery times, as observed in the 2 GB

Kingston DT Elite 2.0. The graph shows the time (measured in minutes) it takes

to write the entire device sequentially with a 2 MB buffer size after random writes

of 5 to 60 seconds. Random writes were performed using buffer sizes of at most

2 KB.

In experiments not reported here we explored the effects of random writes on sub-

sequent read operations and on subsequent random writes. We did not discover

any effect on these subsequent operations, so we do not describe the detailed re-

sults of these experiments.

The graph on the lower-left corners of Figures 4.6 and 4.7 show how long it took
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the device to recover back to 60% of the median performance in the two minutes

following the random writes. The device in Figure 4.6 usually recovers imme-

diately to this performance level, but in some buffer sizes, it can take it 20-30

seconds to recover. Note that recovery here means a return to a 0.6 fraction of the

median post-random performance, not to the base performance in the particular

access pattern.

Figure 4.8 presents the recovery time in a different way, on a time line. After a 30

seconds random write time, the speed of the sequential write slows down to about

30% of the normal speed. After 30 seconds of a sequential write, the speed climbs

back towards the normal speed. We have seen similar behaviors in other devices

that we tested.

On the high-end 2 GB Kingston DT Elite 2 device, random writes with buffer

sizes of 2 KB or less cause a drop in the the performance of subsequent sequential

writes to less than 5% of the normal (with the same buffer size). The device did

not recover to its normal performance until it was entirely rewritten sequentially.

Normally, it takes 3 minutes to write the entire device sequentially with a buffer

size of 2 MB, but after random small-buffer writes, it can take more than 25 min-

utes, a factor of 8 slower (Figure 4.9). We observed the same behavior in the 4 GB

version of this device.

We have also observed many devices whose performance was not affected at all

by random writes.

Effects of misalignment.

On many devices, misaligned random writes achieve much lower performance

than aligned writes. In this setting, alignment means that the starting address of

the write is a multiple of the block size. We have not observed similar issues with

sequential access and with random reads.

Figure 4.10a shows the ratio between misaligned and aligned random writes on

1 GB TRANSMEMORY USB flash device. The misalignment is by 2 KB, 16 KB

and 32 KB. All of these sizes are at most as large as a single flash page. Many

of the devices that we have tested showed some performance drop on misaligned

addresses, but the precise effect varied from device to device. For example, the

128 MB SuperTalent USB device is affected by misalignment by 2 KB but not by

misalignments of 16 KB or 32 KB.



4.3 Characterization of flash memory devices 109

(a)

0 10,000 20,000 30,000 40,000 50,000 60,000
4.5

5

5.5

6

6.5

7

7.5

8
Speeds with a 128K buffer size

Device Age (est.)

M
B

/s

 

 

Sequential Read
Random Read
Sequential Write
Random Write

(b)

Figure 4.10: Effect of misalignment and aging on the performance of flash de-

vices.

Effects of Aging.

We were not able to detect a significant performance degradation as devices get

older (in terms of the number of writes and erasures). Figure 4.10b shows the

performance of 512 MB SANDISK CRUZER MICRO USB device as a function of

the number of sequential writes on the entire device. The performance of each

access pattern remains essentially constant, even after 60,000 writes. On 512 MB

KINGSTON DATATRAVELER II+ USB device, we ran a similar experiment writ-

ing more than 320,000 times, exceeding its rated endurance by at least a factor of

3 and did not observe any slowing down with age.

Effect of different controller interfaces.

We connected a compact-flash card via a USB 2.0 interface, PCMCIA interface

and an IDE interface (using a card reader) and found that the connecting interface

does not affect the relative access patterns (sequential vs. random, read vs. write

and the effect of different block sizes) of the flash devices. However, the maxi-

mum throughputs that we could obtain from USB 2.0, PCMCIA and IDE interface

are 19.8 MBps, 0.95 MBps, and 2.16 MBps for read and 18.2 MBps, 0.95 MBps,

and 4.38 MBps for write, respectively.
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4.4 Designing algorithms to exploit flash

when used together with a hard disk

Till now, we discussed the characteristics of the flash memory devices and the per-

formance of algorithms running on architectures where the flash disks replace the

hard disks. Another likely scenario is that rather than replacing hard disks, flash

disks may become an additional secondary storage, used together with hard disks.

From the algorithm design point of view, it leads to many interesting questions. A

fundamental question here is how can we best exploit the comparative advantages

of the two devices while running an application algorithm.

The simple idea of directly using external memory algorithms with input and in-

termediate data randomly striped on the two disks treats both the disks as equal.

Since the sequential throughput and the latency for random I/Os of the two de-

vices is likely to be very different, the I/Os of the slower disk can easily become a

bottleneck, even with asynchronous I/Os.

The key idea in designing efficient algorithms in such a setting is to restrict the

random accesses to a static data-structure. This static data-structure is then kept

on the flash disk, thereby exploiting the fast random reads of these devices and

avoiding unnecessary writing. The sequential read and write I/Os are all limited

to the hard disk.

We illustrate this basic framework with the help of external memory BFS algo-

rithm of Mehlhorn and Meyer [106] (MM BFS). Recall from Section 3.3 that

MM BFS involves a preprocessing phase that groups the nodes of the input graph

into disjoint clusters of small diameter and stores the adjacency lists of the nodes

in a cluster contiguously on the disk. After each BFS level, some clusters are

merged into an efficiently accessible data structure (hot pool). This hot pool is

then scanned for the adjacency lists of the nodes in the current level and these

adjacency lists are then removed from the hot pool.

This algorithm is well suited for our framework as random I/Os are mostly re-

stricted to the data structure keeping the graph clustering, while the hot pool

accesses are mostly sequential. Also, the graph clustering is only stored once

whereas the hot pool is modified (read and written) in every iteration. Thus, we

keep the graph clustering data structure on the flash disk and the hot pool on the

hard disk.

We ran our implementation (cf. Section 3.6) of this algorithm on the graph class

shown in Figure 4.11. This graph class is a tree with
√

B + 1 BFS levels. Level



4.4 Designing algorithms to exploit flash when used together with a hard disk 111

n
√

B

√

B

Figure 4.11: A graph class that forces the Mehlhorn/Meyer BFS algorithm to

incur its worst case I/O complexity.

Operation Random striping Our strategy

1 Flash 2 Hard disks Same Smaller

+ 1 Hard disk cluster size cluster size

I/O wait time 10.5 6.3 7.1 5.8

Total time 11.7 7.5 8.1 6.3

Table 4.3: Timing (in hours) for the second phase of Mehlhorn/Meyer’s BFS

algorithm on 228-node graph.

0 contains only the source node which has an edge to all nodes in level 1. Levels

1 . . .
√

B have n√
B

nodes each and the ith node in jth level (1 < j <
√

B) has an

edge to the ith node in levels j−1 and j +1.This graph class has large diameter

(
√

B + 1) and the hot pool size is greater than the available internal memory for

the most part of the execution. As such, it is one of the difficult graph classes for

all our EM BFS implementations.

As compared to striping the graph as well as pool randomly between the hard

disk and the flash disk, the strategy of keeping the graph clustering data structure

in flash disk and hot pool in hard disk performs around 25% better. Table 4.3

shows the running time for the second phase of the algorithm for a 228-node graph.

Although the number of I/Os in the two cases are nearly the same, the time spent

waiting for I/Os is much better for our disk allocation strategy, leading to better

overall runtime.

The cluster size in the BFS algorithm was chosen in a way so as to balance the

random reads and sequential I/Os on the hard disks, but now in this new setting,

we can reduce the cluster size as the random I/Os are being done much faster

by the flash memory. Our experiments suggest that this leads to even further

improvements in the runtime of the BFS algorithm.
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4.5 Conclusion

We have characterized the performance of flash storage devices by benchmarking

more than 20 different such devices. We conclude that the read/write/erase behav-

ior of flash is radically different than that of other external block devices like hard

disks. Though flash devices have faster random access than the hard disk, they can

neither provide the read/write throughput of the disks1, nor provide faster random

writes than hard disks. We found out that access costs on flash devices also de-

pend on the past history (particularly, the number of random writes done before)

and misalignment, but not on the aging of devices.

We also showed that the existing RAM model and external memory algorithms

can not realize the full potential of the flash devices. Many interesting open prob-

lems arise in this context such as how best can one sort (or even search) on a block

based device where the read and write costs are significantly different.

Furthermore, we observe that in the setting where the flash becomes an additional

level of secondary storage and used together with hard disk rather than replacing

it, one can exploit the comparative advantages of both by restricting the random

read I/Os to a static data structure stored on the flash and using the hard disk for

all other I/Os.

Our results indicate that there is a need for more experimental analysis to find

out how the existing external memory and cache-oblivious data structures like

priority queues and search trees perform, when running on flash devices. Such

experimental studies should eventually lead to a model for predicting realistic

performance of algorithms and data structures running on flash devices, as well

as on combinations of hard disks and flash devices. Coming up with a model that

can capture the essence of flash devices and yet is simple enough to design and

analyze algorithms and data structures, remains an important challenge.

As a first model, we may consider a natural extension of the standard external-

memory model that will distinguish between block accesses for reading and writ-

ing. The cost measure for an algorithm incurring x read I/Os and y write I/Os could

be x+ cW · y, where the parameter cW > 1 is a penalty factor for write accesses.

An alternative approach might be to assume different block transfer sizes, BR for

reading and BW for writing, where BR < BW and cR · x + cW · y (with cR,cW > 1)

would be the modified cost measure.

1As of late 2007, the ones that could provide were far more expensive than the same capacity

hard disk
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Dynamic topological ordering

What we imagine is order is merely the prevailing form of chaos.

— Kerry Thornley

There has been a growing interest in dynamic graph algorithms over the last two

decades due to their applications in a variety of contexts including operating sys-

tems, information systems, network management, assembly planning, VLSI de-

sign and graphical applications. Typical dynamic graph algorithms maintain a

certain property (e. g., connectivity information) of a graph that changes (a new

edge inserted or an existing edge deleted) dynamically over time. An algorithm

or a problem is called fully dynamic if both edge insertions and deletions are al-

lowed, and it is called partially dynamic if only one (either only insertion or only

deletion) is allowed. If only insertions are allowed, the partially dynamic algo-

rithm is called incremental; if only deletions are allowed, it is called decremen-

tal. While a number of fully dynamic algorithms have been obtained for vari-

ous properties on undirected graphs (see [65] and references therein), the design

and analysis of fully dynamic algorithms for directed graphs has turned out to be

much harder (e. g., [72, 134, 136, 137]). Much of the research on directed graphs

is therefore concentrated on the design of partially dynamic algorithms instead

(e. g., [24, 50, 91]). In this chapter, we focus on the analysis of algorithms for

maintaining a topological ordering of directed graphs in an incremental setting.

A topological order T of a directed graph G = (V,E) (with n := |V | and m := |E|)
is a linear ordering of its nodes such that for all directed paths from x∈V to y ∈V

(x 6= y), it holds that T (x) < T (y). A directed graph has a topological ordering
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if and only if it is acyclic. There are well-known algorithms for computing the

topological ordering of a directed acyclic graph (DAG) in O(m + n) time in an

offline setting (see e. g. [51]). In a fully dynamic setting, each time an edge is

added or deleted from the DAG, we are required to update the bijective mapping T .

In the online/incremental variant of this problem, the edges of the DAG are not

known in advance but are inserted one at a time (no deletions allowed). As the

topological order remains valid when removing edges, most algorithms for online

topological ordering can also handle the fully dynamic setting. However, there

are no good bounds known for the fully dynamic case. Most algorithms are only

analyzed in the online setting.

Given an arbitrary sequence of edges, the online cycle detection problem is to

discover the first edge which introduces a cycle. Till now, the best known al-

gorithm for this problem involves maintaining an online topological order and

returning the edge after which no valid topological order exists. Hence, results for

online topological ordering also translate into results for the online cycle detec-

tion problem. Online topological ordering is required for incremental evaluation

of computational circuits [15] and in incremental compilation [104, 120] where

a dependency graph between modules is maintained to reduce the amount of re-

compilation performed when an update occurs. An application for online cycle

detection is pointer analysis [126].

For inserting m edges, the naı̈ve way of computing an online topological or-

der each time from scratch with the offline algorithm takes O(m2 + mn) time.

Marchetti-Spaccamela, Nanni, and Rohnert [105] gave an algorithm (MNR) that

can insert m edges in O(mn) time. Alpern, Hoover, Rosen, Sweeney, and Zadeck

proposed an algorithm [15] (AHRSZ) which runs in O(|〉K̂〈| log(|〉K̂〈|)) time per

edge insertion with |〉K̂〈| being a local measure of the insertion complexity. How-

ever, there is no analysis of AHRSZ for a sequence of edge insertions. Katriel

and Bodlaender (KB) [91] analyzed a variant of the AHRSZ algorithm and ob-

tained an upper bound of O(min{m 3
2 logn,m

3
2 + n2 logn}) for inserting an arbi-

trary sequence of m edges. In addition, they show that their algorithm runs in

time O(m · k · log2 n) for a DAG for which the underlying undirected graph has a

treewidth k. Also, they give an O(n logn) algorithm for DAGs whose underlying

undirected graph is a tree. The algorithm by Pearce and Kelly (PK) [124] em-

pirically outperforms the other algorithms for random edge insertions leading to

sparse random DAGs, although its worst-case runtime is inferior to KB.

In this chapter, we propose a simple algorithm that works in O(n2.75
√

logn) time

and O(n2) space, thereby improving upon the results of Katriel and Bodlaender

for dense DAGs. With some simple modifications in our data structure, we can
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get O(n2.75) time with O(n2.25) space or O(n2.75) expected time with O(n2) space.

Our algorithm can also be used for online cycle detection in graphs. Moreover, it

permits an arbitrary starting point, which makes a hybrid approach possible, i. e.,

using the PK or KB algorithm for sparse graphs and ours when the graphs become

dense.

We conjecture that our analysis can be improved. We reduce the problem of tighter

analysis of our algorithm to a combinatorial graph problem.

We also show how we can externalize our algorithm and get a better amortized

bound than the O(sort(m)) I/Os per edge bound based on time-forward process-

ing.

We also present the first average-case analysis of online topological ordering al-

gorithms. We prove an expected runtime of O(n2 polylog(n)) under insertion of

the edges of a complete DAG in a random order for AHRSZ, KB and PK.

The rest of this chapter is organized as follows. In Section 5.1, we review the pre-

vious algorithms for dynamic topological ordering. In Section 5.2, we describe

our algorithm and the data structures involved. In Section 5.3, we give the cor-

rectness argument for our algorithm, followed by an analysis of its runtime in

Sections 5.4 and 5.5. The details of our implementation and an empirical compar-

ison with other algorithms follow in Section 5.6. Section 5.7 shows the reduction

of tighter analysis of our algorithm to a combinatorial problem. Section 5.8 de-

scribes the externalization of our algorithm. Section 5.9 shows our average-case

analysis for AHRSZ, KB and PK. Section 5.10 discusses recent advances on im-

proving the upper bounds for this problem. Section 5.11 concludes with some

open problems related to dynamic topological ordering.

5.1 Related work

This section first introduces some notations and then reviews the previous algo-

rithms MNR, AHRSZ, KB, and PK. We keep the current topological order as a

bijective function T : V → [1..n]. In this and the subsequent sections, we will use

the following notations: d(u,v) denotes |T (u)−T (v)|, u < v is a short form of

T (u) < T (v), u→ v denotes an edge from u to v, and u ❀ v expresses that v is

reachable from u. Note that u ❀ u, but not u→ u. The degree of a node is the sum

of its in- and out-degree. We will also refer to T (v) as the priority of the node v.

Consider the i-th edge insertion u→ v. We say that an edge insertion is invalidat-
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ing if u > v before the insertion of this edge. We define R
(i)
B := {x∈V | v≤ x∧x ❀

u}, R
(i)
F := {y∈V | y≤ u∧v ❀ y} and δ(i) = R

(i)
F ∪R

(i)
B . Let |δ(i)| denote the num-

ber of nodes in δ(i) and let ‖δ(i)‖ denote the number of edges incident to nodes of

δ(i). Note that δ(i) as defined above is different from the adaptive parameter δ of

the bounded incremental computation model. If an edge is non-invalidating, then

|R(i)
B | = |R

(i)
F | = |δ(i)| = 0. Note that for an invalidating edge, R

(i)
F ∩R

(i)
B = /0 as

otherwise the algorithms will just report a cycle and terminate.

We now describe the insertion of the i-th edge u→ v for all the algorithms. As-

sume for the remainder of this section that u→ v is an invalidating edge, as oth-

erwise none of the algorithms do anything for that edge. Let AR(i) be the set of

all nodes x such that v ≤ x ≤ u. We define an algorithm to be local if it only

changes the ordering of nodes in AR(i) to compute the new topological order T ′

of G∪{(u,v)}. All of these algorithms are local and they work in two phases – a

“discovery phase” and a “relabelling phase”.

MNR is probably the simplest of these algorithms. A depth-first search starting

from v and limited to nodes in AR(i) marks all nodes in R
(i)
F as visited. Thereafter,

all marked nodes are shifted up in the topological ordering immediately after u.

For this, all nodes in {AR(i) \R
(i)
F } are moved down appropriately in the topologi-

cal order. The relative order of the nodes in R
(i)
F remains intact.

In the discovery phase of PK, the set δ(i) is identified using a forward depth-first

search from v (giving a set R
(i)
F ) and a backward depth- first search from u (giving

a set R
(i)
B ). The relabelling phase is also very simple. It sorts both sets R

(i)
F and

R
(i)
B separately in increasing topological order and then allocates new priorities

according to the relative position in the sequence R
(i)
B followed by R

(i)
F . It does not

alter the priority of any node not in δ(i), thereby greatly simplifying the relabeling

phase. The runtime of PK for a single edge insertion is Θ(‖δ(i)‖+ |δ(i)| log |δ(i)|).

Alpern et al. [15] used the bounded incremental computation model [134] and

introduced the measure |〉K̂〈|. For an invalidated topological order T , the set

K ⊆ V is a cover if for all x,y ∈ V : (x ❀ y ∧ y < x ⇒ x ∈ K ∨ y ∈ K). This

states that for any connected x and y which are incorrectly ordered, a cover K

must include x or y or both. |K| and ‖K‖ denote the number of nodes and edges

touching nodes in K, respectively. We define |〉K〈| := |K|+ ‖K‖ and a cover K̂

to be minimal if |〉K̂〈| ≤ |〉K〈| for any other cover K. Thus, |〉K̂〈| captures the

minimal amount of work required to calculate the new topological order T ′ of

G∪{(u,v)} assuming that the algorithm is local and that the adjacent edges must

be traversed.
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AHRSZs discovery phase marks the nodes of a cover K by marking some of the

unmarked nodes x,y ∈ δ(i) with x ❀ y and y < x. This is done recursively by

moving two frontiers starting from v and u towards each other. Here, the cru-

cial decision is which frontier to move next. AHRSZ tries to minimize ‖K‖ by

balancing the number of edges seen on both sides of the frontier. The recursion

stops when forward and backward frontier meet. Note that we do not necessarily

visit all nodes in R
(i)
F (R

(i)
B ) while extending the forward frontier (backward fron-

tier). It can be proven [15] that the marked nodes indeed form a cover K and that

|〉K〈| ≤ 3 |〉K̂〈|.

The relabeling phase employs the dynamic priority space data structure due to

Dietz and Sleator [60]. This permits new priorities to be created between existing

ones in O(1) amortized time. This is done in two passes over the nodes in K.

During the first pass, it visits the nodes of K in reverse topological order and

computes a strict upper bound on the new priorities to be assigned to each node. In

the second phase, it visits the nodes in K in topological order and computes a strict

lower bound on the new priorities. Both together allow to assign new priorities

to each node in K. Thereafter they minimize the number of different labels used

to speed up the operations on the priority space data structure in practice. It can

be proven that the discovery phase with |〉K̂〈| priority queue operations dominates

the time complexity, giving an overall bound of O(|〉K̂〈| log |〉K̂〈|).

KB is a slight modification of AHRSZ. In the discovery phase AHRSZ counts the

total number of edges incident on a node. KB counts instead only the in-degree of

the backward frontier nodes and only the out-degree of the forward frontier nodes.

In addition, KB also simplified the relabeling phase. The nodes visited during

the extension of the forward (backward) frontier are deleted from the dynamic

priority space data-structure and are reinserted, in the same relative order among

themselves, after (before) all nodes in R
(i)
B (R

(i)
F ) not visited during the backward

(forward) frontier extension. The algorithm thus computes a cover K⊆ δ(i) and its

complexity per edge insertion is O(|〉K〈| log |〉K〈|). The worst case running time

of KB for a sequence of m edge insertions is O(min{m 3
2 logn,m

3
2 +n2 logn}).

5.2 Algorithm

We keep the current topological order as a bijective function T : V → [1 . .n]. If

we start with an empty graph, we can initialize T with an arbitrary permutation,

otherwise T is the topological order of the initial graph, computed offline. In this

and the subsequent sections, we will use the following notations: d(u,v) denotes
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|T (u)−T (v)|, u < v is a short form of T (u) < T (v), u→ v denotes an edge from

u to v, and u ❀ v expresses that v is reachable from u. Note that u ❀ u, but not

u→ u.

Figure 5.1 gives the pseudo code of our algorithm. Throughout the process of

inserting new edges, we maintain some data structures which are dependent on

the current topological order. Inserting a new edge (u,v) is done by calling IN-

SERT(u,v). If v > u, we do not change anything in the current topological order

and simply insert the edge into the graph data structure. Otherwise, we call RE-

ORDER to update the topological order as well as the data structures dependent on

it. As we will prove in Theorem 4, detecting v = u in a call of REORDER(u,v)
indicates a cycle. If v < u, we first collect the sorted sets A and B. A is the set

of out-neighbors of v whose topological order is not greater than T (u). Analo-

gously, B is the set of in-neighbors of u whose topological order is not less than

T (v). If both A and B are empty, we swap the topological order of the two nodes

and update the data structures. Otherwise, we recursively call REORDER until

everything inside is topologically ordered. To make these recursive calls efficient,

we first merge the sorted sets {v}∪A and B∪ {u} and (using this merged list)

compute the set {u′ : (u′ ∈ B∪{u})∧ (u′ ≥ v′)} for each node v′ ∈ {v}∪A. The

collection of sets A and B and the update operations are described in more detail

after the data structures have been introduced.

Data structure

We store the current topological order as a set of two arrays by maintaining the bi-

jective mapping T and its inverse T−1. This ensures that finding T (u) and T−1(i)
are constant time operations.

The graph itself is stored as an array of vertices. For each vertex we maintain two

adjacency lists, which keep the incoming and outgoing edges separately. Each

adjacency list is stored as an array of buckets of vertices. Each bucket contains

at most t nodes for a fixed t. Depending on the concrete implementation of the

buckets, the parameter t is later chosen to be approximately n0.75 so as to balance

the number of inserts and deletes from the buckets and the extra edges touched by

the algorithm. The i-th bucket (i ≥ 0) of a node x contains all adjacent nodes y

with i · t < d(x,y) ≤ (i +1) · t. The nodes of a bucket are stored with node index

(and not topological order) as their key. This has the advantage that there is no

change necessary if two nodes that lie in the same bucket are swapped. The bucket

can be kept as a balanced binary tree, as an array of n-bits, or as a hash-table of a

universal hashing function. The only requirement for the bucket data structure is
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INSERT(u,v)

✄ Insert edge (u,v) and calculate new topological order

1 if v≤ u then REORDER(u,v)

2 insert edge (u,v) in graph

REORDER(u,v)

✄ Reorder nodes between u and v if v≤ u

1 if u = v then report detected cycle and quit

2 A := {w : v→ w and w≤ u}
3 B := {w : w→ u and v≤ w}
4 if A = /0 and B = /0

then ✄ Correct the topological order

5 swap T (u) and T (v)
6 update the data structure

else ✄ Reorder node pairs between v and u

7 for v′ ∈ {v}∪A in decreasing topological order

8 for u′ ∈ B∪{u}∧ v′ ≤ u′ in increasing topological order

9 REORDER(u′ ,v′)

Figure 5.1: Our algorithm
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that it should provide efficient support for the following three operations:

1. Insert: Insert an element in a given bucket.

2. Delete: Given an element and a bucket, find out if that element exists in that

bucket. If yes, delete the element from there and return 1. Else, return 0.

3. Collect-all: Copy all the elements from the bucket to some vector.

Depending on how we choose to implement the buckets, we get different run-

times. This will be discussed in Section 5.5. We will now discuss how we do

the insertion of an edge, computation of A and B, and updating the data structure

under swapping of nodes in terms of the above three basic operations.

Inserting an edge (u,v) means inserting node v in the forward adjacency list of u

and u in the backward adjacency list of v. This requires O(1) bucket inserts.

For given u and v, the set A := {w : v→ w and w < u} sorted according to the

current topological order can be computed from the adjacency list of v by sorting

all nodes of the first
⌈

d(u,v)/t
⌉

outgoing buckets and choosing all w with w < u.

This can be done by O
(

d(u,v)/t
)

collect-all operations on buckets. This means

traversing all elements of A as well as all elements of the
⌈

d(u,v)/t
⌉

-th outgoing

bucket. Overall O(|A|+ t) elements are visited. These elements are integers in

the range {1 . .n} and can be sorted in O(|A|+ t) time using a two-pass radix sort

algorithm since t is chosen such that t ≥ n0.75. The set B is computed likewise

from the incoming edges.

When we swap two nodes u and v, we need to update the adjacency lists of u and

v as well as that of all nodes w that are adjacent to u and/or v. First, we show how

to update the adjacency lists of u and v. If d(u,v) > t, we build their adjacency

lists from scratch. Otherwise, the new bucket boundaries will differ from the old

boundaries by d(u,v) and at most d(u,v) nodes will need to be transferred be-

tween any pair of consecutive buckets. The total number of transfers are therefore

bounded by d(u,v)⌈n/t⌉. Determining whether a node should be transferred can

be done in O(1) using the inverse mapping T−1 and as noted above, a transfer can

be done in O(1) bucket inserts and deletes. Hence, updating the adjacency lists of

u and v needs at most min{n,d(u,v)⌈n/t⌉} bucket inserts and deletes.

Let w be a node which is adjacent to u or v. Its adjacency list needs to be updated

only if u and v are in different buckets. This corresponds to w being in different

buckets of the adjacency lists of u and v. Therefore, the number of nodes to be

transferred between different buckets for maintaining the adjacency lists of all w’s

is the same as the number of nodes that need to be transferred for maintaining the
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adjacency lists of u and v, i. e., min{n,d(u,v)⌈n/t⌉}.

Updating the mappings T and T−1 after such a swap is trivial and can be done in

constant time. Thus, we conclude that swapping nodes u and v can be done by

O(d(u,v)⌈n/t⌉) bucket inserts and deletes.

5.3 Correctness

In this section we will show the following theorem.

Theorem 1 The above algorithm returns a valid topological order after each

edge insertion.

Proof. For a graph with no edges, any ordering is a correct topological order,

and therefore, the theorem is trivially correct. Assuming that we have a valid

topological order of a graph G, we show that when inserting a new edge (u,v)
using INSERT(u,v), our algorithm maintains the correct topological order of G′ :=
G∪{(u,v)}. If u < v, this is trivial.

We need to prove that x < y for all nodes x, y of G′ with x ❀ y. If there was a path

x ❀ y in G, Lemma 2 gives x < y. Otherwise (if there is no x ❀ y in G), the path

x ❀ y must have been introduced to G′ by the new edge (u,v). Hence x < y in G′

by Lemma 3 since there is x ❀ u→ v ❀ y in G′.

Lemma 2 Given a DAG G and a valid topological order, if u ❀ v and u < v, then

all subsequent calls to REORDER will maintain u < v.

Proof. Let us assume the contrary. Consider the first call of REORDER which

for a node pair u,v with u ❀ v and u < v leads to u > v. Either this call led to

swapping u and w with v≤w or it caused swapping w and v with w≤ u. Note that

in our algorithm, a call of REORDER(u,v) leads to a swapping only if A = /0 and

B = /0. Assuming that it was the first case (swapping u and w) caused by the call

to REORDER(u,w), A = /0. However, since u,v is the first such pair to get violated,

x∈ A for an x with u→ x ❀ v, leading to a contradiction. The other case is proved

analogously.

Lemma 3 Given a DAG G with v ❀ y and x ❀ u, a call of REORDER(u,v) will

ensure that x < y.

Proof. Consider the recursion tree of a call to REORDER , in which the recursive
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calls emanating in lines 7 and 8 are its children. The proof follows by induction

on the recursion tree height of REORDER(u,v). For leaf nodes (calls of REORDER

with zero recursion tree height) of the recursion tree, A = B = /0. If x < y before

this call, Lemma 2 ensures that x < y will still hold. Otherwise, y := v and x := u.

The swapping of u and v in line 5 gives x < y.

We assume this lemma to be true for calls of REORDER up to a certain recursion

tree height and consider a call with a higher recursion tree. If A 6= /0, then there

is a ṽ such that v→ ṽ ❀ y, otherwise ṽ := v = y. If B 6= /0, then there is a ũ such

that x ❀ ũ→ u, otherwise ũ := u = x. Hence ṽ ❀ y < x ❀ ũ. The for-loops

of lines 7 and 8 will call REORDER(ũ, ṽ). By the inductive hypothesis, this will

ensure x < y. According to Lemma 2, further calls to REORDER will maintain

x < y.

Theorem 4 The algorithm detects a cycle if and only if there is a cycle in the

given edge sequence.

Proof. “⇒”: First, we show that within a call to INSERT(u,v), there are paths

v ❀ v′ and u′ ❀ u for each recursive call to REORDER(u′ ,v′). This is trivial for

the first call to REORDER and follows immediately by the definition of A and B for

all subsequent recursive calls to REORDER. This implies that if the algorithm indi-

cates a cycle in line 1 of REORDER, there is indeed a cycle u→ v ❀ v′ = u′❀ u.

In fact, the cycle itself can be computed using the recursion stack of the current

call to REORDER.

“⇐”: Consider the edge (u,v) of the cycle v ❀ u→ v inserted last. Since v ❀ u

before the insertion of this edge, the topological order computed will satisfy v < u

(Theorem 1) and therefore, REORDER(u,v) would be called. In fact, all edges

in the path v ❀ u will obey the current topological ordering and by Lemma 2, it

will remain so for all subsequent calls of REORDER. We prove by induction on

the number of nodes in the path v ❀ u (including u and v) that whenever v ❀ u

and REORDER(u,v) is called, it detects the cycle. A call of REORDER(u′ ,v′) with

u′ = v′ or REORDER(u′ ,v′) with v′→ u′ clearly reports a cycle. Consider a path

v→ x ❀ y→ u of length k > 2 and the call of REORDER(u,v). As noted before,

v < x≤ y < u before the call to REORDER(u,v). Hence x ∈ A and y ∈ B and a call

to REORDER(y,x) will be made in the for loop of lines 7 and 8. As y ❀ x has

k−2 nodes in the path, the call to REORDER(y,x) (by our inductive hypothesis)

will detect the cycle.
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5.4 Runtime

The following theorem is the main result of this section.

Theorem 5 Incremental topological ordering can be maintained while process-

ing any sequence of edge insertions using O(n3.5/t) bucket inserts and deletes,

O(n3/t) bucket collect-all operations collecting O(n2t) elements, and O(n2.5 +
n2t) operations.

Proof. Consider the pseudo code in Figure 5.1. Since there can be a maximum of

n(n− 1)/2 edges inserted in a DAG, there are O(n2) calls of INSERT. Inserting

an edge in the graph involves O(1) bucket operations and therefore, the total cost

of Line 2 of INSERT is O(n2).

Lemma 8 shows that REORDER is called O(n2) times. Line 1 of REORDER re-

quires O(1) operations per call of REORDER, except the one time it does encounter

a cycle (when it requires O(n) time). Lemma 10 shows that the calculation of the

sets A and B over all calls of REORDER can be done by O(n3/t) bucket collect-all

operations touching O(n2t) edges, and O(n2.5 + n2t) operations. Lines 4 and 5

require O(1) operations per call of REORDER. In Lemma 12, we prove that all the

updates can be done by O(n3.5/t) bucket inserts and deletes.

For lines 7 and 8 of the pseudo-code, we first merge the two sorted sets A and B.

This takes O(|A|+ |B|) operations. For a particular node v′ ∈ {v} ∪A, we can

compute the set V ′ = {u′ : (u′ ∈ B ∪ {u})∧ (u′ ≥ v′)} (as required by line 8)

using this merged set in complexity O(1 + |V ′|), which is also the number of

calls of REORDER emanating for this particular node. Summing over the en-

tire for loop of line 7, the total complexity of lines 7 and 8 is O(|A|+ |B|+
number of calls of REORDER emanating from here). Since by Lemma 9, the sum-

mation of |A|+ |B| over all calls of REORDER is O(n2) and by Lemma 8, the total

number of calls to REORDER is also O(n2), we get a total of O(n2) operations

for lines 7 and 8. The theorem follows by simply adding the complexity of each

line.

Lemma 6 REORDER is local, i. e., a call to REORDER(u,v) does not affect the

topological ordering of nodes w such that either w < v or w > u just before the

call was made.

Proof. This lemma can be proven by induction on the level of the recursion tree of

a call to REORDER(u,v). For the leaf node of the recursion tree, |A|= |B|= 0 and

the topological order of u and v is swapped, not affecting the topological ordering
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of any other node.

We assume this lemma to be true up to a certain tree level. To see that it is also

valid for one level higher, note that the arrays A and B contain elements w such

that v < w < u. Since each call of REORDER in the for-loop of line 7 and 8 is from

an element of A to an element of B and all of these calls are themselves local by

our induction hypothesis, this call of REORDER is also local.

Lemma 7 If two nodes are swapped in a call of REORDER, their relative order

will remain unchanged in the future.

Proof. Let us assume, two nodes u′ and v′ are swapped within one of the recursive

calls of REORDER invoked by INSERT(u,v). After the insertion of edge (u,v),
there is a path u′ ❀ u→ v ❀ v′. Therefore, by Lemma 2 the relative order of u′

and v′ will not be changed in any subsequent call of INSERT.

It remains to prove that also within the recursion tree of REORDER(u,v), the rel-

ative order of u′ and v′ will not be changed after they have been swapped. This is

ensured by the order in which the two for-loops in lines 7 and 8 iterate since there

can be no calls to REORDER(u′ ,w) with w > v′ or REORDER(w,v′) with u < u′

after the call of REORDER(u′ ,v′).

Lemma 8 REORDER is called O(n2) times.

Proof. As we have proven that the algorithm is correct in section 5.3, we now

know that for each pair (u,v) the following holds: If REORDER(u,v) is called,

then v≤ u holds before and u≤ v holds afterwards. As by Lemma 7 this implies

that REORDER(u,v) can only be called once for each pair (u,v), the number of

calls to REORDER can be upper bounded by n2.

Lemma 9 The summation of |A|+ |B| over all calls of REORDER is O(n2).

Proof. Consider arbitrary nodes u and v′. We prove that for all v ∈ V , v′ ∈ A

happens only once over all calls of REORDER(u,v). This proves that ∑ |A| ≤ n, for

all such calls of REORDER(u,v). Therefore, summing up for all u ∈V , ∑ |A| ≤ n2

over all calls of REORDER.

In order to see that for all v ∈ V , v′ ∈ A happens only once over all calls of RE-

ORDER(u,v), consider the first such call. Since v′ ∈ A, v′ < u and v→ v′ before

the call was made. By Lemma 3, u < v′ after this call and hence, v′ /∈ A for any

call of REORDER afterwards. As for calls within the recursive substructure of the

first call, the order in which these calls are made ensures that there will be no calls
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of REORDER(u,w) for any w < v′ before REORDER(u,v′) and since u < v′ after

REORDER(u,v′), v′ /∈ A for REORDER(u,w).

Analogously, it can be proven that for arbitrary nodes v and v′ and for all u ∈ V ,

v′ ∈B happens only once over all calls of REORDER(u,v). The proof for ∑ |B| ≤ n2

follows similarly and it completes the proof of this lemma.

Lemma 10 Calculating the sorted sets A and B over all calls of REORDER can be

done by O(n3/t) bucket collect-all operations touching a total of O(n2t) elements

and O(n2.5 +n2t) operations for sorting these elements.

Proof. Consider the calculation of set A in a call of REORDER(u,v). As dis-

cussed before in section 5.2, we look at the out adjacency list of u, stored in

the form of buckets. In particular, we will need O(d(u,v)/t) bucket collect-all

operations touching O(|A|+ t) elements to calculate A. The additional worst-case

factor of t stems from the last bucket visited. Summing up over all calls of RE-

ORDER, we get O
(

∑d(u,v)/t
)

collect-all’s touching ∑(|A|+ |B|+ t) elements.

Since d(u,v) ≤ n for every call of REORDER(u,v) and there are O(n2) calls of

REORDER (Lemma 8), there are O(n3/t) bucket collect-all operations. Also,

since ∑(|A|+ |B|) = O(n2) by Lemma 9, the total number of elements touched

is O(n2 + ∑ t) = O(n2t). Since the keys are in the range {1 . .n}, we can use a

two-pass radix sort to sort the elements collected from the buckets. The total sort-

ing time over all calls of REORDER is ∑(2(|A|+ t)+
√

n)+∑(2(|B|+ t)+
√

n) =
O(n2.5 +n2t).

Lemma 11 ∑d(u,v) = O(n5/2) where the summation is taken over all calls of

REORDER(u,v) in which u and v are swapped.

Proof. Let T ∗ denote the final topological ordering and

X(T ∗(u),T∗(v)) :=

{

d(u,v) if REORDER(u,v) leads to a swapping

0 otherwise

As Lemma 7 implies that each node pair is swapped at most once, the variable

X(i, j) is clearly defined. Next, we model a few linear constraints on X(i, j),
formulate it as a linear program and use this LP to prove that max{∑i, j X(i, j)}=

O(n5/2). By definition of d(u,v) and X(i, j),

0≤ X(i, j)≤ n for all i, j ∈ [1 . .n].

For j≤ i, the corresponding edges (T ∗ −1(i),T ∗ −1( j)) go backwards and thus are

never inserted at all. Consequently,

X(i, j) = 0 for all j ≤ i.
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Now consider an arbitrary node u, which is finally at position i, i. e., T ∗(u) =
i. Over the insertion of all edges, this node has been moved left and right via

swapping with several other nodes. Strictly speaking, it has been swapped right

with nodes at final positions j > i and has been swapped left with nodes at final

positions j < i. Hence, the overall movement to the right is ∑ j>i X(i, j) and to

left is ∑ j<i X( j, i). Since the net movement (difference between the final and the

initial position) must be less than n,

∑
j>i

X(i, j)−∑
j<i

X( j, i)≤ n for all 1≤ i≤ n.

Putting all the constraints together, we aim to solve the following linear program.

max ∑
1≤i≤n
1≤ j≤n

X(i, j) such that

(i) X(i, j) = 0 for all 1≤ i≤ n and 1≤ j ≤ i,

(ii) 0≤ X(i, j)≤ n for all 1≤ i≤ n and i < j ≤ n,

(iii) ∑ j>i X(i, j)−∑ j<i X( j, i)≤ n for all 1≤ i≤ n.

Note that these are necessary constraints, but not sufficient. But this is enough

for our purpose as an upper bound to the solution of this LP will give an upper

bound for the ∑X(i, j) in our algorithm. In order to prove the upper bound on the

solutions of this LP, we consider the dual problem

min

[

n ∑
0≤i<n
i< j<n

Y (i ·n+ j) + n ∑
0≤i<n

Y (n2 + i)

]

such that

(i) Y (i ·n+ j)≥ 1 for all 0≤ i < n and j ≤ i,

(ii) Y (i ·n+ j)+Y(n2 + i)−Y (n2 + j)≥ 1 for all 0≤ i < n and j > i,

(iii) Y (i)≥ 0 for all 0≤ i < n2 +n.

and the following feasible solution for the dual:

Y (i ·n+ j) = 1 for all 0≤ i < n and 0≤ j ≤ i,
Y (i ·n+ j) = 1 for all 0≤ i < n and i < j ≤ i+1+2

√
n,

Y (i ·n+ j) = 0 for all 0≤ i < n and j > i+1+2
√

n,
Y (n2 + i) =

√
n− i for all 0≤ i < n.

This solution has a value of n2 + 2n5/2 + n∑n
i=1

√
i = O(n5/2), which by the

primal-dual theorem is a bound on the solution of the original LP.
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In fact, it can be shown that there is a solution to primal LP whose value is O(n5/2),
namely

X(i, j) = 0 for all 0≤ i < n and 0≤ j ≤ i,

X(i, j) = n for all 0≤ i < n and i < j ≤ i+ ⌈
√

1+8i−1
2 ⌉,

X(i, j) = 0 for all 0≤ i < n and j > i+ ⌈
√

1+8i−1
2 ⌉.

Lemma 12 Updating the data structure over all calls of REORDER requires O(n3.5/t)
bucket inserts and deletes.

Proof. Our data structure requires O(d(u,v)n/t) bucket inserts and deletes to

swap two nodes u and v. Lemma 7 shows that each node pair is swapped at

most once. Hence, summing up over all calls of REORDER(u,v) where u and v are

swapped, we need O(∑d(u,v)n/t) = O(n3.5/t) bucket inserts and deletes using

Lemma 11.

5.5 Bucket data structure

We get different runtimes and space requirements of our algorithm depending on

the data structures of the buckets used:

(a) Balanced binary trees (see e. g. [77]): Balanced binary trees give us O(1 +
logτ ) time insert and delete and O(1+τ ) time collect-all operation, where τ
is the number of elements in the bucket. Therefore, by Theorem 5, the total

time required will be O(n2t + n3.5 logn/t). Substituting t = n0.75
√

logn,

we get a total time of O(n2.75
√

logn). The total space requirement will

be O(n2) as a balanced binary tree needs O(t) nodes for storing at most t

elements.

(b) n-bit array: A bucket that stores at most t elements can be kept as an n-bit

array, where each bit is 0 or 1 depending on whether or not the element is

present in the bucket. Also, we can keep a list of all elements in the bucket.

To insert, we just flip the appropriate bit and insert at the end of the list. To

delete, we just flip the appropriate bit. To collect all, we go through the list

and for each element in the list, we check if the corresponding bit is 1 or 0.

If it is 0, we also remove it from the list. This gives us constant-time insert
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and delete and the time for collect-all operation will be the total output size

plus the total number of delete. Each delete is counted once in collect-all

as we remove the corresponding element from the list after the first collect-

all. By Theorem 5, the total time required will be O(n2t + n3.5/t), giving

us O(n2.75) for t = n0.75. The total space requirement will be O(n) for each

bucket, leading to a total of O(n2.25) for O(n2/t) buckets.

(c) Uniform Hashing [121]: A data structure based on uniform hashing coupled

with a list of elements in the bucket operated in the same way as the n-bit

array will give an expected constant-time insert and delete and the same

bound for collect-all as for the n-bit array. This gives an expected total time

of O(n2t +n3.5/t). With t = n0.75 this yields an expected time of O(n2.75).
Since the hashing based data structure as described in [121] takes only linear

space, the total space requirement is O(n2).

5.6 Empirical comparison

We conducted our experiments on a 2.4 GHz Opteron machine with 8GB of main

memory running Debian GNU/Linux. For PK, MNR, and AHRSZ we used the

C++/Boost based implementation of David J. Pearce (see [124]). For our algo-

rithm (AFM), we implemented variant (b) of section 5.5 using C++/STL. Addi-

tionally, we also implemented a local (cf. Lemma 6) variant of KB using an or-

dered bi-directional list data structure [60]. The code of AFM and KB is available

upon request. All codes were compiled using gcc 3.3 in 32-bit mode and optimiza-

tion level -O3. The timings were measured using the gettimeofday function of

<sys/time.h> and all the results are averaged over 10 runs each.

We examined all five algorithms on two classes of DAGs. First, we considered

random edge insertion sequences leading to a complete DAG. This random DAG

model by [26] is similar to the well-known G(n,m) random graph model of [66].

On a random edge sequence, all the algorithms are quite fast and none of them

encounters its worst-case behavior. Therefore, we also considered a particular

sequence of edges which we believe is a hard instance of the problem. This edge

sequence is similar to the worst-case sequence given by [91] for their algorithm.

On this sequence, KB, PK, MNR, and AHRSZ (the variant choosing the smallest

permitted priority) face their worst-case of Ω(n3) operations, while our algorithm

takes Ω(n2.5) time complexity. This sequence of edges is depicted in Fig. 5.2.

Let us briefly describe its structure. For a graph with n nodes, we divide the set

of nodes into four blocks of different sizes: block 1 consists of nodes [0 . .n/3),
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Figure 5.2: Our hard-case graph

block 2 of nodes [n/3 . .n/2), block 3 of nodes [n/2 . .2n/3), and block 4 of nodes

[2n/3 . .n). First, we insert n− 4 edges such that within each block, the vertices

form a directed path from left to right. Then we insert the following edges,

(a)
→
∀ j ∈ [0..n/3)

←
∀ k ∈ [0..n/6) : add edge( j,k +n/2),

(b)
→
∀ j ∈ [0..n/6) : add edge(2 j, j +n/3) and edge(2 j +1, j +n/3),

(c)
→
∀ j ∈ [0..n/6)

←
∀ k ∈ [0..n/3) : add edge( j +n/3,k +2n/3),

(d)
→
∀ j ∈ [0..n/6)

←
∀ k ∈ [0..n/6) : add edge( j +n/2,k +n/3),

where
→
∀ denotes going from left to right in the for-loop and

←
∀ the other way

around.
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Figure 5.3: Experimental data on full random graphs with varying n.

Fig. 5.3 shows the runtimes of the five algorithms in consideration for random
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Figure 5.4: Experimental data on random graphs with n = 1000 and varying m.
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Figure 5.5: Experimental data on a class of hard instances with varying n.

edge sequences leading to complete DAGs with varying number n of vertices

(and with m =
(

n
2

)

). We see that AFM is approximately 30% faster than KB and a

constant factor of 2-4 away from AHRSZ, MNR, and PK.

Fig. 5.4 shows the average runtimes for random graphs with n = 1000 and a vary-

ing number of edges. AFM looses a lot during the insertion of the first O(n logn)
edges because in this phase, updating the data structures after every swapping

proves very costly. But after that, the curves between AFM and PK/MNR/KB are

almost parallel, while the slope for AHRSZ is around 2 times that of AFM. For

practical purposes, we believe therefore that a hybrid approach would perform

best. That is, one inserts the first O(n logn) edges with either PK or KB and then
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inserts the remaining edges with our algorithm.

Fig. 5.5 shows the runtimes of the five algorithms in consideration on the class of

hard edge sequences described before. The difference in asymptotic behaviour as

discussed before is clear from the graph.

5.7 Towards a tighter analysis of our

algorithm

It is not clear if the analysis of our algorithm as shown in section 5.4 and sec-

tion 5.5 is tight. We conjecture that the analysis of our algorithm can be improved.

In this section we describe an approach that can potentially improve the analysis.

Consider the following problem: We are given two sets A and B of nodes and we

construct a graph based on the following rules:

• We start with an empty graph

• In order to add an edge in the graph, we select a node u ∈ B and v ∈ A, swap

them (i.e., after the swap, u ∈ A and v ∈ B), and insert a directed edge from

u to v.

• At no point of this construction, there should be an edge from any node in

B to any node in A.

Figure 5.6 shows an example with valid and invalid moves for constructing such

graphs.

Our combinatorial problem is to bound the maximum number of edges E(|A|, |B|)
that can be inserted in this way.

Here are a few properties that we can conclude about the resulting graph:

Theorem 13 The resulting graph will be a directed acyclic graph.

Proof. We will prove this by contradiction. Assume that there is a directed cycle

in the resulting graph and consider the last edge e = (u,v) of this cycle being

inserted. In other words, before the insertion of this edge, there is a path from v

to u and this edge completes the cycle. After inserting this edge, u ∈ A and v ∈ B.

Since, there is a path from v to u, there will be some edge in the path that goes

from some node in B to some node in A (as the path starts from B and eventually
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Figure 5.6: An example of inserting edges in the combinatorial graph. The node

pairs marked in red in the images on the left are being considered for putting the

next edge and the right side shows the resulting ordering of nodes. The first three

edge insertions are legal while the last edge is not allowed.
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reaches A). This edge clearly violates our constraint and thus the edge e = (u,v)
will not be inserted in the first place. This leads to a contradiction and proves the

fact that there can’t be directed cycles in this graph.

Theorem 14 E(n/2,n/2) = Ω(n logn).

Proof. In order to prove this, we need to show an example where a graph with

Ω(n logn) edges can be constructed in this way. If |A|= |B| = 1, then we simply

swap the two nodes and insert the corresponding edge. Otherwise, we first recur-

sively build two graphs with n/4 nodes in each set. Let’s call the sets A and B of

the first graphs as A1, B1 and that of the second graph as A2, B2. Then we sort the

nodes in both sets of both graphs topologically and then insert the n/4 edges in the

following sequence: We start from the topologically smallest node in set B1 and

insert an edge to topologically biggest node in set A2. Thereafter we put the edge

from the next smallest (topologically) node of B1 to second largest (topologically)

node of set A2 of the second graph and so on. It is easy to check that this sequence

of edge insertions never leads to any edge from B := B1∪B2 to A := A1∪A2. Con-

structing the graph in such a way, we find that E(n/2,n/2)≥ 2E(n/4,n/4)+n/4.

Since E(1,1) = 1, E(n/2,n/2) = Ω(n logn).

Theorem 15 E(i,n− i) = O(n3/2) for all 1≤ i≤ n−1.

Proof. The resulting graph will have the following properties:

• It is a directed acyclic graph (cf. Theorem 13)

• The difference between in-degree and out-degree of any node is at most

one. This follows from the fact that a node goes from a set B to a set A iff

its out-degree increases by one and a node goes from a set A to a set B iff

its in-degree increases by one. Since all nodes start from either A or B and

end up in A or B, the difference between the in-degree and out-degree of

any node can be atmost one.

Next, we show that a DAG in which each node has |out-degree− in-degree| ≤ 1

has O(n3/2) edges. This is shown by an LP based proof. Let T ∗ denote the final

topological ordering and X(T ∗(u),T ∗(v)) := 1 iff there is an edge from u to v.

Thus, the maximum number of edges in such a DAG is equal to

max ∑
1≤i≤n
1≤ j≤n

X(i, j) such that
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(i) X(i, j) = 0 for all 1≤ i≤ n and 1≤ j ≤ i,

(ii) 0≤ X(i, j)≤ 1 for all 1≤ i≤ n and i < j ≤ n,

(iii) ∑ j>i X(i, j)−∑ j<i X( j, i)≤ 1 for all 1≤ i≤ n.

Similar to the proof of Lemma 11, it can be shown that the solution of this LP and

hence, the maximum number of edges in such a DAG is O(n3/2).

The following is our main theorem that links the maximum number of edges in

this graph to the analysis of online topological ordering algorithms.

Theorem 16 ∑u,v d(u,v)≤ ∑n−1
i=1 E(i,n− i)

Proof. Consider a particular position (i,n− i) in the topological ordering, i.e., i

nodes are to the left and n− i nodes are to the right of this position. We say that a

node-pair (u,v) crosses the position (i,n− i) if in the topological ordering before

swapping the nodes u and v, T (u) > i and T (v)≤ i and after the swapping T (u)≤ i

and T (v) > i.

Throughout the execution of the online topological ordering algorithm, the num-

ber of node-pairs that cross this position can be at most E(i,n− i). This is because

the nodes to the left and right can be thought of as belonging to two different sets

and we never allow edges from the right of this position to the left. Whenever we

want to insert an edge, the algorithm first swaps their location and always puts the

edge from the left to the right.

Consider the set L := {((u,v),(i,n−i))|node-pair (u,v) crosses the position (i,n−
i)}. Clearly, |L| = ∑u,v d(u,v) as each node-pair (u,v) crosses d(u,v) positions.

For every position (i,n− i), the number of node-pairs crossing this position is at

most E(i,n− i) as shown before. Since, L =∪1≤i≤n−1|{(u,v)|(u,v) crosses (i,n−
i)}, |L| ≤ ∑n−1

i=1 E(i,n− i). Putting together, ∑u,v d(u,v) = |L| ≤ ∑n−1
i=1 E(i,n−

i).

This implies that if one can prove that for all 1≤ i ≤ n−1, E(i,n− i) = o(n3/2),
than the analysis of all the topological ordering algorithm relying on ∑u,v d(u,v)
for their analysis such as ours (cf. Section 5.10 for another algorithm that relies

on Lemma 11) will get improved.
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5.8 Dynamic topological ordering in external

memory

Many information retrieval applications rely on being able to query ontology (e.g.,

Gene Ontology, SUMO, Cyc, YAGO, DBpedia etc.) graphs for connectivity,

reachability, BFS, shortest paths, steiner trees etc. [89] to learn relations between

different semantic entities. Natural relations (e.g., x is located in y, w is a sub-class

of z) between these entities are often acyclic and transitive and can thus be mod-

eled as directed acyclic graphs [148]. These ontology DAGs can be quite large.

For instance, DBpedia 3.1 has more than 100 million edges [52].

In external memory, efficient computation of topological ordering is particularly

important as many different traversal problems such as reachability, BFS, SSSP

etc. can be reduced to computing topological ordering in O(sort(m)) I/Os. This

is done using the technique of time-forward processing (cf. Section 2.5.6) as fol-

lows: Given the topological ordering of the DAG G(V,E), we sort the adjacency

lists according to the topological ordering of their tail nodes and we process the

nodes in this order. We ignore all nodes until we reach the source node. We

mark the source node as reachable or visited with BFS level zero or distance zero

from the source. This information is then propagated to its out-neighbors who

will be processed in future using an external memory priority queues. The infor-

mation is entered into the priority queue with the topological number of the head

node as the key. When we process any node v after having processed the source

node, we first extract all the information from the priority queue kept for this node

(with v’s topological number as its key) by its in-neighbors. The reachability, BFS

level or shortest path distance for this node is then computed based on this infor-

mation. This is then propagated forward to its out-neighbors using the external

memory priority queue. Since all the priority queue operations can be performed

in O(sort(m)) I/Os and sorting the adjacency lists also requires O(sort(m)) I/Os,

reachability, BFS and shortest paths can all be computed on large DAGs using

O(sort(m)+ TO(n,m)) I/Os, where TO(n,m) is the number of I/Os required to

compute the topological ordering of a DAG with n nodes and m edges.

The best-known algorithm for computing topological ordering in external memory

is based on directed DFS [43] and requires O((n + m/B) log2
n
B

+ sort(m)) I/Os.

The naı̈ve way of recomputing from scratch whenever a new edge is inserted re-

quires the same number of I/Os and is thus, very inefficient.

Fortunately, we can improve upon this by using time-forward processing. We

know the topological ordering Told of the DAG before the new edge is inserted
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and we process the nodes in that order. As in all the dynamic topological order-

ing algorithms seen so far, we do not do anything if the new edge (u,v) is not

invalidating. Otherwise, for all nodes w such that Told(w) < Told(v), we assign

Tnew(w) = Told(w) as they are not affected by the new edge. We start processing

the nodes by assigning Tnew(v) := Told(u)+1. This information is then propagated

forward using an external memory priority queue by inserting Tnew(v)+1 with pri-

ority Told(v
′), for each out-neighbor v′ of v. If a node x being processed has not

received any information from its in-neighbors, Tnew(x) := Told(x). Otherwise, x

updates its topological number as the maximum of all entries extracted from the

priority queue with the priority Told(x), and Told(x). This is then communicated

forward by inserting Tnew(x)+1 with priority Told(x
′) for each out-neighbor x′ of

x.

In case we want to get Tnew : V → [1 . .n], we can easily do so by sorting the nodes

according to Tnew and assigning them numbers one to n. The whole process of

computing a new topological ordering thus only requires O(sort(m)) I/Os.

Our algorithm can be externalized to give an O

(

n2.75 ·
√

logM/B n·logB n

B

)

I/Os for

maintaining the topological ordering under the insertion of m edges. For inserting

m′ edges into a DAG with m edges, this is an improvement over the O(sort(m))

I/O algorithm if m′ = ω
(

n2.75

sort(m) ·
√

logM/B n·logB n

B

)

.

Since our algorithm requires to keep O(n2/t) (= O(n1.25)) buckets simultane-

ously, it is not possible to even keep one element per bucket in the internal mem-

ory if n1.25 > M. We therefore, keep all the buckets completely in the external

memory. These buckets are implemented as dynamic B-trees. Inserting an ele-

ment requires O(1) I/Os, non-lazy deletion (which includes searching) requires

O(logB n) I/Os and collect-all operation requires O(1 + k/B) I/Os for collecting

k elements. Recall from Theorem 5 that our algorithm requires O(n3.5/t) bucket

inserts and deletes, and O(n3/t) bucket collect-all operations collecting O(n2 · t)
elements for processing any sequence of edge insertions. These operations require

O
(

n3.5·logB n

t
+ n2·t

B

)

I/Os in total.

Sorting all elements collected from the buckets to compute sets A and B can be

done using external memory sorting algorithms (cf. Section 2.5.2). In the worst

case, there may be Ω(n2) calls (one for each call of REORDER) sorting O(n2 · t)
elements in total. Summing over all calls, this requires O(n2 +n · t · sort(n)) I/Os.

All other operations including accesses to T and T−1 require O(n3.5/t) I/Os.
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Thus, the externalized version of our algorithm requires O
(

n3.5·logB n

t
+n · t · sort(n)

)

I/Os. Substituting t := n0.75 ·
√

B·logB n

logM/B n
, we get that our external dynamic topolog-

ical ordering algorithm requires O

(

n2.75 ·
√

logM/B n·logB n

B

)

I/Os.

5.9 Average-case analysis of online

topological ordering algorithms

The algorithm by Pearce and Kelly (PK) [124] empirically outperforms the other

algorithms for random edge insertions, although its worst-case runtime is inferior

to KB. This difference in the behavior of online topological ordering algorithms

between random edge insertion sequences (REIS) and worst-case sequences lead

us to the theoretical study of online topological ordering algorithms on REIS.

In this section, we show an expected runtime of O(n2 log2 n) for inserting all edges

of a complete DAG in a random order with PK. Also, we show an expected run-

time of O(n2 log3 n) for complete random edge insertion sequences for AHRSZ

and KB.

Recall from Section 2.3 that by directing the edges of an undirected random graph

from lower to higher indexed vertices, we obtain the random DAG model of Barak

and Erdős [26]. Depending on the underlying random graphs, we get two random

DAG models - DAG(n,m) and DAG(n, p). In this section, we will prove our main

results on the DAG(n,m) model since it is better suited to describe incremental

addition of edges. However, since the independence of edges in the DAG(n, p)
model makes the analysis easier, we will prove our results first on DAG(n, p) and

then use Theorem 2 to get the corresponding DAG(n,m) results.

5.9.1 Analysis of PK

When inserting the i-th edge u→ v, PK only regards nodes in δ(i) := {x ∈V | v≤
x ≤ u∧ (v ❀ x∨ x ❀ u)} with “≤” defined according to the current topological

order. As discussed in Section 5.1, PK performs O(‖δ(i)‖+ |δ(i)| log |δ(i)|) oper-

ations for inserting the i-th edge. The intuition behind the proofs in this section

is that in the early phase of edge-insertions (the first O(n logn) edges), the graph

is sparse and so only a few edges are traversed during the DFS traversals. As the
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graph grows, fewer and fewer nodes are visited in DFS traversals (|δ(i)| is small)

and so the total number of edges traversed in DFS traversals (bounded above by

‖δ(i)‖) is still small.

Theorems 19 and 25 of this section show for a random edge insertion sequence

(REIS) of N edges that ∑N
i=1 |δ(i)| = O(n2) and E

[

∑N
i=1‖δ(i)‖

]

= O(n2 log2 n).

This proves the following theorem.

Theorem 17 For a random edge insertion sequence (REIS) leading to a complete

DAG, the expected runtime of PK is O(n2 log2 n).

A comparable pair (of nodes) are two distinct nodes x and y such that either x ❀ y

or y ❀ x. We define a potential function Φi similar to Katriel and Bodlaender [91].

Let Φi be the number of comparable pairs after the insertion of i edges. Clearly,

∆Φi := Φi−Φi−1 ≥ 0 for all 1≤ i≤ m,

Φ0 = 0, and ΦM ≤ n(n−1)/2.
(5.1)

Theorem 18 For all edge sequences, (i) |δ(i)| ≤ ∆Φi +1 and (ii) |δ(i)| ≤ 2∆Φi.

Proof. Consider the i-th edge (u,v). If u < v, the theorem is trivial since |δ(i)|= 0.

Otherwise, each vertex of R
(i)
F and R

(i)
B (as defined in Section 5.1) gets newly

ordered with respect to u and v, respectively. The set
⋃

x∈R
(i)
B

(x,v)∩⋃
x∈R

(i)
F

(u,x) =

{(u,v)}. This means that overall at least |R(i)
F |+ |R

(i)
B | − 1 node pairs get newly

ordered:

∆Φi ≥ |R(i)
F |+ |R

(i)
B |−1 = |δ(i)|−1.

Also, since in this case ∆Φi ≥ 1, |δ(i)| ≤ 2∆Φi.

Theorem 19 For all edge sequences,
N

∑
i=1

|δ(i)| ≤ n(n−1) = O(n2).

Proof. By Theorem 18 (i), we get
N

∑
i=1

|δ(i)| ≤
N

∑
i=1

(∆Φi + 1) = ΦN + N ≤ n(n−

1)/2+n(n−1)/2 = n(n−1).

The remainder of this section provides the necessary tools step by step to finally

prove the desired bound on ∑N
i=1 ‖δ(i)‖ in Theorem 25. One can also interpret Φi

as a random variable in DAG(n,m) with m = i. The corresponding function Ψ for

DAG(n, p) is defined as the total number of comparable node pairs in DAG(n, p).
Pittel and Tungol [129] showed the following theorem.
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Theorem 20 For p := c log(n)/n and c > 1, Ep [Ψ] = (1+o(1)) n2

2

(

1− 1
c

)2
.

Using Theorem 2, this result can be transformed to Φ as defined above for DAG(n,m)
and gives the following bounds for EM [Φk].

Theorem 21 For n logn < k ≤ N−2n logn,

EM [Φk] = (1+o(1))
n2

2

(

1− (n−1) logn

2(k +n logn)

)2

.

For N−2n logn < k ≤ N−2logn,

EM [Φk] = (1+o(1))
n2

2

(

1− (n−1) logn

2(k +
√

logn(N− k))

)2

.

We skip the rather technical proof of this theorem for the sake of better readability.

Readers are referred to [6] for the formal proof of this theorem.

The degree sequence of a random graph is a well-studied problem. The following

theorem is shown in [33].

Theorem 22 If pn/ logn→ ∞, then almost every graph G in the G(n, p) model

satisfies ∆(G) = (1+o(1)) pn, where ∆(G) is the maximum degree of a node in G.

As noted in Section 2.3, the undirected graph obtained by ignoring the directions

of DAG(n, p) is a G(n, p) graph. Therefore, the above result is also true for the

maximum degree (in-degree + out-degree) of a node in DAG(n, p). Using Theo-

rem 1, the above result can be transformed to DAG(n,m), as well.

Theorem 23 With probability 1−O(1
n
), there is no node with degree higher than

21m
n

for sufficiently large n and m > n logn in DAG(n,m).

The formal and rather technical proof of this theorem can be found in [6]. Here,

we only give a high level idea of the proof.

Rough Sketch. We examine the following two functions:

• f1(g) : Number of nodes with degree at least g(n)
• f2(g) := f 2

1 (g)

For f1, f2 in G(n, p), g(n) := pn + 2
√

pqn logn, and some constant c, Bollobás
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[32] showed

Ep [ f1(g)] = O
(

1
n

)

,

σ2
p( f1(g)) = Ep [ f2(g)]−E2

p [ f1(g)]≤ c ·Ep [ f1(g)] .

(5.2)

We transform these mean and variance results to G(n,m) by breaking down the

analysis depending on m. At first, consider the simpler case of m >
(

⌊ N
n log n
⌋−2

)

n logn.

For sufficiently large n, 21 · m
n
≥ n−1 in this case and therefore, no node can have

degree higher than it.

Next, we consider m∈ (kn logn,(k+1)n logn] for 1≤ k < l, where l := ⌊ N
n log n
⌋−

2, and we prove the theorem for each interval. Choosing pk := (k+2)n logn
N

, qk :=
1− pk, and gk(n) := pkn + 2

√
pkqkn logn satisfies the conditions in Theorem 1

and therefore, EM [ fi(gk)] = Epk
[ fi(gk)]+o(1) for i = 1,2 and 1 ≤ k < l. Using

Equation (5.2), we get EM [ f1(gk)] = O(Epk
[ f1(gk)]) = O

(

1
n

)

and

σ2
M( f1(gk)) = EM [ f2(gk)]−E2

M [ f1(gk)] = O
(

Epk
[ f2(gk)]−E2

pk
[ f1(gk)]

)

= O(σ2
pk

( f1(gk))) = O(Epk
[ f1(gk)]) = O

(

1
n

)

.

Having transformed the mean and variance of f1(gk) to G(n,m) model, we use a

variant of Chebyshev’s inequality (Pr{|X−µ| ≥ ν} ≤ σ2

ν2 ) (cf. Section 2.2) to get

Pr{| f1(gk)−µ| ≥ 1−µ} ≤ O

(

1

n(1−µ)2

)

= O
(

1
n

)

.

Since f1(gk) is a non-negative random variable, Pr{ f1(gk) ≥ 1} = Pr{| f1(gk)−
µ| ≥ 1− µ} = O

(

1
n

)

. In other words, with probability (1−O(1
n
)), there is no

node with a degree higher than gk(n)(≤ 21m
n

) in any interval.

Since any random DAG(n,m) must have been obtained by taking a random graph

G(n,m) and ordering the edges, the degree of a node in DAG(n,m) is the same

as the degree of the corresponding node in G(n,m). Therefore, with probability

1−O(1
n
), there is no node with a degree higher than 21m

n
in DAG(n,m).

As the maximum degree of a node in DAG(n, i) is O(i/n), we finally just need to

show a bound on ∑i (i · |δ(i)|) to prove Theorem 25. This is done in the following

theorem.
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Theorem 24 For DAG(n,m) and r := N−2logn,

E

[

r

∑
i=1

(i · |δ(i)|)
]

= O(n3 log2 n).

Proof. Let us decompose the analysis in three steps. First, we show a bound on

the first n logn edges. By definition of δ(i), |δ(i)| ≤ n. Therefore,

n log n

∑
i=1

i ·E
[

|δ(i)|
]

≤
n log n

∑
i=1

i ·n = O
(

n3 log2 n
)

. (5.3)

The second step is to bound ∑t
i=n log n i · |δ(i)| with t := N − 2n logn. For this,

Theorem 18 (ii) shows for all k such that n logn < k < t that

E

[

t

∑
i=k

|δ(i)|
]

≤ 2E

[

t

∑
i=k

∆Φi

]

= 2E [Φt−Φk−1] = 2E [Φt ]−2E [Φk−1] . (5.4)

The function hidden in the o(1) in Theorem 20 is decreasing in p [129]. Hence,

also the o(1) in Theorem 21 is decreasing in k. Plugging this in Equation (5.4)

yields (with s := n logn)

E

[

t

∑
i=k

|δ(i)|
]

≤ (1+o(1))n2

(

(

1− (n−1) logn

2(t + s)

)2
−
(

1− (n−1) logn

2(k−1+ s)

)2
)

= (1+o(1))n2(n−1) logn
( 2

2(k−1+ s)
− 2

2(t + s)
+

(n−1) logn

4

( 1

(t + s)2
− 1

(k−1+ s)2

))

≤ (1+o(1))n2(n−1) logn

(

1

k−1+ s
− 1

t + s

)

≤ (1+o(1))n2(n−1) logn
1

k−1
. (5.5)
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By linearity of expectation and Equation (5.5),

E

[

t

∑
i=s+1

i |δ(i)|
]

=
t

∑
i=s+1

(

iE
[

|δ(i)|
])

≤
log(⌈ t

s
⌉)

∑
j=1

(

2 js
2 js

∑
i=2( j−1)s+1

E
[

|δ(i)|
])

≤
log(⌈ t

s
⌉)

∑
j=1

(

2 js
t

∑
i=2( j−1)s+1

E
[

|δ(i)|
])

≤
log(⌈ t

s⌉)

∑
j=1

(

2 js(1+o(1))n2(n−1) logn
1

2( j−1)s

)

=
log(⌈ t

s⌉)

∑
j=1

(

2(1+o(1))n2(n−1) logn
)

= 2(1+o(1))n2(n−1) log2 n = O(n3 log2 n).

For the last step consider a k such that t < k < r. Theorem 18 (ii) gives

E

[

r

∑
i=k

|δ(i)|
]

≤ 2E

[

r

∑
i=k

∆Φi

]

= 2E [Φr−Φk−1] = 2E [Φr]−2E [Φk−1] .

Using Theorem 21 and similar arguments as before, this yields (with s(k) :=
√

logn (N− k))

E

[

r

∑
i=k

|δ(i)|
]

≤ (1+o(1))n2

(

(

1− (n−1) logn

2(r + s(r))

)2
−
(

1− (n−1) logn

2(k−1+ s(k−1))

)2
)

= (1+o(1))n2(n−1) logn

(

2

2(k−1+ s(k−1))
− 2

2(r + s(r))
+

(n−1) logn

4

( 1

(r + s(r))2
− 1

(k−1+ s(k−1))2

)

)

.

Since k + s(k) is monotonically increasing for t < k < r, 1
(k+s(k))2 is a monotoni-

cally decreasing function in this interval. Therefore, 1
(r+s(r))2 − 1

(k−1+s(k−1))2 < 0,
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which proves the following equation.

E

[

r

∑
i=k

|δ(i)|
]

≤ (1+o(1))n2(n−1) logn

(

1

k−1+ s(k−1)
− 1

r + s(r)

)

≤ (1+o(1))n2(n−1) logn
1

k−1
. (5.6)

By linearity of expectation and Equation (5.6),

E

[

r

∑
i=N−2n log n+1

i |δ(i)|
]

=
r

∑
i=N−2n log n+1

(

iE
[

|δ(i)|
])

≤ (N−2logn)
r

∑
i=N−2n log n+1

E
[

|δ(i)|
]

≤ (N−2logn)(1+o(1))n2(n−1) logn
1

N−2n logn−1

= O(n3 logn).

Theorem 25 For DAG(n,m), E

[

N

∑
i=1

‖δ(i)‖
]

= O(n2 log2 n).

Proof. By definition of ‖δ(i)‖, we know ‖δ(i)‖ ≤ i and hence

n logn

∑
i=1

‖δ(i)‖= O(n2 log2 n).

Again, let r := N−2logn. Theorem 23 tells us that with probability greater than
(

1− c′
n

)

for some constant c′, there is no node with degree ≥ c i
n

(for c = 21).

Since the degree of an arbitrary node in a DAG is bounded by n, we get with

Theorems 19 and 24,

E

[

r

∑
i=n logn+1

‖δ(i)‖
]

= O

(

E

[

r

∑
i=n logn+1

c i |δ(i)|
n

]

+E

[

r

∑
i=n logn+1

n c′ |δ(i)|
n

])

= O
(1

n
E

[

r

∑
i=1

(i |δ(i)|)
]

+n2
)

= O
(1

n

(

n3 log2 n
)

+n2
)

= O(n2 log2 n).
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By again using the fact that the degree of an arbitrary node in a DAG is at most n,

we obtain

E

[

N

∑
i=r+1

‖δ(i)‖
]

= O
(

n ·E
[

N

∑
i=r+1

|δ(i)|
]

)

= O
(

n ·
N

∑
i=r+1

n
)

= O(n2 logn).

Thus,

E

[

N

∑
i=1

‖δ(i)‖
]

= E

[

n logn

∑
i=1

‖δ(i)‖
]

+E

[

r

∑
i=n logn+1

‖δ(i)‖
]

+E

[

N

∑
i=r+1

‖δ(i)‖
]

= O(n2 log2 n)+O(n2 log2 n)+O(n2 logn) = O(n2 log2 n).

5.9.2 Other average-case results

Recall from Section 5.1 that for an invalidated topological order T , a set K ⊆ V

is a cover if for all x,y ∈ V : (x ❀ y ∧ y < x ⇒ x ∈ K ∨ y ∈ K). In order

to prove that the expected complexity of AHRSZ on REIS is O(n2 log3 n), ob-

serve that δ(i) is a valid cover. Therefore, by definition of |〉K̂(i)〈| as minimal

cover, it follows that |〉K̂(i)〈| ≤ |〉δ(i)〈|= |δ(i)|+‖δ(i)‖. Note that the complexity

of maintaining the topological ordering with AHRSZ while inserting an edge is

O(|〉K̂〈| log |〉K̂〈|) (cf. Section 5.1. The expected complexity of AHRSZ on REIS

is thus E
[

∑m
i=1 |〉K̂(i)〈| log |〉K̂〈|

]

. Using Theorems 19 and 25 we get,

E

[

m

∑
i=1

|〉K̂(i)〈| log |〉K̂〈|
]

≤ logn ·
m

∑
i=1

|δ(i)|+E

[

m

∑
i=1

‖δ(i)‖
]

= O(n2 log3 n)

KB also computes a cover K ⊆ δ(i) and its complexity per edge insertion is

O(|〉K〈| log |〉K〈|). Therefore, |〉K〈| ≤ |δ(i)|+‖δ(i)‖ and with a similar argument

as above, the expected complexity of KB on REIS is O(n2 log3 n).

An interesting question in all this analysis is how many edges will actually in-

validate the topological ordering and force any algorithm to do something about

them. Here, we show a non-trivial upper bound on the expected value of the

number of invalidating edges on REIS. Consider the following random variable:

INVAL(i) = 1 if the i-th edge inserted is an invalidating edge; INVAL(i) = 0 other-

wise.



5.10 Recent advances in online topological ordering algorithms 145

Theorem 26 E

[

m

∑
i=1

INVAL(i)

]

= O(min{m,n
3
2 log

1
2 n}).

Proof. If the i-th edge is invalidating, |δ(i)| ≥ 2; otherwise INVAL(i) = |δ(i)|= 0.

In either case, INVAL(i)≤ |δ(i)|/2. Thus, for s := n
3
2 log

1
2 n and t := min{m,N−

2n logn},

E

[

t

∑
i=s+1

INVAL(i)

]

≤ E

[

t

∑
i=s+1

|δ(i)|
2

]

≤ (1+o(1))
n2(n−1) logn

2s

≤ (1+o(1))

2
n

3
2 log

1
2 n.

The second inequality follows by substituting k := s +1 in Equation (5.5). Also,

since the number of invalidating edges can be at most equal to the total number of

edges, ∑s
i=1 INVAL(i)≤ s.

E

[

m

∑
i=1

INVAL(i)

]

= E

[

s

∑
i=1

INVAL(i)

]

+E

[

t

∑
i=s+1

INVAL(i)

]

+E

[

m

∑
i=t

INVAL(i)

]

≤O(s)+O(n
3
2 log

1
2 n)+O(n logn) = O(n

3
2 log

1
2 n).

The second bound E [∑m
i=1 INVAL(i)] ≤ m is obvious by definition of INVAL(i).

5.10 Recent advances in online topological

ordering algorithms

Recently, Haeupler et al. [78] gave two new algorithms for online topological or-

dering. Their algorithm for the sparse case requires O(m3/2) time while their algo-

rithm for the dense case requires O(n2.5) time, independent of the number of edges

inserted. Their algorithm for the dense case crucially relies on our Lemma 11. In-

dependently, Liu and Chao [97] gave an algorithm with Õ(n2.5) bound. Their

algorithm is largely based on our algorithm, but uses buckets of exponentially in-

creasing sizes. Very recently, Bender et al. [27] gave an O(n2 log2 n) algorithm for

this problem. It can be further improved to O(n2 logn) [69].

Regarding lower bounds, Ramalingam and Reps [133] show that an adversary can

force any algorithm maintaining explicit labels to need Ω(n logn) time complexity
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for inserting n−1 edges. Katriel [90] gave a class of examples on which any local

algorithm that maintains the topological order as an explicit mapping T : V →
[1..n] must do Ω(n2) node relabellings for inserting n edges. Heupler et al. [79]

show a class of examples on which any local algorithm must do Ω(nm1/2) node

relabellings for inserting n edges.

5.11 Conclusion

In this chapter, we considered the problem of dynamic topological ordering. We

have presented the first o(n3) algorithm for incremental topological ordering. The

analysis of our algorithm is however, not tight. A non-trivial lower bound of

O(n2 logn) for our algorithm can be infered from Theorem 14. However, it is

still quite far from the upper bound of O(n2.75) for this algorithm. We show some

ideas that can potentially lead to tightening the analysis of this algorithm. A better

analysis of this algorithm still remains an open problem.

There is still a large gap between the current best lower bounds (cf. Section 5.10)

and the upper bound of O(min{m1.5,n2 logn}). Bridging this gap remains an open

problem.

As mentioned at the beginning of this chapter, nothing better is known for on-

line cycle detection so far than to maintain topological ordering in an incremental

setting. It is not clear if a faster online cycle detection algorithm can be developed.

The externalization of our algorithm provides interesting new results for dynamic

topological ordering in external memory. It would be interesting to see if the

faster incremental topological ordering algorithms developed recently also lead to

improved external memory results.

We also presented the first average-case analysis of online topological ordering

algorithms. We proved an expected runtime of O(n2 polylog(n)) under insertion

of the edges of a complete DAG in a random order for AHRSZ, KB and PK.

An interesting question here is whether one can obtain better bounds for the case

when there are m = o(n2) edges inserted into a previously empty DAG or into an

arbitrary DAG.

It will also be interesting to find out whether the average-case results can be ex-

tended to the fully dynamic case. Note that in the worst case scenario, it is not

possible to obtain any interesting results for this case as any algorithm that ex-

plicitly maintains the node labellings can be made to do Ω(n) work for a pair of
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insertion and deletion. This can be seen, for example, by maintaining a list DAG,

deleting the edge in the middle and inserting a new edge connecting the previous

end-point of the list to the previous starting point of the list. However, when the

sequence of insertions and deletions is random, such worst case scenarios will

happen with low probability and it might be possible to prove some interesting

bounds.

For the analysis of these algorithms to make more sense for real applications, we

may consider changing our notion of change. Typically, we do not have edges

coming one at a time. Rather a few edges get inserted or deleted and we want to

use the old topological ordering to compute the new one efficiently. Pearce [123]

proposed a modification of online topological ordering, in which a batch of edges

are inserted at a time.
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[87] K. Kaligosi and P. Sanders. How branch mispredictions affect quicksort. In

Proceedings of the fourteenth annual European Symposium on Algorithms

(ESA), pp. 780–791, 2006.

[88] D. Karger, P. Klein, and R. Tarjan. A randomized linear time algorithm to

find minimum spanning trees. Journal of the ACM, 42:321–328, 1995.

[89] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and G. Weikum.

STAR: Steiner Tree Approximation in Relationship-graphs. In Proceed-

ings of the twenty-fifth IEEE International Conference on Data Engineer-

ing (ICDE), 2009 (to appear).

[90] I. Katriel. On algorithms for online topological ordering and sorting.

Technical Report MPI-I-2004-1-003, Max Planck Institut für Informatik,

Saarbrücken, Germany, 2004.



156 BIBLIOGRAPHY

[91] I. Katriel and H. L. Bodlaender. Online topological ordering. ACM Trans-

actions on Algorithms, 2:364–379, 2006. Announced at SODA ’05.

[92] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical Society, 7:

48–50, 1956.

[93] V. Kumar and E. J. Schwabe. Improved algorithms and data structures

for solving graph problems in external memory. In Proceedings of the

eighth IEEE Symposium on Parallel and Distributed Processing (IPDPS),

pp. 169–177, 1996.

[94] A. LaMarca and R. E. Ladner. The influence of caching on the performance

of sorting. Journal of Algorithms, 31:66–104, 1999.

[95] L. Laura, S. Leonardi, S. Millozzi, U. Meyer, and J. F. Sibeyn. Algorithms

and experiments for the webgraph. In Proceedings of the eleventh annual

European Symposium on Algorithms (ESA), pp. 703–714, 2003.

[96] S.-W. Lee and B. Moon. Design of flash-based DBMS: an in-page logging

approach. In SIGMOD International Conference on Management of Data,

pp. 55–66. ACM, 2007.
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Summary

The notion of graph traversal is of fundamental importance to solving many com-

putational problems. It has therefore received considerable attention in the com-

puter science literature - many linear or near-linear time algorithms for traversing

graphs have been developed. In many modern applications involving graph traver-

sal such as those arising in the domain of social networks, Internet based services,

fraud detection in telephone calls etc., the underlying graph is very large and dy-

namically evolving. For these applications, the simple linear or near-linear time

RAM-model static graph traversal algorithms are often inappropriate because of

the large number of I/Os they incur. Also, these algorithms can’t be easily adapted

to the dynamic framework. Furthermore, many application needs are already ful-

filled if the total running time is bounded in the average-case and not necessarily

in the worst-case. This thesis deals with the design and engineering of graph

traversal algorithms for massive and/or dynamic graphs.

We engineer various I/O-efficient Breadth First Search (BFS) algorithms for mas-

sive sparse undirected graphs. Our pipelined implementations with low constant

factors makes BFS viable on massive graphs. For many graphs with around a

billion edges (with 1–3 GB RAM), it reduces the running-time for BFS traversal

from a few months required by the simple RAM model BFS algorithm to a few

hours. Our code has now evolved into a software package, that will be eventually

integrated into an external memory library.

Our detailed experimental study suggests that a simple external memory BFS al-

gorithm by Munagala and Ranade [115] (MR BFS) performs quite well on low

diameter graphs or when the edges are kept on the disk in the order required for

the BFS traversal. The better asymptotic worst-case I/O bound of the BFS algo-

rithm by Mehlhorn and Meyer [106] (MM BFS) help it to outperform MR BFS

on moderate to large diameter graphs. MM BFS also benefits from our heuristics

that preserve its worst-case guarantees. Exploiting a priori knowledge of the graph

structure and disk parallelism further alleviate the I/O bottleneck of MM BFS. We
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also show evidence that the cache-oblivious BFS algorithms are at least a factor of

four to five slower than their external memory counterparts, when the input graph

resides on the disk.

Flash memory is fast becoming the dominant form of end-user storage in mobile

computing. Since storage devices play a crucial role in the performance of (traver-

sal) algorithms when the input (graph) data does not fit in the main memory, it is

important to understand the I/O-characteristics of the storage devices to be able

to predict the real running times of these algorithms. Such an understanding can

also be exploited to design algorithms that are faster in practice. We characterize

the performance of NAND flash based storage devices, including many solid state

disks. We show that unlike hard disks, these devices have faster random reads

than random writes. Interestingly, we found that the cost of random writes on

flash devices is non-uniform in time and depends on the I/O-history of the device.

We also analyze the effect of misalignments, aging, controller interface, etc. on

the performance obtained on these devices. We show that despite the similarities

between flash memory and RAM (fast random reads) and between flash disk and

hard disk (both are block based devices), the algorithms designed in the RAM

model or the external memory model do not realize the full potential of the flash

memory devices. Thus, there is a need for a different model that distinguishes

between read and write blocks to get the best performance on flash devices.

In the scenario when a solid state disk is used as an additional secondary storage

rather than replacing the traditional hard disk, we engineer the I/O-efficient BFS

implementation to exploit the comparative advantages of both the disks. We show

that on a difficult graph class for external memory BFS, this is at least 25% faster

than randomly striping the data on the two disks.

We present a simple algorithm which maintains the topological order of a directed

acyclic graph with n nodes under an online edge insertion sequence in O(n2.75)
time, independent of the number m of edges inserted. For dense DAGs, this is

an improvement over the previous best result of O(min{m 3
2 logn,m

3
2 +n2 logn})

by Katriel and Bodlaender [91]. While our analysis holds only for the incre-

mental setting, our algorithm itself is fully dynamic. The externalization of our

algorithm provides interesting new results for dynamic topological ordering in

external memory.

We also present the first average-case analysis of online topological ordering algo-

rithms. We prove an expected runtime of O(n2 polylog(n)) under insertion of the

edges of a complete DAG in a random order for various incremental topological

ordering algorithms.



Zusammenfassung

Die Traversierung von Graphen ist von fundamentaler Bedeutung für das Lösen

vieler Berechnungsprobleme. Folglich findet sie grosse Beachtung in der Informatik-

Literatur; es wurden viele lineare oder fast-lineare Traversierungsalgorithmen vorgeschla-

gen. Moderne Anwendungen, die auf Graphtraversierung beruhen, findet man

unter anderem in sozialen Netzwerken, internetbasierten Dienstleistungen, Be-

trugserkennung bei Telefonanrufen. In vielen dieser Anwendungen ist der zu-

grunde liegende Graph sehr gross und ändert sich kontinuierlich. Einfache lineare

oder fast-lineare Graphtraversierungs-Algorithmen, die für das RAM-Modell en-

twickelt wurden, sind in diesen Anwendungen oft nicht adäquat, da sie eine hohe

Anzahl von I/O-Zugriffen verursachen. Auch ist es nicht leicht diese Algorith-

men für dynamische Szenarien anzupassen. Ferner werden die Anforderungen

vieler Anwendungen bereits erfüllt, wenn die Gesamtlaufzeit im Average-Case

und nicht unbedingt im Worst-Case begrenzt ist. Diese Arbeit hat den Entwurf

und das Entwickeln von Graphtraversierungs-Algorithmen für massive und/oder

dynamische Graphen zum Thema.

Wir entwickeln mehrere I/O-effiziente Breitensuch-Algorithmen für massive, dünnbe-

siedelte, ungerichtete Graphen. Im Zusammenspiel mit Heuristiken zur Einhal-

tung von Worst-Case-Garantien, ermöglichen unsere pipelinebasierten Implemen-

tierungen die Praktikabilität von Breitensuche auf massiven Graphen. Für viele

Graphen mit rund eine Milliarde Kanten (mit 1–3 GB RAM) wird die Breitensuch-

Laufzeit von wenigen Monaten, die vom einfachen RAM-Modell-Algorithmus

zur Breitensuche benötigt werden, auf wenige Stunden reduziert. Unser Code ist

als Software-Paket vorhanden, das voraussichtlich in eine Externspeicher-Bibliothek

integriert wird.

Unsere detaillierte, experimentelle Untersuchung legt nahe, dass ein einfacher

Breitensuchalgorithmus für den externen Speicher, siehe Munagala and Ranade [115]

(MR BFS), gute Leistung erbringt, wenn der Graph einen kleinen Durchmesser

hat, oder seine Kanten im Speicher in der Reihenfolge abgelegt sind, die von
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der Breitensuche benötigt wird. Die bessere, asymptotische I/O-Grenze für den

Worst-Case des Breitensuch-Algorithmus von Mehlhorn und Meyer [106] (MM BFS)

führt zu einer besseren Leistung als bei MR BFS auf Graphen mit moderatem bis

grossem Durchmesser. MM BFS profitiert auch von unseren Heuristiken, welche

die Worst-Case-Garantien bewahren. Das Wissen über die Graphstruktur und den

Plattenparallelismus mildern die Wirkung des I/O-Engpasses bei MM BFS. Wir

zeigen auch Indizien dafür auf, dass cache-oblivious Breitensuch-Algorithmen

mindestens um Faktor Vier oder Fünf langsamer sind als ihre Pendants für den

externen Speicher, wenn der Graph auf der Platte residiert.

Flash-Speicher wird immer mehr zur dominanten Form der Speicherung für End-

benutzer im Mobile Computing. Da Speichermedien eine wichtige Rolle für die

Leistung von Traversierungs-Algrithmen spielen, wenn die Daten nicht in den

Hauptspeicher passen, ist es notwendig, die I/O-Merkmale von Speichermedien

zu verstehen, um reale Laufzeiten für diese Algorithmen vorherzusagen. Dieses

Verständnis kann ausgenutzt werden, um Algorithmen zu entwerfen, die in der

Praxis schneller sind.

Wir charakterisieren die Leistung von NAND-Flash basierten Speichermedien,

einschliesslich vieler solid-state Disks. Wir zeigen, dass diese Medien, im Gegen-

stz zu Festplatten, einen schnelleren wahlfreien Lese- als Schreibe-Zugriff haben.

Interessanterweise haben wir herausgefunden, dass die Kosten des wahlfreien

Schreibe-Zugriffs auf Flash-Medien ungleichmässig im Bezug auf die Zeit sind

und von der I/O-Historie des Mediums abhängen. Zusätzlich analysieren wir

die Wirkung von Ausrichtungsfehlern, Alterung, vorausgehenden I/O-Mustern,

usw., auf die Leistung dieser Medien. Wir zeigen, dass trotz der Ähnlichkeiten

von Flash-Speicher und RAM (schnelle wahlfreie Lese-Zugriffe) und von Flash-

Platten und Festplatten (beide sind blockbasiert) Algorithmen, die für das RAM-

Modell oder das Externspeicher-Modell entworfenen wurden, nicht das volle Po-

tential der Flash-Speicher-Medien ausschöpfen. Folglich gibt es also einen Bedarf

für ein neues Modell, das zwischen Lese- und Schreibe-Blöcken unterscheidet,

um beste Leistung auf Flash-Medien zu gewährleisten.

Wir entwickeln einen I/O-effiziente Breitensuch-Algorithmus für das Szenario,

in dem eine solid-state Disk als zusätzlicher Zweitspeicher und nicht als Ersatz

für die traditionelle Festplatte benutzt wird, um die komparativen Vorteile beider

Disks auszunutzen Wir zeigen, dass dies mindestens 25% schneller ist als ein

zufälliges Aufteilen der Daten auf beiden Disks.

Wir stellen einen einfachen Algorithmus vor, der beim Online-Einfügen von Kan-

ten die topologische Ordnung von einem gerichteten, azyklischen Graphen (DAG)

mit n Knoten beibehält. Dieser Algorithmus hat eine Laufzeitkomplexität von
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O(n2.75) unabhängig von der Anzahl m der eingefügten Kanten. Für dichte DAGs

ist dies eine Verbesserung des besten, vorherigen Ergebnisses von O(min{m 3
2 logn,

m
3
2 +n2 logn}), siehe Katriel and Bodlaender [91]. Während die Analyse nur im

inkrementellen Szenario gütlig ist, ist unser Algorithmus völlständig dynamisch.

Die Externalisierung unseres Algorithmus liefert neue interessante Ergebnisse für

dynamische, topologische Ordnungen im externen Speicher.

Ferner stellen wir die erste Average-Case-Analyse von Online-Algorithmen zur

Unterhaltung einer topologischen Ordnung vor. Für mehrere inkrementelle Al-

gorithmen, welche die Kanten eines kompletten DAGs in zufälliger Reihenfolge

einfügen, beweisen wir eine erwartete Laufzeit von O(n2 polylog(n)).



168 Zusammenfassung



Curriculum Vitae

Personal Data

Name Deepak Ajwani

Citizenship Indian

Marital Status Married

Telephone +45-89425785

Email ajwani@madalgo.au.dk

WWW http://www.mpi-inf.mpg.de/~ajwani

Research Interests

Algorithms for memory hierarchies, Dynamic graph algorithms, Algorithm Engi-

neering

Education

2005 - Ph.D. candidate, Computer Science

Universität des Saarlandes & Max Planck Institut für Informatik

Advisor: Prof. Dr. h. c. Kurt Mehlhorn

2003 - 2005 M.Sc., Computer Science

Universität des Saarlandes & Max Planck Institut für Informatik

Advisors: Dr.-Ing. Ulrich Meyer and Dr. rer. nat. Peter Sanders

1998 - 2003 M.Tech. + B.Tech., Computer Science and Engineering.

Indian Institute of Technology, Delhi

Advisor: Prof. Sandeep Sen
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Work Experience

• Worked as teaching assistant for a course on “Algorithms and Data Struc-

tures” with Dr.-Ing. Ulrich Meyer, Dr. Ernst Althaus and Dr. Surender Baswana,

Universität des Saarlandes.

• Worked as a software engineer (July – Oct 2003) with Read-Ink Tech-

nologies Pvt. Ltd., a company started by Stanford emeritus Prof. Thomas

Binford, to develop a handwriting analysis software for PDAs.

• Worked as teaching assistant for a course on “Numeric and Scientific Com-

puting” under Dr. Dheeraj Bhardwaj, Indian Institute of Technology, Delhi.

• Worked as an intern with Prof. Ron Shamir, Tel Aviv University during

May – July, 2001.

Awards and Scholarships

• Recipient of International Max Planck Research School scholarship.

• Recipient of Jawahar Gajree Scholarship from IIT Delhi.

• Secured 99.79 percentile in GATE-2003 (nationwide examination for mas-

ters and Ph.D. positions in India).

• Recipient of Merit-cum-means Scholarship from IIT Delhi.

• Secured 166th rank (All India) out of a total of 120,000 students in IIT-

JEE 1998.

• Recipient of National Talent Search Scholarship by National Council of

Education Research and Training (NCERT), India.

• Scholarship offered by Central Board for Secondary Education, India for

excellent performance in X Board (99 % in Science).
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Publications

Book chapters

• Realistic Computer Models.

In “Algorithm Engineering”, M. Müller-Hannemann and S. Schirra (eds.),

Springer, (to be published in 2008).

Joint work with Henning Meyerhenke.

• Design and engineering of external memory traversal algorithms for

general graphs.

Accepted for publication in the Springer LNCS book devoted to the DFG

Schwerpunktprogramm 1126 on “Algorithmik grosser und komplexer Net-

zwerke”.

Joint work with Ulrich Meyer.

Refereed Journal articles

• Breadth First Search on Massive Graphs.

Accepted for publication in the DIMACS Series book devoted to the 9th

Implementation Challenge.

Joint work with Ulrich Meyer and Vitaly Osipov.

• An O(n2.75) Algorithm for Online Topological Ordering.

Accepted for publication in the ACM Transactions on Algorithms.

Joint work with Tobias Friedrich and Ulrich Meyer.

• Average-case analysis of Online Topological Ordering.

(Under submission).

Joint work with Tobias Friedrich.

Refereed conference articles

• Efficient Algorithms for Flash Memories.

(Under submission).

Joint work with Andreas Beckmann, Riko Jacob, Ulrich Meyer and Gabriel

Moruz.
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• Characterizing the Performance of Flash Memory Storage Devices and

its Impact on Algorithm Design.

In Proceedings of the 7th International Workshop on Experimental Algo-

rithms (WEA’08), pp. 208–219, Massachusetts, USA, 2008.

A detailed version of this paper is available as Max Planck Institut für In-

formatik Research Report no. MPI-I-2008-1-001

Joint work with Itay Malinger, Ulrich Meyer and Sivan Toledo.

• Average-Case Analysis of Online Topological Ordering.

In Proceedings of the 18th International Symposium on Algorithms and

Computation (ISAAC’07), pp. 464–475, Sendai, Japan, 2007.

Joint work with Tobias Friedrich.

• On Computing the Centroid of the Vertices of an Arrangement and

Related Problems.

In Proceedings of the 10th Workshop on Algorithms and Data Structures

(WADS’07), pp. 520–529, Halifax, Canada, 2007.

Joint work with Saurabh Ray, Raimund Seidel and Hans Raj Tiwary.

• Conflict-Free Coloring for Rectangle Ranges Using O(n0.382+ε) Colors.

In Proceedings of the 19th ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA’07), pp. 181–187, San Diego, CA, USA, 2007.

Joint work with Khaled Elbassioni, Sathish Govindarajan and Saurabh Ray.

• Improved External Memory BFS Implementations.

In Proceedings of the 9th Workshop on Algorithm engineering and experi-

ments (ALENEX’07), pp. 3–12, New Orleans, USA, 2007.

Also accepted at 9th DIMACS implementation challenge on shortest path,

Piscataway, NJ, USA, 2006.

Joint work with Ulrich Meyer and Vitaly Osipov

• An O(n2.75) Algorithm for Online Topological Ordering.

In Proceedings of the 10th Scandinavian workshop on Algorithm Theory

(SWAT’06), pp. 53–64, Riga, Latvia, 2006

A preliminary version of this paper appeared in Electronic Notes in Discrete

Mathematics, vol. 25, pp. 7-12, 2006

Joint work with Tobias Friedrich and Ulrich Meyer

• A Computational Study of External Memory BFS Algorithms.

In Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms

(SODA’06), pp. 601–610, Miami, USA, 2006

Joint work with Roman Dementiev and Ulrich Meyer
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• Parallel Algorithm for Real Time Decision System for Financial Mar-

kets.

Accepted as a poster in the 10th annual International Conference on High

Performance Computing (HiPC’03), Hyderabad, India, 2003.

Joint work with Dheeraj Bhardwaj and Manish Sansi

Software Projects

• External Memory BFS

This project involved design, implementation and experimentation with ex-

ternal memory Breadth-First Search (BFS) algorithms. The software pack-

age consists of pipelined I/O efficient graph generators, BFS decompo-

sition verifiers, Munagala and Ranade’s BFS traversal algorithm and the

randomized and deterministic versions of Mehlhorn and Meyer’s approach.

An extensive empirical study analyzing the behaviour of these algorithms

for different graph classes in general, and for very large sparse graphs,

in particular, has been carried out. On many of these graphs, this soft-

ware brings down the runtime of computing BFS level decomposition

from months (with standard implementations, e.g. LEDA BFS) to a few

hours, thereby making BFS viable for massive graphs.

• Cache-efficient FFT

The goal of this software project was to study the effects of emulating the

cache (as given by S. Sen and S. Chatterjee) on the number of conflict

misses and the actual running time of FFT implementation. The project

involved a lot of experiments on the actual execution time and cache be-

haviour of various cache-efficient algorithms for bit-reverse permutations,

matrix transposition, general permutations and FFT. On various architec-

tures, the running time of my implementation in C is significantly better

than that of the widely used FFT library FFTW.

• Expander

During my internship with Prof. Ron Shamir (May – July, 2001) in Tel

Aviv University, I designed and implemented a Java software incorporating

different visualization tools for clustering algorithms. The software package

involved elaborate user documentation and a powerful GUI embedding the

clustering algorithms – Hierarchial, K-Means, SOM and CLICK, various

normalization routines and different kind of visualization tools like the red-

green matrix, similarity data matrix and some designed by me based on
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sammon mapping and other heuristics. Particular emphasis was laid to make

it reasonably fast, even for large biological data-sets. This software later

evolved into EXPANDER (EXpression Analyzer and DisplayER), a tool

for the analysis of gene expression data. Currently, it has more than 5,500

downloads and 50 citations.


