
Generalized Temporal Role Based Access Control Model (GTRBAC)
Part I

Specification and Modeling

James B. D. Joshi#, Elisa Bertino*, Usman Latif@, Arif Ghafoor#

#CERIAS and School of Electrical and Computer Engineering,
@CERIAS and Department of Computer Science,

Purdue University, West Lafayette, IN, USA
{joshij, ghafoor}@ecn.purdue.edu,

usman@purdue.edu
*Dipartimento di Scienze dell’ Informazione, Universita’ di Milano,

Milano, Italy
berino@dsi.unimi.it

Abstract

A temporal RBAC (TRBAC) model has recently been proposed that addresses the temporal

aspects of roles and trigger-based role enabling. However, it is limited to constraints on enabling

of roles only. We propose a Generalized Temporal Role Based Access Control model (GTRBAC)

that is capable of expressing a wider range of temporal constraints. GTRBAC is capable of

expressing periodic as well as duration constraints on roles, user-role assignments and role -

permission assignments. In GTRBAC, temporal constraints on role enablings and role activations

can be separately specified. A user-activated role can further be restricted to various activation

constraints such as cardinality constraint or maximum active duration constraint within a

specified interval. The GTRBAC model extends the syntactic structure of TRBAC model and its

event and trigger expressions subsume those of TRBAC.

Portions of this work were supported by the sponsors of the Center for Education and

Research in Information Assurance and Security (CERIAS)

 1

1 Introduction

Role based access control (RBAC) models have generated great interest in the security

community as a powerful and generalized approach to security [2, 13, 16, 18, 19]. In RBAC,

users are assigned memberships to roles and these roles are in turn assigned permissions. A user

can acquire all the permissions of a role of which he is a member. RBAC approach naturally fits

into an organizational context as users are assigned to organizational roles that have well-defined

responsibilities and are used to define access control requirements of the organization [7]. RBAC

models have been shown to be policy-neutral [16, 17, 20], and can be used to express a very wide

range of security policies including discretionary and mandatory, as well as user-defined or

organizational specific policies [14]. Many benefits of an RBAC approach include its support for

security management and the principle of least privilege [20]. For example, we can easily manage

a change in a user’s responsibility or role within his organization by assigning him the new role

and removing him from the old one. Furthermore, use of role hierarchies and grouping of objects

into object classes based on responsibility associated with a role makes the management of

permissions very easy. By configuring the assignment of the least set of privileges from a role set

assigned to a user when he activates the role, inadvertent damage can be minimized in a system.

Because of its relevance and above-mentioned benefits it provides, RBAC has been widely

investigated and several extensions to it have been proposed [2, 8, 13, 16, 18, 19]. Although

RBAC has today reached a good level of maturity, there are still relevant application

requirements not addressed by current RBAC models. One such requirement is related to the

temporal dimension that roles may have. In many organizations, functions may have limited or

periodic temporal duration. Consider, for instance, the case of a part-time staff in a company and

assume that any part-time staff is to be authorized to work within the company only on working

days between 9 AM and 1 PM. If a part-time staff is represented by a role, enforcing such a

requirement entails making sure that users log in under such a role only during the specified

temporal intervals. A way to support such a requirement is to specify times when the role can be

enabled so that a legitimate user can activate it. Roles can thus be enabled at certain time periods

and disabled at others. Additionally, the part-time role may need to be further restricted to only

two hours of active time in one session. Furthermore, depending upon organizational needs, the

number of part-time staff that can activate the role during the daytime may need to be different

from the number of part-time staff needed during night.

 2

Bertino at. el. [5] have recently proposed Temporal-RBAC (TRBAC) that addresses some of the

temporal issues related to RBAC. TRBAC is an extension of the RBAC model that is able to

support temporal constraints on roles, particularly role enabling. The main features it provides

include the periodic enabling/disabling of roles and temporal dependencies among them

expressed by means of role triggers, which are active rules that are automatically executed based

on the enabling and/or disabling of roles. Priorities are associated with both the triggers and

periodic enabling/disabling of roles to handle possible conflicts that can arise, when the

simultaneous enabling/disabling of a role is required. In such cases, a combination of priority and

denials-take-precedence rule are used to resolve the conflicts. TRBAC further allows an

administrator to issue run-time requests for enabling and disabling a role and restricted handling

of role activations by a user. The model, however, is not able to handle several useful temporal

constraints. In particular,

1. TRBAC does not include temporal constraints on user-role and role -permission assignments.

It thus assumes that only roles can be transient, i.e., only they are enabled and disabled at

different time intervals. In this paper, we show that in some applications, roles are more static

in that they are enabled at all times, and users and permissions assigned to them are transient

instead.

2. TRBAC only handles the temporal constraints on role enabling and does not include any

constraints on the actual activations of roles by users. Thus, TRBAC does not use a well-

defined, separate notion of role enabling and role activation. Because of this, TRBAC cannot

handle many constraints that are related to the activations of a role such as the constraints on

the maximum active duration allowed to a user, the maximum number of activations of a role

by the same user within a particular interval of time, etc. Although TRBAC has a limited

capability of restricting a user from activating a role, it is only handled as a run-time request

that an administrator makes.

3. As TRBAC does not consider duration constraints and constraints on actual activations of

roles, it does not include the notion of enabling and disabling of constraints. As activation

constraints need to be well defined with respect to the enabled time of a role, we introduce

the notion of constraint enabling/disabling in this paper.

A closely related work is the recently proposed constraint specification language called RCL2000

by Ahn et. al. [1]. However, they do not incorporate the temporal constraints in their specification

 3

language. They also do not model the separate notions of role enabling and role activations that is

essential for separately handling static and dynamic constraints.

In this paper, we illustrate that the constraints mentioned above are useful for several reasons and

a complete TRBAC model should allow them. We propose a Generalized TRBAC (GTRBAC)

model that subsumes TRBAC and can handle all the constraints mentioned above. We distinguish

between the notions of role activation from that of role enabling to incorporate various activation

constraints on role activations. We also extend the safety notion and the system architecture

introduced in [5] to establish the applicability of our model.

The paper is organized as follows. In section two, we introduce the notion of periodic expressions

and general background on the RBAC model. Section three presents the description of the

temporal constraints. These are syntactically and semantically formalized in section four where

we introduce the GTRBAC model. Additionally, we introduce the notion of safe temporal

constraints and activation base (TCAB) as an extension of safe role activation base (RAB) of [5].

In section five, we present the system architecture for implementing a GTRBAC system. We

discuss related work in section six and present our conclusions and future work in section seven.

2 Preliminaries

In this section, we provide a brief background on the RBAC model we refer to in this paper.

2.1 RBAC Model

The RBAC model as proposed by Sandhu et. al. in [20] consists of the following four basic

components: a set of users Users, a set of roles Roles, a set of permissions Permissions,

and a set of sessions Sessions. A user is a human being or an autonomous agent. A role is a

collection of permissions needed to perform a certain job function within an organization. A

permission is an access mode that can be exercised on objects in the system and a session relates

a user to possibly many roles. When a user logs in the system he establishes a session and, during

the session, he can request to activate some subset of roles he is authorized to play. An activation

request is granted only if the corresponding role is enabled at the time of the request and the user

is entitled to activate the role at that time. If the activation request is satisfied, the user issuing the

request obtains all the permissions associated with the role he has requested to activate. On the

sets Users, Roles, Permissions, and Sessions, several functions are defined. The

user role assignment (UA) and the role permission assignment (PA) functions model the

 4

assignment of users to roles and the assignment of permissions to roles respectively. A user can

be a member of many roles and a role can have many members. Moreover, a role can have many

permissions and the same permissions can be associated with many roles. The user function maps

each session to a single user, whereas function role establishes a mapping between a session and

a set of roles (that is, the roles which are activated by the corresponding user in the session). On

Roles, a hierarchy is defined, denoted by ≥. If ri ≥ rj, ri, rj ∈ Roles then ri inherits the

permissions of rj. In such a case, ri is a senior role and rj a junior role. The following definition

formalizes the above discussion.

Definition 2.1.1 (RBAC Model) [5] The RBAC model consists of the following components:

• Sets Users, Roles Permissions and Sessions representing the set of users,

roles, permissions, and sessions, respectively;

• PA: Roles → Permissions, the permission assignment function, that assigns

permissions to roles;

• UA: Users → Roles, the user assignment function, that assigns users to roles;

• user: Sessions → Users, which maps each session to a single user;

• role: Sessions → 2Roles that maps each session to a set of roles;

• RH ⊆ Roles × Roles, a partially ordered role hierarchy (written ≥). ?

2.2 Periodic Expression

Periodic time is represented by means of a symbolic, user-friendly formalism [11, 3]. Under such

formalism periodic time is represented by pairs 〈[begin, end], P〉, where P is a periodic

expression denoting an infinite set of periodic time instants, and [begin, end] is a time interval

denoting the lower and upper bounds that are imposed on instants in P.

The formalism for periodic expressions is based on the one proposed in [11], and relies on the

notion of calendars. A calendar is defined as a countable set of contiguous intervals,1 numbered

by integers called indexes of the intervals.

A subcalendar relationship can be established between calendars. Given two calendars C1 and C2,

we say that C1 is a subcalendar of C2, (written C1 ? C2), if each interval of C2 is exactly covered

by a finite number of intervals of C1. New calendars can be dynamically generated from the

1 Two intervals are contiguous if they can be collapsed into a single one (e.g., [1, 2] and [3, 4]).

 5

existing ones, by means of a function generate() (cf. 3] for a formal definition), a reference time

instant, and a basic calendar (the tick of the system), denoted by τ. In the following, we assume

the existence of a set of calendars containing the calendars Hours, Days, Weeks, Months, and

Years, where Hours is the calendar with the finest granularity, i.e., it is the basic calendar.

Calendars can be combined to represent more general periodic expressions, denoting periodic

instants not necessarily contiguous, like, for instance, the set of Mondays or the set of the third

hour of the first day of each month . Periodic expressions are formally defined as follows.

Definition 2.2.1 (Periodic Expression) [3]: Given calendars Cd, C1, …, Cn, a periodic expression

P is defined as:

P = ∑
=

n

i 1

Oi.Ci ? x.Cd

where O1 = all, Oi ∈ 2N ∪{all}, Ci ? Ci-1 for i = 2,.., n, Cd ? Cn, and x ∈ N. ?

Symbol ? separates the first part of the periodic expression that identifies the set of starting

points of the intervals it represents, from the specification of the duration of each interval in terms

of calendar Cd. For example, all.Years + {3, 7}.Months ? 2.Months represents the set of

intervals starting at the same instant as the third and seventh month of every year, and having a

duration of 2 months. In practice, Oi is omitted when its value is all, whereas it is represented by

its unique element when it is a singleton. x.Cd is omitted when it is equal to 1.Cn.

The infinite set of time instants corresponding to a periodic expression P is denoted by ∏(P).

Function ∏(P) is formally defined as follows.

Definition 2.2.2 (Function ∏()) [3]: Let P = ∑
=

n

i 1

 Oi.Ci ? x.Cd be a periodic expression, then

∏(P) is a set of time intervals whose common duration is Cd, and whose set S of starting points is

computed as follows:

• If n=1, S contains all the starting points of the intervals of calendar C1.

• If n>1, and On = {n1, .. , nk}, then S contains the starting points of the n1
th,..., nk

th

intervals (all intervals if On = all) of calendar Cn included in each interval of

∏(∑
=

n

i 1

Oi.Ci ? 1.Cn-1). ?

 6

For simplicity, in this paper the bounds begin and end constraining a periodic expression will

be denoted by a pair of date expressions of the form mm/dd/yyyy:hh, with the obvious

intended meaning; end can also be ∝. For instance, [1/1/2001,12/31/2001] denotes all the

instants in 2001. The set of time instants denoted by 〈[begin,end], P〉 is defined through the

use of function Sol(), formally defined as follows.

Definition 2.2.3 (Function Sol())[3]: Let t be a time instant, P a periodic expression, and begin

and end two date expressions. Define t ∈ Sol([begin, end], P) iff there exists τ ∈ ∏ (P) such

that t ∈τ, tb ≤ t ≤ te , where tb and te are the instants denoted by begin and end, respectively. ?

3 Temporal constraints and Role States

In this section, we discuss various types of temporal constraints relevant to role-based systems. In

particular, we show how temporal constraints can be meaningfully applied to various components

of an RBAC system by means of examples from various real world applications. Our temporal

constraint model is quite articulated and provides both duration and periodicity constraints as well

as other forms of specialized cardinality constraints.

A key aspect of our RBAC model, which is a natural consequence of the introduction of temporal

constraints, is the distinction between the notions of role enabling and role activation. Such a

distinction leads in turn to the notion of states of a role . In our model, a role can be in one of the

three states at any time as shown in Figure 1. A Disabled state of a role indicates that the role

cannot be used in any user session, i.e., a user cannot acquire the permissions associated with the

role. A role in the Disabled state can be enabled. The Enabled state indicates that users who are

entitled to use the role at the time of the request may activate the role, but no one has yet done so.

If a user now activates the role, the state of the role becomes Active. When a role is in Active

state, it indicates that there is at least one user who has activated the role. Once in Active state,

upon any subsequent activation by the same or other users, the role remains in the Active state.

When the role is in Active state, then upon deactivation, the role goes into the Disabled state if

there is only one session in which it is active, otherwise it remains in the Active state. A role in

Enabled or Active state goes into the Disabled state if a disabling event arises.

 7

Disabled

Enabled Active

enable

disable disable

deactivate

deactiva
te

activate

activate

In the remainder of this section, we first discuss the two forms of temporal constraints provided

by our model and illustrate the use of such constraints. We then introduce the specialized

activation cardinality constraints, provided by our model, whose purpose is to support fine-

grained control on role activation/deactivation.

3.2 Periodicity/Duration constraints

An important feature of our model is that periodicity/duration constraints can be applied to

various components of RBAC. Specifically, they can be applied to roles themselves, by

constraining the times when roles are enabled or active, and to user-role and role-permission

assignments. User-role assignments refer to the permissions given to users to play roles, whereas

role-permission assignments refer to the grants given to roles for accessing the protected

resources. Role enablings as well as assignments can be restricted to particular intervals or for a

specified duration depending on requirements. Similarly, role activations can be restricted to

duration constraints. Since a role activation is the result of granting a user request to activate the

role, we do not allow periodicity constraint on role activations, as such a request is made at the

discretion of the user. Periodic expressions can be used to specify start and end times between

which a role can be enabled, or an assignment granted. Duration constraints, however, only

specify the length of time that a role can be enabled or activated, or an assignment granted, and

do not specify start and end times, and hence such constraints come to effect only if some other

events or conditions trigger them.

Figure 1. States of a role

 8

In our model, we further refine duration constraints on role activations into two types: total active

duration constraints and maximum duration per activation constraints.

1. Total active duration constraint: The total active duration of any role may need to be

restricted in some cases. This notion is similar to that of the total time associated with a

calling card. After the users have utilized the specified total active duration for a role, it

cannot be activated again, even though it may still be enabled. Furthermore, the total active

duration specified may span a number of periods of role enabling and disabling. We further

classify total active duration constraint into:

Per role: This restricts the total active duration for a role, irrespective of who the users are.

Once the sum of all activations of the role reaches the maximum allowed value, no further

user activation of the role is allowed.

Per user-role : This restricts the total active duration for a role by a particular user. After the

specified user uses the total active duration of the role specified for him/her, only s/he is not

allowed to activate the role further.

2. Maximum duration constraint per activation: This constraint restricts the total

maximum duration allowed for each activation of a role. This notion is similar to limiting of

car parking to a fixed number of hours at one time. Once the maximum active duration

allowed expires for a user, the role activation for that user is removed. However, there may

still be other activations of the same role in the system, including one by the same user in

some other session. This constraint can also be per role or per user role.

Per role: This restricts the maximum active duration for each activation of a role for any user,

i.e., any user assigned to the role can acquire the permissions of the role for the specified

maximum duration in one activation, unless there is a per user-role constraint specified for

the user.

Per user-role : This restricts the maximum active duration allowed for each activation of a

role by a particular user. Whenever the specified user activates the role, he is allowed only

the specified maximum duration.

We now present various examples illustrating the use of such constraints in the various

components of an RBAC model.

 9

Examples of Periodicity/Duration constraints on user-role assignment

Some roles are often more static than others in that they can be enabled most of the time, whereas

users come and go. In such cases, the users assigned to the role may need to be constrained by

restricting how long or in which intervals they can use the role, as illustrated by the following

example.

Example 3.1 (Automated Hospital): Consider a fully automated hospital where access to

doors, computer terminals in various wards, elevators, TV/Movie programs, etc. are controlled

by using GTRBAC system. For example, to enter a corridor, a patient needs to activate his role

at the door. We consider the following three roles a patient may be assigned to at the time he is

admitted: Delivery_Patient, Cardiac_Patient and Virus_Related_Patient. Using these

roles, permissions to open certain doors and elevators can be restricted so that a

Delivery_Patient do not inadvertently run over a Virus_Related_Patient. Similarly a

Cardiac_Patient can be restricted to watch only certain TV channels or movies so that the

programs do not exert unnecessary/unhealthy stress on him. These roles are always in the

enabled state to allow patients to be admitted at any time so long as there are rooms or beds

available. When a patient is admitted, s/he is assigned to one of these roles for a projected

period of stay. Some other roles in the system include NurseOnDayDuty, NurseInTraining,

etc.

In the automated hospital example, we can identify the following two constraints on the user-role

assignments:

1. Periodicity constraint: The patient assignment may informally state that ‘Mary is assigned

to Delivery_Patient role in interval [12/1/2001, 12/20/2001]’. Within the specified interval,

Mary can use Delivery_Patient role to do all permitted accesses inside the hospital.

2. Duration constraint: A part-time nurse, say Mary, may be assigned to the

NurseOnDayDuty role for 3 hours on each workday after a particular nurse, say Cathy, has

activated the NurseOnDayDuty role that day. Here, once Cathy activates the

NurseOnDayDuty role, then Mary can assume the same role for three hours, although it is

not mandatory.

Examples of Periodicity/Duration constraint on role enabling

Some meaningful examples of constraints from the automated hospital are as follows.

 10

1. Periodicity constraint: Role NurseOnDayDuty must be enabled only from 9am to 9pm. A

user who is assigned to this role can activate it at any time within the specified period

provided s/he is not constrained by other temporal constraint.

2. Duration constraint: Role NurseInTraining may need to be enabled for 3 hours after a

particular nurse, say Cathy, has activated the role NurseOnDayDuty. Anyone assigned to

the NurseInTraining role may then activate it.

Examples of Periodicity/Duration constraint on role -permission assignment

Consider the following example of an online course.

Example 3.2 (Online Course): A professor offers an online course on ‘Computer

Security’. He creates a role called CSRegistrant as shown in Figure 2. He divides the online

course material into three sections –

1. Lectures: There are n lectures as depicted in Figure 2 - Lecture 1, Lecture 2 .., Lecture n.

The permission set related to the ith lecture is represented as PLi.

2. Home works : There are n homework assignments (shown as HW1,..,HWn)

corresponding to n lectures. The permission set associated with the ith homework

assignment is PHWi.

3. Homework solutions : There are n homework solutions (shown as HWSol1,…,HWSoln)

corresponding to the n homework assignments. The permission set associated with the ith

homework solution is PHWi.

The course starts on the date startdate and ends on enddate. The course duration is (n+2)

weeks – n lectures for n weeks and 2 remaining weeks for reviews and exams. The professor

uses the following three rules to control access to the different sections:

Rule 1: The ith lecture is made available to students on the start of the ith week of the

course (say Monday) and is made accessible till the end of the course.

In the graphical representation, the arcs between the role and permission-sets are labeled as

(x, y), where x denotes the date on which the associated permission set is assigned to the role,

and y denotes the date on which the permissions are de-assigned from the role. For example,

based on Rule 1, the permission set PL1 is associated with the arc label (startdate, enddate),

indicating that the permissions in PL1 are assigned to CSRegistrant role on startdate and

 11

removed from it on enddate. Similarly, permissions in PL2 are assigned to CSRegistrant

role in the interval (startdate + 1 week, enddate), which says that the permissions are

assigned to the role one week after the course starts, i.e., in the beginning of the 2nd week. We

note that for each lecture, once the permissions are assigned to the role, they are not de-

assigned until the end of the course. For homework assignments, he uses the following rules:

Rule 2a: Three days after the start of a weekly lecture, the corresponding homework

assignment will be made accessible to the students.

Rule 2b: One week after the end of the ith lecture, the ith homework assignments will be

removed (i.e., is made inaccessible).

Lecture 1 (PL1)

Lecture 2 (PL2)

Lecture n (PLn)

HW 1 (PHW1)

HW 2 (PHW2)

HW n (PHWn)

HWSol 1 (PHWSol1)

HWSol 2 (PHWSol2)

HWSol n (PHWSoln)

CSRegistrant

(sta
rtdate , en

ddate)

(startdate + 1 week, enddate)

(startdate + (n-1) week, enddate)

(startdate + 3 days, startdate + 2 weeks)

(startdate + 10 days, startdate + 3 weeks)

(startdate + (7.(n-1)+3) days, startdate + 2 weeks)

(startdate + 2 weeks, enddate)

(startdate + 3 weeks, enddate)

(startdate
+ (n+1) weeks, enddate)

Students
Assigned to

CSRegistrant

role

Intervals in which permissions
are assigned to CSRegistrant

Lectures

Homework
Assignments

Homework
Solutions

Figure 2. Online Course Example (Role -Permission assignment)

Whereas Rule 2a seems reasonable, Rule 2b might appear unnecessary. Here, we assume that

with each assignment there is a particular submission procedure to be followed, which

involves executing various programs. We can assume that the PHW1 contains permissions

related to executing these required programs for the submission process too. Now consider

 12

the arc for PHW1 , which is (startdate + 3 days, startdate + 2 weeks). As the first lecture

begins on startdate , PHW1 should be accessible to the students on (startdate + 3 days) as per

Rule 2a. Again, the first lecture ends on (startdate + 1 week) and hence the permissions in

PHW1 are removed on startdate + 2 weeks, i.e. 1 week after the end of the corresponding

lecture.

The rule corresponding to the homework solutions is:

Rule 3: when a homework assignment is removed as in rule 2b above, then the

corresponding solution is posted and it is made available till the end of the course.

For example, consider the arc for PHWSol1, i.e., (startdate+2 weeks, enddate). As the first

homework assignment is removed on (startdate + 2 weeks), its solution PHWSol1 is assigned

to CSRegistrant role on (startdate + 2 weeks). As the arc shows, PHWSol1 is de-assigned

from the role on enddate.

The example illustrates an efficient use of temporal-constraint on role -permission assignment to

enforce the access policy defined by the three rules. We see that the course access policy can be

expressed by using periodicity constraints on role -permission assignments. Some of the

periodicity constraints can also be specified as duration constraints. For example, we can have a

duration constraint on the assignment of PHW1 to the CSRegistrant role as – “PHW1 is

assigned to role for a duration (2 weeks – 2)”. Then we can trigger this assignment on the third

day, after PL1 is assigned to the role.

Examples of Duration constraint on role activation

Consider the following example of a video library.

Example 3.3 (Video Library): A user, say John, subscribes to a video library (VL) so that he

is allowed 6 hours of movie time per week. The VL administrator assigns John to a role

MovieViewer. The MovieViewer role is assigned a total of 600 hrs per week of total activation

time and each user is allowed a maximum of 6 hrs/week out of that. Another user, say Mary,

wants 10 hrs per week of time. In that case the VL administrator can assign Mary to the

MovieViewer role and further specify that she be restricted to a maximum of 10 hrs/week of

active time. For finer control over resource use, the VL administrator further employs a

constraint that says each user can activate the MovieViewer role for at most 2 hours in each

activation. Further, upon John’s request the VL administrator adds yet another restriction that

John be allowed to activate the role for maximum of 3 hours in each activation.

 13

The example illustrates the following types of temporal constraints on the activation period of a

role within a specified interval:

1. Total active duration constraint: The 600 hour-duration per week allowed for the

MovieViewer role is a constraint on the total active duration of the role, whereas the total of

6 hrs per week allowed to individual users is a restriction per user. In particular, note that no

matter who uses the MovieViewer role, once the sum total of durations of all its activations

exceeds 600 hours, it can no longer be used by any user for the remaining part of the week.

When the new week begins, it will again have 600 hours as total activation time. The 10

hrs/week restriction for Mary is a per-user-role constraint.

2. Maximum duration constraint per activation: The additional restriction that each user can

activate the MovieViewer role for 2 hours in each activation of the role is a per-role

maximum duration constraint. Similarly, the restriction of maximum of 3 hours activation

time for John each time he activates the role is a per-user-role constraint. Since, John has 6

hrs/week of active time, he needs to have at least two activations of MovieViewer role each

week in order to fully use the 6 hrs/week time allowed to him. Similarly, since Mary has total

of 10 hours per week, she has to activate the MovieViewer role atleast 5 times (2 hours per

activation) in order to utilize all 10 hours of time.

3.3 Activation Cardinality Constraints

The number of activations of any role may need to be restricted to control access to critical

objects or resources in some applications. For example, depending on the capability of the video

servers, the MovieViewer role in Example 3.3 may need to be limited to a specified

maximum number of concurrent activations at any time. Furthermore, we may want to constrain

the number of concurrent activations of the MovieViewer role by each user to prevent one person

accessing all the resources while others are denied access, thus preventing denial of service. In

our model, we further classify activation cardinality constraints into:

3. Total n activations constraint: In a given period of time, a role may be limited to n total

activations. This includes overlapping or non-overlapping activations. This can be of two

types:

Per role: This constraint allows at most n activations of a role in a given period of time. The

activations of a role may be associated with the same or different users. The role may be

enabled and disabled a number of times before the total number of activations of the role

allowed is reached, after which the role cannot be activated.

 14

Per user-role: This constraint restricts a total of n activations of a role by a particular user.

Each user may be specified to have a different cardinality restriction.

4. Maximum n concurrent activations constraint: A role may be restricted to n concurrent

activations at any time. This may also be of two types:

Per role: This restricts the number of concurrent activations of a role to a maximum number.

The activation of these roles may be associated with the same or a set of different users.

Per user-role: This restricts the total of concurrent activations of a role by a particular user to

a given number. Different users may be allowed different number of concurrent activations of

the same role.

4 Generalized TRBAC

In this section, we present the formal framework for a GTRBAC that can handle the constraints

discussed in Section 3. We present the syntax and semantics of the expressions we use to specify

various GTRBAC constraints.

4.1 Syntax

In this subsection, we introduce the syntax of our constraint language, so to formally define all

components of constraints. We also introduce the notion of run-time requests. Run-time requests

are necessary in order to model activation of roles by a valid user, which is done at his/her

discretion. Furthermore, a security administrator may need to enable or disable roles and

assign/de-assign users or permissions to roles at run-time. Such events are modeled as run-time

requests that may or may not be granted depending upon the existing constraints. Before

introducing the syntax, we introduce some basic event expressions used by the constraint

language.

We use (Prios, ?) as a totally ordered set of priorities and assume that Prios contains two

distinct elements ⊥ and ? such that, for all x ∈ Prios, ⊥ ? x ? ? . We write x ? y, if x ? y and

x ≠ y.

Definition 4.1.1 (Event Expressions, Role Status Expressions and Assignment Status

Expressions)

1. A simple event expression has one of the following forms:

a. enable r or disable r where r ∈ Roles, where r ∈ Roles.

b. assignU r to u or de-assignU r to u, where r ∈ Roles and u ∈ Users.

 15

c. assignP p to r or de-assignP p to r, where p ∈ Permissions and r ∈

Roles.

d. enable c or disable c, where c is a duration constraint expressed as (D, Dx, pr:E)

or activation constraints of form (C) and (D, C). These constraints are elaborated in

Table 1 and discussed below.

2. Prioritized event expressions have the form pr:E, where pr ∈ Prios and E is a simple event

expression;

3. Role status expressions have one of the following forms:

a. enabled r or ¬enabled r (or disabled r), where r ∈ Roles.

b. active r for u or ¬active r for u , where r ∈ Roles and u ∈ Users.

4. Assignment status expressions have the following forms

a. assigned r to u or ¬assigned r to u, where r ∈ Roles and u ∈ Users.

b. assigned p to r or ¬assigned p to r, where r ∈ Roles and p ∈

Permissions. ?

Users can activate an enabled role if they are entitled to do so by valid assignments. A user makes

a request for activation of a role at run-time within a user session. S/he may activate the same role

in several user sessions concurrently if permitted by activation constraints. The system must

ensure that activation constraints are satisfied before granting a user request for activating a role

and for all instants at which the role activation is associated with a user. An administrator may

also need to activate an event at run-time. We define run-time requests that model these two types

of events as follows.

Definition 4.1.2 (Run-time request): A run-time request expression has one of the following

forms:

1. a user’s run-time request expression to activate a role has the form:

s: activate r for u after ? t, or

s: deactivate r for u after ? t

where r ∈ Roles and u ∈ Users, s is the session attached to the request, and ? t is

the duration. The priority of this event is assumed to be ? .
2. an administrator's run-time request expression has the form:

pr:E after ? t

 16

where pr:E is a prioritized event expression and ? t is the duration expression. The

priority and the delay expressions can be omitted, in which case, by default pr =?

and ? t = 0. ?

A relevant requirement in many application domains is represented by the need of automatically

executing certain actions, such as the enabling or disabling of a role, upon occurrence of an event.

Certain events are thus result of occurrences of other events. In our model, we provide the notion

of trigger, defined below, in order to support such event dependencies.

Definition 4.1.3 (Triggers): A trigger expression has the form

E1 ,…, En , C1 ,…, Ck → pr:E after ? t

where Eis are simple event expressions or run time requests, Cis are role status expressions or

assignment status expressions, pr:E is a prioritized event expression with pr? ? , E is a simple

expression such that E ∉ {s:activate r for u}, and ? t is a duration expression. ?

We note that, because an activation request is made at a user’s discretion, we do not allow event

expression “s:activate r for u” to appear in the head of a trigger. However, such an event

can trigger other events and hence can be a part of the body of a trigger. We also note that the

event “s:de-activate r for u” is allowed to appear in the head of a trigger as it can be used

to enforce system controls.

Based on the definitions of prioritized events, run-time requests and trigger expressions

introduced above, we obtain the complete set of constraint expressions as shown in Table 1.

The description of the syntax of these expressions follows next.

The periodicity constraint expressions have the general form (I, P, pr:E). The pair (I,P) specifies

the intervals in which the event E takes place. E can be a role enabling event

“enable/disable r”or either of the assignment events “assignU/deassignU p to r”

and “assignP/deassignP p to r”.

Figure 3 shows periodicity constraints on user-role assignments. The two grayed thick lines at the

bottom represent the intervals (t3, t6) and (t8, t11) in which role r is enabled. The thick dark lines

are intervals in which users are assigned to role r. The dotted portions of the thick dark lines

indicate the valid user assignment periods that are ineffective because the role is disabled at those

 17

intervals. For example, user u1 is assigned to role r in interval (t1, t5). However, user u1 can only

activate role r in the interval (t3, t5), as the role is disabled in the remaining part of interval (t1, t5).

Table 1. Constraint Expressions

Constraint
categories

Constraints Expression Set/Type

User-role assignment (I, P, pr:assignU/deassignU r to u) CURp
Role enabling (I, P, pr:enable/disable r) CRp

Periodicity
Constraint

Role-permission assignment (I, P, pr:assignP/deassignP p to r) CPRp
User-role assignment ([(I, P)| D], DU, pr:assignU/deassignU r to u) CUrd
Role enabling ([(I, P)| D], DR, pr:enable/disable r) CRd

Duration
Constraints

Role-permission assignment ([(I, P)| D], DP, pr:assignP/deassignP p to r) CPRd
Per-role ([(I, P)| D], Dactive, [Ddefault], activeR_total r) Ca

dr Total active role
duration Per-user-role ([(I, P)| D], Duactive, u, activeUR_total r) Ca

dur
Per-role ([(I, P)| D], Dmax, activeR_max r) Ca

mr

Duration
Constraints on
Role Activation Max role duration per

activation Per-user-role ([(I, P)| D], Dumax , u, activeUR_max r) Ca
mur

Per-role ([(I, P)| D], Nactive, [Ndefault], activeR_n r) Ca
nr Total no. of activations

Per-user-role ([(I, P)| D], Nuactive, u, activeUR_n r) Ca
nur

Per-role ([(I, P)| D], Nmax, [Ndefault], activeR_con r) Ca
nnr

Cardinality
Constraint on

Role Activation Max. no. of concurrent
activations Per-user-role ([(I, P)| D], Numax , u, activeUR_con r) Ca

nmur
Trigger E1 ,…, En , C1 ,…, Ck → pr:E after ? t Ctr

Constraint
Enabling

pr:enable/disable c
 where c ∈{(D, Dx, pr:E), (C) , (D, C)}

Cc

Users’ activation request (s:(de)activate r for u after ? t)) Cu

(pr:assignU/de-assignU r to u after ? t) Cadmin

(pr:enable/disable r after ? t) Cadmin

(pr:assignP/de-assignP p to r after ? t) Cadmin

Run-time
Requests

Administrator’s run-time request

(pr:enable/disable c after ? t) Cadmin

u1

u2

u3

u4

t1 t 2 t3 t4 t5 t6 t7 t8 t10 t 11 t12

Role r is enabled in intervals (t3, t6) and (t8, t11).
User u 1 is assigned to r in interval (t1, t5) but can use r only in interval (t 3, t 5).
User u 2 is assigned to r in interval (t4, t10) but can use r only in intervals (t4, t6) and (t8, t10).
User u 3 is assigned to r in interval (t2, t7) but can use r only in interval (t3, t 6).
User u 4 is assigned to r in interval (t2, t12) and can use r whenever it is enabled.

s1

s2

s3

s4

The general form for the duration constraint expressions for role enabling and assignments is ([(I,

P,)|D], Dx, pr:E), where x is R,U or P, corresponding to the three types of possible events:

“enable/disable r”, “assignU/deassignU p to r” and “assignP/deassignP p

Figure 3. Periodicity constraint on user-role assignment

 18

to r”. The symbol “|” between (I, P) and D indicates that either (I, P) or D is specified. The

square bracket in [(I, P,)|D] implies that it is an optional parameter. Hence, we have the following

three forms of duration constraints: (I, P, Dx, pr:E), (D, Dx, pr:E) and (Dx, pr:E).

The form (I, P, Dx, pr:E) indicates that the event E is valid for the duration Dx within each valid

periodic interval specified by (I, P). The form (Dx, pr:E) implies that the constraint is valid at all

times. Thus, at any time, if event E is caused then it is restricted by duration Dx. The constraint c

= (D, Dx, pr:E) implies that there is a valid duration D within which the duration restriction Dx

applies on event E. In other words, the constraint c needs to be enabled for duration D. To support

enabling of such constraints (and activation constraints discussed later) we include the constraint

enabling expressions as shown in Table 1. The constraint enabling/disabling event has the

expression “enable/disable c”, where c is a constraint expression (D, Dx, pr:E). A

constraint enabling event may be a run-time request or a triggered event.

Activation constraints have the general form ([(I, P)| D], C), where C represents the restriction

applied to a role activation; for example, C = (Dactive, [Ddefault], activeR_total r) indicates the

total active role duration per-role constraint. [(I, P)| D] is an optional parameter and has the same

meaning as in duration constraints. Thus, an activation constraint may be in one of the three

forms (I, P, C), (D, C) or (C). The first two forms are similar to those for duration constraints.

The form (C) implies that the activation restriction specified by C applies within each enabling of

the associated role. If C is a per-role constraint, it has an optional default parameter that allows

specifying the default value for the per-user-role restriction. For example, if C = (Dactive, [Ddefault],

activeR_total r) then Ddefault indicates the default per-user-role active duration value applied to

all the users assigned to the role, e.g., the 6 hrs/week limit in Example 3.3. If Ddefault is not

specified then we assume that Dactive = Ddefault, i.e, a single user can use up the entire duration

Dactive. As shown in the table, parameters of other activation constraints can be similarly

interpreted.

Figure 4 illustrates the three different forms of an activation constraint C, where C is a cardinality

constraint. In Figure 4(a), we have constraint c = (D, C). A trigger or a run-time request at time t2

enables this constraint. c is valid for duration D, which for this case is the interval (t2, t5)

indicated by the dark thick line. However, within interval (t2, t5), there is a subinterval (t3, t4) in

which role r is not enabled. The cardinality constraint, however, implies that the total number of

activations of role r in the intervals (t2, t3) and (t4, t5) combined should not exceed Nactive. In

Figure 4(b), the working of an activation constraint of form c = (I, P, C) is illustrated. Here, (t2,

 19

t3) and (t6, t7) are actual intervals in (I, P) and hence, in each of these intervals the total number of

activations of role r is restricted to Nactive. In Figure 4(c), the constraint of form c = (C) is shown.

Here, in each enabling period of role r, the constraint is valid. For example, role r is enabled by a

periodicity constraint in the intervals (t1, t2), (t3, t4) and (t7, t8). In each of these intervals, at the

most Nactive activations of role r are allowed. Furthermore, role r is also enabled in the interval (t5,

t6) by a duration constraint. The activation constraint c also applies to this interval and within this

interval also only Nactive activations of role r are allowed.

t2 t3 t4 t5 t6t1

c = (I ,P, N a c t i v e, active r - total r)

r enab led

t2 t3 t4 t5 t6t1

c = (D , N a c t i v e, a c t i v er - total r)

enable c
Tr iggered

or
r u n- t ime

D u r a t i o n = D

r enab led

Tota l number o f ac t iva t ions o f r i n
these i n t e rva l s combined shou ld be

l e s s t han o r equa l t o N act ive

Tota l number o f ac t iva t ions o f r i n
each o f these in terva l s shou ld be

less than or equal to N act ive

t8t7

c = (N a c t i v e, active r - total r)

r e n a b l e d b y (I , P, enable r)

The cons t ra in t i s ac t ive a t a l l t imes and i s enforced for each enab led per iod of ro le r .
To ta l number o f ac t iva t ions o f r in each o f t hese shaded in t e rva l s should be less than or equal to Nact ive

(t2 , t 3) , (t6, t7) ∈ Π (I , P)

r e n a b l e d u s i n g (D , enable r)

D u r a t i o n = D

(a) (b)

(c)

t1 t2 t3 t4 t5 t6 t7 t8

t2, t3 , t6 , t 7 ∈ S o l(I , P)

Let the constraint set be:
C1. (7, activeR_n , r),
C2. (4, activeR_con, r),
C3. (2, u 2, activeUR_n, r),
C4. (x, u 2, activeUR_total, r) and
x = sum {(t2 , t 11) , (t4 , t10), (t10 , t 11)}

t1 t2 t3 t
4

t5 t6 t7 t8 t10 t1 1 t12

1. In shaded area a, no new activations of r is allowed as the constraint C4 specifies that
the number of concurrent activations is 4.

2. In shaded portions b and c , there are two concurrent activations of r by u2 - in session
pairs (s 2, s4) and (s 2, s 5). And hence, C3 does not allow any new activation of r by u2 .

3. In d, two activations of r can be allowed, as per C1, but, these activations cannot be
by u2 because at t11, u 2 uses its allocated total activation time as stated in constraint
C4.

u3

u1

u2

u2

u2

s1

s2

s3

s4

No new activation of r is allowed here

s5

No new activation of r by u 2 is allowed

a

b

c

d

 Figure 5. Activation constraint

Figure 4. Constraint enabled (a) for a specified duration (b) in specified intervals (c) at all times.

 20

An example consisting of a set of activation constraints is depicted in Figure 5. Remaining

constraint expressions in the table include run-time requests as per Definition 4.1.2 and triggers as

per Definition 4.1.3. The last column indicates the names of the sets that contain corresponding

constraint types, e.g., CURp is the set of all periodicity constraints on user-role assignments. We

will also use them to represent constraint of certain types, e.g., constraint of type CURp refers to

the periodicity constraints on user-role assignments.

The notion of conflicting events plays a crucial role in the semantics of GTRBAC and is

formalized by the following definition, which refers to Table 2. The table enlists all the

conflicting pairs of events possible in GTRBAC under columns E1 and E2. A pair of events E1

and E2 in a row conflict if the corresponding condition C holds. Conflicting events cannot happen

simultaneously. For example, (a) and (b) indicate that events “disable r” and “enable r”

conflict with each other.

 Table 2. Conflicting events

 E1 E2 = Conf (E1) Condition (C)

a. enable r disable r’

b. disable r enable r’

(r = r’)

c. assignU r to u de-assignU r’ to u’

d. de-assignU r to u assignU r’ to u’

(r = r’ and u = u’)

e. assignP p to r de-assignP p’ to r’

f. de-assignP p to r assignP p’ to r’

(r = r’ and p = p’)

g. s:deactivate r for u s':activate r’ for u’ (s = s’, r = r’ and u = u’)

h. s’:deactivate r’ for u’ (s = s’, r = r’ and u = u’)

i. disable r’ (r = r’)

j.

s:activate r for u

 de-assign r’ to u’ (r = r’ and u = u’)

k. enable c disable c’

l. disable c enable c’

(c = c’)

Definition 4.1.4 (Conflicting Events): Let E1, E2 be two event expressions. We say that E2 is a

conflicting event of E1, written as E2 = Conf (E1), as shown in Table 2, if the corresponding

condition C holds true.

In Table 2, (h), (i) and (j) indicate that there are three events that conflict with an activation

event. We note that the conflicts in (i) and (j) involve different categories of events – activation

and disabling or de-assignment events. If there is a request for an activation of a role r and at the

same time, if there is another event attempting to disable r, a conflict results, as both cannot be

 21

satisfied simultaneously. Similarly, if there is a user u requesting an activation of role r and at the

same time there is an event that de-assigns the user u from role r , then both the events cannot

occur simultaneously. We use priorities and precedence rules to eliminate conflicts. We also note

that events “enable r ” and “s:deactivate r for u” do not conflict as both can occur

simultaneously. In this paper, unless otherwise specified explicitly, when we refer to a conflicting

event of an activation event, we will refer to the conflicting pair (h).

We refer to the set of all the event expressions, constraints and triggers in a GTRBAC system as

Temporal Constraint and Activation Base (TCAB). We define a TCAB as follows.

Definition 4.1.5 (Temporal Constraint and Activation Base): A Temporal Constraint and

Activation Base (TCAB) T consists of the following components :

1. A set of role enabling and assignment constraints of form (I, P, pr:Es) or ([I,P,|D,], Dx,

pr:Es), where

a. I is a time interval;

b. P is a periodic expression;

c. Dx is the duration restriction on event Es;

d. D is the duration in which the duration restriction specified by Dx applies to Es;

e. pr:E is a prioritized event expression with p ? ? .

2. A set of activation constraints of the forms ([I,P,|D,] C), i.e., (I, P, C), (D, C) or (C),

3. A set of triggers as per Definition 4.1.3. ?

In the formalization, the user’s run-time requests and the administrator’s run-time requests are

modeled as a stream RQ of run-time request expressions. RQ(t) represents the set of run-time

requests at time t. Here, time points are expressed as integers, starting from 0.

Definition 4.1.5 (Request Stream) A request stream is a sequence RQ = 〈RQ(0), RQ(1),…,

RQ(t), …〉, where each RQ(t) is a (possibly empty) set of run-time request expressions. ?

4.2 Semantics

GTRBAC, like TRBAC, uses the notion of blocked events to resolve conflicts. When priorities

cannot resolve conflicts, the model uses negative-takes-precedence principle. By this principle,

for example, disabling of a role takes precedence over enabling of the role and deactivation of a

role takes precedence over the activation of the role.

 22

Definition 4.2.1 (Blocked Event, Nonblocked) Let S be a set of prioritized event expressions.

Let pr:E be a prioritized event expression. We say that pr:E is blocked by S if there exists q ∈

Prios such that (q:Conf(E)) ∈ S and either

1. E ∈ {enable r, assignU r to u, assignP p to r, s:activate r for u, enable c} and

p ? q, or

2. E ∈ {disable r, de-assignU r to u, de-assignP p to r, s:deactivate r’ for u,

disable c } and p ? q;

The set of all members of S that is not blocked by S will be denoted by Nonblocked(S). ?

We note that the conflict between “disable r” (or de-assignU r to u) and “s:activate

r for u” does not create any problem as role activation is a low priority event and will always

be blocked by a role disabling event (or deassignment event). However, as the definition of the

caused events later shows, care must be taken to ensure that disabling event is not blocked, if it is

to block an activation event. The following example illustrates the notion of blocked events.

Example 4.1 Let S = {H:enable r0,H:disable r0,VH:enable r1,

H:disable r1}. Thus, Nonblocked(S) = {H:disable r0, VH:enable r1}, since

H:enable r0 is blocked by H:disable r0, by the first condition of Definition 4.2.1

(which specifies the disable -takes-precedence principle), whereas H:disable r1 is blocked

by VH:enable r1, by the second condition of Definition 4.2.1

The dynamics of event occurrences, and various states of role enablings and activations in

GTRBAC is represented as a sequence of snapshots. Each snapshot models the current set of

prioritized events and the status of role, user-role and role-permission assignments as well as that

of the activation constraints. To efficiently represent status information within these snapshots,

we first define the two structures, called respectively as u-snapshot and r-snapshot.

Definition 4.2.2 (u-snapshot): We define a u-snapshot for user u with respect to a role r as the

tuple (u, r, dua, nua, dm, nm, Su,, Du), where:

• r ∈ Roles, u ∈ Users such that u is assigned to r,

• dua is the remaining total duration for which u can activate r,

• nua is the remaining number of times that u can activate r,

• dm is the maximum duration for which u can activate r at one time,

• nm is the maximum number of concurrent activations of r that u can have,

 23

• Su = (s1, s2, ... , sk) is the list of sessions in which u is currently using r and Du = (d1, d2, ...

, dk) is the list of durations of activations of r by u in each of these sessions.

Definition 4.2.3 (r-snapshot): We define an r-snapshot for a role r as the tuple (r, dra, nra, drm,

nrm, status, Pr, Ur) where:

• r ∈ Roles,

• dra is the remaining total active duration for r,

• nra is the remaining total number of activations of r,

• drm is the remaining total active duration for r,

• nrm is the remaining total number of activations of r,

• status ∈ {enabled, disabled} is the current status of r.

• Pr is the set of permissions that are assigned to r.

• Ur is the set of u-snapshot such that, for all ut ∈ Ur , ut.r2 = r. ?

By using the above structures, we model events, various role and assignment status, and status of

constraints, by three distinct sequences EV, ST and CT, respectively. We note that activation

constraints of forms (D, C) and (C) can be active at certain instants of time. To capture this

semantics, we use CT to maintain such a list of valid activation constraints.

Definition 4.2.4 (System Trace) A system trace - or simply a trace – consists of infinite

sequences of EV, ST and CT, such that for all integers t ≥ 0:

• the tth element of EV, denoted as EV(t), is a set of prioritized event expressions; intuitively,

this is the set of events which occur at time t;

• the tth element of ST, denoted as ST(t), is a set of r-snapshots corresponding to existing roles

at time t. Algorithm ComputeST in Figure 6 is used to compute ST(t) for each t; and

• the tth element of CT, denoted as CT (t), is a set of activation constraints of forms (C) and (D,

C) valid at time t. Algorithm ComputeCT in Figure 8 is used to compute CT(t).

We assume that a system starts at an initial state where all the roles are disabled and there are no

user-role assignments, role -permission assignments or valid activation constraints. Such a state

exists at time t = 0. As the time progresses the events listed in Table 2 take place changing

various role and assignment status and valid activation constraints. The notion of a GTRBAC

trace with such an initial state is formalized by a canonical trace defined as follows.

Definition 4.2.5 (Canonical Trace) We say that a trace is canonical if

2 We use ut.r to refer to the element r of the u-snapshot ut.

 24

• ST(0) = set of r-snapshots of the form (r, ∝, ∝, ∝, ∝, disabled, ∅, ∅) for all roles r in the

system, i.e., all r-snapshots are initialized to (r, ∝, ∝, ∝, ∝, disabled, ∅, ∅), and

• CT(0) = ∅, i.e., CT is initially empty.

The above trace definitions enforce the intended semantics of events. The set

Nonblocked(EV(t)) contains the maximal priority events that actually happen. We note that

the constraints determine a unique state. We can see that the status information contained in ST(t)

concerning the active state of roles depends on the valid activation constraints in CT(t). Given the

previous state, event set and the valid activation constraint set, the following proposition holds.

Proposition 4.2.1 For all event sequences EV, the initial status S0, and an initial set of valid

activation constraints C0, there exists a unique trace (EV, ST,CT) with ST(0)=S0 and CT(0)=C0.

We use algorithm ComputeST shown in Figure 6 to update the status information based on the

caused events that are nonblocked. It works as follows. All events in Nonblocked(EV(t))

happen at time t. The status information ST(t) contains effect of the events in

Nonblocked(EV(t)) on ST(t-1). First, all de-assignment events are handled. De-assigning of

users and permissions simply involves removing associated u-snapshots, and specified

permissions associated with an r-snapshot.

In Step 3, the disabling of a role is handled. First, the status is changed to disabled and. If a

per--role constraint of form (C) is present, the values for dra, nra , drm and nrm are adjusted. dra= ∞

indicates that in the next role enabling there is possibly no total activation constraint. Next, using

the FOR loop, all active user sessions corresponding to the disabled role are removed from the r-

snapshot. For constraints of forms (D, C) and (I, P, C), we do not need to make any update, as we

simply use value 0 of a constraint variable as implying that the associated constraint cannot be

satisfied anymore. In Step 4, per-role constraints of type (I, P, C) or (D, C) that are present in

CT(t-1) but not in CT(t) are considered. These are constraints that just became inactive. The

corresponding constraint variables are reset to ∞.

 25

Figure 6. Algorithm computeST

Algorithm ComputeST
Input : t, EV, ST, CT;
Output : ST(t);
/ * Initially ST(0) = (r, ∝, ∝, ∝, ∝, disabled, ∅ , ∅). For each pair (r, u) we use the associated snapshots rt = (r, dra, nra, drm,
nrm,status, Pr, Ur) , and ut = (u, r, dua, nua, dm, nm, Su, Du), where ut ∈ Ur. */
Let C1 = Dactive, [Ddefault], activeR_total r; C2 = Duactive, u, activeUR_total r;
 C3 = Dmax , activeR_max r; C4 = Dumax , u, activeUR_max r;
 C5 = Nactive, [Ndefau lt], activeR_n r; C6 = Nuactive, u, activeUR_n r;
 C7 = Nmax , [Ndefault], activeR_total r; C8 = Numax , u, activeUR_con r;
STEP 1: FOR each (de-assign r to u) ∈ Nonblocked(EV(t)) DO
 Ur = Ur - {ut};
STEP 2: FOR each (de-assign p to r) ∈ Nonblocked(EV(t)) DO
 Pr = Pr - {p};
STEP 3: FOR each (disable r) ∈ Nonblocked(EV(t)) DO
 rt.status = disabled;
 IF ((C1)∈ CT (t)) THEN dra = ∞; IF ((C3)∈ CT (t)) THEN drm = ∞;
 IF ((C5)∈ CT (t)) THEN nra = ∞; IF ((C7)∈ CT (t)) THEN nrm = ∞;
 FOR each ut ∈ Ur DO
 Set (Su, Du) to (∅,∅);
 IF (C2 ∈ CT (t) OR C1∈ CT (t)) THEN dua = ∞; IF (C4 ∈ CT (t) OR C3∈ CT (t)) THEN dm = ∞;
 IF (C6 ∈ CT (t) OR C5∈ CT (t)) THEN nua = ∞; IF (C8 ∈ CT (t) OR C7∈ CT (t)) THEN nm = ∞;
STEP 4 FOR each ((X, C) ∈ CT (t-1) and (X, C) ∉ CT (t)) where X ∈ {(I, P), D} and C is a per-role activation constraint DO
 IF C = C1 THEN dra = ∞; IF C = C3 THEN drm = ∞;
 IF C = C5 THEN nra = ∞; IF C = C7 THEN nrm = ∞;
STEP 5: FOR each (enable r) ∈ Nonblocked(EV(t)) DO
 rt.status = enabled;
 IF ([(I, P)|D], C1) ∈ CT (t)) THEN dra = min(Dactive, dra); IF ([(I, P)|D], C3) ∈ CT (t)) THEN drm = min(Dmax, drm);
 IF ([(I, P)|D], C5) ∈ CT (t)) THEN nra = min(Nactive, nra); IF ([(I, P)|D], C7) ∈ CT (t)) THEN nrm = min(Nmax, nrm);
STEP 6: FOR each (assign p to r) ∈ Nonblocked(EV(t)) DO
 Pr = Pr ∪{p};
STEP 7: FOR each (assign r to u) ∈ Nonblocked(EV(t)) DO
 Ur = Ur ∪{(u, ∞, ∞, ∞, ∞, ∅ ,∅)};
STEP 8: FOR each (s:deactivate r for u) ∈ Nonblocked(EV(t)) DO
 remove(s, Su, Du);
STEP 9: FOR each (s:activate r for u) ∈ Nonblocked(EV(t)) DO (assume rt for r and ut for u in rt)
 rt.nra = rt.nra - 1; ut.nua = ut.nua –1;
 IF (([(I, P)|D], C2) ∈ CT (t)) THEN dua = Duactive;
 ELSEIF (([(I, P)|D], C1) ∈ CT (t)) THEN dua = Ddefault;
 IF (([(I, P)|D], C4) ∈ CT (t)) THEN dm = Dumax;
 ELSEIF (([(I, P)|D], C3) ∈ CT (t)) THEN dm = Ddefault;
 IF ([(I, P)|D], C6) ∈ CT (t) THEN nua = Nuactive;
 ELSEIF ([(I, P)|D], C5) ∈ CT (t) THEN nua = Ndefault;
 IF ([(I, P)|D], C8) ∈ CT (t)) THEN nm = Ndefault;
 ELSEIF ([(I, P)|D], C5) ∈ CT (t) THEN nm = Ndefault;
 d = min(dua, dm);
 add(s, d, Su, Du);
STEP 10: FOR each r-snapshot DO
 IF status = enabled
 THEN decrement (durations(r)); dra = dra - |sessions(r)|;
 ELSE
 dra = dra –1; // for (I, D, C) and (D, C) constraints
 FOR each user assigned to r DO
 dua = dua –1; // for (I, D, C) and (D, C) constraints

We define the following supporting functions for use in the algorithm.

remove(s, S, D), where, s is a session id, S = {s1, s2, ... , sk} and D = {d1, d2, ... , dk} is a procedure that computes (S, D) such

that S = S – {s} and D = D – {d}, where d corresponds to s.
add(s, d, S, D), where, s is a session id, d is the duration of activation related to s, S = {s1, s2, ... , sk} and D = {d1, d2, ... , dk};

after processing, we get S = S ∪ {s} and D = D ∪ {d}.
decrement(D), where D = {d1, d2, ... , dk} is a set of integers; after processing we get D = {d1-1, d2-1, ... , dk-1 }.
sessions (r) returns a set of sessions {s1, s2, ... , sk }in which role r is currently activated. We can see that
durations(r) returns a set of active durations {d1, d2, ... , dk}that corresponds to the sessions in sessions(r).

 26

In Step 5, all events that enable roles are considered. The constraints corresponding to the enabled

roles are checked and the constraint variables are set. We note that if the constraint variables are

equal to ∞, then the values are set according to the current constraint, otherwise it indicated that

there is either (I, P, C) or (D, C) constraint governing the variables and the constraint variables

are still not equal to 0. So, each activation should not last more than the total remaining activation

duration of the role. Hence the minimum of the remaining role duration and the duration specified

by the currently active constraint is taken.

Step 6 just adds the permissions assigned to roles at time t. Step 7 adds a new user who is

assigned to a role. Note that the variables are initialized to ∞ and the constraint variables for a

user are set when actual activation takes place. In Step 8, deactivation of a role by a user is

handled by simply removing all the active sessions from the associated u-snapshot. Note that Step

8 does not necessarily delete a user session, as the same session may exist in other r-snapshot. In

Step 9, activation of a role by a particular user is handled. First, the cardinality variables per-role

and per-user-role are decremented to indicate the remaining number of activations allowed after

this activation request has been granted. Next, users’ constraint variables are initialized and

session information is entered in to session list. In step 10, each user’s remaining active duration

is decremented. The total role duration is also adjusted accordingly. For the roles that are

disabled, the duration constraint variables (for both roles and users assigned to them) are simply

decremented. This takes care of any activation constraint that is valid at the time the associated

role is disabled.

We are left to specify which events must be in EV, given a TCAB T and a request stream RQ.

Intuitively, each event should be caused by some element of T or RQ. When a trigger causes a

prioritized event, the event expressions in the body of the trigger must not be blocked. These are

formalized by the next definition, which captures the events that are caused at each time instant.

An event can be caused by scheduled periodic events, triggers and by the enforcement of

activation constraints.

Definition 4.2.6 (Caused Events) The set of caused prioritized events at time t (w.r.t. a given

trace, a given TCAB T and request stream RQ), is the least set Caused(t, EV, ST, CT, T, RQ)

computed by Algorithm ComputeCausedSet reported in Figure 7. ?

Algorithm ComputCausedSet shown in Figure 7 works as follows. In step 1, all events

scheduled via a periodic event are added into set Caused(T, EV, ST, CT, T, RQ). In step 2, all

 27

run-time events, but for the user-activation requests, are handled. The activation requests are

handled later because before granting such a request one must ensure that all activation

constraints are enforced including the ones that become active at time t. In step 3, all events

scheduled by a trigger are caused provided the status conditions are satisfied and all event

expressions Eis are caused at time (t-? t). The status information includes the role and assignment

as well as the activation status information. Role status can be determined by checking status of

the corresponding r-snapshot. Assignment status can be determined by checking Pr and Ur of the

associated r-snapshot. A status expression Ci holds if it is true – for example if Ci is ‘r active for

u’ then it is true if rt is the r-snapshot corresponding to role r and there is a u-snapshot ut ∈ rt.Ur

such that u = ut.u and |ut.Su|>0. To check if status (assigned r to u) holds we check if there

exists a u-snapshot in rt.Ur such that the u-snapshot is associated with user u. To determine if

status (assigned p to r) holds we check if p is in rt.Pr. In step 4, duration constraints of form c

= (I, P, C) are handled. If t is in Sol(I,P) then c is valid. Additionally if there is a trigger or a run-

time request for and event E for which C specifies the duration restriction, then based on the

remaining duration, E is caused. Step 5 handles the duration constraint of form c = (D, C); here, c

itself must have been enabled by a trigger or a run-time event.

In step 6, the deactivation events that are caused because of activation constraints and/or the

presence of a role -disabling or deassignment event are handled. In 6a (6b), we check to see if

event “disable r” (“de-assignU r to u”) is already in the caused set. If it is, then it causes

deactivate events for all active sessions of r (activations of r by u) Note that if the disabling

event is to happen (it should not be blocked) then the corresponding deactivations must also

happen, which involves removing all active sessions associated with the role. In 6c, we check to

see if users meet restrictions on active durations. The sessions of users who have used all the

allowed active durations need to be deactivated – hence, the deactivation events are caused by the

expiry of the duration limits. In 6d, we check to see if all currently active sessions can be retained

till the next time instant based on the remaining tota l active duration of the role. If not, then some

selection criteria is used to select sessions that are to be removed by causing deactivation events

– such a selection may be based on priorities on user role assignment or on elapsed durations.

 28

Algorithm ComputeCausedSet

Input : t, EV, ST, CT, T and RQ ;
Output : Caused (t, EV, ST,CT, T, RQ)
 /* We will use CausedSet(t) = Caused (t, EV, ST,CT, T, RQ) ;*/
 CausedSet(t) = = ∅;
 // Handle periodic events //
Step 1 . FOR each (I, P, pr:E) ∈ T DO
 IF t∈ Sol(I, P) THEN CausedSet(t) = CausedSet(t) ∪ {pr:E};
 // Handle run-time non-activation request //

Step 2 . FOR each (pr:E after ? t) ∈ RQ(t-? t) DO
 IF E ≠ s: activate r for u and 0 ≤ ? t ≤ t THEN CausedSet(t) = CausedSet(t) ∪ {pr:E};
 // Handle triggers //

Step 3 . FOR each trigger [E1 ,…, En , C1 ,…, Ck → p:E after ? t] ∈ T DO
 IF ((0≤? t ≤ t) & (∀ Ci , (1 ≤ i ≤ k) Ci holds at time (t - ? t)) & (∀Ei (1 ≤ i ≤ n), pr:E i ∈ Nonblocked(EV(t - ? t))))
 THEN CausedSet (t) = CausedSet (t) ∪ {pr: Ei};
 // Handle valid Duration constraints with (I, P)//
Step 4 . FOR each c = (I, P, Dx, pr:E) ∈ T where x ∈ {U, R, P} and t ∈ Sol(I, P) DO
 IF (∃ t1 such that
 (t1 ∈ Sol(I, P) & 0 ≤ ? t = (t- t1) ≤ Dx &
 (∃ [B → pr:E after ? t] ∈ T OR pr:E∈RQ(t- t1), by which pr:E ∈ Nonblocked(CausedSet(t - t1)))))
 THEN CausedSet (t) = CausedSet (t) ∪ {pr: E};

 // Handle valid Duration constraints with D //
Step 5 . FOR each c = (D, Dx, pr:E) ∈ T where x ∈ {U, R, P} DO
 IF ∃ t1, t2 such that
 (t1 ≤ t2 & 0 ≤ ? t1 = (t- t1) ≤ D & 0 ≤ ? t2 = (t- t2) ≤ Dx &
 (∃ [B → pr:enable c after ? t1] ∈ T OR pr:enable c ∈RQ(t- t1)
 because of which enable c ∈ Nonblocked(CausedSet(t- t1))) &

 (∃ [B → pr:E after ? t2] ∈ T OR pr:E∈RQ(t- t2), by which pr:E ∈ Nonblocked(CausedSet(t – t2)))
 THEN CausedSet (t) = CausedSet (t) ∪ {pr: E};
Step 6 . FOR each r-snapshot rt associated with role r DO
 // Handle the effect of disable r – deactivates all active instances of r //
 6a. IF ((disable r) ∈ Nonblocked(CausedSet(t)) & rt.status = enabled, where rt is r’s r-snapshot)) THEN
 FOR each si ∈ ut.Su such that ut∈ rt.Ur DO
 CausedSet (t) = CausedSet(t) ∪ {si: de-activate r for ut.u};
 // Handle the effect of the de-assignment events //
 6b. IF (((de-assign r to u) ∈ Nonblocked(CausedSet(t)) & (assigned r to u)) THEN
 FOR each si ∈ ut.Su such that (ut∈ rt.Ur & ut. u = u) DO
 CausedSet (t) = CausedSet(t) ∪ {si: de-activate r for .u};
 // Remove sessions that expire //
 6c. FOR each ut = rt.Ur., such that ∃ s ,d (s ∈ ut.Su, and d ∈ ut.Du and d = 0) DO
 CausedSet (t) = CausedSet (t) ∪ {si: de-activate r for ut.u);
 // Cardinality control //
 6d. IF (((disable r) ∉ Nonblocked(CausedSet(t))& (rt.status = enabled)) OR
 ((enable r) ∈ Nonblocked(CausedSet (t)))) THEN
 DA = |{e| e is of type (s: de-activate r for u’) and e ∈ Nonblocked(CausedSet (t))}|;
 x = dra - | sessions(r) - DA|;
 IF x < 0 THEN
 Select a set Ud = {uπ1, .. , uπ|x| }using some predefined selection criteria
 For all ui ∈ Ud do CausedSet (t) =CausedSet(t) ∪ {si: de-activate r for ui);
Step 7 // Handle user’s activation requests //
 i = 1;

 FOR each (s: activate r for u after ? t) ∈ RQ(t-? t) such that ? t ≤ t DO
 IF ((((disable r) ∉ Nonblocked(CausedSet(t))& rt.status = enabled) OR
 ((enable r) ∈ Nonblocked(CausedSet(t))) & (assigned r to u))
 THEN
 Let the associated rt ∈ ST(t-1) be (r, dra, nra, status, Pr, Ur);
 DA=|{e| e is of type (s: de-activate r for u’) & e ∈ Nonblocked(CausedSet(t))}|;
 IF ((dra - i - | sessions(r)- DA| > 0) & (nra - i > 0) & (dua - |Su| - 1 > 0) & (|Su| < nm) THEN
 CausedSet (t)=CausedSet (t) ∪ {si: activate r for ui);
 i = i + 1;

Figure 7. Algorithm computeCausedSet(t)

 29

In step 7, a run-time activation request is accepted as a caused event if the request for activation

can be granted. This is possible if the role is enabled and the activation of the event does not

violate any activation constraints. The conditions ensure that (a) the role is enabled, (b) the

acceptance of the ith activation request will not violate the constraint in the current as well as next

time instant. For example if dra - i - |sessions (r) + DA| = 0, it means that when dra is updated in

the next time instant the total activation time allowed for the role will be used up exactly; in that

case only i requests can be granted, rest of the activation events are not caused.

Now we are ready to define the system behavior induced by specific TCABs and request streams.

Intuitively, we require each EV (t) to contain all and only those events that have a specific cause.

Definition 4.2.7 (Execution Model) A trace (EV, ST, CT) is an execution model of a TCAB T and

a request stream RQ, if for all t ≥ 0,

EV (t) = Caused(t, EV, ST, CT, T, RQ) . ?

Unfortunately, some specifications may yield no execution model, whereas some ambiguous

specifications may admit two or more such models. However, there are many interesting cases in

which the specifications yield exactly one model, for all possible run-time requests. There are

simple syntactic conditions that prevent any pathological interplay between conflicting events.

Such syntactic conditions - called safeness - will be introduced in the next section. Before we

introduce the notion of safety, we establish the correctness of the two algorithms discussed above

with the following theorems.

For all practical purposes we can assume that the number of users, roles and sessions allowed are

finite. Let nR = |Roles| be the number of role s, nP = |Permissions| be the number of

permissions, nU = |Users| be the number of users and nSm = |Sessions|m be the maximum

number of sessions allowed in the system.

Theorem 4.1 (Correctness and Complexity of ComputeCausedSet): Given EV(t), CT(t),

ST(t-1), a TCAB T with a finite number of constraints, and RQ(t) with a finite number of run-time

requests, the following holds true for Algorithm ComputeCausedSet:

1. it outputs Caused(t, EV, ST,CT, T, RQ) which contains an event E iff at least one of the

following holds true:

a. E is caused by a periodicity constraint,

b. E is caused by a run-time request,

 30

c. E is caused by a trigger,

d. E is caused by a duration constraint,

e. E is a deactivation event that is caused by disabling of a role, de-assignment of a role

to a user or an active constraint, or

f. E is an activation event that is not blocked and can be allowed by valid activation

constraints at time t.

2. it terminates, and has complexity O(nT + nRQ + nR(nSm + nU)), where nT is the number of

constrain t in T at time t, nRQ is the number of run-time requests considered at time t. ?

Theorem 4.2 (Correctness and complexity of ComputeST): Given EV(t), CT(t), ST(t-1) and

TCAB T, the following holds true for algorithm ComputeST:

1. it produces ST(t) such that the updated status of r-snapshots and u-snapshots in ST(t)

satisfies all the constraints in T and the valid activation constraints in CT for interval (t, t+1).

2. it terminates, and has complexity O(nR (nU + nP+ nSm)). ?

For practical purposes, we can expect nRQ to be smaller compared to other factors contributing to

the complexity. Provided that there is at least one constraint for each role enabling/disabling and

user-role or role-permission assignment, we can see that the worst case for the number of use-role

and role-permission assignments is O(nR . nU + nR . nP)). Similarly, the worst-case scenario for the

number of activation constraints can be expressed as O(nR + nR .nU), considering all the possible

per-role and per-user-role constraints. Thus considering that nRQ and number of triggers in nT are

small compared to the other factors, the complexity expression O(nT + nRQ + nR . nSm + nR . nU) of

algorithm ComputeCausedSet has three major complexity factors, viz, nR . nU (i.e., all roles

assigned to all users), nR . nP (i.e., all permissions assigned to all the roles) and nR . nSm. (i.e. all

the roles are activated in all user sessions). However, this worst-case scenario is also present in

any RBAC systems. Generally, in practice, we expect that users will not activate many sessions.

Similarly, in practice, not all roles are assigned to every user, and not all permissions are assigned

to every role. While handling of triggers in Step 3 may be costly if there is a huge set of triggers,

we expect it to be a small set in practice.

The worst case for nRQ can be given as O(nR . (nU + nP + nSm)) considering that all user-role, and

role-permission assignments and activation requests are in RQ(t). However, this does not

introduce any new complexity factor we have not considered above.

 31

We also see that the complexity of ComputeST also has the same three key complexity factors

and hence discussions above also apply here.

The algorithm computeCT shown in Figure 8 is used to compute the active constraints after the

caused event set has been computed by algorithm ComputeCausedSet.

4.3 Safe TCABs

Next, we introduce a syntactic condition that can be verified in polynomial time and guarantees

that a given TCAB has one and exactly one execution model. The notion of dependency graph is

essential for this purpose.

Definition 4.3.1 (Labeled Dependency Graph) [5]: Each TCAB T is associated with a (directed)

labeled dependency graph DGR = 〈N, E〉 where:

• N (set of nodes) coincides with the set of all prioritized event expressions pr:E that occur

in the head of the trigger [B→pr:E]∈ T;

• E (the set of edges) consists of the following triples3, for all triggers [B → pr:E] ∈ T, for

all events E’ in the body B, and for all nodes q:E’ ∈ N

- 〈q:E’, +, pr:E〉

- 〈r:Conf(E’), - , pr:E〉, for all [r:Conf(E’)] ∈ N such that q ? r. ?

Definition 4.3.2 (Safeness): A TCAB T is safe if its dependency graph DGR contains no cycles in

which some edge is labeled ‘-’.

It can be shown using the results from [5] that if a TCAB T is safe, then the system's behavior is

unambiguously determined by T, RQ and the initial status of the roles and assignments.

3 Each triple (N1, l, N2) represents an edge from node N1 to N2, labeled by l.

Figure 8. Algorithm computeCT

Algorithm computeCT
Input: Caused set, CT(t-1)
Output CT(t)
CT(t) = CT(t-1);
For each (enable c) ∈ Nonblocked(CausedSet(t))
 CT(t) = CT(t) ∪ {c}; // Note that c = (C) or (D, C)
For each (disable c) ∈ Nonblocked(CausedSet(t))
 CT(t) = CT(t) – {c}; // Note that c = (C) or (D, C)
For each c = (C) ∈ T do
 CT(t) = CT(t) ∪ {c};
For each (I, P, C) ∈ T do
 If t∈ Sol(I, P) then CT(t) = CT(t) ∪ {c};

 32

We note that safeness is a sufficient condition for good system behavior. Further, it is difficult to

find necessary conditions and even if they are found, they offer little practical help, because such

syntactic properties (such as graph-based ones) fail to recognize that ill-formed portions of the

program may be harmless because they can never be activated [5]. Checking model existence and

model uniqueness are, in general, NP-hard problems.

Algorithm SafetyCheck illustrated in Figure 8 is used for the safeness verification of a TCAB.

The first part of the algorithm builds the dependency graph associated with T, and the second part

checks for cycles with a negative edge. The correctness of the algorithm can be simply proved

from the results reported in [5]. We note the following with respect to the labeled dependency

graph:

• Dependency graph construction takes polynomial time. Such complexity can be reduced to

O(|T|.|N|) by representing the graph as an ordered vector, which can be sorted in time

O(|N|.log|N|).

• The strongly connected components of the graph can be determined in O(|N| + |E|) time (cf.

[7]). As the total number of edges is bounded by |E|, the second phase of the algorithm has

cost O(|N| + |E|).

• As each node must occur in some trigger’s head, |N| = |T| and |E| is in O(|T|2).

Figure 9: Algorithm for safeness verification

Algorithm SafetyCheck
Input: : a TCAB T
Output: true if T is safe, false otherwise
begin
/* construction of the dependency graph */
N := 0; E:= 0;
for all [B → pr:E] ∈ T do

if (E = s:activate r for u) then return false;
N := N ∪{pr:E};

for all [B → pr:E] ∈ T do
for all E’ ∈ B such that ∃q; q:E’ ∈ N do

E:= E ∪ {〈q:E’, +, pr:E i〉 };
for all r:conf(E’) ∈ N such that q ? r do

 E:= E ∪{〈r:conf(E’), - , pr:Ei〉}
/* cycle generation and checking */
SCC := strongly connected components of 〈 N, E〉
for all 〈 N’, E’〉 ∈ SCC do
 for all 〈X, l, Y〉 ∈ E’ do

 if l = ‘-‘ then return false;
return true
end

 33

From this, we see that the algorithm’s complexity is in O(|T|2). We note that the number of

iterations of the innermost loop of the graph construction phase is bounded by a constant (i.e.,

|Prios|) for a fixed set of priorities. Hence, for a given set of priorities, the cost of the safeness

verification check drops down to O(|T|. log|T|).

Further improvements to the costs of safeness verification can be achieved by adopting

incremental graph construction methods, and by caching the set of strongly connected

components [6]. Insertion or update of a trigger simply involves insertion/deletion of only a few

edges, and the consideration of only the old strongly connected components containing the events

in the new/updated trigger if no new nodes are created.

5 Implementation Architecture

In this section, we present implementation architecture of a system supporting the proposed

GTRBAC model. The architecture extends the one proposed in [5] by including required

functionalities to handle the new temporal constraints.

A critical design issue is to determine at each time the set of roles that a user can activate and/or

the duration for which the user can activate, according to various constraints and triggers

contained in the TCAB, and the run-time requests issued till that point.

Events

periodic event
handler

Actionsaction handler

PIBUIBRIB

Role Activation Base
(RAB)

(sessions, assignments)

role, user,
permission

Deferred_Actions_Base

run-time request
handler

Valid_Constraints

triggers

deferred
action handler

periodic eventruntime request

duration/activation
constraints

trigger
safeness
checker

trigger compiler

duration/activation
event handler

Figure 10. System architecture

 34

A request by a user to activate a role is granted if the user is assigned to the role at that particular

time, and there are no activation constraints enabled at that time, preventing the activation of the

role by the user. User-role and role-permission assignments, role enabling, constraint enabling as

well as the activations/deactivations of roles by users can be either immediately executed, or

deferred by a fixed time interval. Moreover, prior ities are associated with each event, and such

priorities must be considered when dealing with conflicting actions. Figure 10 shows the

architecture of the system we have developed for supporting GTRBAC constraint on top of a

commercial DBMS. The figure shows data structures as rectangles and functional components as

ovals. Arrows represent interactions among the various entities. Various components are

described in the following section.

5.1 Data structures

Information on role activations and deactivations, periodic events and run-time requests are

maintained in the database tables. More precisely, the data maintained by the system are:

1. Role_Activation_Base: This is a set of tables that actually implements the r-snapshot

representation of each role in the system. The tables contain information about valid

assignments, currently active user-role sessions and their corresponding durations as well as

various constraint parameters related to activation constraints. A sample set of tables for RAB

is shown in Figure 11.

As shown in Table 1 of Figure 11, the values of the constraint parameters change as different

per-role constraints become active. Similarly Table 2 shows user-role assignments. The

parameters refer to the per-user-role constraints. Table 3 lists the current sessions and

corresponding duration for each activation of a role and Table 4 shows the valid permission

assignments. In Figure 10, role information base (RIB), users information base (UIB) and

permission information base (PIB) indicate static reservoir of roles, users and permissions

along with supporting description. Although they are not strictly needed, such a separation

from RAB can be advantageous particularly because all tables in RAB are essentially

dynamic and are affected by constraints and triggers in TCAB, and run-time requests.

 35

Role id

r1

r2

r4

rn

dra

d1

d2

d3

dn

nra

n1

n2

n3

nn

dm

dx1

dx2

dx3

dxn

nm

nx1

nx2

nx3

nxn

User id

u1

u2

u4

un

dua

d1

d2

d3

dn

nua

n1

n2

n3

nn

dm

dx1

dx2

dx3

dxn

nm

nx1

nx2

nx3

nxn

User id

u1

u2

u4

un

Role id

r1

r2

r4

rn

Session

s1

s2

s3

sn

Duration

d1

d2

d3

dn

Role Activation Base

Role id

r1

r2

r4

rn

Active sessions

Perm. id

p1

p2

p4

pn

Role id

r1

r2

r4

rn

Valid assignments

Per-role constraint
parameters

Table 1

Table 2 Table 4

Table 3

2. Deferred_Actions_Base: This is a set of tables that store actions that need to be executed after

a certain amount (or a period) of time. For each action, the time instant (or the periodic set of

instants) at which it has to be executed is recorded along with the priority of the action. To

efficiently store different kinds of event actions, more than one table may be desirable. Figure

12 shows a sample set of DAB tables. The main table is essentially the master list of all

actions with the temporal constraint information. The detailed action information is stored in

different tables according to the type of action. For example, Action Type = at1 represents

the enabling and disabling of roles and the table corresponding to this store information about

the role, action to perform (enabling or disabling) and the priority associated with the action.

In Figure 12, the table that corresponds to Action Type = at2 is for both user-role assignment

and role activation by users (they can be separate if necessary). We also note that an

activate request can only come from a run-time user request and hence the associated

time of the request is stored in the master list (for example the last entry t). The remaining

two tables are associated with the role -permission assignment and constraint enabling. If a

deferred action is caused by a trigger, the time of firing of the trigger is stored in the master

list. We also note that a duration constraint c of type (D, C) can be enabled only by a run-time

request or a trigger. Hence, whenever such a constraint is enabled, it can be stored in the

corresponding DAB table along with the time at which such a run-time request is made or a

trigger fired.

Figure 11. Role activation tables

 36

3. Valid_Constraint: It is a table that stores valid constraint at a particular time. A constraint can

be valid based on the periodic expression that specifies the intervals in which it is valid or

when it is enabled through a run-time request or a trigger.

4. Actions: It is a table that records all the actions to be potentially executed and corresponds to

the Caused defined earlier. Such actions can be caused by a trigger, a run-time request, or a

periodic/duration event. Note that all events caused at a particular time need be non-blocked.

This table is necessary in cases where conflicting events are caused. In such a scenario, some

of the events are invalidated.

5. Events. This is a global event base, which records all the events of the system.

Periodicity constraintAction idAction type

[1/1/2001, ∝], Night time

[1/1/2001, ∝], Day time

[1/1/2001, ∝], Night time

t

a1at1

a2at2

a3at1

anat2

Action id

a1

a3

a4

am1

Role id

r1

r2

r4

rm

Action

enable

disable

enable

enable

Priority

H

VH

L

VH

Action type = at1

User id

u1

u3

u4

ux

Role id

r1

r2

r4

rm

Action
assign

deassign

activate

activate

Priority
H

VH

L

L

Action id

a7

a8

a9

an

Perm id

p1

p3

p4

py

Role id

r1

r2

r4

rm

Action

assign

deassign

assign

assign

Priority

H

VH

L

VH

Action id

a11

a12

a13

am3

Action type = at2

Action type = at3

Action id

a30

a31

a32

am3

Constraint

c1

c2

c4

cz

Action

enable

disable

enable

enable

Priority

H

VH

L

VH

Action type = at4

Master list

Deferred Action Base

5.2 Functional modules

The system consists of seven main modules (Figure 10), namely the Safeness Checker, Trigger

Compiler, the Periodic Event Handler, the Duration/activation Event Handler, the Run-time

Request Handler, the Deferred Action Handler, and the Action Handler. Next, we describe each

of the modules.

Safeness checker: Whenever a trigger is inserted or modified, the Safeness Checker is activated. It

determines whether such an operation can be allowed. In case the operation makes the TCAB

Figure 12. Deferred action tables

 37

unsafe then the operation is rejected by the system. An incremental version of the algorithm in

Figure 9 that does not rebuild the dependency graph whenever such a trigger is added can be

used. If the insertion/modification of a trigger does not make the TCAB unsafe, the Safeness

Checker passes the inserted trigger to the Trigger Compiler. Deletion of a trigger does not make

the TCAB unsafe and hence requires no safeness checks.

Trigger Compiler: Trigger Compiler is used to translate the inserted trigger into an equivalent

underlying database trigger attached to table Events. The translation depends on the number and

types of expressions appearing in the trigger body and on the type of action that the firing of the

trigger causes. If the action caused by the trigger has to be immediately executed, the

corresponding database trigger inserts the action into table Actions, along with its action priority.

However, if the action has to be deferred, the firing of the corresponding database trigger will

cause the insertion of the action into Deferred_Actions_Base along with its priority and the

information about the time instant at which the action has to be executed. Note that trigger can

enable some constraints. Such enabled constraints are inserted into the Valid_Constraints table.

The Trigger compiler is an extended version of the Trigger Compiler described in [5]. The

extension is aimed at incorporating all types of events possible in GTRBAC. For detailed

description of trigger generation for the GTRBAC in Oracle Object-database systems, we refer

the readers to [5].

Periodic Event Handler: Whenever a periodic event is inserted into TCAB, the Periodic Event

Handler inserts a corresponding entry into Deferred_Actions_Base. The entry contains the action

requested by the periodic event, its priority, and the associated periodic constraint. Note that some

duration constraints have periodic expressions that determine when the constraints are valid.

Corresponding entries for these are also inserted into the Deferred_Actions_Base. A deletion is

handled simply by removing the corresponding entry from the Deferred_Actions_Base.

Duration/activation Event Handler: When a duration constraint for role enabling/assignment or

an activation constraint is inserted, it is first processed by the Duration/activation Event Handler.

If the constraint is of form (C), it means the constraint is immediately enabled (not restricted by

(I,P) or (D)) and hence it is put into Valid_Constraint. If the constraint is of the form (I, P, C),

then it checks to see if it is enabled at that time. If it is then the constraint (C) is inserted into

Valid_Constraints and (I, P, C) is inserted into Deferred_Action_Base, otherwise only (I, P, C)

needs to be entered in Deferred_Action_Base.

 38

Run-time Request Handler: Run-time requests are processed by the Run-time Request Handler. If

the request needs to be immediately processed, i.e., if ? t = 0, it sends the action to the Action

Handler, otherwise it puts an entry into the Deferred_Action_Base along with the time of request

and its priority.

Deferred Action Handler: Execution of the deferred periodic actions that the firing of a trigger,

the issuing of a run-time request, or a periodic/duration event can cause, is handled by the

Deferred Action Handler. It essentially monitors the Deferred_Action_Base to execute the

actions it contains at appropriate times. Such a module can be implemented as a daemon that

maintains a list of instants at which it has to wake up. With regards to the periodic actions, the

Deferred Action Handler maintains the first instants at which the action has to be executed and

the time period between any two consecutive executions of the action. Whenever a new entry is

inserted into Deferred_Action_Base these time instants are updated. When the daemon wakes up,

the actions that have to be carried out at that time instant are selected. It selects the action with the

highest priority if If there are conflicting actions (in case of equal priority negatives-take

precedence rule is used). Then, it returns the action along with its priority to the Action Handler.

Action Handler: The Action Handler is the core of the system, as it is in charge of updating

Role_Acivation_Base according to the actions requested by the other modules or caused by the

firing of the triggers associated with the Events table. As conflicts may arise among actions, the

Action Handler collects all the required actions into table Actions. It resolves any conflicts before

updating the Role_Acivation_Base. Note that the Action handler essentially extracts the non-

blocked events caused at the particular time and implements algorithm computeST to update

the Role_Acivation_Base. The remaining functional modules each implements a part of the

algorithm comaputeCausedSet. However, each is augmented with functionalities to

determine the deferred events and inserting it into the Deferred_Action_Base tables.

6 Related Work

Need for supporting constraints in an RBAC model has been addressed by many researchers. In

particular, the attention has been in supporting separation of duties (SoD) constraints [1, 4, 9, 10,

12, 13, 15, 16, 17, 21]. SoD constraints are mainly aimed at reducing the risk of a fraud by not

allowing any individual to have sufficient rights to perpetrate such frauds. Ferrariolo et. al. [8]

propose an RBAC model that supports the cardinality constraints. In [1], Ahn et. al. propose

RCL2000 – a role based constraint specification language. Bertino et. al. have proposed a logic

 39

based constraint specification language that can be used to specify constraint on roles and users

and their assignments to workflow tasks [4]. In [9], the workflow model of [4] has been extended.

However, none of these include temporal constraints in their specification models.

The TRBAC model proposed by Bertino et. al. [5], is the first known model that addresses the

temporal constraints. It, however, provides constraints only on role enabling and triggers,

considerably limiting its use in many diverse real world application requirements. The work

presented here is a generalization of the TRBAC model and constitutes a substantial enhancement

over it. Another related work is the access control model presented by Bertino et. al. in [3] that

supports temporal authorization and derivation rules. Formalism for periodic time used in this

paper has been borrowed from [3, 11].

7 Conclusions and future work

We have proposed a generalized temporal role based access control model that can handle a

comprehensive set of temporal constraints. The model allows temporal constraints on role

enablings and role activations. Various temporal restrictions can be specified on user-role and

role-permission assignments. We have also illustrated through examples the applicability of the

GTRBAC temporal constraints.

We plan to extend the present work in various directions. The first direction is an extensive

investigation on how various temporal constraints on roles affect the inheritance semantics of a

role hierarchy. Role hierarchy is a highly beneficial feature of an RBAC model and hence it is

very essential to have a proper notion of temporal hierarchy in a GTRBAC framework.

Another key issue that needs to be extensively investigated is the issue of whether such a huge set

of temporal constraint is beneficial from a practical as well as theoretical perspective. We plan to

establish through theoretical analysis that having the current set of constraints is beneficial from

the perspective of user-convenience and better constraint representation, even though we believe

that the model may not be minimal. We plan to investigate and identify such a minimal model

that has the least set of temporal constraint with the same expressive power as that of the current

set of GTRBAC constraints. We believe that the current set of GTRBAC constraints provide a

flexible, more intuitive, convenient and computationally better representation of temporal

constraints than such a minimal model, which we believe exists. Finally, we also plan to develop

an SQL-like language for specifying the GTRBAC temporal.

 40

References

[1] G. Ahn, R. Sandhu. Role -Based Authorization Constraints Specification. ACM
Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

[2] V. Atluri editor. Proc. of the Fourth ACM Workshop on Role -Based Access Control,
Fairfax (VA), 1999.

[3] E. Bertino, C. Bettini, E. Ferrari, P. Samarati. An Access Control Model Supporting
Periodicity Constraints and Temporal Reasoning. ACM Transactions on Database Systems,
23(3):231-285, September 1998.

[4] E. Bertino, E. Ferrari, and V. Atluri. The Specification and Enforcement of Authorization
Constraints in Workflow Management Systems. ACM Transactions on Information and
System Security, 2(1):65-104, 1999.

[5] E. Bertino, P. A. Bonatti, E. Ferrari. TRBAC: A Temporal Role -based Access Control
Model. ACM Transactions on Information and System Security (TISSEC) 4(3), August
2001 (in print).

[6] T.H.Cormen, C.E.Leiserson, R.L.Rivest. Introduction to Algorithms. MIT Press, 1990.

[7] D. F. Ferraiolo, D. M. Gilbert, and N Lynch. An examination of Federal and commercial
access control policy needs. In Proceedings of NISTNCSC National Computer Security
Conference, pages 107--116, Baltimore, MD, September 20-23 1993.

[8] D. Ferrariolo, J.F. Barkley, and D.R. Kuhn. A Role -based Access Control Model and
Reference Implementation within a Corporate Intranet. ACM Transactions on Information
and System Security , 2(1):34-64, 1999

[9] S. Kandala and R. Sandhu. Extending the BFA Workflow Authorization Model to Express
Weighted Voting. In Research Advances in Database and Information Systems Security,
pages 145-159, Kluwer Academic Publishers, 1999.

[10] D.R. Kuhn. Mutual Exclusion of Roles as a Means of Implementing Separation of Duties in
a Role-based Access Control System. ACM Transactions on Information and System
Security, 2(2):177-228, 1999.

[11] M. Niezette and J. Stevenne. An efficient symbolic representation of periodic time. In
Proc.First International Conference on Information and Knowledge Management, 1992.

[12] M. Nyanchama and S. Osborn. The Role Graph Model and Conflict of Interest. ACM
Transactions on Information and System Security, 2(1):3-33, 1999.

[13] S. Osborn editor. Proc. of the Fifth ACM Workshop on Role -Based Access Control, Berlin,
Germany, July 2000.

[14] S. L. Osborn, R. Sandhu, Q. Munawer. Configuring Role-Based Access Control to Enforce
Mandatory and Discretionary Access Control Policies. ACM Transactions on Information
and System Security , Vol. 3, No. 2, February 2000.

 41

[15] R. Sandhu. Separation of Duties in Computerized Information Systems. In Database
Security IV: Status and Prospects, pages 179-189. North Holland, 1991.

[16] R. Sandhu editor. Proc. of the First ACM Workshop on Role -Based Access Control, Fairfax
(VA),1995.

[17] R. Sandhu. Role Hierarchies and Constraints for Lattice-based Access Controls. In E.
Bertino, H. Kurth, G. Martella, and E. Montolivo Eds., Computer Security - Esorics'96,
LNCS N. 1146, Rome, Italy, 1996, pages 65-79.

[18] R. Sandhu editor. Proc. of the Second ACM Workshop on Role -Based Access Control,
Fairfax (VA), 1997.

[19] R. Sandhu editor. Proc. of the Third ACM Workshop on Role -Based Access Control,
Fairfax (VA), 1998.

[20] R. Sandhu. Role-based Access Control. Advances in Computers, vol. 46, Academic Press,
1998.

[21] R. Simon and M.E. Zurko. Separation of Duty in Role -based Environments. In Proc. 10th
IEEE Computer Security Foundations Workshop, June 1997.

 42

Appendix

Proof of Theorem 4.1 - Proof of part (1)

(⇒) Assume that E ∈ Caused(t, EV, ST, CT, T, RQ). We have to show that E is caused by one

of the constraints in (a)-(f). We show this by cases.

Case 1. Let E = enable(disable) r

First we note that event E can be added to Caused(t, EV, ST, CT, T, RQ) at five different places,

the THEN parts of the statements in steps 1-5, through the execution of the statement

Caused(t, EV, ST, T, RQ) = Caused(t, EV, ST, T, RQ) ∪{pr:E}. (s1)

First, assume that E ∈ Caused(t, EV, ST, CT, T, RQ) because of the execution of statement (s1)

in Step 1. This means that the condition specified in FOR and IF parts of Step 1 are true.

However, the FOR and IF conditions imply that there is a periodicity constraint (I, P, pr:E) ∈ T

for which t ∈ Sol(I,P) hold true. Hence, E is caused by a periodicity constraint.

Assume that E ∈ Caused(t, EV, ST, CT, T, RQ) because of the execution of statement (s1) in

Step 2. This means that the conditions specified in FOR and IF parts of Step 2 are true. But these

conditions imply that there is a runtime request (pr:E after ? t) made at time (t -? t). Hence, E

is caused by a runtime request.

Suppose E∈ Caused(t, EV, ST, CT, T, RQ) because of the execution of statement (s1) in Step 3.

This means that the conditions specified in FOR and IF parts of Step 3 are true. This means there

is a trigger [E1 ,…, En , C1 ,…, Ck → p:E after ? t] in T at time (t -? t). Furthermore, the

conditions imply that each of the events Ei is non-blocked at time (t -? t) and each of the status

expressions Cis holds true at time (t -? t). Hence, by the semantics of triggers, [E1 ,…, En , C1 ,…,

Ck → p:E after ? t] is the cause for event E..

Similarly, assume that E ∈ Caused(t, EV, ST, CT, T, RQ) because of the execution of statement

(s1) in Step 4. Then, as the conditions specified in FOR part of Step 4 must be true, it means that

there is a duration constraint c = (I, P, DU, pr:E) in T valid at time t as indicated by the FOR

condition. Similarly, the IF condition implies that, the event E is caused at time t1, which is a

valid time instant of (I, P) (as indicated by the condition t1 ∈ Sol(I,P)). Since (t-t1) ≤ DU and the

 43

event E is triggered or requested at run-time, it implies that event E can be allowed under this

duration constraint. Hence, E is caused (or allowed) by the duration constraint c.

Finally, assume that E ∈ Caused(t, EV, ST, CT, T, RQ) because of the execution of statement

(s1) in Step 5. Then, the conditions specified in FOR part of Step 4 imply that there is a duration

constraint c = (D, DR, pr:E) in T valid at time t. Furthermore, truth of the IF condition implies that

constraint c has been enabled by a trigger or a run-time request at time t1 and as (t -t1) ≤ D, it

means that the valid duration D of the constraint c hasn’t expired. The remaining part of the IF

condition implies that E is triggered or requested at run-time at t2 and because (t –t2) ≤ DR and t1≤

t2, it follows that c allows E to be caused. Hence, E is caused (or allowed) by a duration

constraint.

As the remaining steps do not put E = enable(disable) r into Caused(t, EV, ST, CT, T,

RQ), they cannot cause E. The cases for E = “assignUR(deassignUR) u to r”, E =

“assignPR(deassignPR) p to r” are similar to the case for E = “enable(disable) r”.

Hence, the proof for them is similar to that given above. The case for ‘enable(disable) c’ is

the same as for enable(disable) r, except that it is not caused by a periodicity or duration

constraint. Hence, for ‘enable(disable) c’, we need to focus only on steps 2 and 3, the

arguments for which are, again, the same as that for ‘enable(disable) r’.

Case 2: E = s:deactivate r for u

In this case E can be in Caused(t, EV, ST, T, RQ) only through the execution of the following

statement in steps 6(a) - 6(d):

 Caused(t, EV, ST, T, RQ) = Caused(t, EV, ST, T, RQ) ∪{ s:deactivate r for u } (s2)

We note that steps 6(a), - 6(d) repeat for each role as indicated by the FOR loop at Step 6. Now,

assume that E ∈ Caused(t, EV, ST, CT, T, RQ), because of the execution of statement (s2) in

Step 6(a). This means the IF condition of Step 6(a) is true, which implies that ‘disable r’ is a

non-blocked event at that time and user u has an active session of role r at t. Since ‘disable r’

is non-blocked, r will be disabled at t, and there cannot be any active user session for role r

henceforth. Therefore, all currently active sessions need to be deactivated. This causes the event

E to be added to Caused(t, EV, ST, T, RQ). Hence, the disabling of a role causes E. The

argument is similar for 6(b), except that here the non-blocked de-assignment of a role to a user is

considered and only the active sessions of the user are removed.

 44

Next, assume that E ∈ Caused(t, EV, ST, CT, T, RQ) because of the execution of statement (s2)

in Step 6(c). This means the FOR condition of Step 6(Cc) must be true, which implies that the

activation of role r by u cannot be allowed further, as the total active duration (because of an

activation constraint) allowed for the user has expired (d = 0). Hence, E is caused by an active

per-user-role constraint, i.e., by (e).

Finally, assume that E ∈ E ∈ Caused(t, EV, ST, CT, T, RQ) because of the execution of

statement (s2) in Step 6(d), so both the inner and the outer IF conditions are true. The outer IF

condition ensures that role r will be non-blocked at time t. As the inner IF condition is also true, E

is selected by the pre-defined selection criteria . The condition x < 0, indicates that the total role

active duration allowed will be exceeded if the activation of role r by u is not cancelled by

deactivating it. Thus, in this case, E is caused by the total role active duration.

Case 3: E = s: activation r for u

In this case E can be in E ∈ Caused(t, EV, ST, CT, T, RQ) only through the execution of the

following statement in Step 7:

Caused(t, EV, ST, CT, T, RQ) = Caused(t, EV, ST, CT, T, RQ) ∪{ s:activate r for u } (s3)

We note that Step 7 repeats for each role as indicated by the FOR loop at Step 6. Since E ∈

Caused(t, EV, ST, CT, T, RQ) can only be because of the execution of statement (s3) in Step 7,

it follows that all conditions in FOR and IF statements in Step 7 must be true. The FOR condition

implies that there is a runtime request for activating role r for user u, as s: activate r for u

after ? t ∈ RQ(t-? t). The outer IF condition ensures that the role r will be enabled at time t

and there is a valid user-role assignment. Let E be the ith activation event caused (or allowed).

The condition (dra - i - | sessions(r)- DA| > 0) implies that by causing E, the system will not

violate the total role active duration constraint. Similarly, since (nra - i > 0) is true it implies that

the cardinality restriction for the role is not violated either. The condition dua - |Su| - 1 > 0 is true

implies that per-user-role constraint for total active duration is not violated by granting the user

activation request. And lastly, (|Su| < nm) ensures that the cardinality restriction specified for the

user u as to how many concurrent activations of role r s/he can have, is not violated. Thus, E is

caused by the combination of a run-time request and the activation constraint, i.e., by (b) and (f).

(⇐) Assume that one of (a)-(f) causes event E . We need to show that E ∈ Caused(t, EV, ST,

CT, T, RQ).

 45

Case 1. E is caused by (a), i.e. periodicity constraint.

Since E is caused by a periodicity constraint, it means there is a constraint (I, P, pr:E) ∈ T such

that t ∈ Sol(I, P). All such constraints are handled in Step 1, as FOR loop repeats for all such

constraints. The IF condition is satisfied as t ∈ Sol(I, P) and therefore, the THEN part of the IF

statement is executed adding event E into Caused(t, EV, ST, T, RQ). Thus, after the execution of

the IF statement (Step 1), E ∈ Caused(t, EV, ST, CT, T, RQ).

Case 2. E ≠ activate r for u, is caused by (b), i.e. by a run-time request other than the

activation request:

Since E is caused by a run-time request, the event E must be in RQ at the time when the request is

made. The request made is in the form “pr:E after ? t”. Therefore a request “pr:E after ? t” must

be in RQ(t-? t) for E to be caused at time t by it. This condition is precisely the one used in the

FOR loop for picking up all such events that need to be caused at time t in Step 2. The IF

condition further checks if the request was made at or before time t and is satisfied. Therefore, the

THEN part of the statement adds the event E in Caused(t, EV, ST, T, RQ). Hence, E ∈

Caused(t, EV, ST, CT, T, RQ) after Step 2.

Case 3. E is caused by (c), i.e. by a trigger.

Since E is caused by a trigger, a trigger of form “[B → pr:E after ? t]” must be in RQ(t-? t) for

0≤ ? t ≤ t. Furthermore, all the events in B must have been caused and non-blocked at time (t-? t),

and all the conditions in B must hold true at time (t-? t). The conditions for the IF statement in

Step 3 checks for these and hence are all satisfied. Therefore, the THEN part of the IF statement

executes adding event E in Caused(t, EV, ST, CT, T, RQ), i.e., E ∈ Caused(t, EV, ST, CT, T,

RQ) after Step 3.

Case 4. E is caused by (d), i.e. by a duration constraint

Since GTRBAC has two forms of duration constraint, we will take each one separately. First

assume that E is caused by a duration constraint of the form c = (I, P, D, pr:E). This means t ∈

Sol(I, P), because the constraint c must be valid at time t, and (I, P) precisely defines those

instants at which c is valid. Furthermore, for E to be caused by (or allowed under) constraint c,

there must be a non-blocked event E, which is either triggered or present in RQ at time t or

earlier, but at a time instant that is in Sol(I, P). The IF condition of Step 4 precisely checks for

such a time instant t1; furthermore the duration should not be expired, i.e. t- t1 ≤ D. hence, the IF

 46

condition is satisfied. It is possible that both the enabling of the constraint and the triggering or

run-time request of the event E can also take place at time t. The algorithm will handle this

correctly because Step 1 through Step 3 captures both these types of events. Thus, the THEN part

of the statement in Step 4 will be executed adding the event E into Caused(t, EV, ST, CT, T, RQ)

after esuring that t - t1 ≤ D, and hence, E ∈ Caused(t, EV, ST, CT, T, RQ) after Step 4.

Now assume that E is caused by (or allowed under) a duration constraint of form c = (D, Dx,

pr:E). Since the constraint c itself is valid for only a particular duration D, there must be an event

“enable c” that has been caused as the result of which c is valid at time t. A trigger or a run-

time request must have caused such an “enable c” event. Hence, one of the condition that

checks for such event is satisfied in the IF statement of Step 5. Furthermore, D and Dx, should

not be expired implying that we must have (t- t1 ≤ D) and (t- t2 ≤ Dx), where t1 is the time at which

c is enabled and t2 is the time at which E is caused. Furthermore, t1 ≤ t2 ensures that Dx is

contained in D. This implies that the conditions in the IF statement are satisfied. Hence, the

THEN part of the IF statement is executed, adding the event E in Caused(t, EV, ST, T, RQ). We

note that if the event E is triggered at time t for the first time since c became active, then it is

added in Caused(t, EV, ST, CT, T, RQ) two times, once in Step 2 or Step 3 and another in step 5;

but since Caused(t, EV, ST, CT, T, RQ) is a set, it is represented only once. Hence, E ∈

Caused(t, EV, ST, CT, T, RQ) after step 5.

Case 5. E is caused by (e), i.e. E is a deactivation event that is caused by disabling of a role or

active constraints,

First, we consider E caused by the disabling of a role. That is, E is an event “s:deactivate r

for u” associated with role r. Since it is caused by disabling of a role, “disable r” must be a

non-blocked event in E ∈ Caused(t, EV, ST, CT, T, RQ). Furthermore, as deactivation involves

removing an active session, the role must have been in enabled state in interval (t-1, t). Thus the

IF condition of Step (6a) is true. Hence, the THEN part of Step (6a) executes, adding event E into

Caused(t, EV, ST, CT, T, RQ). Therefore, E ∈ Caused(t, EV, ST, T, RQ) after Step (6a). The

deactivation events produced by a deassignment statement in Step 6(b) can be similarly outlined.

Next, assume that deactivation event E is caused because of activation constraints. Then, E must

have been caused to remove active user sessions that have expired or that cannot be retained

because of some duration or cardinality constraint on role.

 47

If E is caused because the session has expired then the remaining duration corresponding to the

expired session is 0. Thus, the condition that is used by the FOR loop is satisfied for E in Step

(6c). As a result, the statement inside the FOR loop is executed, E ∈ Caused(t, EV, ST, T, RQ).

If E is caused in order to ensure that the duration constraint on the associated role is not violated

in interval (t, t+1), then E must have been selected by the selection criteria used to remove active

user sessions so that the sessions allowed altogether do no violate the activation constraint. The

fact that E has been caused means that the corresponding role r will remain enabled at t and after

t. Thus, ‘disable r’ should not be a non-blocked event at time t and afterwards, or r should be

enabled at time t. The first IF condition of Step (6d) checks for this and hence is true. The

selection criteria is used only if the remaining total number of sessions so far (given by

|session(r) –DA|) cannot be allowed to be active for one more time unit. Thus, the inner IF

condition is satisfied too. Hence, the event E is added in Caused(t, EV, ST, CT, T, RQ) by the

THEN part. Therefore, E ∈ Caused(t, EV, ST, CT, T, RQ) after Step 6(d).

Case 6. E is caused by (f), i.e. E is an activation event that is not blocked and can be allowed by

valid activation constraints at time t.

Since E is caused at time t, there must be a run-time request at time (t-? t), i.e, “E after ? t” is

in RQ(t-? t) such that 0 ≤ t ≤ ? t. Thus, the condition attached to the FOR loop of Step 7 is

satisfied. Since E is caused, it must be true that the associated role r is enabled at t and afterwards,

which means that the “disable r” is not a non-blocked event and r has already been in enabled

state, or, alternatively, there is a non-blocked “enable r” event caused at time t. In addition,

there must be a valid assignment of roles to users for granting an activation request. The first IF

condition checks precisely for these; hence, it is satisfied. Since E is caused, it implies that the

activation constraints can be satisfied. Hence, the inner IF condition is satisfied as it checks to see

if the addition of the new activation request can be granted. Since all the conditions are satisfied,

the THEN part of the inner IF statement is executed, adding E to Caused(t, EV, ST, T, RQ).

Hence, E ∈ Caused(t, EV, ST, T, RQ).

Proof of Theorem 4.1 - Proof of part (2) and (3)

Steps 1-5 each look for a particular type of constraint in T and and events in RQ. Let ndRQ and

naRQ be the number of activation and deactivation run-time requests scheduled for time t, and

nadmin be the number of administrator’s runtime events scheduled for t, then we have nRQ = nadmin +

naRQ + ndRQ. Steps 1-5 check for all constraints, triggers and the runtime request other than the

 48

activation requests. And hence, total time taken for steps 1-5 is (nT + nadmin + ndRQ), considering nT

includes the cost for checks involving triggers in Step 3.

FOR loops of steps 6(a) - 6(c) each repeat at most nSm times, as each looks for all applicable

sessions for each user who has activated role r and for whom the conditions are satisfied. The

FOR loop of 6(d) is also bounded from above by nU (we can consider selection criteria algorithm

to be linear in the number of users). Hence, for steps 6(a) - 6(d), the maximum complexity is nR

(nSm+ nU) as these steps are repeated for each r. Step 7 considers all the activation constraints,

hence giving a complexity of naRQ (note that the fact that step 7 is inside the FOR loop of step 6

does not matter). Hence, the complexity is (nT + nadmin + ndRQ) + nR (nSm+ nU) + naRQ. That is, the

complexity is O(nT + nRQ + nR (nSm+ nU)). Since each of the above terms is finite, the

algorithm terminates.

Proof of Theorem 4.2: Proof of part 1

By theorem 4.1, the Caused(t, EV, ST, CT, T, RQ) produced by ComputeCausedSet(t)

contains only those events that are caused at time t and satisfy all the constraints in T. Hence, to

prove that the status update done by computeST(t) satisfies all the constraints in T, we need to

prove that the update done is with respect to each of the non-blocked events in the Caused(t,

EV, ST, CT, T, RQ). This is because the non-blocked events of Caused(t, EV, ST, CT, T, RQ) are

the only events that actually happen at time t. Since by definition 4.2.7, EV(t) = Caused(t, EV,

ST, CT, T, RQ), we can proceed by showing that each of the events of nonblocked(EV(t) is

considered by the algorithm. In addition, the algorithm needs to ensure that all the valid activation

constraints in CT are also satisfied by the updated information, which is to say that the effect of

all such constraints are considered by the algorithm. We will proceed step by step.

Step 1 and 2: In these steps, all the non-blocked deassignment events of EV(t) are considered.

Since the presence of a u-snapshot associated with user u in Ur corresponding to the role r

indicates that the role r has been assigned to user u, the removal of the u-snapshot corresponding

to the user to whom the role r is deassigned correctly updates the effect of the deassignment

event. Since ut contains all the activation status of a particular user associated with a role, the

removal of the u-snapshot ut completely removes all such information. Similarly, in step 2,

permissions that are deassigned from a role are removed from the permission list Pr associated

with the role. The next earliest change to these new values of Ur and Pr occur at time t+1. We also

note that no activation constraints affect deassignments. Hence steps 1 and 2 are in accord to

condition (1).

 49

Step 3: In this step, all non-blocked events that disable roles are considered. Since a role r is

disabled at t, its status is changed to disabled, which remains so until it is changed later, as

there are no statements below step 3 that changes rt.status; the only change that can occur to this

parameter afterwards is at time (t+1), which occurs if “enable r” event is non-blocked at time

(t+1). As a role is disabled, all valid per-role activation constraints whose validity is not restricted

by (I, P) or a duration D (and hence they are valid for each enabled duration of the role), must be

reset to default values. This is done by each of the next set of IF statements. Furthermore, each

per-user-role constraints must also be considered and corresponding associated parameter values

reset. This is done by the FOR loop which considers each of the users assigned to the role being

disabled. We note that, for per-role activation constraints of type (I, P, C) and (D, C), the

updating of the corresponding parameter values is dictated by (I, P) and D respectively as is done

in step 4 and are not affected by the disabling of a role. Hence, step 3 does the required update in

accord with condition (1).

Step 4: The fact that a constraint of form (I, P, C) or (D, C) which was in CT(t-1) but is not in

CT(t) implies that these constraints are not in effect anymore (disabled). This step considers all

such per-role activation constraints and reset the values of the corresponding parameters such as

dra, nra, etc., to ∞. These parameter values can only be altered at t+1 or later; hence, the update is

in accord with condition (1).

Step 5: This step handles the effect of the enabling of a role r. First the status is updated to

enabled. The first IF condition checks if a constraint of type C1 in one of forms (I, P, C), (D,

C), or (C), is present. If it is, then dra is updated to the minimum of Dactive in C1 or the current

value of dra. If dra < ∞ then it implies that some valid constraint is restricting the role activation

time and is left unchanged. If dra = ∞, then it means no constraint of type C1 has been active

earlier. Thus the update essentially conforms to the semantics and hence is in accord with

condition (1). Similar arguments apply to the remaining IF statements of step 5.

Step 6: This step simply adds the permission p to the set Pr associated with the role r if “assign

p to r” is a non-blocked element in EV(t). The presence of p in set Pr associated with the role r

indicates that p is assigned to r and hence this update correctly establishes the status of the

assignment until it is changed by a deassignment at time t+1 or after.

Step 7: This step simply adds a u-snapshot, say ut, associated with user u to the set Ur that is

associated with the role r if “assign r to u” is a non-blocked element in EV(t). The presence of

ut in set Ur associated with the role r indicates that u is assigned to r and hence this update

 50

correctly establishes the status of the assignment. Furthermore, the set of sessions and their

durations are currently empty. The remaining parameters are set to initial default values of ∞.

Thus, the updates reflect that an assignment event occurs and is in accord with condition (1).

Step 8: This step simply updates the effect of deactivation events. For each deactivation event,

there is a session and the duration associated. Thus for a (s:deactivate r for u), the

associated session s and its associated duration d are removed from the u-snapshot of u associated

with role r. Note that session s may still be present in which other roles are still active. In such a

case, the session s will be present in the u-snapshot of u associated with the other roles. Thus

removal of (s, d) is in accord with condition (1).

Step 9: In this step, all non-blocked activation events are considered. Since a new activation of a

role is being added, if there is a per-role cardinality constraint active at this time (rt.nra<∝), then

rt.nra must be decremented, as required. The new value will be checked to control role activation

events in the next run of computeCauseSet at (t+1). Note that we do not need to check if

rt.nra=0, because the reason the activation event is in nonblocked(EV(t)) is because no

cardinality constraint has blocked the activation event, as is done in step 7 of

computeCauseSet. Hence, the simple decrement operation is adequate. Similar argument

applies the per-user-role cardinality constraint (the associated parameter is ut.nua).

Each of the IF statements that follows updates the user parameter based on the type of per-user-

role or per-role constraint. The first IF statement checks to see if a per-user-role total activation

constraint is active at time t. If it is active, then the corresponding user parameter dua is updated as

specified. If the constraint form is (C1) then this value will be restricted for the duration dua or till

the time the corresponding role r is disabled (in which case, step 3 will reset this value when it is

updated next). The ELSE part considers the per-role constraint that applies to the activation of r

by u. In that case, the default value specified is assigned to dua. We note that this default value, if

not explicitly specified, is equal to the value specified for the role, for example, Dactive in this

case). Hence, the IF statement updates the user parameter as required. Similar arguments apply to

the rest of the IF statements. The remaining duration for the activation of r by u is then added to

sets Su and Du, so that they can be decremented at each time instant until they become 0 (in which

case the computeCausedSet() will remove it in step 6(c)). Hence, step 8 updates the

required parameters in accord with condition (1).

Step 9: In this step, for each enabled role, the duration of each session is decremented. We note

that the decrement will not make any individual duration negative because such a possibility is

 51

eliminated by Step 6(c) in computeCausedSet. Similarly, the total active duration of the role

is also adjusted. The decrement value represents the total value that will be decremented at the

end of the interval (t, t+1). The else part simply decrements the value of dra by one. This is

necessary because there may be a per–role constraint of type (I, P, C) or (D, C) on the role which

is valid even when the role is disabled. Similarly, each user values are also decremented. Thus,

step 9 updates all the duration values as required.

Hence, it follows that the condition of (1) is satisfied by ST(t) produced by the algorithm.

Proof of part 2 and 3

We look at the complexity of each step and sum them up to get the overall complexity. The FOR

loop of step 1 repeats for each of the deassignment events that is non-blocked. At worst, it repeats

(nR.nU) times. Similarly, the worst case for step 2 is (nR.nP). Step 3 handles role -disabling events.

At worst all roles need to be disabled. The inner FOR loop repeats for all users assigned to each

role. Thus, again the worst case for step 3 is (nR.nU). Step 4 checks for four different types of per-

role activation constraints active at the time. Since, there are nR roles, the maximum number of

such constraints is 4nR. The FOR loop of step 5 repeats at most nR times. Similar to step 2, step 6

has worst case of (nR.nP). Similar to step 1, step 7 has worst case of (nR.nU). Each of steps 8 and 9

is bounded by the maximum number of sessions allowed in the system (nR.nSm). Step 10 repeats

for each role, and the worst case occurs when the else part is executed, giving the worst case of

(nR.nU). Because nR, nU, nP and nSm are each finite, we see that each step terminates. Hence the

algorithm computeST terminates. Furthermore, the overall complexity of the algorithm is:

= nR.nU + nR.nP + nR.nU + 4nR + nR + nR.nP + nR.nU + 2 nR.nSm + nR.nU

Thus the complexity of the algorithm can be expressed as:

O(nR.(nU + nP + nSm)).

