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Role-based access control (RBAC) models are receiving increasing attention as a generalized ap-
proach to access control. Roles may be available to users at certain time periods, and unavailable
at others. Moreover, there can be temporal dependencies among roles. To tackle such dynamic as-
pects, we introduce Temporal-RBAC (TRBAC), an extension of the RBAC model. TRBAC supports
periodic role enabling and disabling—possibly with individual exceptions for particular users—
and temporal dependencies among such actions, expressed by means of role triggers. Role trigger
actions may be either immediately executed, or deferred by an explicitly specified amount of time.
Enabling and disabling actions may be given a priority, which is used to solve conflicting actions.
A formal semantics for the specification language is provided, and a polynomial safeness check
is introduced to reject ambiguous or inconsistent specifications. Finally, a system implementing
TRBAC on top of a conventional DBMS is presented.

Categories and Subject Descriptors: D.4.6 [Security and Protection]: Access controls; H.2.7
[Database Administration]: Security, integrity, and protection

General Terms: Security

Additional Key Words and Phrases: Role triggers, role-based access control, temporal constraints

1. INTRODUCTION

Role-based access control (RBAC) models are receiving increasing attention
as a generalized approach to access control [Atluri 1999; Osborn 2000; Sandhu
1995, 1997, 1998a]. In an RBAC model, roles represent functions within a given
organization. Authorizations are then granted to roles, rather than single users.
The authorizations granted to a role are strictly related to the data objects
and resources that are needed for exercising the functions associated with the
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role. Users are thus simply authorized to “play” the appropriate roles, thereby
acquiring the roles’ authorizations. When users log in, they can activate a subset
of the roles they are authorized to play. We call a role that a user can activate
during a session, an enabled role.

Roles have several well-recognized advantages. Since roles represent orga-
nizational functions, a role-based model can directly support an organization’s
security policy. Authorization administration is also greatly simplified. If a user
moves to a new function within the organization, there is no need to revoke the
authorizations he or she had in the previous function and grant the authoriza-
tions needed for the new function. The Security Officer (SO) simply needs to
revoke and grant the appropriate role membership. Last, but not least, RBAC
models have been shown to be policy-neutral [Sandhu 1996; Osborn et al. 2000];
in particular, by appropriately configuring a role system, one can support dif-
ferent policies, including mandatory and discretionary policies. Such flexibility
is extremely important in supporting the organization security policies.

Because of its relevance, RBAC has been widely investigated [Atluri 1999;
Osborn 2000; Sandhu 1995, 1997, 1998a]. However, even though RBAC has
reached a good maturity level, there are still significant application require-
ments not addressed by current RBAC models. One such requirement is re-
lated to the roles’ temporal dimension. In many organizations, functions may
have limited or periodic temporal duration. Consider, for instance, the case of
part-time staff in a company, and assume that part-time staff is authorized to
work within the given organization only on working days, between 9 AM and
1 PM. If part-time staff is represented by a role, then the above requirement
entails that this role should be enabled only during the aforementioned tem-
poral intervals. Similar requirements can be supported by specifying—for each
role—the time periods in which they can be activated. We call role enabling the
transition of a role from the nonenabled status to the enabled status, and role
disabling the transition of a role from the enabled status to the nonenabled
status. In a framework where roles are not always enabled, it is important to
introduce ways to specify dependencies among the enabling and disabling of dif-
ferent roles. Suppose, for example, that the doctor-on-night-duty role is enabled
during the night. Since doctors may need the assistance of a nurse, one should
make sure that the corresponding role—say, nurse-on-night-duty—is enabled
whenever doctor-on-night-duty is.

To cope with these requirements, we propose Temporal-RBAC (TRBAC), an
extension of RBAC models that supports temporal constraints on the enabling/
disabling of roles. TRBAC supports periodic role enabling and disabling, and
temporal dependencies among such actions. Such dependencies expressed by
means of role triggers (active rules that are automatically executed when the
specified actions occur) can also be used to constrain the set of roles that a
particular user can activate at a given time instant. The firing of a trigger
may cause a role to be enabled/disabled either immediately, or after an ex-
plicitly specified amount of time. Enabling/disabling actions may be given a
priority that may help in solving conflicts, such as the simultaneous enabling
and disabling of a role. As expected, the action with the highest priority is
executed.
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To make the SO able to react to emergency situations, we allow him or her to
dynamically change the status of a role and the set of users entitled to activate
that particular role by issuing run-time requests, that is, requests that are not
conditioned to the occurrence of other events and/or the verification of some
conditions. For instance, by a run-time request it is possible to temporarily pre-
vent a user from activating a role. This feature can be useful when a user under
a particular role performs an action that could be dangerous for the system. The
SO can immediately react by issuing a run-time request causing a temporary
denial for that user to activate that particular role. Run-time requests—like
triggers—may be executed immediately, or after a specified temporal delay.

To the best of our knowledge, the role-based access control model we are
presenting is the first one proposing features such as role triggers and periodic
enabling/disabling of roles.

Unfortunately, because of the expressive power provided by TRBAC, some
specifications may be ambiguous; that is, they may lead to states where there is
no unique way of deciding which roles are enabled. In this article, we introduce
a notion of safeness, and prove that it guarantees the absence of ambiguities
and inconsistencies in the specification.1 Moreover, we define a polynomial al-
gorithm for testing the safety of the specifications.

An additional contribution of this article is the development of a system
supporting TRBAC. The system directly supports role triggers and run-time
requests on top of a conventional RDBMS. In particular, role triggers are sup-
ported by translating them into DBMS triggers.

The remainder of the article is organized as follows. Section 2 describes
the role-based access control model on which our work relies and the formal-
ism we use to represent periodic time. Section 3 formally presents TRBAC.
Section 4 introduces the notion of safe specification and gives a mechanism
to check whether a specification is safe. Section 5 extends the specification
language of TRBAC to support individual exceptions on role enabling and dis-
abling. Section 6 presents a system implementing TRBAC on top of a commer-
cial DBMS, whereas Section 7 surveys related work. Section 8 concludes the
article and outlines future research directions. Finally, formal proofs are re-
ported in Appendix A.

2. PRELIMINARIES

In this section we first present the RBAC model we refer to in the article. We
then describe the formalism we use to represent periodic time.

2.1 RBAC Model

The RBAC model we use throughout the article is basically the one proposed
by Sandhu et al. [1996; Sandhu 1998b]. The model consists of four basic compo-

1The reader is warned that “safeness,” in this article, refers to rule bases whose behavior is unam-
biguous. In other security contexts, the word “safe” would refer to system states with the property
that no security violation occurred.
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nents: a set of users Users, a set of roles Roles, a set of permissions Permissions,
and a set of sessions Sessions. A user is a human being or an autonomous agent,
a role is a collection of permissions needed to perform a certain job function
within an organization, a permission is an access mode that can be exercised
on objects in the system, and a session relates a user to possibly many roles.
When a user logs in the system he establishes a session and, during this ses-
sion, he can request activation of some of the roles he is authorized to play. An
activation request is granted only if the corresponding role is enabled at the
time of the request and the user requesting the activation is entitled to activate
the role at the time of the request. If an activation request is satisfied, the user
issuing the request obtains all the permissions associated with the role he has
requested to activate. On the sets Users, Roles, Permissions, and Sessions,
several functions are defined. The user assignment (UA) and the permission
assignment (PA) functions model the assignment of users to roles and the as-
signment of permissions to roles, respectively. A user can be authorized to play
many roles, and many users can be authorized to play the same role. Moreover,
a role can have many permissions, and the same permissions can be associated
with many roles. The user function maps each session to a single user, whereas
the function role establishes a mapping between a session and a set of roles
(i.e., the roles that are activated by the corresponding user in that session). On
Roles, a hierarchy is defined, denoted by ≥. If ri ≥ r j , ri, r j ∈ Roles, then role
ri inherits the permissions of role r j .

The following definition (adapted from Sandhu [1998]) formally defines the
RBAC model on which TRBAC is based.

Definition 2.1 (RBAC Model ). The RBAC model consists of the following
components.

— Sets Users , Roles , Permissions , and Sessions , representing the set of users,
roles, permissions, and sessions, respectively;

— PA: Roles→ Permissions the permission assignment function, that assigns
to roles the permissions needed to complete their jobs;

— UA: Users→ Roles the user assignment function, that assigns users to roles;
— user: Sessions→ Users, that assigns each session to a single user;
— role: Sessions→ 2Roles, that assigns each session to a set of roles; and
— RH ⊆ Roles × Roles, a partially ordered role hierarchy (written ≥).

2.2 Periodic Expressions

Periodic time is represented by means of a symbolic user-friendly formalism
[Bertino et al. 1998], as a pair 〈[begin,end], P〉, where P is a periodic expression
denoting an infinite set of periodic time instants, and [begin,end] is a time
interval denoting the lower and upper bounds that are imposed on instants
in P.

The formalism for periodic expressions is based on the one proposed in
Niezette and Stevenne [1992], and relies on the notion of calendars. A calendar
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is defined as a countable set of contiguous intervals,2 numbered by integers
called indexes of the intervals.

A subcalendar relationship can be established between calendars. Given two
calendars C1 and C2, we say that C1 is a subcalendar of C2 (written C1 v C2), if
each interval of C2 is exactly covered by a finite number of intervals of C1, that
is, if for each interval I of C2 there exists a subset of the intervals of C1 such that
I is included in the interval resulting from their union. New calendars can be
dynamically generated from the existing ones, by means of a function generate()
(cf. Bertino et al. [1998] for a formal definition), a reference time instant, and a
basic calendar (the tick of the system), denoted by τ . In the following, we assume
the existence of a set of calendars containing the calendars Hours, Days, Weeks,
Months, and Years, where Hours is the calendar with the finest granularity
(i.e., the basic calendar).

Calendars can be combined to represent more general periodic expressions,
denoting periodic instants not necessarily contiguous, such as, for instance, the
set of Mondays or the set of The third hour of the first day of each month.
Periodic expressions are formally defined as follows.

Definition 2.2 (Periodic Expression). [Bertino et al. 1998] Given calendars
Cd , C1, . . . , Cn, a periodic expression P is defined as

P =
∑n

i=1
Oi · Ci B r · Cd ,

where O1 = all, Oi ∈ 2IN ∪ {all}, Ci v Ci−1 for i = 2, . . . , n, Cd v Cn, and r ∈ IN.

The symbol B separates the first part of the periodic expression, identifying
the set of starting points of the intervals it represents, from the specification of
the duration of each interval in terms of calendar Cd . For example, all·Years+
{3, 7} ·Months B 2. Months represents the set of intervals starting at the same
instant as the third and seventh month of every year, and having a duration
of two months. In practice, Oi is omitted when its value is all, whereas it is
represented by its unique element when it is a singleton. r ·Cd is omitted when
it is equal to 1 · Cn.

The infinite set of time instants corresponding to a periodic expression P is
denoted by 5(P). Function 5() is formally defined as follows.

Definition 2.3 (Function 5()). [Bertino et al. 1998] Let P = ∑n
i=1 Oi · Ci B

r ·Cd be a periodic expression; then5(P) is a set of time intervals whose common
duration is r · Cd , and whose set S of starting points is computed as follows.

— If n= 1, S contains all the starting points of the intervals of calendar C1.
— If n > 1, and On = {n1, . . . , nk}, then S contains the starting points of the

nth
1 , . . . , nth

k intervals (all intervals if On = all ) of calendar Cn included in
each interval of 5(

∑n−1
i=1 Oi · Ci B 1 · Cn−1).

For simplicity, in this article the bounds begin and end constraining a periodic
expression are denoted by a pair of date expressions of the form mm/dd/yyyy:hh,

2Two intervals are contiguous if they can be collapsed into a single one (e.g., [1, 2] and [3, 4]).
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with the obvious intended meaning; end can also be∞. For instance, [1/1/2000,
12/31/2000] denotes all the instants in 2000. The set of time instants denoted by
〈[begin,end], P〉 is defined through function Sol(), formally defined as follows.

Definition 2.4 (Function Sol()). Let t be a time instant, P a periodic expres-
sion, and begin and end two date expressions. t ∈ Sol (〈[begin, end], P〉) if and
only if there exists τ ∈5(P) such that t ∈ τ and tb≤ t ≤ te , where tb and te are
the instants denoted by begin and end, respectively.

3. TRBAC

In this section we present TRBAC, by introducing first its syntax and then its
semantics.

3.1 Syntax

Let (Prios, ¹) be a totally ordered set of priorities. We assume that Prios
contains at least two distinct members > and ⊥ such that, for all x ∈ Prios,
⊥¹ x ¹> . As usual, we write x ≺ y if x ¹ y and x 6= y .

Roles and Prios induce the following classes of expressions.

Definition 3.1 (Event Expressions, Role Status Expressions).

1. (Simple) event expressions have the form enable R or disable R, where R ∈
Roles.

2. Prioritized event expressions have the form p:E, where p ∈ Prios and E is
an event expression.

3. Role status expressions have the form enabled R or ¬enabled R, where R ∈
Roles.

We next introduce the notion of conflicting events which plays a crucial role
in defining the semantics of TRBAC.

Definition 3.2 (Conflicting Events). We say that two event expressions
enable R and disable R ′ are conflicting if R = R ′; in symbols, we write:

conf(enable R) def= disable R ,

conf(disable R) def= enable R .

Event expressions and role status expressions are the basic building blocks
of the Role Enabling Base, which contains temporal constraints on the enabling
of roles. A Role Enabling Base is formally defined as follows.

Definition 3.3 (Role Enabling Base, Periodic Events, Role Triggers). A Role
Enabling Base (REB) is a set of elements of the following kinds.

1. Periodic events of the form (I, P, p:E), where
(a) I is a time interval;
(b) P is a periodic expression;
(c) p:E is a prioritized event expression with p ≺ >.
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Fig. 1. An example of Role Enabling Base.

2. Role triggers of the form:

E1, . . . , En, C1, . . . , Ck → p:E after1t,

where the Eis are simple event expressions, the Cis are role status expres-
sions, p:E is a prioritized event expression with p ≺ >, and1t is a duration
expression.

Priorities and delay expressions (after1t) may be omitted. In that case, by
default, p = ⊥ and 1t = 0.

Example 3.1 An example of REB for a medical domain is illustrated in
Figure 1. In the figure we use intuitive names for periodic expressions, whereas
VH (Very High) and H (High) denote priorities with H ≺ VH. The periodic events
and role triggers in the REB state that the doctor-on-night-duty role must
be enabled during the night (such constraint is imposed by periodic events
PE1 and PE2), whereas the role doctor-on-day-duty must be enabled during
the day (periodic events PE3 and PE4). Moreover, role triggers RT1 and RT2
state that the role nurse-on-night-duty must be enabled whenever the role
doctor-on-night-duty is. Role triggers RT3 and RT4 impose the same constraint
for doctor-on-day-duty and nurse-on-day-duty, respectively. Finally, role trig-
gers RT5 and RT6 specify that the role nurse-on-training must be enabled only
during the daytime when the role nurse-on-day-duty is enabled. Moreover, role
nurse-on-training must be enabled two hours after role nurse-on-day-duty is
enabled (for instance, because within the first two hours nurses must perform
urgent activities and they cannot take care of nurses on training).

SOs may enable and disable roles dynamically, at run-time, by means of the
following expressions.

Definition 3.4 (Run-time Request Expression). A run-time request expres-
sion has the form

p:E after1t,

where p:E is a prioritized event expression, and 1t is a duration expression.
Priorities and delay expressions (after1t) may be omitted. In that case, by
default, p = > and 1t = 0.
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Note that—unlike REB events—run-time requests are given top priority by
default. Note also that the priority of periodic events and triggers must be
strictly smaller than >, so that the SO can always override at run-time the
actions generated by any periodic event or trigger.

Example 3.2. Consider the REB in Figure 1. The following are examples
of run-time requests.

—disable nurse-on-training

—enable emergency-doctor.

The first request has the effect of disabling role nurse-on-training, whereas
the second is a request to enable role emergency-doctor.

Roughly speaking, in the formalization, the sequence of the SO run-time
requests is modeled as a stream RQ of run-time request expressions. Each set
RQ(t) in the sequence models the requests submitted at time t. Time points
are expressed as integers, starting from 0 (time expressions are converted to
integer notation, based on the finest-grained calendar adopted).

Definition 3.5 (Request Stream). A request stream is a sequence RQ =
〈RQ(0), RQ(1), . . . , RQ(t), . . .〉, where each RQ(t) is a (possibly empty) set of run-
time request expressions.

3.2 Semantics

In order to simplify the main definitions, we first introduce an auxiliary no-
tion to identify the prioritized events with maximal priority, and those that
are overridden (or blocked), according to the ordering ¹ and the disabling-
takes-precedence principle. Such a principle establishes that, when conflicts
among events (i.e., enabling/disabling of roles) cannot be solved by priorities,
role disabling is considered as prevailing with respect to role enabling. Such
a principle is an extension to the RBAC framework of the well-known denial-
takes-precedence principle used by the majority of access control models sup-
porting both positive and negative authorizations [Bertino 1998]. Under this
principle, negative authorizations (representing denials) always have higher
priority than positive authorizations (representing permissions). The denial-
takes-precedence principle is widely adopted since it represents the most con-
servative approach with respect to security.

Definition 3.6 (Blocked Event, Nonblocked). Let S be a set of prioritized
event expressions. We say that p:E ∈ S is blocked by S if there exists q ∈ Prios
such that (q:conf(E)) ∈ S and either

1. E = enable R and p ¹ q, or

2. E = disable R and p ≺ q.

The set of all members of S that are not blocked by S is denoted by
Nonblocked(S).
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Example 3.3 Let S= {H:enable R0,H:disable R0,VH:enable R1, H:disable
R1}. Thus, Nonblocked(S)= {H:disable R0, VH:enable R1}, since H:enable R0 is
blocked by H:disable R0, by the first condition of Definition 3.6 (which specifies
the disabling-takes-precedence principle), whereas H:disable R1 is blocked by
VH:enable R1, by the second condition of Definition 3.6.

The dynamics of event occurrences and role enabling and disabling is de-
picted as a sequence of snapshots. Each snapshot models the current set of pri-
oritized events and the status of each role. For notational convenience, events
and role status are modeled by two distinct sequences EV and ST, respectively.

Definition 3.7 (System Trace, Canonical Trace). A system trace—or simply
a trace—consists of a pair of infinite sequences EV and ST, such that for all
integers t ≥ 0:

— the tth element of EV, denoted by EV(t), is a set of prioritized event expres-
sions; intuitively, this is the set of events that occur at time t;

— the tth element of ST, denoted by ST(t), is a set of role names; intuitively,
these are the enabled roles at time t.

Furthermore, traces should satisfy the following constraint, for all t ≥ 0.

ST(t + 1) = (ST(t)∪
{R | enable R ∈ Nonblocked(EV(t))}) \
{R | disable R ∈ Nonblocked(EV(t))} .

Finally, we say that a trace is canonical if ST (0) = ∅ .

Essentially, the above constraint enforces the intended semantics of events.
Those with maximal priority (i.e., the members of Nonblocked(EV(t))) determine
role enabling and disabling as expected. Note that the above constraint deter-
mines a unique state, given the previous state and an event sequence, so the
following proposition holds.

PROPOSITION 3.1 For all event sequences EV and all initial role status S0,
there exists a unique trace 〈EV, ST 〉 with ST (0) = S0.

We are left to specify which events must be in EV, given a REB R and a
request stream RQ. Intuitively, each event should be caused by some element of
R or RQ. When a prioritized event is caused by a trigger, the event expressions
in the body of the trigger must not be blocked. These intuitions are formalized
by the next definition.

Definition 3.8 (Caused Events). The set of caused prioritized events at time
t (with respect to given trace 〈EV, ST 〉, REBR, and request stream RQ) is the
least set Caused(t, EV, ST,R, RQ) satisfying the following conditions.

1. If (I, P, p:E) ∈ R and t ∈ Sol (I, P ), then p:E ∈ Caused(t, EV, ST,R, RQ).
2. If (p:E after1t) ∈ R Q(t − 1t) (1t ≤ t), then p:E ∈ Caused(t, EV, ST,R,

RQ).
3. If [E1, . . . , En, C1, . . . , Ck → p:E after1t] ∈ R and

ACM Transactions on Information and System Security, Vol. 4, No. 3, August 2001.



200 • E. Bertino et al.

3a. 1t ≤ t,
3b. for all role status expressions Ci = enabled R (1 ≤ i ≤ k), R ∈ ST(t−1t),
3c. for all role status expressions Ci = ¬enabled R (1 ≤ i ≤ k), R 6∈ ST(t −

1t), and
3d. for all event expressions Ei (1 ≤ i ≤ n), there exists p:Ei ∈ Caused(t −

1t, EV, ST,R, RQ) not blocked by EV (t −1t),
then p:E ∈ Caused(t, EV, ST,R, RQ).

In other words, by (1) and (2), all events scheduled via a periodic event or an
explicit request are caused. By (3), all events scheduled by a trigger are caused,
provided that the role status expressions in the body are satisfied (3(b) and 3(c))
and that the event expressions Eis are in turn caused at time t−1t. Moreover,
such events must not be blocked by any concurrent event (3(d)).

Example 3.4 Let R consist of the following role triggers.

1. enable R0 → enable R1
2. enable R0 → disable R2
3. enable R1 → enable R2
4. enable R2 → enable R3.

Suppose that RQ(0) = {enable R0 after 1}, and that for all t > 0, RQ(t) = ∅.
Finally, let 〈EV, ST 〉 be the (unique) canonical trace such that:

EV(0) = {⊥:enable R0}
EV(1) = {⊥:enable R0,⊥:enable R1,

⊥:enable R2,⊥:disable R2,
⊥:enable R3}

EV(t) = ∅ (t > 1) .

Then, we have:

—Caused(0, EV, ST,R, RQ) = ∅. Indeed, at t = 0 we have no periodic event nor
any immediate request, and in turn no trigger body is caused.

—Caused(1, EV, ST,R, RQ)= EV (1)\{⊥:enable R3}. The reason is that
⊥:enable R0 is caused at t = 1 by the request in RQ(0). This event causes
the preconditions of triggers (1) and (2). In turn, (1) causes the precondition
of (3), which causes the precondition of (4). However, this latter precondition
is blocked by the event ⊥:disable R2 in EV(1). Summarizing, all triggers
but (4) provide a cause for their head.

— For all t > 1, Caused(t, EV, ST,R, RQ) = ∅. Same explanation as for t = 0.

We are now ready to define the system behavior induced by specific REBs
and request streams. Intuitively, we require each EV(t) to contain all and only
those events that have a specific cause.

Definition 3.9 (Execution Model). A trace 〈EV, ST 〉 is an execution model
of a REB R and a request stream RQ, if for all t ≥ 0,

EV(t) = Caused(t, EV, ST,R, RQ) .
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We say that an execution model is canonical if ST(0) = ∅.
Example 3.5. GivenR and RQ as specified in Example 3.4, it is easy to see

that the unique canonical trace with:

EV(0) = ∅
EV(1) = {⊥:enable R0,⊥:enable R1,

⊥:enable R2,⊥:disable R2}
EV(t) = ∅ (t > 1)

is an execution model of R and RQ. The corresponding role states are ST(0) =
ST(1) = ∅ and for all t > 1, ST(t) = {R0, R1}.

Unfortunately, some specifications may yield no execution model, while some
ambiguous specifications may admit two or more models, as the following ex-
ample shows.

Example 3.6. Let R= {enable R → disable R}. Upon a request RQ(t) =
{⊥:enable R}, there are the possibilities:

1. The trigger in R fires. But then its conclusion would immediately block the
precondition enable R, so the trigger should not fire.

2. The trigger does not fire. But then its precondition, enable R, is not blocked,
so the trigger should fire.

In other words, it is impossible to satisfy both the requirement that triggers
should not fire if their body is blocked by a simultaneous event, and the require-
ment that all applicable triggers must fire. Formally, this is captured by the
fact:⊥:disable R ∈EV(t) if and only if ⊥:disable R 6∈ Caused(t, EV, ST,R, RQ).
Clearly, this implies that the equation in Definition 3.9 cannot be satisfied, and
hence there is no execution model of R and RQ (equivalently, R and RQ are
mutually inconsistent).

Example 3.7. Let R = {enable R→ disable S, enable S→ disable R}.
Upon a combined request RQ(t) = {⊥:enable R, ⊥:enable S}, there exist the
symmetric possibilities:

1. Fire the first trigger; this yields: EV (t)={⊥:enable R,⊥:enable S,
⊥:disable S}. In this case enable R is not blocked, while enable S is. In-
tuitively, the first trigger blocks the second one.

2. Fire the second trigger; this yields: EV (t)={⊥:enable R, ⊥:disable R,
⊥:enable S}. In this case, enable R is blocked, while enable S is not. In-
tuitively, the second trigger blocks the first one.

The third possibility—that is, firing both triggers in parallel—is not consid-
ered in this example, because it violates a principle enforced by our semantics;
namely, the effects of fired triggers should not invalidate (block) any of the
fired triggers’ bodies. In this example, simultaneous firing would invalidate the
bodies of both triggers. This does not mean that our execution model is incom-
patible with parallel trigger execution. Any parallel execution model satisfying
the above principle can be adopted.
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Fig. 2. Edges of the dependency graph of the REB in Figure 1.

Fortunately, there are many interesting cases in which the specifications
yield exactly one model, for all possible run-time requests. There are simple
syntactic conditions that prevent any pathological interplay between conflicting
events. Such syntactic conditions, called safeness, are introduced in the next
section.

4. SAFE REBS

In this section we introduce a syntactic condition, called safety, that can be
verified in polynomial time and guarantees that a given REB has one and
exactly one execution model.

Definition 4.1 (Labeled Dependency Graph). Each REB R is associated
with a (directed) labeled dependency graph DGR = 〈N ,E〉 where:

—N (the set of nodes) coincides with the set of all prioritized event expressions
p:E that occur in the head of some trigger [B→ p:E] ∈ R;

—E(the set of edges) consists of the following triples,3 for all triggers [B →
p:E] ∈ R, for all events E ′ in the body B, and for all nodes q:E ′ ∈ N :
— 〈q:E ′,+, p:E〉;
— 〈r:conf(E ′),−, p:E〉, for all [r:conf(E ′)] ∈ N such that q ¹ r.

Definition 4.2 (Safeness). A REB R is safe if its dependency graph DGR
contains no cycles in which some edge is labeled “−”.

Example 4.1. It is easy to verify that the REB in Figure 1 is safe. The
corresponding dependency graph consists of the edges reported in Figure 2 (for
brevity, in the figure, -on and -duty have been dropped from role names).

On the contrary, the dependency graph for the REB of Example 3.6 con-
tains a cycle consisting of the single negative edge 〈disable R,−, disable R〉,
while in Example 3.7 there exists a cycle consisting of the two edges
〈disable R,−, disable S〉 and 〈disable S,−, disable R〉.

The following theorem shows that if a REB R is safe, then the system’s
behavior is unambiguously determined by R, RQ, and the initial status of the
roles. Proofs are given in Appendix A.

THEOREM 4.1. If a REB R is safe, then for all request streams RQ and for
all S ⊆ Roles, there exists exactly one execution model 〈EV, ST 〉 of R and RQ
such that ST(0) = S.

3Each triple 〈N1, `, N2〉 represents an edge from node N1 to N2, labeled by `.
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Fig. 3. Algorithm for safeness verification.

COROLLARY 4.1. If a REB R is safe, then for all request streams RQ, there
exists exactly one canonical execution model of R and RQ.

This proves that safeness is a sufficient condition for good system behav-
ior. Necessary conditions are much harder to find and of little practical help,
because syntactic properties (such as graph-based ones) fail to recognize that
ill-formed portions of the graph may be harmless because they can never be
activated. In general, checking model existence and model uniqueness are NP-
hard problems. This can be proved via techniques developed for the stable model
semantics of logic programs; the details lie beyond the scope of this article.

A fast algorithm for safeness verification is illustrated in Figure 3. The first
part of the algorithm builds the dependency graph associated with R, whereas
the second part checks for cycles with a negative edge. The correctness of the
former is obvious, as it closely mimics the formal definition of the graph. The
second part of the algorithm checks whether a cycle with a negative edge exists
by computing the strongly connected components of the dependency graph, and
then checking whether any of them contains a negative edge. This approach is
correct, as stated by the following proposition.

PROPOSITION 4.1. A labeled dependency graph contains a cycle with a neg-
ative edge if and only if one of its strongly connected components contains a
negative edge.
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PROOF. Note that each cycle is entirely contained in some strongly connected
component. Therefore, if a cycle contains a negative edge, then some strongly
connected component does. Conversely, if 〈X ,−, Y 〉 is an edge of some strongly
connected component C, then there exists a path π from Y to X in C (by def-
inition of strongly connected component). By extending π with 〈X ,−, Y 〉 we
obtain a cycle with a negative edge, entirely contained in C.

The algorithm runs in quadratic time.

THEOREM 4.2. The safeness algorithm runs in time O(|R|2).

PROOF. (Sketch) If N is represented as an ordered vector (that can be
sorted and cleaned up from duplicates at the end of the first cycle, in time
O(|N | · log |N | + |N |)), then the membership test in the second cycle becomes
logarithmic in |N |, and the overall cost of the second cycle can be reduced to
O(|R| · (log |N | + |N |)). All these terms are dominated by O(|R| · |N |), so this is
the cost of the first phase.

The strongly connected components of the graph can be generated in time
O(|N | + |E |) (cf. Cormen et al. [1990]), and the global number of all their edges
is bounded by |E |, so the global cost of the second phase of the algorithm is
dominated by O(|N | + |E |).

Since each node must occur in some trigger’s head, we have |N | ≤ |R|, and
|E | is O(|R|2). So the costs of both phases are dominated by O(|R|2).

Note that for a fixed set of priorities, the number of iterations of the innermost
loop of the graph construction phase is bounded by a constant (i.e., |Prios|).
It follows that for fixed sets of priorities, the cost of the safeness verification
check is reduced to O(|R| log |R|).

Note that the efficiency of safeness verification can be further improved by
adopting incremental graph construction methods, and by caching the set of
strongly connected components. Whenever a trigger is inserted or updated,
only a few edges have to be inserted or deleted, and only the old strongly con-
nected components involving the events in the new/updated trigger have to be
considered, unless new nodes are created.

5. INDIVIDUAL EXCEPTIONS

The temporal RBAC model described so far allows the SO to specify the role
trigger requesting the enabling and/or disabling of roles on the basis of the
occurrence of specific events (i.e., enabling/disabling of other roles) and/or the
verification of some conditions (i.e., the fact that a role is enabled or not). How-
ever, the specification language we have introduced so far does not allow the
specification of individual exceptions. This means that it is not possible to se-
lectively enable/disable a role only for specific users. However, there are many
situations in which such, a finer granularity level would be useful, as the fol-
lowing example illustrates.

Example 5.1. Let us consider once again our medical example of Figure
1 and suppose that a nurse on training, say Mary, performs some potentially
dangerous actions. What is needed in this case is a mechanism that allows the
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SO to disable the role nurse-on-training but only for Mary and not for all the
other nurses who are actually authorized to activate this role.

In order to formulate individual exceptions to role enabling and disabling
we extend the specification language as follows. First we extend Definition 3.1
(event expressions) with individual disabling and reenabling of the form:

disable R for U, and re enable R for U,

where U is either a user name or a variable ranging over user names. The two
new forms of events are conflicting, and Definition 3.2 is extended accordingly.
The new events may occur wherever the other events could, in REBs and request
streams, so the remaining syntactic definitions need no change. At the semantic
level, the notion of blocked events (Definition 3.6) can be easily extended as
follows. An individual enabling/reenabling of a role p:E ∈ S is blocked by S if
there exists q:conf(E) ∈ S such that either:

1. E = disable R for U and p ≺ q, or
2. E = re enable R for U and p ¹ q.

Note that when p = q, individual disabling overrides corresponding reenabling.

Example 5.2. The run-time request:
disable nurse-on-training for Mary

has the effect of disabling role nurse-on-training for user Mary. Such a role
can subsequently be reenabled for Mary, for example, by issuing the following
run-time request:

re enable nurse-on-training for Mary after 1
which has the effect of allowing Mary to activate role nurse-on-training one
hour after the run-time request was issued.

Also traces are adapted in the natural way. Event sequences (EV ) may con-
tain individual disabling and reenabling. Role status sequences (ST ) may con-
tain both role names (as before) and pairs 〈R, U 〉, where R is a role name and
U a user name. A user U can activate role R at time t if

1. R ∈ ST (t) (R is enabled at time t), and
2. 〈R, U 〉 6∈ ST (t) (there is no individual exception for U ).

Definition 3.7 (System Traces). can be adapted by requiring:

ST (t + 1) = (ST (t)∪
{〈R, U 〉 | (disable R for U ) ∈ Nonblocked(EV (t))} ∪
{R | enable R ∈ Nonblocked(EV (t))})
\
({〈R, U 〉 | (re enable R for U ) ∈ Nonblocked(EV (t))} ∪
{R | disable R ∈ Nonblocked(EV (t))}) .

In other words, an individual disabling inserts suitable pairs 〈R, U 〉 in
ST (t+1), while a reenabling removes such pairs. The notions of caused events
and execution models do not need to be changed. Similarly, the definitions of
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Fig. 4. System architecture.

dependency graph and safe REBs, as well as related results, do not require any
modification.

6. SYSTEM ARCHITECTURE

In this section we present a system implementing TRBAC on top of an Oracle
DBMS. At any given time, the system must be able to determine the roles that
a user can activate, according to the periodic events and triggers contained in
the REB, and the run-time requests issued until that point. A request by a user
to activate a role is authorized if the user has the authorization to play the
role, the role is enabled at the time of the activation request, and no individual
exceptions have been specified for the user for that particular role. In design-
ing an architecture supporting role enabling in TRBAC, key aspects that must
be taken into account are that roles’ enabling/disabling can be either immedi-
ately executed, or can be deferred by a fixed time interval, and that run-time
requests, periodic events, and role triggers have an associated priority, to be
considered when dealing with conflicting actions. Figure 4 shows the system
architecture. The figure shows both data structures (rectangles) and functional
components (ovals). Interactions among the various entities are represented by
arrows. In the following sections we illustrate all the components of the system
architecture, starting with data structures.
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Fig. 5. Table Deferred Actions for the REB in Figure 1.

6.1 Data Structures

Information on the status of a role, periodic events, and run-time requests are
maintained in Oracle tables. More precisely, the data maintained by the system
are:

1. Enabled Roles: a table containing an entry for each enabled role. The entry
corresponding to a role R also contains the set of users authorized to activate
R according to the REB content and the run-time requests issued up to that
point. If the REB does not contain any individual exception for role R, then
the set of users associated with R in table Enabled Roles coincides with the
set of users authorized to play role R. In this case, the keyword all is used
to denote all the users authorized to play a role.

2. Deferred Actions: a table that contains an entry for each deferred action. The
entry contains the time instant at which the action execution is scheduled
and its priority. If the action is periodic, the table contains the first instant
at which it is scheduled along with the temporal interval that must occur
between two consecutive executions of the action (i.e., the periodicity).

3. Actions: a table that records the actions to be potentially executed on table
Enabled Roles. Such actions can be caused by the firing of a role trigger, by
a run-time request, or by a periodic event. Table Actions is needed because
not all the required actions have to be executed, in that some of them may
be invalidated by conflicting actions. Intuitively, Actions corresponds to set
Caused introduced in Definition 3.8.

4. Events. This is a global event base that records the enabling/disabling of
roles as well as individual exceptions.

Note that the system does not include any data structure for role triggers,
since role triggers are implemented by exploiting the trigger mechanism pro-
vided by Oracle. Each time a new role trigger is specified it is translated into
an equivalent4 Oracle trigger attached to table Events. By using this strat-
egy, no mechanisms have to be developed for role trigger activations, since the
automatic activations of role triggers are ensured by the DBMS services.

Example 6.1. Consider the REB in Figure 1. The corresponding table De-
ferred Actions is shown in Figure 5. In the figure, for simplicity, we use the
symbolic formalism to denote periodic time. Actually, the system uses a formal-
ism for internal representation that translates each symbolic expression into a
periodicity constraint expressed in the basic calendar. For instance, since Hours

4By equivalent, we mean a trigger having the same effects as the specified role trigger.
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is the basic calendar and assuming that hour 1 is the first hour of 1/1/2000, then
the periodic expression Night Time is translated into the periodicity constraint
t ≡24 y ∀ y = 1, . . . , 12, where 24 is the number of hours in a day (the peri-
odicity of Night Time), and 12 is the number of hours within each night (the
granularity of Night Time). t ≡24 y ∀ y = 1, . . . , 12 is a compact notation for the
disjunction of simple periodicity constraints: t ≡24 1 ∨ t ≡24 2 ∨ . . . ∨ t ≡24 12,
where t ≡k c denotes the set of integers of the form c + kn, ranging from −∞
to +∞ in Z .

The first instant of the night of 1/1/2000 tuple (doctor-on-night-duty,all)
is inserted into table Enabled Roles and this causes the insertion of the tu-
ple (enable,doctor-on-night-duty) into table Events. This latter insertion
causes the evaluation of the triggers attached to table Events,5 that corre-
spond to the role triggers in Figure 1. Trigger RT1 fires and this causes the
insertion of the tuple (nurse-on-night-duty,enable,all,VH) into table Ac-
tions. Since no conflicting actions exist, the tuple (nurse-on-night-duty,all)
is inserted into table Enabled Roles and this causes the insertion of the tuple
(enable,nurse-on-night-duty) into table Events.

6.2 Functional Modules

The system consists of six functional modules (cf. Figure 4), namely, the Safe-
ness Checker, the Trigger Compiler, the Periodic Event Handler, the Run-Time
Request Handler, the Deferred Action Handler, and the Action Handler. In what
follows we illustrate each of the above modules in turn.

The Safeness Checker is activated upon a role trigger insertion or modifi-
cation, and verifies whether such operation preserves the REB’s safeness. To
perform this check the Safeness Checker uses an incremental version of the algo-
rithm illustrated in Section 4 that does not rebuild the dependency graph from
scratch each time a role trigger is inserted or updated but modifies the existing
graph by changing all and only those portions that are really affected by the
insertion/update. If the check fails, then the requested insertion/modification is
not executed. Note that trigger deletions do not affect safeness and thus do not
require any safeness check. However, to avoid the dependency graph becoming
too large, an algorithm is periodically executed that removes from the graph
all the nodes and arcs corresponding to triggers that have been removed from
the system. If the Safeness Checker authorizes the insertion/modification of a
role trigger, the role trigger is passed to the Trigger Compiler that translates
it into an equivalent Oracle trigger attached to table Events. The translation
depends on the number and types of expressions appearing in the trigger body
and on the type of action that the firing of the trigger should cause. If the ac-
tion caused by the trigger has to be immediately executed, the firing of the
corresponding Oracle trigger inserts the action into table Actions, along with
the action priority. By contrast, if the action has to be deferred, the firing of
the corresponding Oracle trigger inserts the action into table Deferred Actions
along with its priority and the instant(s) at which the action has to be executed.

5A methodology for trigger generation is presented in Section 6.3.
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The Periodic Event Handler is in charge of managing periodic events. When
a periodic event is inserted into the REB, the Periodic Event Handler inserts a
corresponding entry into table Deferred Actions. The entry contains the action
corresponding to the periodic event, its priority, and the associated periodicity
constraint (i.e., the constraint denoting the set of instants at which the action
has to be executed). When the deletion of a periodic event is requested, the
corresponding entry is removed from Deferred Actions. Moreover, the Periodic
Event Handler sends a message to the Action Handler which verifies whether
table Enabled Roles has to be modified because of the periodic event deletion.

The Run-Time Request Handler is activated each time a run-time request
is issued. The handler first verifies whether the request is for an immediate
action or for a deferred one. In the former case, it returns the action and its
priority to the Action Handler. In the latter case, it inserts the action into table
Deferred Actions along with the time of its occurrence and the action priority.

The Deferred Action Handler is in charge of monitoring table
Deferred Actions to execute the actions it contains at the associated time.
Such a module is implemented as a daemon which maintains a list of instants
at which it has to wake up. For periodic actions, the Deferred Action Handler
maintains the first instant at which the action has to be executed and the
time period between any two consecutive executions of the action. When the
daemon wakes up it selects from Deferred Actions the actions that have to
be executed. If conflicting actions exist, it selects the action with the highest
priority (in case of equal priority, disabling-takes-precedence). Then, it returns
the action to the Action Handler along with the action priority.

The Action Handler represents the core of the architecture and is in charge
of updating table Enabled Roles, according to the requests by the other mod-
ules or caused by the firing of the triggers associated with table Events. Since
conflicts may arise among the requested actions, such actions are collected
into table Actions before their execution on table Enabled Roles. If conflicts
arise, the Action Handler solves them before updating table Enabled Roles.
In particular, for each action of the form enable R with priority p in table
Actions, the Action Handler verifies whether table Actions contains an event
disable R ′ with priority q such that p ¹ q and R = R ′. If this event exists,
the Action Handler does not insert enable R into table Enabled Roles. A sim-
ilar check is done for action of the form disable R and for actions related to
individual exceptions.

6.3 Trigger Generation

In the following we illustrate how the Trigger Compiler translates role triggers
into Oracle triggers. In defining the translation we have to take into account
that in TRBAC events implied by role triggers are prioritized. Moreover, even if
we consider triggers all with the same priority, the safeness condition induces
an evaluation order for triggers, reflecting their semantics, that must be obeyed
during their evaluation, as shown by the following example.
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Example 6.2. Consider a REB consisting of the role triggers:

1. enable R1→ enable R2

2. enable R0→ disable R1.

Such REB satisfies the safeness condition given in Section 4. Suppose now
that at time t the run-time requests {enable R1, enable R0} are issued. Since the
REB is safe, it admits exactly one execution model according to which only role
R0 must be enabled. Such correct behavior can be guaranteed only if trigger 2
is evaluated before trigger 1. By contrast, if trigger 1 is evaluated before trigger
2, its firing generates enable R2, and this is not correct since the subsequent
evaluation of trigger 2 generates disable R1 which should have blocked the
firing of trigger 1.

By the above considerations, it is clear that the correct evaluation of role
triggers depends on the enforcement of an evaluation order which is based on
the dependencies among the events appearing in the triggers. Unfortunately,
Oracle does not provide any explicit mechanism for prioritizing triggers. To
cope with this problem, we impose some restrictions on the specification lan-
guage supported by our current prototype that ensure the correct evaluation
of triggers even in the absence of a priority mechanism. Intuitively, such re-
strictions do not allow the specification of triggers whose results depend on
the order in which they are evaluated. The first restriction we impose is that
actions caused by the firing of a trigger must all have the same priority (that
by default is assumed to be ⊥). By contrast, different priorities can be asso-
ciated with run-time requests. Additionally, to ensure that the evaluation of
triggers with the same priority always enacts the correct semantics, we impose
a further restriction to triggers causing instantaneous actions (i.e., those with
1t = 0, also called instantaneous triggers): if an event enable R appears in
the head of an instantaneous trigger, then the body must contain ¬enabled
R, and if the event disable R appears in the head of an instantaneous trigger,
then the body must contain enabled R. Analogous restrictions apply to triggers
causing individual exceptions. Such syntactic restrictions impose that instan-
taneous triggers can be used only to change a role status (i.e., from enabled to
not enabled and vice versa) and thus ensure that two triggers which allow the
derivation of conflicting events cannot be simultaneously activated. This im-
plies that the events generated by a set of triggers do not depend on the trigger
evaluation order, and thus allow their correct evaluation in the Oracle DBMS.
It is important to remark that the current limitation of our implementation
is due to the fact that we wish to implement TRBAC on top of a conventional
DBMS by making use of its trigger support. At the current stage, commercial
DBMSs do not support trigger priority (e.g., Oracle) or they only support a
limited form of priority by which the evaluation order of triggers that are si-
multaneously fired is given by the order in which they have been specified (e.g.,
DB2 and the recent SQL99 standard [Gulutzan and Pelzer 1999]). However,
using this latter feature would require knowing at the beginning all the trig-
gers that need to be specified and thus does not allow subsequent insertions
or modifications of role triggers, or it makes these operations cumbersome,
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Fig. 6. Trigger generation.

since they may require the deletion and respecification of a large number
of triggers.

The strategy used by the Trigger Compiler to translate a role trigger into
an Oracle trigger is illustrated in Figure 6. For simplicity, we consider only
role triggers that do not contain individual exceptions. The extension with in-
dividual exceptions is straightforward. The Trigger Compiler receives as in-
put a role trigger, specified according to the TRBAC syntax, and generates a
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Fig. 7. Oracle trigger syntax.

corresponding Oracle trigger attached to table Events. Oracle triggers are spec-
ified according to the syntax shown in Figure 7. In Figure 6, we make use of
the function “Add” to create the Oracle trigger step by step.

Intuitively, the strategy presented in Figure 6 generates for each role trigger
received as input, an Oracle trigger which is evaluated before each insertion
in table Events. The firing condition is the conjunction of the simple event ex-
pressions (i.e., enable R/disable R) appearing in the body of the role trigger.
Then, Step 10 considers each role status condition Ci (i.e., enabled R/¬enabled
R) appearing in the body of the role trigger and inserts into the trigger the
PL/SQL code necessary for its testing (such test is done by querying table
Enabled Roles). Step 11 considers each simple event expression Ei appear-
ing in the body of the role trigger, and for each of them generates the PL/SQL
code for testing that no simultaneous blocking events have taken place (such
test is done by querying table Actions). Finally (Step 12), if the role trigger is
instantaneous, then a tuple corresponding to the trigger action is inserted into
table Actions. Such a tuple contains the requested action, the role involved in
such action, the action priority, and the set of users to which the action applies.
By contrast, if the trigger is not instantaneous, an analogous tuple is inserted
into table Deferred Actions. In such a case, the tuple also contains the temporal
displacement for the requested action.

Example 6.3. As an example of trigger generation, consider trigger RT2 in
Figure 1. By the syntactic restriction we have imposed this trigger is rewritten
as: enabled nurse-on-night-duty, disable doctor-on-night-duty→ disable
nurse-on-night-duty, and is thus translated by the Trigger Compiler into the
following Oracle trigger.

create trigger RT2

before insert on Events

for each row

when (new.action = ‘disable’ AND new.role = ‘doctor-on-night-duty’)

declare

X,Y number;
begin

select count(*) into X

from Enabled Roles

where role = ‘nurse-on-night-duty’;
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if X > 0

then

select count(*) into Y

from Actions

where (role = ‘doctor-on-night-duty’ AND action = ‘enable’

AND priority > 0);
if Y = 0

then

insert into Actions values(‘nurse-on-night-duty’,‘disable’,all,0);
endif

endif

end;

Such a trigger first verifies whether the role nurse-on-night-duty is enabled.
If this check succeeds, then it verifies that the event in the body of the trigger
(i.e., disable doctor-on-night-duty) is not blocked by conflicting actions. If
even this further check succeeds, the Oracle trigger inserts into table Actions
the tuple (nurse-on-night-duty,disable,all,0), which corresponds to an im-
mediate request for disabling the role nurse-on-night-duty with the lowest
priority. The keyword all is used to denote that the action is not requested for
a particular user (or set of users) but for all the users authorized to play role
nurse-on-night-duty.

A similar translation is applied to trigger RT5 in Figure 1. In this case, no
initial rewriting is needed since RT5 causes a deferred action. The corresponding
Oracle trigger is thus as follows,

create trigger RT5

before insert on Events

for each row

when (new.action = ‘enable’ AND new.role = ‘nurse-on-day-duty’)

declare

Y number;
begin

select count(*) into Y

from Actions

where (role = ‘nurse-on-day-duty’ AND action = ‘disable’

AND priority ≥ 0);
if Y = 0

then

insert into Deferred Actions values(‘nurse-on-training’,‘enable’,

all,0,2);
endif;

end;

where the major difference, with respect to the previous trigger, is that, since
trigger RT5 is not instantaneous, the firing of the corresponding Oracle trigger
causes an insertion into table Deferred Actions.
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7. RELATED WORK

Role-based access control has received increasing attention in the past years
[Atluri 1999; Osborn 2000; Sandhu 1995, 1997, 1998a] and several role-based
access control models have been proposed (see, for instance, Ferraiolo et al.
[1999], Jonscher et al. [1994], Nyanchama and Osborn [1999], Sandhu et al.
[1996] and Sandhu [1998b]). For example, the work by Jonscher et al. [1994]
describes a role-based access control scheme for object-oriented data models,
whereas Sandhu et al. [1996] present a framework of four role-based access
control models.

Most of the RBAC models of recent years recognized the need of supporting
constraints on both users and roles and provided some mechanisms for their
support. However, most of the attention has been so far devoted to separation
of duties constraints [Ahn and Sandhu 1999; Ferraiolo et al. 1999; Kuhn 1997;
Jonscher et al. 1994; Nyanchama and Osborn 1999; Sandhu 1991, 1998; Sandhu
et al. 1996; Simon and Zurko 1997; Tidswell and Jaeger 2000]. The principle
of separation of duties aims at reducing the risk of fraud by not allowing any
individual to have sufficient authority within the system to perpetrate a fraud
on his or her own. Separation of duties is a principle often applied in everyday
life; for example, opening a safe requires two keys held by different individuals,
approval of a business trip requires approval of the department manager as well
as an accountant, and a paper submitted to a conference is usually required to be
reviewed by three referees who must be different from the author(s) of the paper.

Several authors have discussed and categorized different forms of separation
of duties (e.g., static, dynamic, object-based, operational, etc.) and taxonomies
have been proposed [Nyanchama and Osborn 1999; Simon and Zurko 1997] for
separation of duties constraints.

The RBAC model proposed by Ferraiolo et al. [1999] provides support for an
additional class of constraints, that is, cardinality constraints. Such a class of
constraints imposes an upper bound on the number of users that can play a role
at a given time. An example of a role cardinality constraint is the one imposing
that only one individual at a time may assume the role of the department
head, although such a role can be assumed by different individuals in different
time periods.

Other related work has been carried on in the context of Workflow Man-
agement Systems. Bertino et al. [1999] have proposed a logic language for ex-
pressing constraints on both user and role assignments to workflow tasks, able
to express both static and dynamic separation of duties. The constraint model
proposed in Bertino et al. [1999] has been further extended in Kandala and
Sandhu [1999] to express weighted voting constraints, that is, constraints im-
posing lower bounds on the number of users that must execute a task under a
particular role. An example of a weighted voted constraint is the one imposing
that at least three different supervisors must approve a check. However, al-
though the specification and enforcement of constraints in RBAC models have
been deeply investigated before, none of the previous work attempts to specify
temporal constraints and dependencies on the enabled roles. We believe that
this class of constraints is very useful for a number of application domains.
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As such we believe that temporal constraints on the enabled roles cannot be
neglected by RBAC models. Our work is thus a first proposal towards the de-
velopment of an RBAC model supporting such a class of constraints.

Another work related to our proposal is the access control model presented
by Bertino et al. [1998], which supports temporal authorizations and deriva-
tion rules, able to express temporal dependencies among authorizations. From
this work we borrow the formalism for periodic time representation. However,
our work substantially differs from the work in Bertino et al. [1998]. In that
work access authorizations are granted to both users and roles, and temporal
constraints are used to limit the time of validity of authorizations. Temporal de-
pendencies among authorizations are expressed by means of a logic language.
By contrast, in the current article, we use active rules to express temporal con-
straints on role enabling/disabling. Moreover, the notions of trigger priority,
deferred actions, individual exceptions, and run-time requests are new with
respect to the model proposed in Bertino et al. [1998]. Furthermore, we have
developed a system supporting TRBAC on top of a conventional DBMS.

A further authorization model that allows temporal specification has been
recently proposed in Gal and Atluri [2000]. The model, called Temporal Data
Authorization Model (TDAM ), is able to express access control policies based
on the temporal characteristics of data, such as valid and transaction time, and
thus can be seen as complementary to the model proposed in Bertino et al. [1998]
with respect to the specification of temporal constraints on user authorizations.
However, TDAM does not support temporal constraints on the enabled roles and
thus temporal constraints that can be expressed in TDAM substantially differ
from those provided by TRBAC.

Finally, the problem of modeling the semantics of active rules has been tack-
led in several papers (e.g., Lobo and Rachid [1994] and Lobo and Baral [1996]).
Only some of them consider priorities. Our approach differs as priorities are as-
sociated with individual events, rather than entire rules. Moreover, unlike other
approaches, we need to enforce unambiguous behavior, given the delicate na-
ture of access control. These features—together with the enforced principle that
if a trigger fires then its body should not be blocked—result in a sophisticated
notion of a dependency graph, where each condition in a trigger’s body may
produce a multiplicity of edges with different labels. Our safeness condition
then refers to a richer underlying semantic structure.

8. CONCLUSIONS

In this article we have presented Temporal-RBAC (TRBAC), a temporal exten-
sion of the RBAC model. The innovative features of TRBAC are the support for
periodic enabling/disabling of roles, individual exceptions, and the possibility
of specifying temporal dependencies among such actions, expressed by means
of role triggers.

We have formally defined TRBAC, by specifying its syntax and semantics.
We have provided a polynomial algorithm to verify whether specifications are
free from ambiguities. Finally, we have presented a system supporting TRBAC
on top of a commercial DBMS.
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Further work includes the development of an SQL-like language for TRBAC
specification, a graphical interface supporting administrative operations, and
the extension of our prototype to be able to support the full specification lan-
guage provided by TRBAC. It is important to point out that, if a DBMS sup-
ported a predefined trigger evaluation order, then it would be possible to im-
plement the full specification language. Indeed, given a safe REB, a correct
evaluation order for instantaneous triggers can be statically defined, in polyno-
mial time, by visiting the dependency graph of the REB. This opens the door to
unrestricted implementations, in view of the emerging standard encompassing
controlled trigger evaluation order [Gulutzan and Pelzer 1999].

Other extensions regard the enhancement of the language provided by
TRBAC to take into account other relevant events in trigger specification, be-
sides the ones considered by TRBAC, such as the number of users actually
activating a role.

Another research direction is the use of TRBAC for enforcing access control
on the execution of downloaded content along the lines discussed by Jaeger
et al. [1999].

APPENDIX

A.1 Proofs

This section is devoted to the proof of Theorem 4.1. The proof is based on a
correspondence between execution models and the stable models of a suitable
family of normal logic programs. After recalling the basic notions related to logic
programming, suitable translation functions from events and triggers into logic
programs are introduced, followed by the proof that the translation preserves
the original semantics. This main lemma is then used to prove the main result.

Preliminaries on Logic Programming

We assume the reader to be familiar with the basic notions about first-order
logic and logic programs (see, e.g., Lloyd [1984]).

A ground normal logic program (hereafter simply called program) is a set of
rules of the form

A0 ← A1, . . . , An, ¬An+1, . . . , ¬Am,

where the Ai (1 ≤ i ≤ m) are ground (i.e., variable-free) logical atoms. An
interpretation for such a program is a set of ground logical atoms. A program is
positive if it has no occurrences of “¬”. Each positive program P has a unique
minimal model denoted by lm(P ).

The Gelfond–Lifschitz transformation [Gelfond and Lifschitz 1988] of a pro-
gram P with respect to an interpretation I , denoted by P I , is the positive
program obtained from P by removing all rules containing a literal ¬Ai such
that Ai ∈ I , and by removing all negative literals from the remaining rules.

An interpretation I is a stable model [Gelfond and Lifschitz 1988] of P if and
only if I = lm(PI ).

The dependency graph of a program P consists of a set of nodes that coincide
with the logical atoms in P , plus the set of all labeled edges 〈Ai, `, A0〉, where
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Ai occurs in the body of a rule with A0 in its head; ` is “−” if Ai occurs in the
scope of negation, and “+” otherwise. A program is stratifiable if its dependency
graph contains no cycles comprising a negative edge (i.e., an edge labeled “−”).

Translation and Auxiliary Lemmata

We start by introducing a translation from prioritized events into logical atoms.

Definition A.1. For all predicate symbols r and prioritized events
p:enable R, p:disable R let

tr(r, p:enable R) def= r(p, enable , R)
tr(r, p:disable R) def= r(p, disable , R)
tr(r, enable R) def= r(enable , R)
tr(r, disable R) def= r(disable , R).

This translation function is extended to sets of prioritized events in the natural
way; for instance,

tr(caused, EV(t)) = {tr(caused, p:E) | p:E ∈ EV(t)} .
Next we introduce logic programs that capture the property of being caused at
time t.

Definition A.2. The program P (t, EV, ST,R, RQ) consists of the following
facts and rules.

1. All facts tr(caused, p:E) such that (I, P, p:E) ∈ R and t ∈ Sol (I, P ).
2. All facts tr(caused, p:E) such that [p:E after1t] ∈ RQ(t − 1t), where
1t ≤ t.

3. All facts tr(caused, p:E) such that
[E1, . . . , En, C1, . . . , Ck→ p:E after1t] ∈ R , and
a. 0 < 1t ≤ t
b. for all Ci = enabled R, R ∈ ST (t −1t),
c. for all Ci = ¬enabled R, R 6∈ ST (t −1t), and
d. for all 1 ≤ i ≤ n, Ei ∈ Nonblocked(EV(t−1t)).

4. All rules

tr(caused, p:E)← tr(valid, E1), . . . , tr(valid, En)

such that [E1, . . . , En, C1, . . . , Ck → p:E] ∈ R , and
b′. for all Ci = enabled R, R ∈ ST (t),
c′. for all Ci = ¬enabled R, R 6∈ ST (t).

5. All rules

valid(A, R)← caused(p, A, R), not blocked(p, A, R)

such that p ∈ Prios, A ∈ { enable , disable }, and R ∈ Roles.
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6. All rules

not blocked(p, enable , R)←
¬caused(p, disable , R),
¬caused(q1, disable , R),
. . . ,
¬caused(qn, disable , R)

not blocked(p, disable , R)←
¬caused(q1, enable , R),
. . . ,
¬caused(qn, enable , R)

where {q1, . . . , qn} = {q | p ≺ q}.
LEMMA A.1. Suppose that for all t ′< t, Caused(t ′, EV, ST,R, RQ ) = EV (t ′).

Then the following are equivalent.

1. Conditions 1 to 3 of Definition 3.8 hold when Caused(t, EV, ST,R, RQ) is
replaced by EV (t).

2. P (t, EV, ST,R, RQ)tr(caused,EV(t)) has a model I such that p:E ∈ EV (t) if and
only if tr(caused, p:E) ∈ I .

PROOF. (1⇒ 2) Assume 1 holds and define

I = tr(caused, EV(t))
∪ {tr(valid, E) | ∃p:E ∈ Nonblocked(EV(t))}
∪ {tr(not blocked, p:E) | p:E is not blocked by EV(t)} .

We have to prove that 2 holds. Note that by construction p:E ∈ EV(t) if and only
if tr(caused, p:E) ∈ I. Therefore, we are left to show that I is a model of each
fact or rule ρ in P (t, EV, ST,R, RQ)tr(caused,EV(t)). The proof is by cases, based on
Definition A.2.

a. Suppose ρ= caused(p, a, R)∈ P(t, EV, ST,R, RQ)tr(caused,EV(t)) holds by Defini-
tion A.2, point 1. Then clearly, by Condition 1 of Definition 3.8, p:aR ∈ EV (t)
and hence tr(caused, p:a R) = caused(p, a, R) ∈ I . Therefore I is a model
of ρ.

b. Similarly, if ρ = caused(p, a, R) ∈ P(t, EV, ST,R, RQ)tr(caused,EV(t)) holds by
Definition A.2, point 2, then Condition 2 of Definition 3.8 implies p:a R ∈
EV (t) and hence tr(caused, p:a R) = caused(p, a, R) ∈ I . Therefore I is a
model of ρ.

c. If ρ = caused(p, a, R) ∈ P(t, EV, ST,R, RQ)tr(caused,EV(t)) holds by Defini-
tion A.2, point 3, then Subconditions a to c imply the corresponding Con-
ditions 3a to 3c of Definition 3.8. Moreover, Subcondition d implies that
for 1 ≤ i ≤ n, Ei ∈ Nonblocked(EV(t−1t)). It follows by hypothesis that
Ei ∈ Caused(t − 1t, EV, ST, R, RQ) and hence also 3d of Definition 3.8
holds. Then by 3 of Definition 3.8, p:a R ∈ EV (t) and hence by analogy with
the previous cases, I is a model of ρ.
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d. Next assume

ρ = [tr(caused, p:E)← tr(valid, E1), . . . , tr(valid, En)]

is in the program by Definition A.2, Point 4. Then Conditions 3a to 3c
are clearly satisfied by the Eis and EV(t). Moreover, when EV(t) is substi-
tuted for Caused(t, EV, ST, R, RQ), 3d collapses to Ei ∈ Nonblocked(EV(t))
for all 1≤ i≤n. Now if the body of ρ is satisfied by I , then by definition
of I we have Ei ∈ Nonblocked(EV(t)) for all 1≤ i≤n. Then 3a to 3d hold
and hence p:E ∈EV(t). By analogy with the previous case, it follows that
tr(caused, p:E)∈ I and hence I is a model of ρ.

e. Let ρ= [valid(A, R)← caused(p, A, R), not blocked(p, A, R)]. If I satisfies the
body of ρ then, by definition of I , p:A R ∈ Nonblocked(EV(t)), and hence
valid(A, R)∈ I. This proves that I satisfies ρ.

f. ρ= not blocked(p, enable , R)∈ P(t, EV, ST,R, RQ)tr(caused,EV(t)) is obtained
from Definition A.2, point 6 by removing all negative literals. Such lit-
erals must be true in tr(caused, EV (t)) (by definition of the Gelfond–
Lifschitz transformation). It follows that for all q such that p¹q,
q:disable R 6∈EV (t), and hence p:enable R is not blocked by EV (t). Then,
by definition of I ,

not blocked(p, enable , R) ∈ I .

g. ρ = not blocked(p, disable , R) ∈ P(t, EV, ST,R, RQ)tr(caused,EV(t)) is obtained
from Definition A.2, Point 6 by removing all negative literals. This case is
similar to the previous one.

(2 ⇒ 1) Conversely, suppose 2 holds. To prove 1, we show that Condi-
tions 1 to 3 of Definition 3.8 hold when Caused(t, EV, ST,R, RQ) is replaced by
EV (t).

a. Let (I, P, p:E) ∈ R such that t ∈ Sol (I, P). Then by Definition A.2, Point 1,
tr(caused, p:E) ∈ P (t, EV, ST,R, RQ) and hence tr(caused, p:E) ∈ I . It fol-
lows by hypothesis that p:E ∈ EV(t), so EV(t) satisfies Condition 1 of Defi-
nition 3.8.

b. Similarly, if the premises of Condition 2 are satisfied, then by Definition A.2,
Point 2, tr(caused, p:E) ∈ P(t, EV, ST,R, RQ). By analogy with the previous
case, p:E ∈ EV(t), so EV(t) satisfies Condition 2 of Definition 3.8.

c. Similarly, if 3a to 3d are satisfied and 1t > 0, then by Definition A.2, Point
3, tr(caused, p:E) ∈ P (t, EV, ST,R, RQ). By analogy with the previous case,
p:E ∈ EV(t), so EV(t) satisfies Condition 3 of Definition 3.8 when 1t > 0.

d. Finally, suppose 3a to 3d are satisfied with 1t = 0. Then b′ and c′ in Defini-
tion A.2, Point 4 hold, and hence

ρ = [tr(caused, p:E)← tr(valid, E1), . . . , tr(valid, En)] (1)

is in P (t, EV, ST,R, RQ)tr(caused,EV(t)). Moreover, by substituting EV(t) for
Caused(t, EV, ST,R, RQ) in 3d, we have that there exists pi such that pi:Ei ∈
Nonblocked(EV(t)) (1≤ i≤n). By hypothesis, it follows that tr(caused, pi:Ei)∈
I . Moreover, from Definition A.2, Point 6 and the hypothesis, it follows
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that tr(not blocked, pi:Ei) ∈ P(t, EV, ST,R, RQ), and hence tr(not blocked,
pi:Ei) ∈ I. We conclude that

{tr(caused, pi:Ei), tr(not blocked, pi:Ei) | 1 ≤ i ≤ n} ⊆ I .

Since I is a model of the rules in Definition A.2, Point 5, it follows that I
must contain

tr(valid, E1), . . . , tr(valid, En) .

In order to satisfy 1, I must contain tr(caused, p:E). By hypothesis, it fol-
lows that p:E ∈ EV(t). This proves that EV(t) satisfies Condition 3 of Defi-
nition 3.8, when 1t = 0.

LEMMA A.2. Suppose that for all t ′< t, Caused(t ′, EV, ST,R , RQ) = EV(t ′).
Then, the following are equivalent.

1. Caused(t, EV, ST,R, RQ) = EV(t).
2. P (t, EV, ST,R, RQ) has a stable model I such that p:E ∈ EV(t) if and only

if tr(caused, p:E) ∈ I.

PROOF. First assume 1 holds. Then EV(t) is the least set satisfying Condi-
tions 1 to 3 of Definition 3.8. Note that the translation tr and its inverse are
monotonic. It follows easily from Lemma A.1 that the least model

I = lm
(
P (t, EV, ST,R, RQ)tr(caused,EV(t)))

is such that p:E ∈ EV(t) if and only if tr(caused, p:E) ∈ I.
As a consequence, tr(caused, p:E) ∈ I if and only if tr(caused, p:E) ∈

tr(caused, EV(t)). Moreover, note that the Gelfond–Lifschitz transformation of
P (t, EV, ST,R, RQ) with respect to I depends only on the members of I of the
form tr(caused, p:E) (given the form of negative literals in P (t, EV, ST,R, RQ)).
Consequently,

P (t, EV, ST,R, RQ)I = P (t, EV, ST,R, RQ)tr(caused,EV(t)).

It follows that

I = lm(P (t, EV, ST,R, RQ)I );

that is, I is a stable model of P (t, EV, ST,R, RQ). This proves that 2 holds.
Conversely, assume 2 holds. Then

I = lm(P (t, EV, ST,R, RQ)I )

and p:E ∈ EV(t) if and only if tr(caused, p:E) ∈ I. By analogy with the previous
case, we get

P (t, EV, ST,R, RQ)I = P (t, EV, ST,R, RQ)tr(caused,EV(t)).

It follows via Lemma A.1 that EV(t) is the least set satisfying Conditions 1 to
3 of Definition 3.8, and hence

Caused(t, EV, ST,R, RQ) = EV(t).

This proves that 1 holds.
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LEMMA A.3. If R is safe then P (t, EV, ST,R, RQ) is stratifiable.

PROOF. Suppose not; that is, R is safe but the dependency graph of
P (t, EV, ST,R, RQ) contains a cycle containing a negative edge.

Note that by the structure of P (t, EV, ST,R, RQ), each cycle must go through
some node tr(caused, p:E), so there are two possibilities. For some edge e in the
cycle, either

e = 〈tr(caused, p:E),+, tr(valid, p1:E1)〉, or (2)
e = 〈tr(caused, p:E),−, tr(not blocked, p1:E1)〉. (3)

In Case (2), the edge following e in the cycle must necessarily have the form

e1 = 〈tr(valid, p1:E1),+, tr(caused, p′:E′)〉 (4)

while in Case (3), e must be necessarily followed by two edges of the form

e2 = 〈tr(not blocked, p1:E1),+, tr(valid, p2:E2)〉 (5)
e3 = 〈tr(valid, p2:E2),+, tr(caused, p′:E′)〉. (6)

Note that (by Definition A.2) in the former case DGR must contain a cor-
responding edge 〈tr(caused, p:E),+, tr(caused, p′:E′)〉 while in the latter DGR
must contain 〈tr(caused, p:E),−, tr(caused, p′:E′)〉. By repeating the same rea-
soning along the cycle, we obtain a corresponding cycle in DGR. Moreover, since
the original cycle contains a negative edge, situation (3) must occur at least once,
therefore the cycle in DGR contains a negative edge, too. But then R cannot be
safe, a contradiction.

Main Results

THEOREM 4.1. If a REB R is safe, then for all request streams RQ and for
all S ⊆ Roles, there exists exactly one execution model 〈EV, ST 〉 of R and RQ
such that ST(0) = S.

PROOF. First, we prove that such an execution model exists. Let 〈EV, ST 〉
be the unique trace such that

ST(0) = S
EV(t) = {p:E | tr(caused, p:E) ∈ I(t)},

where t ≥ 0 and I (t) is the unique stable model of the stratifiable program
P (t, EV, ST,R, RQ)6 (cf. Lemma A.3). By a straightforward induction based on
Lemma A.2, we have that for all t ≥ 0,

Caused(t, EV, ST,R, RQ) = EV(t) .

This proves that 〈EV, ST 〉 is an execution model of R and RQ.
To prove uniqueness, assume there exists a distinct execution model

〈EV ′, ST ′ 〉. We reach a contradiction. Let t be the least index such that

6Note that the definition is not circular in EV(t), as P (t, EV, ST,R, RQ) depends only on EV(t ′) such
that t ′ < t.
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EV(t) 6= EV ′(t). Note that the programs defined in Definition A.2 depend only
on the events at time t ′ < t, so by minimality of t we have

P (t, EV, ST,R, RQ) = P (t, EV ′, ST ′,R, RQ) , (7)

and I (t) is also the unique stable model of P (t, EV ′, ST ′,R, RQ). Now, by defi-
nition of the execution model,

Caused(t, EV, ST,R, RQ) = EV(t) ,
Caused(t, EV ′, ST ′,R, RQ) = EV ′(t) .

It follows easily, by Lemma A.2, (7), and the uniqueness of I (t), that

p:E ∈ EV(t) if and only if tr(caused, p:E) ∈ I(t)
p:E ∈ EV ′(t) if and only if tr(caused, p:E) ∈ I(t) .

But then EV (t) = EV ′(t), a contradiction.
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