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This paper presents a new methodology for automatically learning an optimal neurostimulation strategy
for the treatment of epilepsy. The technical challenge is to automatically modulate neurostimulation
parameters, as a function of the observed EEG signal, so as to minimize the frequency and duration of
seizures. The methodology leverages recent techniques from the machine learning literature, in particular
the reinforcement learning paradigm, to formalize this optimization problem. We present an algorithm
which is able to automatically learn an adaptive neurostimulation strategy directly from labeled training
data acquired from animal brain tissues. Our results suggest that this methodology can be used to
automatically find a stimulation strategy which effectively reduces the incidence of seizures, while also
minimizing the amount of stimulation applied. This work highlights the crucial role that modern machine
learning techniques can play in the optimization of treatment strategies for patients with chronic disorders
such as epilepsy.
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1. Introduction

Epilepsy is one of the most common disorders of
the nervous system, afflicting approximately 0.6%
of the world’s population. Currently, anti-convulsant
drug therapies are the most popular approach to
alleviate seizures, but about one third of epileptic
patients have seizures that cannot be controlled by
medication, highlighting the need for novel thera-
peutic strategies.35 Electrical stimulation procedures
have recently emerged as a promising alternative.
Implantable electrical stimulation devices are now
an important treatment option for patients who do
not respond to anti-epileptic medication. Both direct
deep brain stimulation45,47,30,7,44,43 and vagus nerve
stimulation18,42 have demonstrated the potential to

shorten or even prevent seizures. The effect has also
been shown in vitro.4,10 In all cases, the technology
is similar: a small pacemaker-like device is implanted
in the patient and sends electrical stimulation to the
brain. Given this technology, there are many ways
in which stimulation can be applied. For example
one can vary the amplitude, duration, or frequency
of the electrical stimulation. But because little is
known about the optimal stimulation strategy, the
most common approach is to hand-tune settings of
these parameters through trial-and-error.

The main contribution of this paper is to pro-
pose a methodology to automatically learn a closed-
loop stimulation strategy from experimental data.
There are significant advantages to this approach.
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Closed-loop strategies are in general more powerful
than open-loop ones because sensory feedback (in
this case, field potential recordings) is integrated into
the stimulation strategy. The stimulation pattern can
therefore respond in real-time to the patient’s brain
activity. In addition, because the strategy is opti-
mized automatically, it can adapt to each individual,
and over time. The long-term goal of this work is to
build a device which, through an adaptive control
system, can respond to a patient’s changing condi-
tion over time without direct operator intervention.

The mathematical framework we investigate to
optimize stimulation strategies is known, in the area
of computer science, as reinforcement learning.37

This framework is specifically designed to address
the problem of optimizing action sequences in
dynamic and stochastic systems. Applying rein-
forcement learning in the context of deep brain
stimulation gives us a mathematical framework to
explicitly maximize the effectiveness of stimulation,
while simultaneously minimizing the overall amount
of stimulation applied thus reducing cell damage
and preserving cognitive and neurological functions.
Reinforcement learning is particularly well suited to
the problem at hand because, unlike traditional con-
trol theory, it does not require a detailed mathe-
matical description of the relevant neural circuitry
in order to optimize a stimulation strategy. Instead,
it learns a control strategy through direct experi-
ence, which is advantageous given that the brain is
extremely challenging to model.

The idea of applying reinforcement learning to
optimize deep-brain stimulation strategies has not
been sufficiently explored previously. It stands in
contrast to most recent efforts by researchers to
design neurostimulation devices which trigger stimu-
lation in response to an automated seizure detection
algorithm.24 An important feature of the reinforce-
ment learning paradigm is that it does not necessar-
ily rely on having accurate prediction or detection of
seizures. This is a significant advantage given that
developing accurate methods for seizure prediction
is proving to be extremely challenging and few con-
clusive results exist.28

While the long-term goal is to develop an
adaptive system for therapeutic purposes, in this
paper we focus on applying reinforcement learn-
ing to optimize deep-brain stimulation strategies
using data collected from an in vitro model of
epilepsy.4,10 Animal models of epilepsy have been

used extensively to analyze the biological mecha-
nisms underlying epilepsy, as well as to study the
effect of various non-adaptive stimulation strategies.
An excellent review of the latter is provided by
Durand and Bikson.11

The paper is organized as follows. Section 2
describes the particular animal model used as well as
our data collection and analysis protocol. Section 3
contains a technical presentation of the reinforce-
ment learning algorithm. Section 4 describes how the
reinforcement learning algorithm can be applied to
the problem of adaptive neurostimulation. Finally
Section 5 analyzes the application of the reinforce-
ment learning framework to select optimal strategies
using pre-recorded data from an in vitro model of
epileptiform behavior. Our results demonstrate that
an adaptive strategy can be learned from such data.
Analysis of the learned adaptive strategy on pre-
recorded data show a reduction in the duration of
seizures (compared to control slices), as well as a
reduction in the total amount of stimulation applied
compared to periodic pacing strategies. We conclude
the paper with a discussion of longer term research
questions that arise as we move from the animal
model to treating human patients.

2. Model and Methods

Epilepsy is a dynamical disease, typically character-
ized by the sudden occurrence of hypersynchronous
discharges that involve multiple neuronal networks.
Seizure activity can be induced in various ways, for
example, by elevating extracellular potassium (K+),
which has been done in both in vivo and in vitro
preparations.39

We also know that ictal discharges can be reduced
and eventually abolished by activating hippocam-
pal outputs, a procedure that is achieved by deliv-
ering repetitive electrical stimuli. For example we
have found that in pilocarpine-treated epileptic rat
slices, low frequency (0.1–1.0Hz) repetitive stimuli
delivered in subiculum can reduce, but not halt,
4-aminopyridine-induced ictal discharges.9 Overall
this evidence suggests that electrical stimulation
may interrupt the synchronous activity of neuronal
populations.

2.1. Electrophysiological recordings

The dataset in our experiments consists of field
potential recordings of seizure-like activity in rat
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Fig. 1. Schematic of the hippocampus-EC slice. Rele-
vant substructures are labeled.

brain slices maintained in vitro. A series of four
recordings (each from a different slice, coming
from a different animal) were made using a two-
dimensional hippocampus-entorhinal cortex (EC)
slice, as depicted in Fig. 1. Slices were obtained from
male adult Sprague-Dawley rats (250–350g) follow-
ing standard procedures as previously described10

and were maintained in an interface tissue cham-
ber, where they were continuously superfused at
1ml/min with carbogenated (O2 95%, CO2 5%)
artificial cerebrospinal fluid containing the convul-
sant drug 4-aminopyridine.3 Recording microelec-
trodes were placed in the deep layers of the EC.
Recordings were sampled at a rate of 5 KHz, however
for the purposes of our analysis, all recordings were
filtered, to roll off frequencies above 100Hz. In total,
our analysis uses 7 hours of recorded data (roughly
equally divided between the four slices).

Electrical stimulation was applied to the subicu-
lum using low-frequency single-pulse patterns with
varied timing. Each slice was subject to a stimula-
tion protocol consisting of seven phases of stimula-
tion patterns. Each sequence began with a control
period of recording with no stimulation. Then, stim-
ulation was applied for several minutes at a fixed low-
frequency (1.0 Hz). Stimulation was then turned off
and the slice was allowed to return to baseline for a
period of several minutes. This process was repeated
with stimulation at different rates (0.5 Hz and
2.0Hz), always interleaving, between each stimula-
tion phase, a prolonged recovery period during which
no stimulation was performed. Stimulation inten-
sity (100–250µA biphasic pulse-wave width 100µs)
remained fixed throughout the experiments. Slices
which did not exhibit good suppression at 1.0Hz
were excluded from the dataset because presumably
presenting with weak connection between the two
regions of interest, i.e. the EC and the subiculum.

Figure 2 shows a sample trace recorded from the
EC while stimulating the subiculum at 0.5Hz. An
ictal event starts around t = 20 sec. The stimulation
artifacts are also visible in this recording. In general,
the actions may or may not be visible in the EEG
signal, depending on the sample rate and relative
electrode placement.

2.2. Signal processing

Each trace was divided into a set of overlapping
frames of 65536 samples (approximately 13 seconds)
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Fig. 2. Trace example recorded in the entorhinal cortex. Stimulation is applied to the subiculum at 0.5 Hz. An ictal
event appears in the first half, lasting approximately 45 seconds. Periodic stimulation artifacts are observed at 2-second
intervals. Inter-ictal spikes are also observed.
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in length, with each frame beginning 8192 samples
after the previous frame. Each frame is smoothed
with a Hann window and normalized, and the
mean, range, and energy of the signal is calcu-
lated. A discrete fast Fourier transform is used to
extract spectral magnitude features from the frame.
Within each frame, the smoothing, normalization,
and Fourier transform is repeated for the final half
frame (32768 samples), quarter frame (16384 sam-
ples), eighth frame (8192 samples), and sixteenth
frame (4096 samples). Low frequency components
are extracted from the full-frame spectrum, and
high frequency components from the subframe spec-
tra. These features are combined with the mean,
range, and energy of each subframe to yield a 114-
dimensional continuous feature vector. Many other
features could be extracted, for example those pro-
posed in the literature on seizure prediction and on
EEG analysis.28,1,31 In fact the question of feature
selection is a challenging statistical problem, which
will be the subject of future investigations. The other
information which could be included is the time
elapsed since beginning of the pulse train.a We do not
include this information in the current implementa-
tion, because we assume that all recordings we use
feature periodic stimulation that has been applied
for a sufficiently long time to ignore edge effects.

2.3. Data labeling

The adaptive control algorithm described in the
following section requires a number of traces with
hand-annotated state information, for automatically
learning the optimal stimulation strategy. Therefore
all recorded traces were labeled by hand, indicat-
ing on each frame whether it features ictal or nor-
mal activity, as well as which stimulation protocol
was used at the time. In the future, this step could
be performed by an automatic seizure detection
algorithm.

3. Adaptive Control Algorithm

Questions of prediction and control in dynami-
cal systems have a long history in engineering
and computer science. A variety of computational
methods from these fields have been proposed to

automatically detect or predict epileptic seizures
from EEG recordings.20,25,34,26,15,36 But much less
effort has been spent on applying equally princi-
pled mathematical tools to the question of optimiz-
ing stimulation strategies. In vitro experiments have
investigated the application of electrical stimulation
based on periodic pacing,3,21,23 nonlinear control38

and feedback control.46,16 However most of these
methods are not automatic (in the sense that the
strategy is learned directly from data), and some
are neither adaptive (in the sense that the strategy
evolves over time), nor optimal (in the sense that it
minimizes a cost function).

More recently, models based on chaotic oscillator
networks have been proposed, as a means of con-
trolling epileptic seizures.40,41,8 These models aim
to minimize spatial synchronization via a feedback
mechanism. These methods have the advantage that
they require no training period. The results so far are
limited to theoretical models of epilepsy, and their
efficacy with animal models is not known. Nonethe-
less the results with the theoretical models confirm
that open-loop periodic stimulation (as currently
used in clinical trials) can be inefficient at achieving
desynchronization, compared to a closed-loop feed-
back control strategy which can require much less
stimulation power. Furthermore these methods gen-
erally require that the parameters of the control
strategy (e.g. control gain, feedback threshold) be
set by hand, or through trial-and-error. One of the
advantages of the method we propose in this paper is
that it uses automated learning techniques to grad-
ually optimize the setting of the control parameters
as it acquires data.

3.1. Reinforcement learning

Reinforcement learning is one of the leading
techniques in computer science and robotics for
automatically learning optimal control strategies in
dynamical systems. The technique was originally
inspired by the trial-and-error learning studied in the
psychology of animal learning (thus the term “learn-
ing”). In this setting, good actions by the animal
are positively reinforced and poor actions are neg-
atively reinforced (thus the term “reinforcement”).
Reinforcement learning was formalized in computer

aPresumably, applying a single pulse is not the same as applying a sequence of 10, or 100, or more; the system adapts to
trains and responds differently depending on whether the train is of long or short duration.
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science and operations research by researchers inter-
ested in sequential decision-making for artificial
intelligence and robotics, where there is a need to
estimate the usefulness of taking sequences of actions
in evolving, time varying system.22,37 It is especially
useful in situations in which the agent’s environ-
ment is stochastic, and for poorly-modeled problem
domains in which the optimal control strategy is not
obvious.

Recent developments in reinforcement learning
have brought about a wealth of new algorithmic tech-
niques, which can be used to automatically learn
good action strategies directly from experimental
data, yet the application of reinforcement learning to
medical treatment design is very recent.19,32 In this
section, we describe how reinforcement learning can
be used to directly optimize stimulation patterns of
a closed-loop stimulation device, without necessarily
requiring accurate seizure prediction.

Informally, the learning problem can be formu-
lated as follows: at every moment in time, given
some information about what happened to the sig-
nal previously (our state), we need to decide which
stimulation action we should choose (if any) so as to
minimize seizures now and in the future.

Considering the problem more formally, we
assume the underlying dynamical system can be
modeled as a Markov decision process (MDP).5,33

The MDP model is defined by a set of states, S,
describing the space of observable variables, and a
set of actions, A, describing the available input
set. In our case, the states are defined by the post-
processed EEG recordings (i.e. the feature vector
described in Sec. 2.2). The (discrete) set of actions
corresponds to the different stimulation frequencies
applied during data collection (Sec. 2.1).

Upon performing an action a ∈ A in state s,
the learning agent receives a scalar reward, r =
R(s, a). This reward serves as a reinforcement sig-
nal to the agent, indicating which actions are good
(=high reward) and which actions are to be avoided
(=low reward). The reward can be positive or nega-
tive, but must be finite.

After an action is performed, the environment
moves to a new state s′ according to some condi-
tional probability distribution, P (s′|s, a). Time
is modeled as a series of discrete steps with 0 ≤ t ≤
T , corresponding to the interval at which a deci-
sion must be made regarding the choice of action.

At every time step, the state is assumed to be a
sufficient statistic for the past sensor observations;
this is the so-called Markov assumption.

The primary objective is to find a policy π :
S → A that maps each state to an action such as to
maximize the expected total reward over some time
horizon:

RT = E

[
T∑

t=0

γtrt

]
. (1)

Here γ ∈ (0, 1] is a discount factor for future rewards
(it can be thought of as the agent’s probability of
surviving to the next time step). For T = ∞, γ must
be less than one to preclude an infinite total reward.
For finite T we can allow γ = 1.

Given this formulation, we can write the value of
a given state if the agent follows a fixed policy π as:

V π(s) = Eπ

[
T∑

t=0

γtrt

]
. (2)

We define the optimal value for a state V ∗(s) to be:

V ∗(s) = max
π

Eπ

[
T∑

t=0

γtrt

]
, (3)

which we can expand to the recursive equation:

V ∗(s) = max
a∈A

(
R(s, a) + γ

∑

s′∈S
P (s′|s, a)V ∗(s′)

)
.

(4)

This equation is often referred to as the value func-
tion. Here the value of a state is the maximum of
the reward possible in the current state (s) plus the
expected value over the successor states (s′), presum-
ing that the agent behaves optimally at every sub-
sequent time step. The corresponding optimal policy
π∗(s) is defined as:

π∗(s) = argmax
a∈A

(
R(s, a) + γ

∑

s′∈S
P (s′|s, a)V ∗(s′)

)
.

(5)

It is also sometimes useful to express the value of
a state-action pair, which defines the expected long-
term reward of applying action a when in state s:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S
P (s′|s, a) max

a′∈A
Q∗(s′, a′).

(6)
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This is sometimes referred to as the Q-function.
From this, we can directly compute the optimum
policy:

π∗(s) = argmax
a

Q∗(s, a). (7)

In many real-world problems, the transition prob-
abilities are not known in advance, thus it is
not possible to solve the above equations exactly.
However, if enough empirical data is collected, for
example, using the protocol described in Sec. 2, it
is possible to treat this as a set of training trajec-
tories to estimate the Q-function using the Fitted
Q-Iteration algorithm.

3.2. Fitted Q-iteration algorithm

To apply Fitted Q-Iteration, it is necessary to begin
by pre-processing the trajectories such that the state,
action and reward information are extracted in a
sequence of atomic events. This produces a set F of
4-tuples of the form 〈st, at, rt, st+1〉, where each tuple
is an example of the one-step transition dynamics of
the system. This forms the input set for the Fitted
Q-Iteration algorithm. The core of this algorithm is
simple. It consists of repeatedly applying the follow-
ing recurrence relation:

Q̂k(st, at) = rt + γ max
a′∈A

Q̂k−1(st+1, a
′). (8)

In cases where the set of possible states can be
finitely enumerated, this sequence can converge
to the optimal Q function (Eq. (6)) under some
conditions.33 In cases where the state space is very
large (or continuous), it is necessary to assume a
functional form for Q̂k, and use a regression algo-
rithm to learn the mapping Q : S×A → (. Though-
out our experiments, the term Q̂k is approximated
using Extremely Randomized Tree Regression.14,12

This method has been shown to be effective in
settings with large numbers of weak variables and
substantial noise, as well as being computationally
efficient.

4. Adaptive Neurostimulation

This section describes how the reinforcement learn-
ing algorithm outlined above can be applied to auto-
matically learn an optimal neurostimulation policy
for the treatment of epilepsy.

4.1. Reinforcement learning problem
definition

Our state space S is constructed such that each ele-
ment st is a vector of 114 continuous dimensions,
summarizing past EEG activity. Our action set A
consists of four options: no stimulation, and stimula-
tion at one of the fixed frequencies of 0.5, 1.0, or 2.0
Hz. Each frame is assigned an action at based on the
labeling information (Sec. 2.3).

We define a reward function

rt = Rseizure(st) + αRstim(at) (9)

to penalize both stimulation and seizure occurrences.
We assume Rseizure(st)={-1 if seizure is occurring at
time t, 0 otherwise} and Rstim(at)={-1 if stimula-
tion is applied at time t, 0 otherwise}. This reward
function requires a quantitative trade-off between
the penalty for occurrence of a seizure, and the
penalty for applying stimulation. This trade-off is
defined by the parameter α. In most experiments
described below, we assume that a seizure is sub-
stantially more costly than delivering a single stimu-
lation event (unless mentioned otherwise, we assume
α = 0.04). Changing this parameter may affect the
learned stimulation strategy; we investigate this fur-
ther in the experiments presented below.

Each element of the training set F is con-
structed by concatenating the experience-tuples
〈st, at, rt, st+1〉.

We assume a discrete time step of 1.6 seconds
(= 8192 samples). This is sufficient to compute our
input features in real time, yet is sufficiently short
to allow flexibility in the learned policy. For all of
our experiments, the discount factor is γ = 0.95;
this is a common choice in the reinforcement learning
literature.

4.2. Learning the regression function

The algorithmic approach for the Extremely Ran-
domized Tree regression is analogous to that pro-
posed by Ernst et al.13 (the reader is referred to that
publication for details of what we outline next). A
few of the parameter choices are worth discussing
briefly. Throughout the experiments presented below
we assume a set of M = 70 regression trees for each
action. The estimate Q̂(s, a) is obtained by averag-
ing the value returned by each of these trees at the
current state s. We repeat this individually for each
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action, and choose the action with maximal value.
The number of candidate tests considered before
expanding a node (defined by the parameter K) is
set to 40. Finally, the minimum number of elements
at each leaf (parameter nmin) is set to 5. We did not
extensively tune these parameters; this could be done
through a cross-validation procedure. In general we
found that performance of the algorithm was quite
robust to these parameter choices (within an order
of magnitude).

Throughout an initial learning phase (lasting
30 iterations), the Fitted Q-Iteration algorithm is
applied over the full set of trees and we allow the set
of trees to be rebuilt entirely at each iteration. After
this first phase, the structure of the trees is fixed
and in subsequent iterations only the value at each
node is allowed to vary. This second phase continues
until the Bellman error falls below a given thresh-
old.b This two-phase learning is common to ensure
proper convergence.

The output of this learning phase is the regression
function Q̂(s, a), defined for any state-action pair
(s, a). This function estimates the expected long-
term cumulative reward that can be obtained by
applying any action a in any state s. The optimal
action choice for each state can be extracted using
Eq. (7). During deployment of the neurostimulation
system, it is sufficient to store the Q̂(s, a) in mem-
ory, and repeatedly apply Eq. (7) as the state of the
system evolves, so that the best possible neurostim-
ulation action is selected at every time step. Thus
we get an online control strategy which adaptively
changes in response to changes in the dynamics of
the system.

It is worth noting that other types of regres-
sion function could be used to fit the Q-function.
We experimented also with linear regression, as well
as neural networks, but found the random tree
approach to yield better empirical performance.17

4.3. Analysis method

Finally, we turn to the question of validating the
learned adaptive neurostimulation strategy. The
preferred method for evaluating the performance
of the strategy learned by reinforcement learn-
ing is to deploy it directly in vitro, and mea-
sure seizure incidence and duration, compared

to other (non-adaptive) strategies of stimulation.
However, this approach requires substantial time and
resources, thus we begin our analysis by looking at
performance metrics over the pre-recorded data.

Instead we consider quantitative measures which
can be estimated using a hold-out test set, which is
separate from our training data. This is a common
technique in machine learning, whereby part of the
recorded data is used to learn the regression function,
and the remaining data is used to quantify the error
in the estimate. Our original data set includes record-
ings from four animal slices. Therefore during test-
ing we perform four-fold cross-validation, whereby
the Q-function is estimated using data from three
different slices, and we then measure performance
on the fourth slice. We then repeat with all slice
permutations. This means that data in the test set
comes from a different animal than the training data.
It is well-documented that epileptic seizures vary
greatly between animals (and individuals), there-
fore this is an important test for the generalizability
of our approach. In future work, an individual Q-
function could be learned for each patient (or slice),
using the algorithm outlined above, thereby provid-
ing a neurostimulation strategy that is specific to
each individual.

There is another subtle difficulty in using a test
set to validate a target policy (e.g. the learned opti-
mal policy, π∗). That is the fact that the test set
was collected using a behavior policy, π, which is
different from the target policy. We cannot simply
compute a score over the test set. Instead, we create
a surrogate data set for the target policy by using
rejection sampling to select only those segments of
the test set which are consistent with the target pol-
icy. Recall that the test set is divided into single-
step episodes: 〈si, ai, ri, si+1〉. We define an indicator
function:

Iπ(si, ai) =
{

1 if π(si) = ai

0 otherwise
(10)

to flag experience-tuples where the action in the test
set (ai) matches the target policy (π(si)). We exclude
all experience-tuples that do not match the target
policy. Using this indicator function, we consider two
different scores to quantify the performance of the
adaptive neurostimulation strategy.

bThe Bellman error is defined to be |Q̂k − Q̂k−1|.
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The first score is an estimated proportion of
seizure steps when following a particular strategy π.
Again, we compare the action selected by the policy
and the action in the test trace for each experience-
tuple from the test trace, and count the number of
states which were labeled as “seizure”:

Ŝπ =
∑N

i=0 Iπ(si, ai)Iseizure(si)∑N
i=0 Iπ(si, ai)

, (11)

where Iseizure(si) indicates whether state si was
hand-labeled as a seizure (1 if yes, 0 if no). Recall
that data instances are defined on a 1.6-second win-
dow interval.

The second score calculates the estimated value
function (i.e. discounted sum of rewards). Formally,

V̂ π =
∑N

i=0 Iπ(si, ai)[r(si) + γQ̂(si+1, π(si+1))]∑N
i=0 Iπ(si, ai)

,

(12)

where Q̂ is the estimated Q-function calculated by
the regression algorithm (Eq. (8)). For fixed stimu-
lation strategies, which were in fact deployed during
data collection, we use the empirical return (Eq. (1))
instead. This second score is considered because it
reflects the expected long-term accumulated reward.
Since our reward function is a linear combination of
the amount of both stimulation and seizure, this is
an aggregate measure of the optimization over these
two components.

5. Results

Many in vitro studies have investigated effective-
ness of low-frequency periodic pacing for suppress-
ing ictal events. For the particular animal model
we are considering, the most effective fixed stimula-
tion frequency was identified to be 1.0–2.0Hz.4,10 In
this section, we evaluate the ability of our reinforce-
ment learning framework to automatically acquire
an adaptive strategy from the in vitro recordings.
We analyze the behavior of the adaptive strategy in
comparison with non-adaptive periodic stimulation
strategies at low-frequencies as well as a control (no
stimulation) strategy.

We first report on results characterizing the per-
formance of the learning algorithm used to acquire
the adaptive strategy. All error bars correspond to 1
standard error. In the case of the control and peri-
odic strategies, this is due to variance between the
four slices in the dataset. In the case of the adaptive
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Fig. 3. Proportion of seizure steps (compared to non-
seizure) under the following strategies: Control (no stim-
ulation), Periodic pacing at 0.5 Hz, 1.0 Hz, 2.0 Hz, and
Adaptive stimulation. The proportion of seizure/non-
seizure for the Adaptive stimulation is estimated from
Eq. (11). Proportions of seizure/non-seizure for the other
strategies is calculated through hand-annotations of the
EEG trace by an expert.

strategy, the standard error includes both slice-to-
slice variance and variance in the randomized tree
regression algorithm.

Figure 3 compares the proportion of states in
which epileptiform behavior is observed under each
of the policies. This corresponds to the score cal-
culated in Eq. (11). We first note that under con-
trol conditions, slices in the dataset exhibit a larger
rate of ictal events than under any of the stimulation
strategies. Next we observe that periodic pacing at
either 1Hz or 2Hz achieves near-complete suppres-
sion, and that performance is slightly less effective
when stimulating at 0.5Hz. Finally, we note that the
adaptive strategy is able to achieve similar perfor-
mance as the 0.5Hz strategy in terms of seizure sup-
pression.

Figure 4 shows the estimated long-term return for
each of the strategies considered. This corresponds to
the score calculated in Eq. (11), which is an empiri-
cal approximation of Eq. (1). The results here show
a better return for the adaptive policy, compared
to the periodic stimulation and control cases. Given
that all strategies (except Control) achieve similar
suppression efficacy, it seems reasonable to conclude
that this return gain is primarily achieved through a
reduction of the stimulation in the adaptive strategy
(compared to the periodic strategies).
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Fig. 4. Estimated long-term return under the following
strategies: Control (no stimulation), Periodic pacing at
0.5 Hz, 1.0 Hz, 2.0 Hz, and Adaptive stimulation.
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Fig. 5. Proportion of time under stimulation. All peri-
odic strategies assume stimulation is on continuously.
The proportion for the adaptive strategies is evaluated
for different reward parameters.

Figure 5 supports this by showing the proportion
of time during which stimulation is turned on under
each of the conditions. We also show how this pro-
portion changes as we re-train the adaptive strategy
for different values of the parameter penalizing each
stimulation action (α in Eq. (9)). As expected, when
the penalty for stimulating is increased, the amount
of stimulation is automatically reduced. There is sub-
stantial variation here between the different slices;
in some slices some amount of stimulation would be
necessary throughout most of the life of the slice to
achieve reasonable suppression; in other slices it is
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Fig. 6. Proportion of seizure steps as a function of the
stimulation penalty. The result for α = 0.04 is the same
as shown in Fig. 3.

possible to turn off any stimulation for prolonged
periods of time.

Lastly, it is worth considering how changes in the
reward function impact the suppression efficacy. As
shown in Fig. 6, the effect seems to be quite minimal.

We conclude our empirical evaluation by look-
ing at some sample traces illustrating the behav-
ior of the adaptive stimulation strategy in real-time.
In this case, a new hippocampus-EC slice was pre-
pared as described in the Methods section. The slice
was subject to a stimulation protocol consisting of
four phases. First, we applied a period of record-
ing with no stimulation (control). Then, stimulation
was applied at 1.0Hz for at least 3 times the mean
observed interval of occurrence of ictal discharges.
The slice was then allowed to recover for several
minutes until epileptiform activity returned to base-
line. Finally we applied the same adaptive stimula-
tion protocol as evaluated throughout this section
(with α=0.04). All other parameters were fixed as
described in Secs. 2–4.

Figure 7 shows a typical excerpt from each of
the recording conditions (control, 1.0 Hz stimulation,
and two instances of adaptive stimulation, all taken
from the same slice). The four phases were time-
aligned to offer a better comparison. In Fig. 7(a) we
see an ictal event typical of this in vitro model. Under
control (no stimulation) conditions, such events usu-
ally appear every 150-200 seconds. As expected,
the event is preceded by a few inter-ictal spikes.
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Fig. 7. Sample data traces comparing (a) epileptiform behavior under control conditions, (b) epileptiform behavior
under periodic pacing conditions, (c) epileptiform behavior under adaptive stimulation (Example 1), and (d) epileptiform
behavior under adaptive stimulation (Example 2). The four phases were time-aligned to offer a better comparison.

The post-ictal period is also quite characteristic of
this acute in vitro model. In Fig. 7(b) we see typ-
ical behavior under 1.0Hz stimulation. In this case,
while there appears to be an ictal onset, it is of short
duration and does not lead to a full ictal event. In
Fig. 7(c) we see the effects of the adaptive strat-
egy. First, we note that through much of the record-
ing, the adaptive strategy maintains a slow pace
of stimulation (roughly 0.5Hz), which it interleaves
with faster stimulation (roughly 2.0Hz) following an
ictal onset. The adaptive strategy is able to suppress

the ictal event. It is possible this event would have
been suppressed with similar effectiveness using only
periodic (0.5Hz) stimulation. Given the high degree
of effectiveness of the periodic strategies on this par-
ticular model (as shown in Fig. 3), it would be sur-
prising to see an adaptive strategy do much better
in terms of suppression of ictal events. The analy-
sis in Fig. 5 rather suggests that most of the gains
to be made in this particular in vitro acute model of
epilepsy are in terms of reducing the amount of stim-
ulation applied. The last trace, shown in Fig. 7(d),
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gives evidence in support of this. Here we see the
same low-frequency (0.5 Hz) pacing being applied
through an initial 35 seconds, followed by a period
of faster stimulation (2.0 Hz) in reaction to an ictal
onset. Once the seizure is successfully suppressed, the
adaptive strategy chooses not to apply any stimula-
tion for a prolonged period. It is not yet known what
are the key characteristics of the signal that caused
the difference in behavior between the two adaptive
traces; this needs to be further investigated.

Considering Fig. 7 again, it seems that the
primary benefit of the adaptive strategy in this
particular animal model is to reduce the overall num-
ber of pulses (and not so much improve seizure sup-
pression, which is already achieved through period
pulsing.) This raises the following question: if the
objective is really is to reduce the number of pulses,
couldn’t one use a simple feedback system to trigger
stimulation upon seizure detection? Clearly, such a
comparison would be very interesting. In the absence
of such data, we remain skeptical that a detect-then-
stimulate approach would perform as well as the rein-
forcement learning method, in terms of achieving an
optimal balance between seizure suppression and low
number of pulses. For this in vitro model in partic-
ular, current results suggest that delivering pulses
between seizures has an important effect on sup-
pression effectiveness, which would not necessarily
be achieved with a detect-then-stimulate approach.
It remains an interesting research question to verify
this experimentally.

6. Discussion

The main contribution of this paper is to propose a
new methodology for automatically learning adap-
tive neurostimulation strategies for the treatment
of epilepsy. We have demonstrated that an adap-
tive stimulation policy can be learned through pre-
recorded data of low-frequency single-pulse fixed
stimulation, using a reinforcement learning method-
ology. Analysis of the learned adaptive strategy using
pre-recorded data indicates a substantial reduction
in the total amount of stimulation applied, compared
to fixed stimulation strategies. Our analysis also indi-
cates that the expected incidence of seizure under
the adaptive policy is similar to that under peri-
odic pacing strategies. It is worth emphasizing that
suppression efficacy in this in vitro model is very
high; in cases where suppression is not as effective, it

may be possible for the adaptive strategy to outper-
form the periodic strategies in this respect. We have
reported such results when using in vitro stimula-
tion in the amygdala (with microelectrode recording
in the perirhinal cortex).17

The results presented above suggest that rein-
forcement learning is a promising methodology for
learning adaptive stimulation strategies online. One
of the key advantages of this methodology is its
ability to trade-off between minimizing incidence
(and/or duration) of seizures, and the quantity of
stimulation delivered.

Most of the evaluation presented on this paper is
based on pre-recorded epileptiform behavior. Thus it
is too early to draw conclusions regarding effective-
ness of deploying this method in real-time. Evidence
from the few experiments we were able to conduct
in real-time show good correspondence between the
policy’s performance on pre-recorded data, and in
the online setting. The results also show that the
adaptive strategy does exploit information about the
signal to determine when to increase (or turn off)
stimulation. A full characterization of the adaptive
strategy, in terms of understanding when and why it
selects actions, is worthy of further investigation; this
may shed some light into developing better seizure
prediction mechanisms.

The methodology we present is not limited to the
particular stimulation protocol we investigated. The
results presented in this paper were obtained using
low-frequency single-pulse patterns delivered to the
subiculum. In previous work, we performed a simi-
lar analysis using stimulation of the amygdala.17 The
algorithm outlined in Sec. 4 could be directly applied
to learn an adaptive stimulation strategy for a vari-
ety of other cases, including:

• other animal models (e.g. high potassium,39 low
calcium,2 low magnesium27),

• different placement of the stimulating electrode
(e.g. CA1, EC-subiculum10),

• various patterns of stimulation (e.g. high-
frequency electric fields6).

In those cases, the Fitted Q-learning algorithm would
be the same as described above, however the action
set (and possibly the state set also) would have to be
changed to reflect the new model.

We are now planning a series of experiments,
whereby the adaptive stimulation strategy learned



August 20, 2009 14:39 00198

238 J. Pineau et al.

using the batch data will be evaluated online, using
live in vitro slices which match the conditions under
which the data used so far has been recorded. Per-
forming such experiments is very time-consuming
and expensive. This highlights the value of devel-
oping good computational models of dynamical dis-
eases. Such models exist for some diseases, such as
HIV/AIDS and cancer. However to date there are few
good generative models of temporal-lobe epilepsy,
and many of the existing state-of-the-art models,
e.g.,29 do not include spontaneous transition into,
and out of, seizures, nor do they include mech-
anisms for applying electrical stimulation. Other
recent models40,8 seem to provide more flexibility for
investigating control of epileptic seizures and will be
the subject of future empirical studies.

A final important question is whether the
methodology outlined in this paper will carry over
to in vivo models of epilepsy. From a technical per-
spective, we do not anticipate any major technical
obstacles. The reinforcement learning framework is
well suited to handling larger state representations,
as would be necessary in cases where there are mul-
tiple sensing electrodes, placed at different (possibly
unknown) locations. The framework is also able to
deal with a larger set of possible stimulation param-
eters (intensity, duration, higher frequencies). How-
ever we do foresee two major practical challenges.
First, it may be necessary to collect larger amounts
of data to accurately learn the Q-function. Second, it
is imperative to ensure that the action strategy used
during the data collection (i.e. before the learning)
is “safe.” Neither of these issues arises when work-
ing with in silico or even in vitro models of epilepsy,
but they are of definite concern when dealing with in
vivo subjects. It is worth noting that there are sub-
stantial ongoing efforts in the computer science com-
munity to address precisely those problems, namely
in developing algorithms that can efficiently learn
from very small data sets, and in providing formal
guarantees regarding the safety (or worst-case per-
formance) of the system during the data collection
process. We hope to leverage such results as they
become available.
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