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Abstract

Acquired resistance to anticancer treatments is a substantial barrier to reducing the morbidity and

mortality that is attributable to malignant tumors. Components of tissue microenvironments are

recognized to profoundly influence cellular phenotypes, including susceptibilities to toxic insults. Using a

genome-wide analysis of transcriptional responses to genotoxic stress induced by cancer therapeutics,

we identified a spectrum of secreted proteins derived from the tumor microenvironment that includes the

Wnt family member wingless-type MMTV integration site family member 16B (WNT16B). We determined

that WNT16B expression is regulated by nuclear factor of κ light polypeptide gene enhancer in B cells 1

(NF-κB) after DNA damage and subsequently signals in a paracrine manner to activate the canonical Wnt

program in tumor cells. The expression of WNT16B in the prostate tumor microenvironment attenuated

the effects of cytotoxic chemotherapy in vivo, promoting tumor cell survival and disease progression.

These results delineate a mechanism by which genotoxic therapies given in a cyclical manner can

enhance subsequent treatment resistance through cell nonautonomous effects that are contributed by the

tumor microenvironment.
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