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Abstract 

 

CRISPR/Cas-based genome editing holds great promise for targeting genetic disorders 

including inborn errors of hepatocyte metabolism. Precise correction of disease-

causing mutations in adult tissues in vivo however is challenging. It requires repair of 

Cas9-induced double stranded DNA (dsDNA) breaks by homology-directed 

mechanisms, which are highly inefficient in non-dividing cells. Here we corrected the 

disease phenotype of adult phenylalanine hydroxylase (Pah)enu2 mice, a model for the 

human autosomal recessive liver disease phenylketonuria (PKU)1, using recently 

developed CRISPR/Cas-associated base editors2–4. These systems enable conversion of 

C∙G to T∙A base pairs and vice versa independent of dsDNA break formation and 

homology-directed repair (HDR). We engineered and validated an intein-split base 

editor, which allows splitting the fusion protein into two parts and thereby 

circumventing the limited cargo capacity of Adeno-associated virus (AAV) vectors. 

Intravenous injection of AAV-base editor systems resulted in Pahenu2 gene correction 

rates that restored physiological blood phenylalanine (L-Phe) levels below 120 µmol/l5. 

We observed mRNA correction rates up to 63%, restoration of phenylalanine 

hydroxylase (PAH) enzyme activity, and reversion of the light fur phenotype in Pahenu2 

mice. Our findings suggest the feasibility of targeting genetic diseases in vivo using 

AAV-mediated delivery of base editing agents, demonstrating potential for therapeutic 

application. 

 

 

Main text 

 

Loss-of-function mutations in enzymes essential for hepatocyte metabolism constitute the 

majority of inborn liver diseases. Phenylketonuria is a widely studied autosomal recessive 

metabolic liver disease, where the deficiency of PAH enzyme activity leads to decreased 

metabolism of L-Phe, resulting in systemic hyperphenylalaninemia. Untreated infants 

affected by PKU suffer from severe retardation, microcephaly, and seizures5–7. Similar 

symptoms have been reported in untreated homozygous Pahenu2 mice, validating it as a 

model for human PKU1,8,9. Pahenu2 mice harbour a point mutation in the Pah gene on exon 

7 (c.835T>C; p.Phe263Ser), which abolishes PAH function and causes abnormally elevated 

L-Phe levels above 1500 µmol/l10. Quantification of blood L-Phe levels offers a direct 
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readout for therapeutic efficacy, making the Pahenu2 mouse model a robust system to test 

gene therapy approaches11. Correction of the Pahenu2 disease model has previously been 

achieved by expressing functional enzymes from episomal cDNA templates10–12. Our 

approach, in contrast, aims to cure the disease by correcting the endogenous locus via 

genome editing. 

 

Currently the most widely adopted systems for in vivo genome editing require Cas9 nuclease 

activity to introduce site-specific dsDNA breaks at targeted chromosomal loci. Several 

groups have previously applied this system in vivo to target disease-causing mutations in the 

mouse liver using exogenous DNA templates for HDR13–15. However, as HDR in non-

dividing cells is highly inefficient compared to end-joining processes16,17, the majority of 

dsDNA breaks generated in the adult liver resulted in random indel formations. Therapeutic 

application of CRISPR-associated nucleases to target genetic diseases in slowly proliferating 

tissues is therefore restricted to a small group of disorders, where either imprecise 

elimination of a gain-of-function mutation is sufficient18,19, or the precise correction of a 

mutation confers a selective growth advantage to the edited cells13,14. Base editing is a 

strategy that allows genome editing independent of HDR and dsDNA break formation3,4,20. 

Base editors convert C∙G to T∙A base pairs or vice versa via mismatched U∙G or I∙A 

intermediates by either fusing a cytidine deaminase (rAPOBEC1) or an adenosine deaminase 

(TadA) to a catalytically dead Cas9 (dCas9)3,4. Importantly, these deaminases are single 

strand specific and editing is therefore limited to the protospacer region where the 

sgRNA/Cas9 complex binds to DNA3,4,21. Base editors have recently been employed in mice 

to knock out the Pcsk9 gene in the liver in five week old mice, and to target Duchenne 

muscular dystrophy via intramuscular injection22,23. 

We reasoned that base editors allow precise correction of disease-causing mutations in non-

dividing hepatocytes at rates sufficient to cure a disease phenotype. To test this hypothesis, 

we targeted the homozygous Pahenu2 c.835T>C mutation in the PKU disease model (Fig. 1a, 

b). 

 

To specifically convert the c.835T>C mutation using cytidine deaminase base editors, we 

first searched for protospacer sequences that span the targeted base. We identified two 

protospacer adjacent motif (PAM) sites that allow binding of the corresponding Cas variants, 

Staphylococcus aureus SaCas9(KKH) (NNNRRT), and Lacnospiraceae bacterium 

LbCpf1(RR) (TYCV)24–26 (Fig. 1a). An SaCas9(KKH) base editor (nSaKKH-BE3) has 
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previously been established by Kim et al.2. We engineered a LbCpf1(RR) base editor, similar 

to LbCpf1 base editors recently described by Li et al27. In brief, we fused the cytidine 

deaminase rAPOBEC1 and an uracil glycosylase inhibitor (UGI) from the Bacillus subtilis 

bacteriophage PBS14 to a catalytically dead LbCpf1(RR) (referred to as dLbRR-BE). We 

further constructed a LbCpf1 base editor with a mutated rAPOBEC1 cytidine deaminase 

(W90Y and R126E), which has been demonstrated to be less active and to narrow the activity 

window2,27 (referred to as dLbRR-minBE) (Fig. 1c, d). To evaluate editing efficiencies and 

activity windows of the base editors in vitro, we generated a reporter HEK293T cell line by 

stably integrating Exon 7 of the Pahenu2 allele. Transfection of plasmids expressing 

nSaKKH-BE3, dLbRR-BE, or dLbRR-minBE with the respective gRNAs showed editing 

efficiencies of 46%, 23.8%, and 4.2% for the target base at position 13, respectively (Fig. 

1a, c, d, Suppl. Fig. 1). Komor et al. increased base editing efficiencies by using a (D10A) 

mutant of Cas9 (nCas9) to nick the target strand. As Cpf1 nickases that cleave the target 

strand have not been described, we attempted to increase editing efficiencies by co-

transfecting a (D10A) nCas9 nickase. This nevertheless did not result in higher editing rates 

for dLbRR-BE (Fig. 1c, d, Suppl. Fig. 1). Correction of the Pahenu2 locus critically depends 

on a suitable activity window, as conversion of two cytidines flanking c.835T>C lead to 

nonsynonymous mutations (Fig. 1a). We therefore developed a script to quantify the high-

throughput sequencing (HTS) reads that restore the PAH amino acid sequence (Suppl. Fig. 

1-4). Highest correction rates were observed with nSaKKH-BE3, which was then selected 

for further studies (Fig. 1c, d, Suppl. Fig. 1).  

 

To further assess the efficacy of the nSaKKH-BE3 system, we next targeted the endogenous 

locus in primary liver cells. We established liver organoids lines from three Pahenu2 mice and 

transduced the nSaKKH-BE3 system and the corresponding sgRNA using lentiviral vectors 

(Suppl. Fig. 5a). HTS of the targeted locus confirmed correction of the Pahenu2 allele in liver 

organoids, albeit at lower frequencies than in HEK293T reporter cells (Suppl. Fig. 5b). 

 

Low immunogenicity and broad range of serotype specificity28,29 suggest the use of AAV 

vectors for in vivo delivery of base editing agents, and prompted us to develop a strategy to 

circumvent the limited cargo capacity of AAV vectors (~4.8-4.9 kb, including inverted 

terminal repeats)30. We developed a dual AAV system and split nSaKKH-BE3 in two parts31, 

where each part is fused to the corresponding split-intein moiety from Nostoc punctiforme 

(Npu)32 (referred to as p.N-int-BE3 and p.C-int-BE3.sgRNA) (Fig. 2a, b, Suppl. Table 1). 
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p.C-int-BE3.sgRNA co-expressed RFP and the sgRNA specific for Pahenu2. We first 

confirmed association and functionality of both intein-split base editor moieties (Fig. 2c, d, 

Suppl. Fig. 5c, Suppl. Fig. 1). Despite lower abundance of the reconstituted base editor 

compared to the full-length version, editing rates were comparable (Fig. 2c, d, Suppl. Fig. 

1). A similar observation has been made by Truong et al., who used the same intein system 

to split the SpCas9 nuclease32. Next we replaced the CMV promoter with the synthetic liver-

specific promoter P311,33, and packaged the expression vectors into AAV2 serotype 8 

particles (referred to as AAV8.N-int-BE3 and AAV8.C-int-BE3.sgRNA). 

 

Adult mice between eight to ten weeks of age were injected with viral vectors (AAV8.N-int-

BE3 and AAV8.C-int-BE3.sgRNA) in a one-to-one ratio via the tail vein (low dose = 5 × 

1010 vector genomes (vg) per AAV per mouse, high dose = 5 × 1011 vg per AAV per mouse) 

(Fig. 2a). In control mice, the AAV8.C-int-BE3.sgRNA vector was replaced by a modified 

vector lacking the Pahenu2-specific sgRNA (AAV8.C-int-BE3). Detection of RFP expression 

in the liver but not the pancreas confirmed liver-specific activity of the P3 promoter (Fig. 

3a). The low-dose group reduced blood L-Phe levels to 732-1366 µmol/l eight weeks post 

injection (Fig. 3b). The high-dose group reduced blood L-Phe levels below therapeutic levels 

of 360 µmol/l6 three to four weeks post injection (Fig. 3b). A further decrease of blood L-

Phe levels to physiological levels below 120 µmol/l was observed six weeks post injection, 

representing a 20-fold reduction of initial L-Phe (Fig. 3b). Treated mice were followed up 

for 26 weeks and L-Phe levels remained below 120 µmol/l (Suppl. Fig. 6b). In addition, we 

observed comparable reduction in blood L-Phe when base editors were injected at higher 

viral titres (1 × 1012 vg per AAV) or at older age (12 weeks of age) (Suppl. Fig. 6c, d).  

 

In a next step, we quantified Pah gene correction rates in mice treated for 4, 8, 14, and 26 

weeks after injection of 5 × 1011 vg per AAV using HTS of PCR amplicons. We observe 

correction of 9.7% (6.1-12.7%) in mice after 4 weeks, 18.6% (8.8-28.5%) after 8 weeks, 

22.1% (14.1-29.1%) after 14 weeks, and 25.1% (21.9-26.9%) after 26 weeks (Fig. 3c, d, e, 

Suppl. Fig. 2, 3). Indel mutations were detected in 4.0% (2.4-6.4%), 6.3% (1.1-11.6%), 9.6% 

(5.4-13.2%), 10.3% (10.0-10.5%), respectively (Fig. 3e, Suppl. Fig. 2, 3). Unedited reads 

were found in 82.5% (76.4-88.3%), 67.7% (51.0-85.7%), 60.7% (48.1-74.8%), and 56.8% 

(54.1-61.0%) in mice treated for 4, 8, 14, and 26 weeks (Fig. 3e, Suppl. Fig. 2, 3). Our data 

further show higher correction rates in male compared to female mice (Fig. 3d, Suppl. Fig. 

2, 3), consistent with our observation that blood L-Phe levels decline more rapidly in males 
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(Suppl. Fig. 6e). These results could be explained by previously described gender-related 

differences of AAV transduction efficiencies in the liver34.  

 

Non-parenchymal cells account for 30-40% of total liver cells35,36, where P3 promoter 

activity and AAV8 transduction efficiency is markedly reduced. We therefore reasoned that 

sequencing of genomic DNA from whole liver extracts underestimates c.835T>C correction 

rates in hepatocytes, and sequenced reverse-transcribed mRNA isolated from liver extracts. 

We found that Pah-mRNA correction rates were indeed higher, with 16.7% (13.3-20.8%) 4 

weeks post injection, 34.4% (18.0-49.6%) 8 weeks post injection, 38.5% (26.1-47.6%) 14 

weeks post injection, and 43.6% (39.1-47.1%) 26 weeks post injection (Fig. 3d, e). 

Strikingly, mice injected with a higher dose of 1 × 1012 vg per AAV showed mRNA 

correction rates up to 63% after 14 weeks (Suppl. Fig. 7a, 7b). As we observe a tendency of 

increased correction, both over time and with higher virus titres, we reason that low 

abundance of reconstituted base editor is likely a rate-limiting step in editing (Suppl. Fig. 

5d, 7a, 7b). Interestingly, editing frequencies of different cytidines within the protospacer 

remain similar over time, indicating that long-term expression of base editors does not 

significantly affect the editing profile (Suppl. Fig. 7c).  

 

We further quantified PAH enzyme activity in corrected mice 4 weeks and 8 weeks after 

administration of 5 × 1011 vg per AAV. Restoration of PAH enzyme activity (1.7-22.8% of 

wild-type enzyme activity) was confirmed in whole liver lysates and correlated to correction 

rates on mRNA and genomic DNA (Fig. 4a).  

We next assessed reversion of PKU-associated phenotypes following gene correction. 

Reduced PAH activity in Pahenu2 mice limits melanin synthesis and manifests in 

hypopigmentation and a light fur phenotype37. In addition, homozygous Pahenu2 mice exhibit 

growth retardation, and are reduced in weight compared to heterozygous littermates1. 

Correction of the Pahenu2 allele led to a relative weight gain compared to untargeted 

homozygous Pahenu2 control mice (Fig. 4b), and changed the fur colour from agouti to black 

(Fig. 4c). 

 

The clinical potential of CRISPR-associated base editors depends on their ability to limit 

editing to the targeted locus. Previous studies demonstrate that base editors do not induce 

untargeted C∙G to T∙A conversions randomly throughout the genome, but may cause 

undesired edits at regions where the sgRNA/base editor complex binds to DNA due to 
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sequence homology. We therefore identified ten potential off-target loci by computational 

prediction38 (Suppl. Tab. 2,3) that were analysed in mice eight weeks after administration of 

5 × 1011 vg per AAV. HTS revealed no C∙G to T∙A conversions or indel formations above 

background (Suppl. Fig. 8c). Furthermore, we find no indication of excessive DNA damage 

or cell proliferation after prolonged exposure to low levels of base editors (Suppl. Fig. 8a, 

b).  Our data suggest that base editors in combination with highly specific guide RNAs have 

a low risk for generating off-target mutations, even when expressed over longer periods of 

time. 

 

In conclusion, this work provides compelling evidence that AAV-mediated delivery of base 

editing agents allows to rescue the disease phenotype of the inborn metabolic liver disease 

PKU. We demonstrate proof of concept for in vivo gene correction using base editors in adult 

tissues with limited proliferative capacity. Messenger RNA correction rates up to 63% 

suggest applicability to a large number of genetic diseases.  
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Accession codes 

 

High-throughput sequencing data have been deposited to EMBL-EBI Array Express 

(accession no. E-MTAB-7154. All other data are available from the corresponding author 

on reasonable request.  

 

 

Code availability 

 

Scripts for mapping sequencing data, counting editing events, and generating allele plots 

are available at https://github.com/HLindsay/Villiger_deaminase. 

 

Data availability 

 

All data and materials are available on reasonable request. 

 

 

Acknowledgements  

 

We thank Jean-Charles Paterna from the Viral Vector Facility of the Neuroscience Center 

Zürich for supplying vectors, the Functional Genomics Centre Zürich for sequencing in vivo 

samples, M. Rodriguez, A. Apladas, N. Rimann for their support with animal work, Andrea 

Garcete and Ines Kleiber from the Immunohistology laboratory for surgical research of the 

University Hospital Zurich for immunhistochemistry of liver samples. 

This work was funded by the SNSF (31003A_160230). L.V. holds an MD/PhD scholarship 

from the Swiss National Science Foundation.   

 

 

Author Contributions 

 

L.V. designed the research, performed experiments, analysed data, and wrote the manuscript. 

F.R. conducted cryosections-, fluorescent imaging-, and western blot experiments and 

analysis thereof. J.M. and C.B.P performed western blot experiments. H.M.G. and G.A. 

assisted with in vitro PAH assays and data analysis thereof. H.L. wrote all R scripts and 



 9 

assisted with HTS data analysis. R.F. analysed blood L-Phe levels. B.T., M.D.R., J.H., and 

H.M.G.-C. assisted with the design of experiments G.S. designed and supervised the 

research and wrote the manuscript. All authors approved the final version. 

 

 

Competing financial interest 

 

The authors declare no competing interests. 

 

 

References 

 

1. Shedlovsky, A., McDonald, J. D., Symula, D. & Dove, W. F. Mouse models of human 

phenylketonuria. Genetics 134, 1205–1210 (1993). 

2. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with 

engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017). 

3. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without 

DNA cleavage. Nature 1–27 (2017). doi:10.1038/nature24644 

4. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing 

of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 

420–424 (2016). 

5. Blau, N., Van Spronsen, F. J. & Levy, H. L. Phenylketonuria. Lancet 376, 1417–1427 

(2010). 

6. Mitchell, J. J., Trakadis, Y. J. & Scriver, C. R. Phenylalanine hydroxylase deficiency. 

Genet. Med. 13, 697–707 (2011). 

7. Scriver, C. R. & Clow, C. L. Epitome of human biochemical genetics. Part I. new Engl. 

303, 1394–1400 (1980). 

8. Martynyuk, A. E. et al. Epilepsy in phenylketonuria: A complex dependence on serum 

phenylalanine levels. Epilepsia 48, 1143–1150 (2007). 

9. Martynyuk, A. E., van Spronsen, F. J. & Van der Zee, E. A. Animal models of brain 

dysfunction in phenylketonuria. Mol. Genet. Metab. 99, S100–S105 (2009). 

10. Ding, Z., Georgiev, P. & Thöny, B. Administration-route and gender-independent long-

term therapeutic correction of phenylketonuria (PKU) in a mouse model by recombinant 

adeno-associated virus 8 pseudotyped vector-mediated gene transfer. Gene Ther. 13, 587–



 10 

593 (2006). 

11. Viecelli, H. M. et al. Treatment of phenylketonuria using minicircle-based naked-DNA 

gene transfer to murine liver. Hepatology 60, 1035–1043 (2014). 

12. Harding, C. O. et al. Complete correction of hyperphenylalaninemia following liver-

directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria. 

Gene Ther. 13, 457–462 (2006). 

13. Yin, H. et al. letters Therapeutic genome editing by combined viral and non-viral delivery 

of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016). 

14. Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and 

phenotype. Nat. Biotechnol. 32, 551–3 (2014). 

15. Yang, Y. et al. A dual AAV system enables the Cas9-mediated correction of a metabolic 

liver disease in newborn mice. Nat. Biotechnol. 34, 334–338 (2016). 

16. Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. Comparison of nonhomologous 

end joining and homologous recombination in human cells. DNA Repair (Amst). 7, 1765–

1771 (2008). 

17. Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. DNA repair by nonhomologous 

end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7, 

2902–2906 (2008). 

18. Ma, H. et al. Correction of a pathogenic gene mutation in human embryos. Nature 548, 

413–419 (2017). 

19. Gao, X. et al. Treatment of autosomal dominant hearing loss by in vivo delivery of 

genome editing agents. Nature (2017). doi:10.1038/nature25164 

20. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate 

adaptive immune systems. Science 102, 553–563 (2016). 

21. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target 

DNA. Cell 156, 935–949 (2014). 

22. Chadwick, A. C., Wang, X. & Musunuru, K. In Vivo Base Editing of PCSK9 (Proprotein 

Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. 

Arterioscler. Thromb. Vasc. Biol. 9, ATVBAHA.117.309881 (2017). 

23. Ryu, S.-M. et al. Adenine base editing in mouse embryos and an adult mouse model of 

Duchenne muscular dystrophy. Nat. Biotechnol. 1–7 (2017). doi:10.1038/nbt.4148 

24. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM 

specificities. Nature 523, 481–5 (2015). 

25. Zetsche, B. et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas 



 11 

System. Cell 163, 759–771 (2015). 

26. Gao, L. et al. Engineered Cpf1 variants with altered PAM specificities. Nat. Biotechnol. 

35, 789–792 (2017). 

27. Li, X. et al. Base editing with a Cpf1-cytidine deaminase fusion. Nat. Biotechnol. 36, 

324–327 (2018). 

28. Mingozzi, F. & High, K. A. Therapeutic in vivo gene transfer for genetic disease using 

AAV: Progress and challenges. Nat. Rev. Genet. 12, 341–355 (2011). 

29. Kay, M. A. State-of-the-art gene-based therapies: The road ahead. Nat. Rev. Genet. 12, 

316–328 (2011). 

30. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 

186–190 (2015). 

31. Nishimasu, H. et al. Crystal Structure of Staphylococcus aureus Cas9. Cell 162, 1113–

1126 (2015). 

32. Truong, D. J. J. et al. Development of an intein-mediated split-Cas9 system for gene 

therapy. Nucleic Acids Res. 43, 6450–6458 (2015). 

33. Nair, N. et al. Computationally designed liver-specific transcriptional modules and 

hyperactive factor IX improve hepatic gene therapy. Blood 123, 3195–3199 (2014). 

34. Davidoff, A. M., Ng, C. Y. C., Zhou, J., Spence, Y. & Nathwani, A. C. Sex significantly 

influences transduction of murine liver by recombinant adeno-associated viral vectors 

through an androgen-dependent pathway. Blood 102, 480–488 (2003). 

35. Gao, B., Jeong, W. Il & Tian, Z. Liver: An organ with predominant innate immunity. 

Hepatology 47, 729–736 (2008). 

36. Racanelli, V. & Rehermann, B. The liver as an immunological organ. Hepatology 43, 

(2006). 

37. Thöny, B., Ding, Z., Rebuffat, A. & Viecelli, H. M. Phenotypic reversion of fair hair upon 

gene therapy of the phenylketonuria mice. Hum. Gene Ther. 25, 573–4 (2014). 

38. Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and 

integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 1–12 (2016). 

 

Figure legends  

 

Figure 1 Concept to target the mutant Pahenu2 allele by genome base editing and in 

vitro validation in cell culture systems. a) Two gRNAs were designed to target the 

mutant Pahenu2 allele that harbours the disease-causing c.835T>C (p.Phe263Ser) mutation 
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on Exon 7, indicated in green. PAM sites are indicated in blue. One gRNA (sgRNA) 

allows binding of the SaCas9(KKH) variant to NNNRRT PAM sites, the other (crRNA) 

binding of the LbCpf1(RR) variant to TYCV PAM sites26,46. Different positions of 

cytidines amenable to deamination are numbered within the protospacer sequence. C∙G to 

T∙A conversion of the target C13 leads to the desired Ser > Phe change at amino acid 

position 263 that restores PAH enzyme activity. C∙G to T∙A conversion of C6 or C15 leads 

to generation of a stop codon or an undesired nonsynonymous His to Tyr amino acid 

exchange, respectively. C∙G to T∙A conversion of C11, C14 or C17 leads to synonymous 

mutations that do not affect the amino acid sequence. b) Conceptual outline to correct the 

mutated Pahenu2 locus in different models. c) Editing efficiencies in different C positions in 

the protospacer region determine activity windows of nSaKKH-BE3, dLb(RR)-BE, and 

dLb(RR)-minBE. Experiments were performed in reporter HEK293T cells that have the 

mutated Exon 7 of the Pahenu2 gene stably integrated. Values represent mean ± s.d. of three 

independent biological replicates performed on separate days. A two-way ANOVA with 

Turkey’s multiple comparisons test was performed for statistical analysis, *P (nSaCas9-

BE3 + sgRNA vs. dLbCpf1-BE + crRNA) = 0.0461, *P (nSaCas9-BE3 + sgRNA vs. 

dLbCpf1-minBE + crRNA) = 0.0449, ****P < 0.0001. d) Correctly edited reads support 

restoration of the correct Pah gene sequence (C∙G to T∙A conversion of the target C13, 

including conversions that lead to synonymous mutations) in reporter HEK293T cells. 

Incorrectly edited reads combine nonsynonymous mutations, non-C∙G to T∙A conversions 

and C∙G to T∙A conversions at positions other than C13. Values represent mean of three 

independent biological replicates performed on separate days ± s.d. Statitical analysis was 

performed using a two-way ANOVA with Turkey’s multiple comparisons test, ****P < 

0.0001. 

 

Figure 2 AAV intein-split base editors. a) Schematic maps of vector genomes for AAV8-

delivery. N-int-BE3 expresses APOBEC1 fused to the N-terminal part of nSaCas9, and C-

int-BE3 co-expresses the C-terminal part of nSaCas9 fused to an uracil glycosylase 

inhibitor, RFP and the Pahenu2-specific sgRNA. b) Depiction of the two intein-split base 

editor proteins forming the full-length base editor after protein trans-splicing. c) 

Sequencing reads that support restoration of the correct PAH amino acid sequence after 

transfection of the intein-split system and the full length SaKKH-B3 in reporter HEK293T 

cells. Transfection of N- or C-terminal parts alone and full length nSaKKH-BE3 without 

sgRNA serve as controls. Values and errors represent mean ± s.d. of three independent 
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biological replicates performed on different days. Statistical analysis was performed using 

a two-tailed, unpaired t-test. d) Western blot analysis of co-transfected intein-split N- and 

C-terminal parts of nSaKKH-BE3. The FLAG epitope is only detected on the C-terminal 

part of the base editor. Transfection of N- or C-terminal parts alone and full length 

nSaKKH-BE3 serve as controls. Similar results were obtained for two additional 

individually repeated experiments. 

 

Figure 3 In vivo base editing corrects the disease-causing Pahenu2 mutation and leads 

to a reduction of blood L-Phe to physiological levels. Unless otherwise noted, treatment 

groups were n = 4 (two males, two females). 8-10 week old mice were administered 5 × 

1011 vg of AAV8.N-int-BE3, and 5 × 1011 vg of AAV.C-int-BE3.sgRNA or 5 × 1011 vg of 

AAV.C-int-BE3 (untargeted control).  a) Representative mouse liver cryosections in a 

mouse eight weeks after administration of 5 × 1011 vg per AAV. Red channel, RFP, blue 

channel, DAPI. Controls are sections of the pancreas from the same mouse and untreated 

liver sections from a Pahenu2 littermate. Scale bar, 100 µm. Similar results were obtained in 

one other independent experiment. b) Blood L-Phe levels from homozygous (targeted and 

untargeted) and heterozygous Pahenu2 mice were determined in weekly intervals. 

Heterozygous Pahenu2 littermates have physiological blood L-Phe levels and were used as 

controls. Values (n = 4 per treatment group) are presented as mean ± s.d., a two-way 

ANOVA with Dunnett’s multiple comparisons test was performed to account for multiple 

comparisons to a single control (untargeted): *P = 0.0489, ****P < 0.0001. c) Editing 

efficiencies in different C positions within the protospacer region in vivo determine the 

activity window for mice after AAV injection. HTS was performed 4, 8, 14, and 26 weeks 

after injection of 5 × 1011 vg per AAV. Values (n = 4 for 4 and 8 weeks and n = 3 for 14 

and 26 weeks) represent mean ± s.d. Statistical analysis was performed using a two-way 

ANOVA with Turkey’s multiple comparisons test. **P (8 weeks treated vs. 26 weeks 

treated) = 0.0056, **P (14 weeks treated vs. 26 weeks treated) = 0.0095, ****P < 0.0001 

d) Sequencing reads of genomic DNA and mRNA that support Pah gene restoration in 

mice 4, 8, 14, and 26 weeks after injection of 5 × 1011 vg per AAV. Each mouse is plotted 

separately. Horizontal bars represent mean values. e) Sequencing reads of genomic DNA 

and mRNA in untreated mice and mice 4, 8, 14, and 26 weeks after injection. Incorrectly 

edited reads combine nonsynonymous mutations, non-C∙G to T∙A conversions and C∙G to 

T∙A conversions at positions other than C13. Values represent mean (n = 4 for 4 and 8 

weeks and n = 3 for 14 and 26 weeks) ± s.d. f) Sequencing data of computationally 
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predicted off-target loci. Cumulative C∙G to T·A conversions within the protospacer region 

were plotted for each off-target locus in (n = 4) mice 8 weeks after injection with 5 × 1011 

vg per AAV, and compared to untreated mice (n = 4). Values are presented as mean ± s.d. 

Statistical analysis was performed using two-tailed, multiple t-test analysis.  

 

Figure 4 In vivo base editing reliably rescues the disease phenotype in Pahenu2 mice. a) 

PAH enzyme activity in whole liver lysates of mice administered 5 × 1011 vg per AAV was 

determined at 4 weeks (n = 4) and 8 weeks (n = 4). Blood L-Phe levels at the point of 

euthanasia were 119-172 µmol/l and 79-106 µmol/l, respectively. PAH enzyme activity is 

normalized to wild-type C57BL/6 mice (n = 4). Values are presented as mean ± s.d. 

Statistical analysis was performed using Pearson correlation to calculate R = 0.9717 (two-

sided ****P > 0.0001) for genomic DNA and R = 0.9719 (two sided ****P > 0.0001) for 

mRNA. No adjustments were made for multiple comparisons. b) Homozygous Pahenu2 mice 

exhibit growth retardation that leads to lower weight. Depicted is the relative weight gain of 

homozygous Pahenu2 mice (n = 4) injected with 5 × 1011 vg per AAV to correct the mutation 

compared to age-matched homozygous Pahenu2 control mice (n = 4) injected with 5 × 1011 

vg per AAV lacking the sgRNA. Values are presented as mean ± s.d. A two-tailed, unpaired 

t-test was used for statistical analysis: *P = 0.0346. c) The light fur phenotype of Pahenu2 

mice 8 weeks after injection of 5 × 1011 vg per AAV. Controls are untreated Pahenu2 mice 

and wild-type C57BL/6 mice. All mice shown are females and between 18-20 weeks of age. 

Similar results were obtained in all mice with corrected L-Phe levels. 

 

 

Methods 

 

Cloning. Sequences of constructs and primers used in this work are listed in the 

Supplementary Information. PCR was performed using Q5 High-Fidelity DNA Polymerase 

(New England Biolabs). pJL-SaKKH-BE3 and pBK-YE1-BE3 were a gift from David Liu 

(Addgene plasmid #85170 and #85174). WN10151 was a gift from Ervin Welker 

(Addgene plasmid #80441). pX601-AAV-CMV::NLS-SaCas9-NLS-3xHA-

bGHpA;U6::BsaI-sgRNA was a gift from Feng Zhang (Addgene plasmid #61591), pLenti 

CMV GFP Puro (658-5) was a gift from Eric Campeau & Paul Kaufman (Addgene 

plasmid #17448). pCMV-VSV-G was a gift from Bob Weinberg (Addgene plasmid #8454) 

and psPAX2 was a gift from Didier Trono (Addgene plasmid #12260). 
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Cell culture transfection protocol and genomic DNA preparation. HEK293T (ATCC 

CRL-3216) and Hepa1-6 (ATCC CRL-1830) cell lines were maintained in Dulbecco’s 

Modified Eagle’s Medium plus GlutaMax (Thermo Fisher Scientific), supplemented with 

10% (v/v) fetal bovine serum (FBS) and 1× penicillin-streptomycin (Thermo Fisher 

Scientific) at 37°C and 5% CO2. Cells were maintained at confluency below 90%. 

HEK293T and Hepa1-6 cells were seeded on 48-well cell culture plates (Greiner) and 

transfected using 1.5 µl of Lipofectamine 2000 (Thermo Fisher Scientific) according to the 

manufacturer’s protocol. 12-16 h after seeding, at approximately 70% confluency, 1 g 

total plasmid DNA was transfected for full length base editors (500 ng BE, 250 ng sgRNA 

or 250 ng crRNA, 250 ng empty pcDNA3.1), intein-split base editors (500 ng each of two 

parts), full length Cpf1-based base editors plus additional Cas9 nickase (500 ng BE, 250 ng 

crRNA, 150 ng SpCas9 D10A nickase, 100 ng sgRNA). Unless otherwise noted, cells were 

incubated for 5 days and split into a 24-well cell culture plate (Greiner) 24 h post 

transfection with a media change on day 4. Genomic DNA was isolated on day 5 using the 

DNeasy Blood and Tissue kit (Qiagen) according to the manufacturer’s instructions. 

 

Mouse liver organoid isolation and culture. Mouse liver tissue was mechanically 

dissociated and digested in Dulbecco’s Modified Eagle’s medium supplemented with 

Collagenase type IX 0.012%, Dispase 0.012%, and 1% (v/v) FBS for 30 min. Biliary ducts 

were identified in the microscope and seeded in 20µl Matrigel (Corning) drops. After 

gelation at 37°C, culture medium was added:  Advanced Dulbecco’s Modified Eagle’s 

medium supplemented with 10% (v/v) RSPO1-conditioned medium prepared according to 

Farin et al.39, 1 × B27 minus Vitamin A (Thermo Fisher Scientific), 1 × N-2 (Thermo 

Fisher Scientific), 10 mM Nicotinamine (Sigma-Aldrich), 1.25 mM N-acetylcysteine 

(Sigma-Aldrich), 10 nM gastrin (Tocris Bioscience), 10 nM Gastrin (Tocris Bioscience), 

50 ng/ml EGF (Preprotech), 50 ng/ml HGF (Preprotech) and 50 ng/ml FGF (Preprotech). 

During the first 4-5 days after isolation, organoid culture medium was supplemented with 

10% (v/v) Noggin- and 50% (v/v) Wnt3a-conditioned medium prepared according to 

Barker et al.40. Organoids were passaged by mechanical dissociation and transferred into 

fresh Matrigel drops. 

 

AAV vector production. All pseudotyped AAV2/8 vectors were produced by the Viral 

Vector Facility of the Neuroscience Center Zurich. AAV vectors were ultracentrifuged and 
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diafiltered. Physical titers (vector genomes ml-1) were determined using a Qubit® 3.0 

Fluorometer. Identity of the packaged genomes of each AAV vector was confirmed by 

Sanger DNA-sequencing.  

 

Lentiviral vector production. HEK293T cells were seeded in Opti-MEM (Thermo Fisher 

Scientific) in a T75 flask (Greiner) and transfected after 12-14 h at approximately 70% 

confluency using PEI. In brief, 59 µl PEI (0.1 mg/ml) in 370 µl Opti-MEM were incubated 

at room temperature for 5 minutes and added to 4.4 µg PAX2, 1.5 µg VSV-G and 5.9 µg 

lentiviral vector plasmid in 430 µl Opti-MEM. After incubation for 20 min at room 

temperature, cells were transfected. Media was changed 1 day after transfection. 2 days 

later, supernatant containing lentiviral particles was harvested and filtered using a Filtropur 

S 0.2 (Sarstedt) filter.  

 

Lentiviral transduction of mouse liver organoids, HEK293T, and Hepa1-6 cells. 

Mouse liver organoids were dissociated into single cells using TrypLE (Thermo Fisher 

Scientific) at 37°C. After 5-6 min, three volumes of Dulbecco’s Modified Eagle’s Medium 

supplemented with GlutaMax (Thermo Fisher Scientific) and 10% (v/v) fetal bovine serum 

(FBS) were added, and samples were centrifuged. Cells were resuspended in supernatant 

containing lentiviral particles and Advanced Dulbecco’s Modified Eagle’s medium 

(Thermo Fisher Scientific) was added to a total of 500 µl (including lentiviral particles) 

and plated in 24 well suspension plates (Greiner). The plate was centrifuged for one hour at 

32°C and 700 g, followed by a three-hour incubation at 37°C and 5% CO2. Single cells 

were collected replated in 20 µl Matrigel (Corning) drops. Culture medium supplemented 

with 10μM Y-27632 (Tocris Bioscience) was added. After 2 days, stably transduced 

organoids were enriched with 3 µg/ml Puromycin (Invivogen) for 7 days. Supernatant 

containing lentiviral particles was added to HEK293T and Hepa1-6 cells in a 24 well cell 

culture plate (Greiner). Two days after transduction, cells were enriched using 2.5µg/ml 

Puromycin for seven days.  

 

Animal studies. All animal experiments were performed in accordance with protocols 

approved by the Kantonales Veterinäramt Zürich in compliance with all relevant ethical 

regulations. Pahenu2 mice were housed in a pathogen-free animal facility at the Institute of 

Molecular Health Sciences at ETH Zurich and kept in a temperature- and humidity-

controlled room on a 12h light-dark cycle. Mice were fasted for 3-4 hours before blood 
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was collected from the tail vein for L-Phe determination but otherwise were fed a standard 

laboratory chow (Kliba Nafag #3437 with 18.5% crude protein). Mice were genotyped at 

weaning. Heterozygous Pahenu2 littermates with comparable blood L-Phe levels to wild 

type C57BL/6 mice (Suppl. Fig. 1d), were used as controls for physiological blood L-Phe 

levels (< 120 mol/l). Wild-type control animals for PAH enzyme activity assays were 

age- and sex-matched C57BL/6 mice purchased from JANVIER LABS. Unless otherwise 

noted, animals were allocated to groups of four and stratified by gender (2 males, 2 

females). The low-dose group was injected with 5 × 1010 viral vector genomes (for each 

AAV) per mouse. The high-dose group was administered 5 × 1011 viral vector genomes 

(for each AAV) per mouse. Animals were euthanized at 4 weeks and at 8 weeks after 

injection for further analyses. The untargeted control group received the same vector dose 

as the high-dose group.  

 

Amplification and high-throughput DNA sequencing of genomic DNA and mRNA 

samples.  

Genomic DNA and mRNA from mouse liver tissue was isolated from whole liver lysate 

using the DNeasy Blood and Tissue kit or the RNeasy Mini Kit (Qiagen) according to the 

manufacturer’s instructions. cDNA was generated using GoScript reverse transcriptase 

(Promega) according to the manufacturer’s protocol using Oligo-dT primers. Subsequent 

PCR reactions to generate amplicons for HTS were performed using NEBNext High-

Fidelity 2x PCR Master Mix. In brief, 200 ng genomic DNA was amplified in 26 cycles for 

the first PCR in a 20 µl reaction. Similarly, cDNA from 50 ng reverse transcribed RNA 

was amplified in 22 cycles. The PCR product was purified using Agencourt AMPure XP 

beads (Beckman Coulter), and amplified with primers containing sequencing adaptors. The 

products were gel purified and quantified using the Qubit 3.0 fluorometer with the dsDNA 

HS assay kit (Thermo Fisher Scientific). Samples were sequenced on an Illumina Miseq. 

 

HTS data analysis. Sequencing reads were demultiplexed using Miseq Reporter 

(Illumina), and analysed using a custom script. In short, reads were merged with PEAR 

v0.9.841 and mapped to the Ensembl mouse genome v38.90 using BWA MEM42. Base 

editing frequency was quantified in R using CrispRVariants v1.7.543 and Biostrings 

v2.46.044.  Scripts are available at https://github.com/HLindsay/Villiger_deaminase. 
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Mouse liver and pancreas cryosections. Mice were euthanized with CO2 and the 

pancreas isolated immediately before perfusion through the portal vein using PBS followed 

by freshly prepared PLP buffer containing 75 mM L-Lysine (Sigma-Aldrich), 30.4 mM 

Na2HPO4, 7.1 mM NaH2PO4 (Sigma-Aldrich), NaIO4 (Sigma Aldrich) and 1% PFA. The 

mouse liver and pancreas were fixed in PLP buffer overnight at 4°C, followed by 3 

washing steps with buffer containing 81 mM Na2HPO4 and 19 mM NaH2PO4 at pH 7.4. 

Liver pieces were transferred to a 30% sucrose solution for 6 hours at 4°C and embedded 

in OCT compound in cryomolds (Tissue-Tek). Frozen liver tissue was sectioned at 10 µm 

at -18°C, and mounted directly on SuperFrost Plus slides (Thermo Fisher Scientific). 

Cryosetions were counterstained with DAPI (Thermo Fisher Scientific) and mounted in 

Vectashied mounting medium (Vector Labs). At least 3 frozen sections per mouse and 

tissue were analysed.  

 

Microscopy. Mouse liver and pancreatic tissue was imaged using an inverted laser 

scanning microscope (Leica TCS SP8) in a XYZT-mode. To visualize DAPI and RFP, 

samples were excited at 405 nm, and 568 nm, respectively. Imaging conditions and 

intensity scales were matched for all images. Images were analysed using Leica LAS AF 

(Lite) software v3.3 and deconvoluted using Fiji ImageJ software (v1.51n). 

 

Western blot analysis for FLAG epitope detection. HEK293T cells were transfected in a 

48-well plate (Greiner) at 70% confluency as previously described and kept for 5 days. 

Cells were washed with PBS (Gibco) and harvested using RIPA lysis buffer (150 mM Tris 

pH 8.0, 150 mM NaCl, 0.1% SDS, 0.5% Na-Deoxycholate, 1% NP-40) supplemented with 

a protease inhibitor cocktail (Roche) without EDTA. Total protein was quantified using a 

Pierce Protein BCA assay kit (Thermo Fisher Scientific). Frozen mouse liver tissue was 

lysed in RIPA buffer (150 mM Tris pH 8.0, 150 mM NaCl, 0.1% SDS, 0.5% Na-

Deoxycholate, 1% NP-40) supplemented with a protease inhibitor cocktail (Roche) without 

EDTA and treated analogously. 20 µg of total protein lysates were loaded and run on SDS-

PAGE gels, transferred to nitrocellulose membranes (GE Life Sciences), and incubated 

with primary antibodies for FLAG (F1804 M2, Sigma-Aldrich, 1:1000) and actin (#4970, 

Cell Signaling Technology) over night at 4°C according the manufacturer’s protocol. 

Membranes were washed three times with TBS with 0.1% Tween-20 (TBS-T) for 10 min 

and labelled with secondary anti-IgG-HRP antibodies raised against each corresponding 

primary antibody. After three washes with TBS-T, membranes were incubated with ECL 
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chemiluminescent reagent (Biorad) according the manufacturer’s instructions and exposed 

using a FUSION SOLO S (Vilber). Uncropped versions of images are provided in the 

Supplementary information.  

 

Western blot analysis for -H2AX-S139-P and KAP1- S824-P detection. Cell lysates 

were subjected to NuPAGE gel electrophoresis (NuPAGE 3-8% Tris-Acetate; NuPAGE 

10% Bis-Tris, Invitrogen) and blotted on PVDF membranes (GE Healthcare). Proteins 

were detected using Rabbit anti--H2AX-S139-P (ab2893, Abcam) 1:1500, Rabbit Anti-

KAP1-S824-P (ab70369, Abcam) 1:2000, Mouse Anti-GAPDH (#GA1R, ThermoFisher) 

1:10000. 

 

PAH enzyme activity assay. Whole liver extracts were analysed using isotope-dilution 

liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-

MS/MS) according to a previously published method45. 

 

Statistical analyses. A priori power calculations to determine sample sizes for animal 

experiments were performed using the R ‘pwr’ package. Statistical analyses were 

performed using GraphPad Prism 6.01 for Windows. Sample sizes and statistical tests used 

are described in figure legends. In brief, the Dunnett’s test was used to compare multiple 

variables to a single control for blood L-Phe levels. All tail vein injections were successful 

and no animals were excluded. Two-way ANOVA analysis was used to compare different 

conditions (different base editors or virus titres) and different C positions. A two-tailed, 

unpaired t-test was used for analysis of relative weight gain between two groups and 

correctly edited reads in vitro or in treated animals. A non-parametric, two-tailed 

correlation test was used to analyse genomic DNA correction and PAH enzyme activity, as 

well as genomic DNA and mRNA correction. Analyses of off-targets and gender-related 

difference in gene correction were performed using multiple t-tests. Group averages are 

presented as mean ± s.d. 
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