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Document image analysis is the study of converting documents from
paper form to an electronic form that captures the information content of
the document.  Necessary processing includes recognition of document
layout (to determine reading order, and to distinguish text from diagrams),
recognition of text (called Optical Character Recognition, OCR), and
processing of diagrams and photographs.  The processing of diagrams
has been an active research area for several decades.  A selection of
existing diagram recognition techniques are presented in this paper.
Challenging problems in diagram recognition include (1) the great
diversity of diagram types, (2) the difficulty of adequately describing the
syntax and semantics of diagram notations, and (3) the need to handle
imaging noise.  Recognition techniques that are discussed include
blackboard systems, stochastic grammars, Hidden Markov Models, and
graph grammars.

1. Introduction

This paper concerns itself with diagram recognition, which is one component of
document image analysis.  Document image analysis involves conversion of a scanned
document to an electronic form that captures the information content of the document
[49].  The scope of diagram recognition problems is characterized by the following
dimensions.

• The diagram notation  A great diversity of diagram notations are in use.
Recognition techniques have been developed for a variety of notations, including
engineering drawings [21] [22] [33] [35] [72], mathematics notation [1] [10] [17]
[25] [28] [71], music notation [4] [9] [23] [36], chemical structure diagrams [46],
circuit diagrams [14] [37] [51], and line drawings [13] [52] [62].  There is need
for a classification or categorization of diagrams, to provide a vocabulary for
discussing the input domain of a diagram recognition system.  Existing work in
this area is surveyed in [8].

• The level of interpretation  The following levels of interpretation occur in
diagram recognition [42]: Image, Primitive, Symbol, Syntax, Structure, Entity,
and Semantics.  A diagram recognition technique can be characterized by the
level of interpretation it takes as input, and the level that it produces as output.
Symbol recognition converts from Image to Symbol level [16].  Techniques to
convert from Symbol to Semantics level include [1] [14] [23], among many
others.  Techniques to convert from Image level directly to Structure level
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(without symbol recognition) include [50] [74]. Integrated systems for
converting from Image to Semantics level are described in [17] [33] [39].

• The presence of imaging noise  Scanners introduce imaging noise.  This causes
uncertainty in primitive recognition and symbol recognition processes.  Many
document image analysis systems are applied to scanned, noisy images.  There is
also increasing interest to analyze noise-free diagrams in computer-generated
documents.  For example, clean postscript files are processed by [27] [54].  Such
processing is needed because postscript files often become separated from the
parent documents that generated them.

• Hand-drawn versus typeset diagrams  Recognition techniques have been
developed both for hand-drawn and typeset diagrams.  Hand-drawn diagrams are
challenging to process because symbol formation and symbol placement are
much more variable than in typeset diagrams.  In offline data, this makes
symbol recognition more challenging and more error prone, and also increases
the difficulty of recognizing the relevant spatial relationships among symbols.

• Online or offline data  A hand-drawn diagram can be entered as online
information (with timing information, as arises from use of a data tablet) or as
offline information (without timing information, as arises from a scanner).

A great variety of diagram recognition techniques have been developed in response to
the great variety of settings in which diagram recognition is used.  Most of these are
research systems, or systems that are custom-built to address the needs of one particular
company (e.g. [2] [3]).

Few commercial diagram recognition systems are on the market.  For example,
one system for music notation is available (Musitek’s SmartScore [68], preceded by
MIDIScan), but none for math notation.  This is in marked contrast to diagram
generation systems, which are readily available (e.g. music notation [7] and math
notation [41]).

High accuracy is required to make a document recognition system viable.  The
accuracy required of OCR (Optical Character Recognition) systems was studied by
Cushman et al. [20]. They compare two methods of data entry for text that is available
in hardcopy: (1) a person types the text and proofreads the result, (2) the text is
recognized by an OCR system, followed by manual editing to correct recognition
errors.  They find that 98% correct recognition is needed to make the OCR system
competitive.  At this recognition rate, it takes half as much time to correct the OCR
result as to type and proofread the text, and the corrected OCR result has as few residual
errors as the proofread hand-typed result.  There are OCR systems on the market that
achieve such recognition rates.  Unfortunately, most current diagram recognition
systems do not meet comparable performance standards.

2. Challenges in Implementing a Diagram Recognizer

The designer of a diagram recognition system must find solutions to the following
challenges.  How should information about notational conventions be gathered, and
how should it be represented within the software?  How will noise, dialects, and error
correction be handled?  How will the prototype software be structured, so that it can
scale up to handle the complexity of the complete notation?
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2.1  Representing Notational Conventions

A diagram notation is a two-dimensional language characterized by notational
conventions which define a mapping between symbols on a page and the information
conveyed by a diagram.  There is a many-to-one correspondence between images and
information.  This is because diagram layout can be varied in ways that do not change
the information conveyed by the diagram.  The various layouts differ in readability and
aesthetic appeal.  Ideally, diagram generation systems allow the user to choose a
preferred layout, whereas diagram recognition systems accept all possible layouts.

Notational conventions are used in all parts of a diagram recognition system.
Examples include the following.  A symbol-segmentation module needs information
about how symbols overlap, as in the separation of notes from staff-lines in music.  A
symbol recognition module needs information about symbol appearance (fixed symbols
might be defined in a font, and parameterized symbols might be defined using a
structural description).  All aspects of semantic interpretation rely heavily on
knowledge of notational conventions.

Software models of notational conventions are difficult to construct.  There is no
direct answer to the question “What is math notation?” or “What is music notation?”.
Diagram notations are not formally defined; rather, they are informally established,
through common usage.  The same is true of natural languages, such as English.  In
building a software model of notational conventions, the following sources of
information can be drawn upon.

• Human experts can provide information about a diagram notation.  Introspection
is commonly used: the designers of a diagram recognition system rely on their
own knowledge of the diagram notation.

• Sample documents can be studied.
• Informal written descriptions exist for a variety of notations, oriented toward

manual typesetting (e.g. [15] [63]) or computer typesetting (e.g. [38] [64]).
This information is not in a form that can easily be incorporated into diagram
recognition software.

• Code in existing diagram generators and recognizers can be studied. The
experience and knowledge in these systems is often significant.  For example,
Belkin notes that music-notation editors are typically under development for a
decade or more  [7].

A variety of methods can be used to store information about notational
conventions within the recognition system.  According to [53], these can be divided
into three different approaches.  The programming approach hides the knowledge about
notational conventions in the source code of a program, lacking an explicit knowledge
representation.  The resulting systems are often monolithic, and therefore difficult to
maintain and extend.  The partially declarative approach describes the overall
interpretation strategy in a declarative manner (as a set of rules), but program code
contains the geometric reasoning used to identify primitives and symbols.  The pure
declarative approach uses a declarative specification language to formalize the entire set
of notational conventions that are used.  Pasternak recommends that the pure declarative
approach be implemented via a partonomic structure and two taxonomic structures [53].
A partonomic structure describes aggregation of graphical primitives into domain-
specific entities.  One of the taxonomic structures describes geometric objects as
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specializations of other geometric objects.  The other describes semantic objects as
specializations of other semantic objects.

2.2  Handling Noise

Imaging noise may lead to errors or uncertainty in symbol recognition.  Even
when symbols are recognized perfectly, their syntactic role may be uncertain.  (For
example, a dot in mathematics notation may be a multiplication symbol, a decimal
point, or noise.)  The spatial relationships between symbols are often unclear; for
example, an interesting study of in-line versus subscript versus superscript relations in
mathematics is provided in [74].  A computational strategy is needed to manage this
uncertainty.  Two strategies that have been used include:

• Sequential processing with lists of alternatives.  All possible interpretations are
carried along from one stage to the next.  For example, the symbol recognizer
produces a list of alternatives (perhaps including “noise”) for each symbol it
recognizes.  During syntax analysis, constraints are applied to eliminate
alternative interpretations.  As partial semantic analysis is achieved, further
constraints may be applied (e.g. [24]).

• Concurrent execution with contextual feedback.  If recognition processes execute
concurrently (interleaved or in parallel), then later stages of interpretation can
provide contextual feedback to earlier stages.  The blackboard systems discussed
in Section 5 provide such a control mechanism.

An interesting model for sequential processing is presented in [5].  The authors discuss
some of limitations imposed by the need to carry forward all surviving alternatives,
including the need to carry forward multiple segmentations.  (Segmentation identifies
all the pixels that constitute each symbol.  If segmentation is incorrect, subsequent
symbol recognition is certain to fail.  Segmentation is difficult because overlapping
symbols are common in diagram notations; in addition insufficient ink causes gaps in
strokes, and excess ink makes two symbols look connected.)

Sequential processing does offer the advantage of isolating portions of the
computation for intensive study.  For example, researchers can focus on syntactic or
semantic analysis without the need to study symbol recognition, as in [1] [23] et al.
Concurrent execution with contextual feedback, on the other hand, offers increased
flexibility in handling uncertainty, and may be necessary when the space of possible
interpretations is extremely large.  Further research is needed to develop general
methods of providing contextual feedback.

2.3  Handling Dialects

Diagram notations have dialects.  Therefore, it is impossible to construct one fixed
software representation of a diagram notation.  A better alternative is to define a core
diagram notation and allowable variants.  In some cases, the software may be able to
automatically infer which variant to use.  However, in many cases, the user will need
to provide this information.  Designing a suitable user interface for this purpose is a
challenge.

2.4  Providing an Effective Interface for Error Correction

Diagram recognition systems are bound to make errors.  Effective user interfaces
are needed to allow users to correct errors in a convenient and natural way.  A good user
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interface is critical to the practical operation of a recognition system.  This aspect of
diagram recognition systems has received relatively little attention; more research is
needed.  Here are two examples of systems in which error-correction facilities are
provided.

Smithies et al. describe a system for recognizing mathematical expressions that are
hand-written on a data tablet [69].  The user interface provides commands for correcting
symbol recognition errors (e.g. a ‘D’ recognized as a ‘0’). for correcting over-segmented
regions (where one symbol is interpreted as two symbols because of gaps between
strokes), and for correcting under-segmented regions (where several symbols are
mistakenly interpreted as a single symbol).  Erroneous segmentation is corrected by
using the mouse to draw a line to group a set of strokes together into a character.

Semi-automatic delineation of regions in floor plans is discussed in [65]. The goal
is to identify subjective contours.  These are not always explicit in a floor plan.  An
example is the division between kitchen and living room in an open-concept home.  A
set of subjective contours is automatically inferred.  Manual correction of errors allows
missing subjective contours to be added, and erroneous ones to be removed.

2.5  Handling Complexity

Many diagram notations are complex.  Descriptions of their notational conventions
are often lengthy (e.g. [63] for music notation).  Of necessity, researchers in diagram
recognition frequently work with small prototype systems, which handle only a small
part of a diagram notation.  Successful demonstration of a prototype system is certainly
an important first step in demonstrating the viability of a recognition approach.
However, methods that are effective in small prototype systems don’t always scale up
to a larger system.  Complex, challenging issues must be addressed to achieve
recognition systems that scale up gracefully.  Much of the current research into
software engineering is relevant to this topic.

The remainder of this paper summarizes a selection of existing methods used in
diagram recognition.  This is not a comprehensive survey, but serves to illustrate the
variety of methods that have been used.  These methods are not orthogonal; some of
them can be used in combination.

3.  Grammars and Production Rules

Grammars provide a systematic way to represent the syntax of a diagram notation,
and provide a framework for attaching semantic routines as well.  A grammar consists
of a start symbol and a set of production rules.  In a string grammar (the type used in
compilers, for example), a production rule is used to replace one substring by another.
Parsing involves a search for a correct sequence of production rules that can transform
the start string into the target string.  The string grammar defines a language of strings.
Any string that is in the language can be parsed by the grammar.  Other strings, which
cannot be parsed, are syntactically incorrect according to this grammar.

 The use of grammars in diagram recognition, and other pattern recognition
applications, is discussed in [26].  Strings are one-dimensional, whereas diagrams are
two-dimensional.  String grammars can be adapted and extended in various ways, to
allow them to describe two-dimensional patterns.  For example, in PDL (Picture
Description Language), a variety of spatial relationships are designated by the special
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characters * x + - ~.  Combining this with a spatial interpretation of primitives (e.g. A
is a horizontal line, B is a diagonal line, C is a circle), allows string expressions such
as “A+BxC” to describe a picture [26].  Even with such tools, forming a linear
description of a diagram can be difficult or inconvenient.  As an alternative, a richer data
structure than a sting can be used as the basis for a grammar.  For example, a graph
grammar consists of a start graph and a set of graph productions.  Each production rule
is used to replace one subgraph by another (Section 3.2).  Imaging noise is a challenge
in any grammar-based system.  Techniques such as error-correcting parsing [26] or
stochastic grammars (Section 3.3) can be used.

3.1 Anderson

Anderson’s grammar for the recognition of math notation provides an excellent
case study [1].  The recursive nature of math notation is particularly well-suited for
syntactic analysis.  Anderson uses a set-based grammar (called a coordinate grammar).
During top-down parsing, a syntactic goal is assigned to a set of symbols.  Initially,
the syntactic goal EXPRESSION is assigned to the entire set of symbols.  This symbol
set must be parsed using a production rule that has an EXPRESSION non-terminal as its
left-hand side.  The production rule applies spatial constraints to partition the symbol
set into subsets, and assigns a syntactic goal to each subset.  This process repeats
recursively, until the parse succeeds, or all possibilities have been exhausted.  As an
example, there is a production with SUMTERM on the left-hand side, and with four
symbol subsets on the right hand side.  One of these subsets is the symbol Σ; this
symbol must be present if this production is to be applied.  The other three subsets
consist of symbols that are above, below, and to the right of the Σ.  If there are
symbols that do not fit into these categories (e.g. a symbol that is to the left of the Σ,
or to the bottom-right of it), then the production cannot be applied.  This means that an
input expression is rejected as unparsable if it contains a Σ whose limits are wider than
the Σ  symbol itself.  Similar symbol-layout restrictions occur elsewhere in the
grammar.  Nevertheless, Anderson's made a great contribution with this work, which is
particularly impressive considering that it was carried out in the 1960s.

3.2 Graph grammars and Graph transformation

Graphs are an appropriate data structure to use in diagram recognition. Vertices can
represent pixels, primitives, symbols, syntactic entities, structural entities, diagram
interpretations, etc.  Edges represent relationships among vertices.  Attributes are
associated with vertices and edges, to record non-structural information.  Attributes in
an image-level graph might record (x, y) image locations, whereas attributes in a
semantic-level graph record the meaning that has been extracted from the document
image.

Graphs can be processed using graph productions [12].  These are rules for
transforming one graph into another, by removing a subgraph and replacing it with
another.  This is analogous to the role played by string productions, where one
substring is replaced by another.  Graph productions can be organized into a graph
grammar (by designating a Start graph, as well as terminal and non-terminal labels).
Alternatively graph productions can be used to transform an input graph directly into an
output graph (by adding a means of controlling when productions are to be applied).
Both methods of using graph productions have been applied to diagram recognition.
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The transformation approach has been applied to recognition of circuit diagrams [14],
music notation [6] [23] [24], and math notation [28].  The graph grammar approach has
been applied to recognition of engineering drawings [22], tables [61], and math notation
[43].  Most of these are research prototypes.  However, the table recognition work by
Rahgozar and Cooperman became part of a commercial product.

3.3 Stochastic Grammars

Images of diagrams are noisy.  They contain imaging noise, coffee stains, areas
with excessive amounts of ink (causing symbols to bleed together), and areas with
insufficient ink (causing breaks in symbols).  Various approaches can be taken when a
grammar is to be used to analyze a noisy image [26].  These include error-correcting
parsing, which finds the nearest legal interpretation of the input, as well as stochastic
grammars, which add probabilistic information to the language described by a grammar.

A stochastic grammar is used by Chou to analyze typeset mathematics expressions
[17].  The system is able to interpret low-resolution images that contain significant
noise.  Recognition of isolated symbols is very difficult in these images, because of the
poor image quality.  The images are interpreted successfully since the stochastic
grammar finds a good interpretation of the input as a whole.  Each production rule in
the stochastic grammar has a probability associated with it.  These probabilities are
used to calculate an overall probability for each parse.  The system assumes that the
input conforms to a certain style of mathematics formatting (as produced by the troff
system).  Also, the entire character set must be known, with a sample of each character
at each possible point size.

3.4 Visual Language Methods

The work surveyed in Sections 3.1 to 3.3 comes from the document recognition
community.  This research community publishes in journals [30] [31] and conferences
[55] [57] [58] [60], among others.  There is a separate community of visual language
researchers, who publish in journal [34] and conferences [56] [59], among others.
There is overlap in the problems being addressed by these two research communities,
meaning that the two communities could likely learn from one another.  The document
recognition community is building systems to recognize diagram languages that are in
use in society.  The visual language community is developing new diagram languages
(such as visual programming languages), and is developing technology for recognizing,
editing, and generating diagrams expressed in these languages.  In document
recognition, much research effort centers on image processing (noise reduction, skew
removal, etc.), vectorization, segmentation, and symbol recognition [49].
Consequently, relatively less effort has been placed on later interpretation stages
(syntactic and semantic processing).  In contrast, visual language researchers have
intensively investigated methods of defining the syntax and semantics of visual
languages, and methods of constructing parsers and interpreters for visual languages.

Some visual language approaches can be extended to make them suitable for
document image analysis.  Visual language approaches are summarized in the extensive
survey by Marriott et al. [45].  These include grammatical approaches (string grammars
with generalized relations, graph grammars, and multiset grammars), logic-based
approaches (definite clauses, constraint logic programming, formalization of topology,
logic formalisms containing visual expressions), and algebraic approaches (algebraic
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formalisms defining picture domains, application domains, and their correspondence).
These approaches have been most intensively tested on newly-developed visual
languages, particularly visual programming languages.  These new languages are
defined in a way that makes them amenable to formal treatment (unambiguous, easy to
parse, clear semantics attached to spatial relationships).  Consequently, these
approaches need to be extended and adapted, before they can be used in document
recognition systems.  As an example, Costagliola et al. have developed positional

grammars, and associated parsing methods [19].  This formalism adapts traditional,
efficient LR parsing methods (as used in compilers) to process a significant class of
visual languages.  We were able to use some of the ideas in this approach to construct a
document recognition system that recognizes handwritten mathematics expressions
[75].  Significant extensions to the formalism were required, since sophisticated spatial
reasoning is needed to interpret the messy symbol placement that is common in
handwritten math expressions.  Our extensions include a scheme for partitioning the
image space around each symbol, the definition of searching functions to locate
symbols in a baseline, and the use of tree transformations to refine the parse tree.

4. Recognition using a Model of Diagram Generation

Diagram recognition converts an image to a semantic representation.  This is the
inverse of diagram generation, where a semantic representation is converted to a
corresponding image.  Implicitly or explicitly, a diagram recognizer must be aware of
the diagram generation process: the diagram recognizer must know the notational
conventions that were used to create the diagram.  Some approaches to diagram
recognition use an explicit model of the diagram generation process.  These are
reviewed here.

The influential paper by Kopec and Chou [39] proposes the following structure for
a document recognition system.  The system contains a model of the diagram
recognition process, which consists of a Message Source, an Imager, and a Channel.
The Message Source defines the space of possible messages (semantics) that might be
encoded in a diagram.  As well, it defines the probability of each particular message.
The Imager defines the mapping from a message to an noise free image.  The Channel
maps a noise free image to an observed image, by introducing distortions such as skew,
blur, and additive noise.  Given these components (Message Source, Imager, and
Channel), it is now possible to formulate a precise statement of the optimization
problem that must be solved by the Decoder (the diagram recognizer): the decoder
receives an observed (noisy) image, and must produce a maximum-likelihood estimate
of the original message.  Kopec and Chou implement a solution to this optimization
problem using a finite-state machine (a Hidden Markov Model) to model the Message
Source and Imager.  Their Channel is a simple bit-flip model, where each pixel has a
certain probability of being flipped (changed from white to black or vice versa).  They
obtain excellent results in interpreting noisy images.  Their results are particularly
impressive considering the simplified model of diagram generation that is used: since
the Hidden Markov Model is based on a finite state machine, it can only capture context
free aspects of syntax.

In effect, the Kopec and Chou algorithm performs an exhaustive search of the
entire space of messages (all possible image-interpretations).  They invoke a generator
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for each possible message, and compare all the generated images to the given image to
find the best match.  A naive implementation of this computation would have very
long run time.  Reasonable run time can be achieved by appropriately restricting the
form of the generator, and using a dynamic programming algorithm.  In [39], a Hidden
Markov Model is used for the generator (i.e., for the Message Source and Imager).  The
generator model is extended to a stochastic context free grammar in [18]. The HMM
method is applied to music notation in [40].  In order to achieve a context-free
description of the generator, the music notation is restricted to a single voice, with no
beams or slurs between notes.  Context-sensitive layout issues, such as the effect of
note length on note spacing, cannot be modeled.  Nevertheless, encouraging results are
achieved.

Another study related to the interaction between diagram generation and diagram
recognition is [11].  Here, the focus is on reusing the expertise in existing diagram
generators, in order to improve diagram recognition software.  As a case study, an
existing music-notation editor (Lime) is used to proofread and correct the raw output of
MIDIScan (a third-party commercial recognizer for music notation).

5. Blackboard Systems

The blackboard architecture provides a general and flexible framework for
combining diverse knowledge sources [32].  The name derives from an analogy to
human experts communicating via a blackboard.  The three main parts of a blackboard
system are a blackboard data structure, knowledge sources, and a control component
[32].  The blackboard contains recognition hypotheses.  The information on the
blackboard is updated by the knowledge sources.  The control component oversees the
triggering of the knowledge sources.  The blackboard can represent several competing
recognition hypotheses, with associated confidence values.  The knowledge sources read
and update the confidence values as they read and update the recognition hypotheses.

Blackboards used in recognition systems are commonly divided into levels of
abstraction.  Kato and Inokuchi use five levels (image, primitive, symbol, meaning,
goal) for music recognition [36], and four levels (input diagram, symbol hypotheses,
diagram hypotheses, recognition result) for circuit-diagram analysis [37]. Vaxivière and
Tombre use four levels (lines and blocks, shafts, symmetric entities, functional setups)
for analysis of engineering drawings [72].  Novak and Bulko use five levels (picture,
text, picture-model, text-model, problem-model) to interpret the text and diagram
defining a physics problem [48].  The hierarchy of levels, models and algorithms used
in text recognition are discussed in [70].  Four main levels are used: the image level
(binary and grayscale), the character level, the linguistic level (divided into word,
phrase, and sentence levels), and the textual structure level (divided into paragraph and
document levels).

Knowledge sources can be of different types.  For example, Novak and Bulko
suggest using five types of knowledge-sources for semantic analysis [48].  These
knowledge sources (1) represent expectations about related objects, (2) group related
diagram elements, (3) make inferences from common-sense rules and domain rules, (4)
relate diagram elements to a priori knowledge, and (5) infer missing items.

Blackboard architectures provide a flexible control structure, which can be used to
handle noise and uncertainty.  For example, in a music recognition system [36], pixels
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are erased from the blackboard as they are interpreted.  If a contradiction occurs at a
higher level of interpretation, the pixel-level data is restored and re-interpreted.  This
results in fast processing for clean input, with slower processing and more backtracking
for noisy input.  The cleaner parts of the input image provide contextual information
for interpreting noisier parts of the image [36] [37].

Authors in document image analysis mention various advantages of blackboard
systems.  Sennhauser praises the ability to integrate new knowledge sources into the
system, the support for conflicting hypotheses, the contextual feedback from high-level
processing steps to low-level processing steps, and the ability to reprocess with new
premises in cases where earlier processing was hampered by inappropriate hypotheses
[67].  Wang and Srihari find that blackboard systems are able to handle both structure
and randomness in the input: evidence is acquired from diverse knowledge sources,
without putting undo emphasis on any single source.  Also, the control structure can
invoke knowledge sources such that the effort expended in gathering evidence is in
accordance with input complexity [73].  Novak and Bulko like the flexible and adaptive
order of processing available in a blackboard system.  In their application, clues can be
opportunistically exploited to relate and interpret the text and diagram that describe a
physics problem [48].

6. Schema-based systems

Schema representations have been used in several diagram recognition systems.  A
schema class defines a prototypical drawing construct.  During recognition a new
schema instance is created to represent each drawing construct that is found in the
image.  Two hierarchies are important in schema representations: the class hierarchy

and the instance hierarchy.

The class hierarchy represents commonalities among related drawing constructs.
For example, Joseph and Pridmore define broken line, chain,  and witness as subclasses
of class line [33].  (A witness line forms part of the dimensioning information in an
engineering drawing.)

 The instance hierarchy represents composition of objects or relationships into
more complex objects or relationships.  A schema instance has a “subpart” relationship
to each of the smaller geometric entities that constitute it.  Schemata provide a
uniformity of representation: they are used to represent objects as well as relationships
between objects.

The Mapsee systems provide one example of schema-based diagram recognition
[29] [47].  These systems are applied to interpretation of sketch maps.  A sketch map is
a hand-drawn map consisting of lines (which represent shorelines, roads, or rivers) and
symbols for bridges and cities.  Mapsee uses schemata and constraint satisfaction to
interpret these maps.  Schemata combine to form a scene constraint graph.  Constraints
are propagated by a network consistency algorithm, to specialize the labels associated
with schemata.  Schema label sets have a specialization hierarchy, stating, for example,
that both islands and mainland are landmasses, and both landmasses and waterbodies are
geosystems.  A constraint provides information such as “if a geosystem has a
component river-system, road-system or mountain-range, then the geosystem-label is
constrained to be a landmass”.
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The Anon system provides another example of schema-based diagram recognition
[33].  The authors assert that CAD structures generated from mechanical engineering
drawings embody composition and specialization hierarchies, which are naturally
represented by schema-based systems.  In the Anon system, engineering drawings are
recognized using three techniques: a strategy grammar, schemata, and an image analysis
library.  At any given time, one schema is designated as the controlling schema.  The
controlling schema invokes the image analysis library, providing predictive information
to guide the application of image analysis routines, and interpreting the results of the
image analysis.  The controlling schema encodes the image-analysis results as a token
stream, which is passed up to the strategy grammar.  The strategy grammar, an LR(1)
grammar parsed by yacc, performs control actions (update the controlling schema, create
a new schema, or designate a different schema to be the controlling one).  Thus, spatial
processing (where to look in the image, what to look for) is directed by the controlling
schema, whereas symbolic processing (how to construct recognition hypotheses) is
managed by the strategy grammar.  The grammatical rules in Anon’s strategy grammar
are not intended to define a legal engineering drawing; rather, they specify strategies by
which the various components of a drawing might be recognized.

The Anon system is aimed at low-level and intermediate-level diagram recognition.
Anon analyzes an image to extract schemata representing drawing constructs.  More
global processes would be needed to integrate pieces of a drawing into a coherent whole.
In contrast, the aforementioned Mapsee system does perform global processing, via
constraint propagation.  Mapsee does not perform segmentation and symbol
recognition; symbols and line-segments are provided as input.

7. Kernel of a recognition system

We have discussed a variety of approaches to organizing the domain knowledge
needed in a diagram recognition system: grammars and production rules, models of
diagram generation, knowledge sources operating on a blackboard, and schema-based
systems.  It is wasteful to build every diagram recognition system from scratch.  A
recognition kernel, which makes common recognition algorithms available for general
use, reduces the work involved in creating recognizers for a great variety of diagram
notations.  A recognition kernel does not solve the entire diagram recognition problem,
but acts as a tool to be used in the construction of a complete system.

A variety of methods can be used to adapt and extend a recognition kernel to suit
particular applications.  Three publications on this topic are summarized here.  So far,
no recognition kernels are in widespread use.  The development of widely-used
recognition kernels would certainly help the field of diagram recognition to mature.

Pasternak describes an adaptable drawing-interpretation kernel that is implemented
as a blackboard system [52].  Declarative geometrical constraints are applied to
iteratively combine graphical objects into higher-level objects.  The kernel supplies
generally-applicable operations such as thresholding, line finding, and vectorization.
Domain-specific knowledge bases must be added to configure the system for recognition
of particular diagram notations

Graph-like diagrams (including schematics, flowcharts, and piping diagrams) are
given general treatment in the recognition system of [44].  The system uses bottom-up
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processing to find lines, symbols, and text, with little reliance on domain-specific
knowledge.

Satoh et al. describe a drawing-interpretation kernel that is adaptable to various
drawing types through the addition of drawing-understanding rules [66].  Support for
automatic rule inference is provided.  Map recognition is used as an example.  This
system is directed at geometry-level understanding of a diagram.  An example is finding
dashed boundaries in a map.

8. Conclusion

Diagram recognition is a difficult problem, due to the need to represent notational
conventions, handle noise and uncertainty, handle dialects, and cope with the
complexity and variety of diagram notations that are in use.  We have described several
approaches to diagram recognition: grammars and production rules, recognition using a
model of diagram generation, blackboard systems, schema-based systems, and
recognition kernels.  It is difficult to compare these approaches, to determine which one
is most appropriate for a given recognition problem.  One measure is expressive power:
what computations can be expressed when using this approach?  For an interesting
discussion of the tension between expressiveness and efficiency in grammatical
specification formalisms, see [45].  This does not help in choosing between blackboard
systems and schema-based systems (for example), since both are Turing equivalent.
The real need is for a convenient, readable, extensible representation of notational
conventions.  The literature provides us with experiences authors have had in using
blackboards, schemata, production rules etc.  It is difficult to compare this anecdotal
evidence, to judge which approach is best.  In the long run, we hope to see the
emergence of a diagram recognition technology, which might be comparable to today’s
compiler technology, allowing rapid construction of recognition software, using well-
understood and well-established methods.
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