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Abstract

Aim: To review current literature on long-chain alcohols and their derivatives as novel pharmacotherapy for the treatment of essential tremor (ET).

Background: Currently available and recommended pharmacotherapies for ET are often limited by suboptimal treatment effects, frequent adverse effects, and

drug interactions. While ethanol is reported to profoundly decrease tremor severity in the majority of patients with ET, preclinical experience suggests that long-

chain alcohols such as 1-octanol might lead to a comparable tremor reduction without ethanol’s typical side effects of sedation and intoxication. Here, we review the

literature on the first clinical trials on 1-octanol and its metabolite octanoic acid (OA) for the treatment of ET.

Methods: The literature on preclinical and clinical trials on long-chain alcohols as well as OA was reviewed and summarized, and an outlook given on next phases

of development.

Discussion: 1-octanol was demonstrated to be safe and effective in a double-blind, placebo-controlled low-dose trial, and open-label data showed excellent

tolerability and dose-dependent efficacy up to 128 mg/kg. Despite 1-octanol’s efficacy, its future viability as an effective therapy is limited by its pharmacological

properties that require large volumes to be orally administered. Pharmacokinetic data indicate that OA is the active metabolite of 1-octanol. Preclinical efficacy data

for OA are positive, and human pilot data demonstrated excellent safety as well as efficacy in secondary outcome measures of tremor amplitudes. OA also has more

favorable pharmacological properties for drug delivery; hence, OA may be worth developing as a pharmaceutical.

Keywords: Essential tremor, alcohol, ethanol, octanol, octanoic-acid, harmaline-model

Citation: Haubenberger D, Nahab FB, Voller B, et al. Treatment of essential tremor with long-chain alcohols: still experimental or ready for prime time? Tremor

Other Hyperkinet Mov 2014; 4. doi: 10.7916/D8RX991R

* To whom correspondence should be addressed. E-mail: dietrich.haubenberger@meduniwien.ac.at

Editor: Elan D. Louis, Columbia University, United States of America

Received: October 10, 2013 Accepted: December 31, 2013 Published: February 5, 2014

Copyright: ’ 2014 Haubenberger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution–Noncommercial–No Derivatives License, which

permits the user to copy, distribute, and transmit the work provided that the original author(s) and source are credited; that no commercial use is made of the work; and that the work is not

altered or transformed.

Funding: Clinical trials on 1-octanol and OA were conducted at the NINDS intramural research program through support by the NINDS research program, the Austrian Science Fund

(D.H.) as well as a Cooperative Research and Development Agreement (CRADA) with Manhattan Pharmaceuticals (B.V.). D.H. received research support through the NINDS

Intramural Research Program and the Austrian Science Fund FWF (Erwin Schroedinger Fellowship, Project number J2783-B09).

Financial Disclosures: F.B.N. receives funding support from the National Institute of Neurological Disorders and Stroke (1R01NS073683-01A1). D.H. serves as member of the Medical

Advisory Board of the International Essential Tremor Foundation and received speaker honoraria and conference support from Ipsen and UCB. F.B.N. received support from the

University of Miami Clinical and Translational Science Institute, the National Center for Advancing Translational Sciences and the National Institute on Minority Health and Health

Disparities (1UL1TR000460); an educational grant from Medronic, Inc; receives royalties from Springer Publishing; and is a reviewer for the Veterans Administration. B.V. was

sponsored by Manhattan Pharmaceuticals Inc. He worked as a contractor and as a Special Volunteer at NIH/NINDS in accordance with a Cooperative Research and Development

Agreement (CRADA) with Manhattan Pharmaceuticals on a trial not included in this review. M.H. serves as Chair of the Medical Advisory Board for and receives funding for travel from

the Neurotoxin Institute; he serves as Chair of the Medical Advisory Board of the Benign Essential Blepharospasm Foundation and Chair of the Medical Advisory Board of the

International Essential Tremor Foundation; he has received honoraria and/or funding for travel for lectures or educational activities not funded by industry; he serves on Editorial Boards

for Clinical Neurophysiology, Acta Neurologica Scandinavica, Journal of Clinical Neurophysiology, Italian Journal of Neurological Sciences, Medical Problems of Performing Artists, Annals of Neurology, Neurology and

Clinical Neurophysiology, The Cerebellum, NeuroTherapeutics, Current Trends in Neurology, Faculty of 1000 Medicine, Brain Stimulation, Journal of Movement Disorders (Korea), and World Neurology; he may

accrue revenue on US Patent #6,780,413 B2 (issued: August 24, 2004): immunotoxin (MAB-Ricin) for the treatment of focal movement disorders; US Patent #7,407,478 (issued: August 5,

2008): coil for magnetic stimulation and methods for using the same; he receives royalties from publishing from Blackwell Publisher, Cambridge University Press, Springer Verlag, Taylor

Freely available online

Tremor and Other Hyperkinetic Movements
http://www.tremorjournal.org

The Center for Digital Research and Scholarship
Columbia University Libraries/Information Services

1

http://10.7916/D8RX991R


& Francis Group, Oxford University Press, John Wiley & Sons, and Elsevier; he has received license fee payments from the NIH (from Brainsway) for licensing the patent for the H-coil.

M.H’s research at the NIH is largely supported by the NIH Intramural Program. Supplemental research funds come from Manhattan Pharmaceutical Company via a CRADA with the

NIH, and the Kinetics Foundation via a Clinical Trials Agreement (CTA) with the NIH.

Conflict of Interest: The authors report, that regarding the trials discussed in the review, there are no conflicts of interest in any of the authors.

Introduction

Essential tremor (ET) is a common movement disorder with a

prevalence in the general population between 0.4% and 3.9%.1 ET is a

slowly progressive disease with 73% of patients describing disabilities

in multiple functional domains including eating, drinking, writing, and

body care.2

Since there is currently no curative therapy available for ET,

medical agents including propranolol and primidone as well as deep

brain stimulation of the ventral intermediate nucleus (VIM) are

symptomatic therapeutic options. However, the clinical effects of these

first-line drugs are often limited by contraindications and intolerable

side effects, particularly in elderly patients,3 and many patients are not

keen on surgery.

Ethanol and essential tremor

One characteristic observation in ET is that up to 74% of affected

subjects report a significant reduction in tremor intensity after the

administration of small amounts of ethanol.4–6 It should be noted that

this observation is based on subjective data only, while objective data

on the ethanol response in ET is scarce. In a study by Knudsen et al.,7

a standardized oral ethanol challenge led to an improvement of up to

50% of hand tremor scores in 25 patients, which lasted up to 3 h. It

was also demonstrated by the same group that after ethanol, ataxia

scores and number of missteps during tandem gait improved equally in

patients with ET, suggesting a beneficial effect of ethanol in ET

patients beyond the actual tremor.8 The evidence for a central effect of

ethanol stems from neurophysiological studies using weighted accel-

erometry demonstrating a significant reduction of the central tremor

component following standardized oral ethanol administration.9

Furthermore, the specificity of the effect was demonstrated to be

mediated by the central nervous system (CNS), as an effect was seen

after systemic intravenous administration, without effect after intra-

arterial perfusion in a vascularly isolated limb of patients with ET.10

The tremor-reducing effect on the central component was demon-

strated to be specific for ethanol, as diazepam showed no effect.

Furthermore, this finding demonstrated that ethanol acted specifically

on a central tremor oscillator at plasma ethanol levels of 0.05 g/dL,

independent of effects mediated through relaxation or sedation seen

with diazepam.9

Several hypotheses exist regarding the mechanism of ethanol’s effect

in ET.

First, ethanol has been suggested to decrease the neuronal firing rate

of the inferior olive (IO) and may therefore lead to a reduction in

hypersynchronous bursting activity within Mollaret’s triangle connect-

ing the red nucleus, the IO, and the cerebellum, with further

propagation along the cerebello-thalamo-cortical loop.11 There are

two possible derangements. First, this mechanism is thought to be

mediated through modulation of low-threshold calcium channels in

the IO that are responsible for rhythmical cellular firing.

There can be hyperfunctioning of the low-threshold calcium

channel in the inferior olivary cells leading to oscillatory neuronal

activity.12 Notably, ethanol in low doses has been reported to increase

T-type currents of low-threshold calcium channels; however, at toxic

levels data show ethanol is blocking these channels.13 While the

relevance of low-threshold calcium channels has been demonstrated in

the harmaline model of ET, the role in humans remains to be

elucidated, as in humans lesions affecting the efferent cerebellar

pathways (such as strokes) might abolish tremor in ET patients, but no

‘‘curative’’ lesions affecting the IO complex have been reported so

far.14

Contrary to the hypothesis of ethanol as a depressor of neuronal IO

firing, a study using different methods of anesthesia by Rogers et al.15

suggested that the depressing effect might in fact be due to the specific

anesthesia used in the original experiment by Harris and Sinclair

(urethane),11 as ethanol under this varying anesthesia condition

actually led to an increase in the IO single-unit firing rate.

Second, the neuronal rhythmic discharges within the IO may be

hypersynchronized by electrical coupling mediated through gap

junctions.16 These gap junctions connect and therefore electrically

couple dendritic spines in synaptic glomeruli within the IO, which are

thought to be central for the IO’s oscillatory activity. Gamma-

aminobutyric acid (GABA)ergic terminals in the synaptic glomeruli

have shown to decrease the extent of electric coupling.17 By blocking

connexin 36, a crucial gap junction protein within the IO, mice still

develop harmaline-induced tremor although with decreased tremor

coherence.18,19 This suggests that the profound tremor-reducing effect

of gap junction blockers such as mefloquine in harmaline mice may act

via different gap junctions, not containing connexin 36.20

Furthermore, ethanol’s agonism on GABA-receptors has been

implicated as a correlate of its tremor-suppressing properties. GABA is

the main inhibitory neurotransmitter, with GABAA receptors being

expressed either synaptically (90%) or extrasynaptically (10%).

Synaptic receptors mediate phasic inhibition, whereas tonic inhibition

is mediated via extrasynaptic receptors,21 which are thought be

physiologically activated by ‘‘overspill’’ of synaptically released

GABA.22 GABAA receptors form pentamers containing two alpha,

two beta, and either one gamma or one delta subunit.23 The majority

of GABAA receptors contain a gamma subunit, are expressed

synaptically, and are benzodiazepine sensitive. Receptors containing

a delta subunit are mainly expressed extrasynaptically and are non-

sensitive to benzodiazepines but in contrast show a very high sensitivity
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to GABA and ethanol, and therefore might play a role in facilitating a

GABAergic effect of ethanol.24 Delta subunits containing receptors

form pentamers with alpha1, 4, and 6 subunits. While alpha1delta

receptors can only be found in the hippocampus, alpha6delta receptors

are exclusively expressed in cerebellar granule cells, and alpha4delta

receptors more widespread in the cerebral cortex, thalamus, and the

cerebellum.25 The major role of the extrasynaptically located

alpha6delta receptor in determining the response to ethanol has been

confirmed in a recombinant study where the R100Q polymorphism of

the gene coding for the alpha6 subunit was shown to enhance

sensitivity to ethanol.26 While alpha1 subunit knockout mice have been

suggested to exhibit a phenotype resembling ET including ethanol

responsivity, a screen for variants in the gene coding for the alpha1

subunit showed no genetic differences between ET subjects and

controls.27,28 Genetic alpha6 subunit variants have been associated

with different levels of response to ethanol in humans.29

Although disputed by others,30 data from a prospective ET brain

bank study showed a reduced cerebellar Purkinje cell number in over

75% of patients compared with control brains.31 With GABA being

the main neurotransmitter of Purkinje cell projections, ET has been

suggested to be a ‘‘Purkinjopathy’’, also characterized by increased

prevalence of axonal swellings (‘‘torpedoes’’) of Purkinje neurons in ET

brains.32,33

Summarizing the evidence on the ethanol effect in ET, although there

are several hypotheses on the potential mechanisms of action, it is

important to point out that insights gained from the harmaline model

are not certain to reflect the human pathophysiologic mechanism in ET.

Specifically, T-type calcium channels and non-connexin 36 gap

junctions in CNS regions other than the IO, as well as the

GABAergic system, represent relevant targets to be further investigated.

Methods

The relevant literature on preclinical and clinical trials of long-chain

alcohols and OA were identified via a Pubmed search. Search terms

were ‘‘octanol’’, ‘‘1-octanol’’, ‘‘octanoic acid’’, and ‘‘caprylic acid’’,

with searches limited to clinical trials. Furthermore, the terms

‘‘ethanol’’ and ‘‘alcohol’’ were searched in conjunction with ‘‘essential

tremor’’. The time frame of papers to be included was limited by the

time point of the writing of this manuscript (October 2013). Because of

limited relevance to this review, trials involving octanoic acid as a 13C-

labeled substance to investigate gastric emptying were excluded from

the search. Secondary literature was followed up, reviewed, and

discussed here if found relevant to the topic of this manuscript. Here

we provide a summary of the review as well as an outlook given on the

next phases of development.

Results and discussion

Long-chain alcohols

Alcohols ranging from methanol (CH4O) to decanol (C10H22O)

were first studied using an in vitro model of guinea-pig IO neurons,

where octanol was described to be a potent antagonist of IO low-

threshold calcium channels.34 In a further step, several octanol

isomers, including 1-octanol, were first studied in vivo using the

harmaline-induced rodent model of ET. All isomers, at varying

effective doses, demonstrated a potent effect in reducing harmaline-

induced tremor.35 In a comparative study on 1-octanol and 1-

heptanol, both long-chain alcohols, reduced harmaline-induced

tremor in mice at a dose of 350 mg/kg after intraperitoneal

administration, with 1-octanol exhibiting a superior efficacy profile

than 1-heptanol due to a longer duration of the effect.20

1-Octanol: preclinical evidence

The eight-chain alcohol 1-octanol is hypothesized to be metabolized

by octanol dehydrogenase, a member of the alcohol dehydrogenase

family of enzymes, to an aldehyde and then a carboxylic acid that is

either oxidized completely to carbon dioxide and water or excreted as

an ether-glucuronide after direct conjugation with glucuronic acid.36

1-Octanol has been demonstrated to block the low-threshold

calcium channel in the IO and thalamus in vitro.34,37 The maximum

tolerated dose preclinically in harmaline mice after intraperitoneal

administration using the straight-wire test was 1,000 mg/kg.38 The

Food and Drug Administration (FDA) food additive safety profile on 1-

octanol lists lethal acute toxicity levels in rodents (LD50) ranging from

1,790 to 15,000 mg/kg.

1-Octanol: clinical trials

1-Octanol was first chosen for clinical trials due to its superior

efficacy and safety profile in animal model testing, and the fact that

1 mg/kg dosing was considered to be safe in humans, as defined by the

Council of Europe. 1-Octanol is approved as a food flavoring

substance by the FDA.

The first clinical trial in ET was conducted using a low dose of

1 mg/kg in 12 patients.39 A single oral dose of 1-octanol showed a

moderate effect in reducing tremor up to 90 min after administration,

measured by accelerometry, using a double-blind, placebo-controlled

design. 1-Octanol was well tolerated and safe at this dosage. Three

patients (two in the octanol group, one in the placebo group)

complained of headaches occurring after the completion of the study.

In all three patients, the headache lasted for less than 2 h and

responded to acetaminophen. No changes in vital signs or liver

function tests were detected. No signs of intoxication were observed.

The second protocol using 1-octanol was an open-label dose

escalation study to find the maximal tolerated oral dose of 1-octanol.40

Octanol doses were escalated up to 64 mg/kg without evidence of

intoxication, though subjects had a sensation of sedation at maximal

doses. Efficacy was found at all dosages, and a trend toward a dose

response was noted. Safety profiles showed no significant adverse

events, with some mild side effects. Two subjects had a self-limited

headache following drug administration, four subjects noted a taste

associated with the drug approximately 1 h after ingestion, four

subjects described a transient mild asthenia without signs of

intoxication, and two subjects had a prolonged feeling of lethargy at

64 mg/kg lasting for several hours. Single reports of nausea, dry

mouth, calcium oxalate crystals in the urine, and urinary tract
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infections were present, and in the case of the last two were likely

unrelated. No laboratory abnormalities or electrocardiogram (EKG)

changes were noted.40

The most recent 1-octanol protocol (clinicaltrials.gov ID:

NCT00102596) investigated the pharmacokinetic properties of two

different oral formulations of 1-octanol in 15 patients with ET.41 The

first formulation consisted of 1-octanol adsorbed to microcrystalline

cellulose and fine particle silica and encapsulated; the second

formulation consisted of a soft-gel capsule containing 1-octanol

embedded in soybean oil.41

This protocol was designed as a three-phase unblinded inpatient

study of adults with ET receiving weight-adjusted oral dosages of two

different formulations of 1-octanol in a crossover fashion. Phase 1 of

the study was designed to develop octanol and OA detection assays

using high-performance liquid chromatography. Five subjects in phase

1 received daily escalating dosages (1–64 mg/kg) of a single 1-octanol

formulation. In phase 2, 10 subjects received one of the two

formulations at 64 mg/kg during two inpatient days separated by

one washout-day. In phase 3, two patients received a high-dose

challenge of both formulations of 1-octanol (128 mg/kg).

Plasma concentrations of both 1-octanol and OA were detectable as

early as 5-min post dose. While OA concentrations showed a dose

response, 1-octanol remained at very low basal levels until the 64 mg/

kg dose. The OA plasma half-life was 73.6 min. In phase 3 of the

study, after the administration of a high dose of 1-octanol (128 mg/kg),

observed OA plasma levels followed a linear relation compared with

lower doses of 1-octanol. These findings suggested that 1-octanol is

rapidly converted to OA, which might then act as the active

metabolite. Efficacy was measured using objective digital tremor spiral

analysis.42 Spiral tremor measurements showed a 32% reduction in

tremor amplitudes at 90 min with significant tremor improvement up

to 180 min after administration. The safety profile of 1-octanol up to

128 mg/kg resembled prior studies with non-serious side effects being

mild and self-limiting. The most frequent adverse event was taste

change, which was reported by eight subjects (38%), followed by

headache, heartburn, and bloating (each five subjects, 24%). Nausea

and dry mouth were reported by four subjects (19%), and three

subjects reported constipation (14%). Two serious adverse events were

not related to the study drug. Again, no signs of intoxication were

noted at either dose level.

Octanoic acid

OA (synonym: caprylic acid) is a fatty acid with an eight-carbon

chain, which has been shown to inhibit gap junction permeability in

cultured rat astrocytes.43 Whether this observation is relevant to

explain a potential effect in ET remains uncertain, as it is not known

whether OA also blocks neuronal gap junctions. OA occurs naturally

in palm and coconut oils, as well as in human and bovine milk, and is

part of commercially available nutritional supplements (CaprinolH,

CaprylH). After absorption in the intestinal mucosa and entering the

portal venous system, the hepatic metabolism of OA involves

catabolism via b-oxidation to acetyl coenzyme A (CoA) with

subsequent entry into the Krebs cycle. Extrahepatic metabolism of

OA involves oxidation into CO2 within extrahepatic tissues.44,45

The FDA has registered OA as a food additive and adjuvant of food

products, and assigned it ‘‘GRAS’’ (Generally Recognized as Safe)

status. Currently, OA is mainly used as a food and cosmetic additive as

well as an assessment method of gastric emptying (13C OA breath test).

The Council of Europe lists OA as a flavoring substance with an upper

limit of 50 mg/kg in food.46 Orally administered OA shows a

bioavailability of nearly 100%.47 In the rat, OA permeated the blood–

brain barrier, with 94% of peripherally injected OA being measurable

in the brain.48 To our knowledge, there are no data in the literature on

the elimination profile of OA from the CNS. In a study of acute oral

toxicity in rats, the LD50 was 10,080 mg/kg.49

Octanoic acid: experience from human exposure

There is considerable data available on human exposure of OA. In

humans, according to a single-dose administration paradigm of

medium-chain fatty acids, a dietary consumption of up to 710 mg/

kg was considered safe.50 In a clinical trial including a control group of

healthy volunteers, a total dose of 3,600 mg OA was administered via

intraduodenal infusion, and no clinical side effects were reported.51

OA was furthermore studied as a component of a ketogenic diet as a

treatment strategy in children with intractable epilepsy, with a

duration of chronic administration for up to 2 years.52,53 An OA-

containing diet was administered on a daily basis as an emulsion with

the goal that 60% of the daily energy requirement was supplied by the

diet. Fifty children were included in the study, with 44 children

tolerating the diet. Reported side effects were diarrhea and abdominal

pain, which were alleviated by temporary dose reduction or intake

together with food. ‘‘Optimal’’ plasma levels of OA intended by the

authors was a target of 90 mg/mL peak plasma concentration (Cmax),

with the actual measured Cmax values ranging from 98.2 to 258.9 mg/

mL. Compared with the available pharmacokinetic data on OA in

essential tremor, these plasma levels were 75–200 times higher than

the Cmax we measured in the ET trial using 1-octanol. The dose vs.

plasma concentration relation was suggested to follow a linear

relationship.52

Further human data on OA stem from a study administering OA as

a formula to six premature infants. OA was administered orally in

doses ranging from 1.3 to 1.7 g/kg/d (mean 1.5¡0.2 g/kg/d) via a

medium-chain triglyceride diet over a period of at least 10 days. The

goal of this study was to investigate the metabolism of medium-chain

triglycerides in infants. The authors demonstrated the conversion of

OA into long-chain saturated fatty acids. The study did not mention

any adverse events.54 In a study of 23 cachectic patients, OA given

orally at a dose of 2.8 g daily over 2 weeks increased appetite scores,

body weight, and levels of total serum protein and albumin, with no

negative impacts on fasting glucose, total cholesterol, or triglycerides.

The aim of the study was to investigate the effect of OA on the

orexigenic hormone ghrelin, and demonstrated that OA led to an

increase in acyl ghrelin.55 High levels of OA were measured in patients

with a deficiency of medium-chain acyl-CoA dehydrogenase (OMIM
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#607008), an autosomal recessive inherited disorder of infancy and

early childhood leading to metabolic acidosis, hypoglycemia, lethargy,

coma, and if left unrecognized led to death in 25% of patients during

their first crisis.56,57 Regarding potential drug interactions, it has been

shown that high levels of OA can displace warfarin and non-steroidal

anti-inflammatory agents from albumin binding in human serum.58

Octanoic acid in ET: preclinical evidence

Because of OA’s presumed role as 1-octanol’s primary metabolite

and its biochemical properties, OA itself was hypothesized to act as a

potential therapeutic agent in ET. In the harmaline-induced mouse-

model of ET, OA showed a dose-dependent effect in reducing tremor

intensities, starting at 300 mg/kg administered intraperitoneally with a

maximum tolerated dose of 1,500 mg/kg. At therapeutic doses no

toxicity was observed, especially no signs of sedation or intoxication.38

Octanoic acid: first experience in ET

The aim of the first study of OA in ET was to examine the safety and

efficacy of a single oral OA dose in a double-blind, randomized,

placebo-controlled, crossover design (NCT00848172).59 Nineteen

patients with ethanol-responsive ET were included in the protocol. All

subjects received a dose that was defined as being safe according to

available toxicity data (4 mg/kg) and were monitored closely during the

total inpatient study phase of 3 days (day 0, baseline; days 1–2, active

study days). OA and placebo were administered on consecutive study

days in a randomized sequence. The primary outcome measure for this

study was the effect on tremor power of the dominant hand, 80 min

after administration of the study substance compared with placebo.

Tremor power was measured using accelerometry with loading to test

the central tremor component. Secondary outcome measures included

recordings of tremor power as measured by accelerometry at multiple

other time points up to 300 min after administration. The change in

tremor severity documented by digital spiral analysis, safety assessment

(laboratory testing, documentation of vital signs, adverse events

questionnaire, and intoxication scale), and pharmacokinetic sampling

acted as a further secondary outcome parameter.

Efficacy endpoints measured with tremor accelerometry did not

meet the primary endpoint (reduced tremor power of the dominant

hand 80 min after administration, compared with placebo). However,

secondary efficacy measures showed a significant benefit over placebo

at later time points, starting at 150 min. At the last observational time

point, 300 min, there was still a significant reduction in tremor power

compared with baseline.

Pharmacokinetik analysis of OA showed a tmax at 72.8 min, a

relatively large volume of distribution (389 L), and an elimination half-

life of 83.5 min. The elimination did not entirely follow first-order

kinetics, suggesting the presence of a second compartment. The mean

Cmax after administration of 4 mg/kg was 1,288.4 ng/mL, which is

close to the Cmax of OA that was measured after the administration of

4 mg/kg of 1-octanol.

Safety analysis showed that the dose was safe and well tolerated.

There were no serious adverse events related to OA, with non-serious

adverse effects being mild, self-limiting, and equally present after OA

and placebo. Two serious adverse events were classified as not related

to OA (food poisoning with isolated troponin I elevation after placebo,

and bleeding from the insertion site of a peripherally inserted central

venous catheter after premature removal of pressure dressing). There

were no significant abnormalities noted on vital signs, EKG, or

laboratory measures throughout the study.

Summary and outlook

With pharmacotherapy in ET often being limited by insufficient

efficacy, intolerable side effects, and potential drug interactions, novel

treatments for ET are strongly needed. While the ethanol effect in ET is

still not fully understood and currently under investigation, it is clear that

the majority of patients experience a clinically significant effect of tremor

reduction even after low doses of ethanol consumption, often exceeding the

effects of pharmacological treatments such as propranolol and primidone.

With the detailed mechanism of effect of ethanol in ET still to be

determined, promising preclinical data led to the further development

of long-chain alcohols as potential treatment agents in ET. It is

however important to point out that ethanol shows different (lower)

affinity to target structures than longer-chain alcohols such as 1-

octanol. It is therefore not necessarily the case that ethanol and 1-

octanol act via the same mechanism. Also, 1-octanol might act not via

one, but multiple mechanisms (i.e., blockage of gap junction, T-type

calcium channels, GABA-receptor interaction).

The fact that the 1-octanol and OA studies so far required

participants to exhibit a beneficial response to ethanol therefore stems

from a debatable assumption of similar pathways facilitating the effect. It

is however also important to point out that the current concept on the

proportion of ET patients responding beneficially to ethanol, or not, is

likely outdated, as these data stem from purely subjective reports.

Objective data from larger-scale populations are still pending, to

investigate whether differences in ethanol response can be objectively

delineated and whether therefore a concept of two separate ET

endophenotypes based on ethanol response can be sustained. However,

in the light of the current diagnostic uncertainty and significant

disagreement in the field on the ‘‘core’’ ET phenotype, a limitation to

objective ethanol responders might be justified for early stage clinical

trials to achieve a cohort exhibiting a more homogeneous phenotype.

With three clinical trials available on efficacy, safety, and

pharmacokinetic properties of 1-octanol, the main results can be

summarized as 1-octanol being safe and well tolerated in doses up to

128 mg/kg. The most common adverse event was mild and transient

dysgeusia, with patients reporting a distinct taste of orange peel, which

was to be expected as 1-octanol as natural flavoring substance is

present in orange peel. In terms of efficacy, all studies demonstrated a

significant treatment effect of 1-octanol, though it should be noted that

only the first, low-dose study was a double-blind, placebo-controlled

design. One major finding of the 1-octanol trials was the detection of

OA as an active metabolite with a significant plasma response after the

administration of 1-octanol. The feasibility of 1-octanol was further-

more questioned, not only because the distinct taste would make
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sufficient blinding challenging, but also because of the relatively large

volumes to be administered orally at doses of 64 and 128 mg/kg: even

with the formulation using the highest 1-octanol concentration (gel

capsule containing 800 mg 1-octanol), a patient weighing 78 kg who

took part in the highest dose group of 128 mg/kg had to swallow 12

capsules as a one-time dose.

OA itself showed an excellent safety and efficacy profile in

preclinical testing and during human exposure as a nutritional agent,

even at high doses and in vulnerable subjects such as preterm infants.

While OA was well tolerated in a pilot study using a low dose (4 mg/

kg), the primary efficacy outcome was not met, with OA not being

different from placebo in reducing tremor 80 min after administration.

However, the study design included several secondary efficacy

outcomes, which showed a significant effect on tremor at later time

points. The observation of a peak in plasma levels at 73 min being

dissociated from a clinical effect manifesting at 150 min and later, in

conjunction with an elimination profile compatible with a second

compartment, suggests that the second compartment is likely the CNS,

where the clinical effect is manifesting after distribution of the

compound across the blood–brain barrier, potentially explaining the

lag of a clinical efficacy peak following the plasma peak. While the

effect was evident using highly sensitive tremor accelerometry, other

methods better reflecting daily-life activities such as digital spiral

analysis were not different between OA and placebo. As this was a low-

dose study, it was assumed that the effect at 4 mg/kg was still small

and not yet translating into a clinically relevant benefit. Therefore, a

dose escalation study, with the goal of defining a maximum tolerated

dose with doses up to 128 mg/kg, was initiated (NCT01468948), with

the results at the time of this review still pending. Further studies are

needed on the effect of OA when administered continuously (e.g.,

twice daily, three times daily, etc.), on the further characterization of

OA’s pharmacokinetic profile at higher doses, and the optimization of

the drug’s formulation.

To conclude, despite its efficacy and safety, 1-octanol itself does not

seem a feasible candidate for further development due to the relatively

large volumes to be administered when formulated in capsules for oral

administration, as well the finding of OA as the active metabolite.

Although OA’s mechanism of action in ET is still unknown, the

therapeutic potential of OA in ET can be considered as significant, due

to promising preclinical and early-stage clinical trial data. However, a

clinically relevant effect translating into a reduced burden of tremor in

patients’ daily lives still remains to be demonstrated, and additional

phase 2 data on safety and efficacy in a long-term administration

setting are necessary, in order to keep OA moving forward towards

prime time.
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