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Abstract: The treatment of skin wounds is a key research domain owing to the important functional
and aesthetic role of this tissue. When the skin is impaired, bacteria can soon infiltrate into underlying
tissues which can lead to life-threatening infections. Consequently, effective treatments are necessary
to deal with such pathological conditions. Recently, wound dressings loaded with antimicrobial
agents have emerged as viable options to reduce wound bacterial colonization and infection, in
order to improve the healing process. In this paper, we present an overview of the most prominent
antibiotic-embedded wound dressings, as well as the limitations of their use. A promising, but still
an underrated group of potential antibacterial agents that can be integrated into wound dressings
are natural products, especially essential oils. Some of the most commonly used essential oils
against multidrug-resistant microorganisms, such as tea tree, St. John’s Wort, lavender and oregano,
together with their incorporation into wound dressings are presented. In addition, another natural
product that exhibits encouraging antibacterial activity is honey. We highlight recent results of
several studies carried out by researchers from different regions of the world on wound dressings
impregnated with honey, with a special emphasis on Manuka honey. Finally, we highlight recent
advances in using nanoparticles as platforms to increase the effect of pharmaceutical formulations
aimed at wound healing. Silver, gold, and zinc nanoparticles alone or functionalized with diverse
antimicrobial compounds have been integrated into wound dressings and demonstrated therapeutic
effects on wounds.

Keywords: nanoparticles; wound healing; wound infection; antibiotics; antibacterial activity essential
oils; Manuka honey

1. Introduction

A wound can represent a simple or a severe disorder to an organ (such as the skin) or a tissue
and can spread to other tissues and anatomical structures (e.g., subcutaneous tissue, muscles, tendons,
nerves, vessels, and even to the bone) [1]. Among all human body (HB) organs, the skin is without
doubt the most exposed to impairment and injury, scratches, and burns. By damaging the epithelium
and connective structures, the HB’s capability to provide protection from the outer environment is
weakened. It is therefore imperative to refabricate a functional epidermis or even other layers of
skin. This happens by a cascade of intersecting phases, known as wound healing or wound repair.
The repair is reached by the HB’s capacity to substitute lost skin structure with a viable one, and by
the formation of a scar.

An improper repair process can cause severe damage, like the loss of skin, initiation of an infection,
with consequent harms to the subjacent tissues and even systemic ones [2]. The most common and
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inevitable impediment to wound healing is the installation of an infection, mostly in the case of chronic
wounds. Although bacteria are a common part of the intact skin microbiota and wounds, a critical
threshold of existing bacteria and the formation of a biofilm may impede wound healing [3]. Due to
these facts, regardless of recent progress in the management of wounds, bacterial and fungal infections
are still considered as one of the most collective and painful states which lead to significant mortality
and morbidity [4]. S. aureus, methicillin-resistant S. aureus (MRSA) and Pseudomonas aeruginosa are the
prevailing microbial strains that occur in patients with infected wounds [5].

Due to the distinctive biological, non-sterile wound environment and the extremely intricate
system of wound healing, effective and targeted cures are still needed. Hence, research is currently
motivated to find more efficient therapeutics for both chronic and acute wounds infections [6]. In the
case of chronic wound occurrence, where individuals frequently endure extensive treatments and
regular dressing changes, a fully dissolvable, non-replaceable or non-adherent wound dressing, that
distributes treatments to the wound site in a precise manner can improve therapeutic outcomes and
the wound response to drugs [7].

Wound dressings are conventionally only applied to shield the wound from external
contamination, but they could also be functionalized with different therapeutic complexes to be
delivered to wound sites [8]. In contrast to traditional dressings (like bandages made from cotton and
wool) that have no active function in the healing process, advanced wound dressings can be designed
to take part in it, by means of incorporated active ingredients [9]. The integrated complexes must
show a dynamic role in the wound healing process either as helping the removal of necrotic tissues,
preventing/treating installed infections, or both. In this respect, dressings can be functionalized
with many classes of antibiotics (such as quinolones [10], tetracyclines [11], aminoglycosides [12],
cephalosporins [13], etc.) or other substances that exhibit antibacterial properties (e.g., essential
oils) [14,15]. Antibiotic-embedded wound dressings are valuable in the management of local infections
where high concentrations of antibiotics are needed locally [16].

However, in some cases, high amounts of antibiotics can lead to systemic toxicity [17]. The
development of new antibiotics has decreased over the last years, with a small number of companies
remaining active in these domains. In addition, antibiotic-resistant microorganisms have considerably
increased, due, among others, to the overuse and misuse of antibiotics [18]. This antibiotic crisis is still
in progress and affects antibiotic treatments used for both systemic and topical infections. For example,
the treatment of chronic wounds (in case of diabetic foot, venous ulcers, and pressure ulcers) habitually
involves long-term therapy. Given current problems posed by these infections, the antimicrobial
potential of unconventional, non-antibiotic treatments has a renewed interest. In particular, the role of
natural agents, especially essential oils [19,20] and honey, in wound-healing has attracted the scientific
community as well as some companies for producing wound dressings [21].

Moreover, nanotechnology can be a genuine support in circumventing high-systemic doses.
Nanotechnology represents a developing field that manipulates materials in the nanometer size range
or molecular/atomic scale, and those materials can have many applications in regenerative medicine
and preventing various diseases [22]. When reducing a material’s size to nanoscale, its surface- to-
area/-volume ratios will intensely increase, resulting into advantageous physio-chemical reactivity
for countless medical applications. Some examples of medical uses include the developing of novel
drugs and more operative drug delivery platforms, in vivo imaging, nanobiosensors, wound healing,
etc. [23]. In nanomedicine, metal nanoparticles (NPs) such as silver (Ag) [24], gold (Au) [25] and
zinc (Zn) [26] show impressive properties like low in vivo toxicity, and bacteriostatic/bactericidal
activity [27]. These convenient properties recommend their integration into wound dressings.

This paper aims at reviewing noteworthy in vitro and in vivo results in the area of wound
dressings embedded with active ingredients like antibiotics, essential oils (EO) and honey that prevent
and/or treat infected wounds. In the same time, we have collected and included recent data that
underlines the matchless potential of NPs-based wound dressings that optimize the therapeutic
outcomes of wound dressings.
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2. Wound Healing Process and Skin Wound Microbiology

The skin is the largest organ of the HB and represents a defense shield against mechanical,
chemical and biological agents, and ultraviolet radiation. Also, it presents excessive water loss,
provides hydration and temperature regulation [28]. There are three multi-histological layers of the
skin, which are the epidermis, the dermis and the subcutaneous tissue, as well as skin adjuncts (like
hairs and glands), which grow from the profound dermis to superficial epidermal layers [29].

The wound healing, in any tissue, is a normal biological process and it involves four complex
steps: homeostasis/coagulation; inflammation, migration and proliferation; re-epithelialization and
restoration [30] (Figure 1).
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Figure 1. The four stages of wound repair.

Each phase of the wound healing process is influenced by a series of essential mediators, like
platelets and cytokines, inflammatory cells, cellular and extracellular matrix, proteinases, growth
factors and inhibitors [31]. Usually, the hemostatic and inflammatory stages take place immediately
after damage, but the inflammatory stage may last for up to 6 days [2]. The proliferation stage is
considered as the beginning of angiogenesis and the development of the extracellular matrix [32].
A prolonged time of the inflammatory and/or proliferative phase will result in a hindered healing,
encouraging excessive scar tissue establishment [33]. The remodeling stage typically initiates 3 weeks
after damage and can take up to 2 years to fully settle [34]. Many details of the complex process
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of wound healing can be found in a recent report by Martin and Nunan [35]. A comprehensive
consideration of this sequence of stages, cells involved in each stage, time table, and molecular
signaling, can consent for the maximum optimization of the healing treatment.

Wounds can be classified as acute and chronic. Acute wounds represent the injured skin (e.g.,
resulted from burns and chemical injuries) that heals through the regular phases of wound repair;
in contrast, chronic wounds need a longer healing time. This longer healing time can be usually
attributed to many factors, including amplified levels of inflammatory mediators, wound infection,
hypoxia and poor nutrition [36]. In the same time it can be dependent on the patient’s age [37] or
underlying comorbidities (such as diabetes, wound dryness) [38].

The skin microbiota diversity and the cutaneous microenvironment (dry, moist, and sebaceous)
can influence the wound repair process and the occurrence of skin infections [39]. There exist four
prevailing bacterial phyla on the skin: Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes
that arrange into biofilms and actively take part in the inhibition of skin infections [40].

As soon as the skin is impaired, typical microorganisms of the normal skin flora and exogenous
bacteria and fungi can soon gain access to underlying tissues, which offers a humid, warm and nutrient
rich environment [41] for their development. However, when the healing is delayed, the normal
microbiota of the wound changes and more aggressive microbial types are hosted [42]. Therefore, an
open wound can be a favorable place for microbial proliferation and colonization. In the initial phases
of chronic wound construction, Gram-positive entities, mostly S. aureus, appear the most. In advanced
phases, Gram-negative species (e.g., Escherichia coli and Pseudomonas sp.) are mostly present and are
likely to enter the deeper skin layers, significantly affecting tissues. Additionally, cocci types are
present in ~50% of chronic wounds [5]. An infection at a wound site starts with contamination, and
continues with (acute) colonization and wound infection (as represented in Figure 2).
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Figure 2. Illustration of the continuum from contamination to wound infection. Contamination is
represented by the existence of non-replicating bacteria and is a common circumstance in chronic
wounds; wound contamination does not promote impaired healing. Colonization is the occurrence of
replicating microorganisms without triggering host responses. Acute colonization is characterized by
the manifestation of replicating bacteria resulting in moderate local reaction; this increase of bioburden
can delay wound healing. Infection occurs when microorganisms are multiplying and have entered the
tissue, producing a systemic host response.

Neither contamination nor colonization of a wound initiate an immune response. Besides the
multiplication of microbial cells, acute colonization is typically linked to amplified local pain and the
start of an inflammatory reaction [43]. By the invasion of healthy tissues by microorganisms, a cascade
of local and systemic host reactions is created, for instance purulent expulsion, spreading erythema, or
symptomatic cellulitis [3].

As mentioned, the unlimited development of microorganisms can delay wound closing due to an
aggravated and extended inflammatory stage. The problematic pathogens are summarized in Table 1.
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Table 1. Species of microorganisms instituted in acute and chronic wounds.

Species Shape Metabolism Incidence Ref.

S. aureus

Cocci
Facultatively anaerobic

Chronic wounds [44]
S. epidermidis Acute wounds [45]

Streptococcus pyogenes Aerobic Chronic wounds [46]

P. aeruginosa

Bacilli

Aerobic

Chronic wounds

[47]
Stenotrophomonas maltophilia [48,49]

E. coli
Facultatively anaerobic

[50]
Proteus sp. [51,52]

Klebsiella sp. [5]
Propionibacterium acnes Aerotolerant anaerobic Acute wounds [53]

Acinetobacter baumannii Coccobacilli Aerobic Chronic wounds [48,54]

Infection in chronic wounds is frequently polymicrobial, boosting synergistic effects (both aerobic
and anaerobic microorganisms sustain the persistence and multiplication of each other). This collective
effect can be usually supported by oxygen consumption; aerobic bacteria can encourage tissue
hypoxia, building advantageous conditions for anaerobic multiplication. Once anaerobic species
are established, they can obstruct phagocytosis of other microorganisms by producing short chain fatty
acids. Furthermore, the nutrient flux from one bacteria may sustain the evolution and proliferation
of another [3]. In many types of chronic wounds, S. aureus and P. aeruginosa are usually encountered
growing simultaneously in co-cultures [42]. Numerous pathogens can stick together, forming biofilms,
which are microbial masses surrounded by a polymeric environment, consequently evading the killing
activity of antibiotics and host effectors. Biofilms can be considered as a physical obstruction to wound
healing where the usual process of the inflammatory phase may be extended. It has been reported that
bacterial by-products in the form of fatty acids can impede chemotaxis of neutrophils and phagocytosis
of E. coli and S. aureus bacterial cells [55,56]. MRSA infections make the body susceptible to other forms
of bacterial and fungal infections and, in time, lead to the creation of multi-species wound infections
which are problematic to eliminate [57]. For example, MRSA represents 40% of wound isolates and
infects 14–17% of patients experiencing burn wounds [58]. Moreover, it was found that in many cases,
Candida sp. co-infects burn wounds [59].

In an immunocompromised individual, the bacteria can enter the deeper tissues. With the
purpose of accelerating wound healing, topical antimicrobials can promote the treatment of severely
infected wounds. Both in vitro tests and data collected from patients indicate that antimicrobial wound
dressings can be helpful in wounds that may be affected by biofilms [60,61].

Although antibiotics have significantly improved the health of human beings by treating
infections, many of the above mentioned infectious strains still cause a substantial problem worldwide
(both in hospital and community settings), by means of antimicrobial resistance [4]. As antimicrobial
resistance is on the rise, new antimicrobials in the form of natural products, modified antibiotics,
nanoparticles, etc., can add a positive reaction to the trial of antimicrobial-resistant pathogens.

3. Ideal Properties of Wound Dressings

To address the health issue associated to wound infections, different forms of wound dressings
have been developed in order to protect the wound from contamination and also to accelerate wound
healing. Lately, traditional wound dressings (such as bandages of cotton and wool) which passively
offer wound safety, have been substituted by innovative dressings that are proficient in providing a
favorable environment and distributing active ingredients to the wound to facilitate wound healing.
In this respect, a plethora of materials and combinations, both synthetic or natural, have been utilized,
with numerous formulations (e.g., sponges [10], hydrogels [62], films [63–65], hydrocolloids [66],
hydrofiber mats [67,68], etc.) and properties that make them appropriate for the management of a
specific wound. Based on their nature of action, wound dressings are classified into three main groups:
inert/passive, bioactive, and interactive (Table 2).
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When in contact with the wound, the dressings must provide a moist environment while absorbing
wound fluids [69–71], and maintain appropriate tissue temperature to improve the blood flow to the
wound [72]. The dressings must be biocompatible [73], semi-permeable to water and oxygen [74],
promoting tissue renewal processes, hypoallergenic while not provoking immune responses [72]
(Figure 3). Furthermore, the dressing must not produce traumas when removed and must also be cost
effective. One may conclude that due to diverse features of each wound, including healing stages,
there is no dressing that can be appropriate in all circumstances. Nevertheless, many research teams
fabricated and improved different wound dressing materials that fit the most of needs for particular
wound phases [75].
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Table 2. Wound dressing types.

Type of
Dressing

Formulation Advantages (A)/Disadvantages (D)
Some Commercially
Available Products

Ref.

Inert/passive Gauzes

(A): Are manufactured in forms of bandages, sponges,
plasters and stockings. Display a massive porosity, make
available thermal isolation, and sustain a humid
background at the wound site. Sponges can be applied
directly to the surface of suppurating wounds
(D): Can stick to wounds, disrupt the wound bed when
removed, are suitable mostly for minor wounds; Sponges
suffer from lack of mechanical resistance and they are not
fitted for third-degree burns management or wounds with
desiccated eschar

Multisorb, Urgotul
SSD/S.Ag, Curity,

Vaseline Gauze,
Xeroform

[76,77]

Bioactive

Hydrocolloids

(A): Semi-permeable in the form of solid wafers, can enclose
hydroactive particles that swell with exudates or form a gel,
can be detached from wounds without difficulty by saline or
sterilized water, and are usually considered as painless
dressings (highly recommended for pediatrics wound care
management).
(D): Can be applied in wounds with light to heavy exudate
(such as eschars, minor burn wounds and traumatic
wounds, sloughing, or granulating wounds), can be
cytotoxic, can possess a disagreeable odor, sustain an acid
pH at the application site and present a low
mechanically strength

DouDERM, Granuflex,
Comfeel, Tegasorb

[78,79]

Alginates

(A): Highly absorbent, hemostatic, applicable for exudating
wounds, helpful in debridement of sloughing wounds.
(D): Limited use on low exudating wounds, causing dryness
and scabbing, should be changed daily

Kaltostat, Algisite,
Kaltostat, Sorbsan,
Tegagen, SeaSorb,

PolyMem

[80,81]

Collagens

(A): They are in the form of pads, gels or particles and
encourage the formation and setting of new- formed
collagen in wounds, they absorb exudates, offer a humid
environment to wounds; They are easy to apply,
non-immunogenic, non-pyrogenic,
(D): Not recommended to application to wounds with
necrosis and third-degree burns; require a
secondary dressing

Puracol Plus, Triple
Helix Collagen, Cutimed
Epiona Sterile, BIOSTEP

[67,82]

Hydrofibers

(A): Soft nonwoven pad or ribbon dressings that absorb
exudates and provide a moist environment in a deep wound
together with a reduced risk of skin maceration
(D): A certain degree of absorption of fluid is required for
pH control, however, the absorption of an excessive amount
can cause an undesirable swelling of the wound dressing,
leading to distension and possible loss of adhesion;

Aquacel [67]
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Table 2. Cont.

Type of
Dressing

Formulation Advantages (A)/Disadvantages (D)
Some Commercially
Available Products

Ref.

Interactive

Hydrogels

(A): Rehydrates dry wounds, easy removal/changes, high
capacity to accumulate/absorb large volumes of water
inside their 3D polymeric network, moist-absorbent wound
dressings, permeable to metabolites, non-irritant, and
non-reactive with biological tissues
(D): May cause over-hydration, weak mechanical properties,
consequently necessitating a secondary dressing

Carrasyn, Curagel,
Nu-Gel, Purilon, Restore,

SAF-gel, XCell
[62,83]

Semi-permeable
films

(A): Semi-permeable, transparent for allowing wound check,
highly elastic, and can follow any contour and do not have
need of extra patter; waterproof and permeable to oxygen
(D): Mostly suitable for superficial wounds with little
exudates and for wound epithelialization, used as an
additional layer for hydrogels and foams

Opsite, Tegaderm,
Biooclusive, Polyskin

[72]

Semi-permeable
foams

(A): Soft, open cell, hydrophobic, usually made from
polyurethane sheets; large amounts of exudates.
(D): Can cause dryness and scabbing when applied to low
exudating wounds and dry scars

Allevyn [84]

Recent progresses have been dedicated to adding antimicrobial/antibacterial agents into the
traditional wound dressing itself. Wound dressings that contain antibacterial agents are not proposed
for the removal of a spreading infection (which generally involves a systemic antibiotic treatment),
or for treating uninfected wound beds. Still, they are mostly suitable in a locally infected wound [85].

4. Antibacterial Agents in Wound Dressings

4.1. Antibiotics

Many studies revealed that various bacteriostatic or bactericidal antibiotics can assist wound
closing, still their positive influence on wound healing is regularly unnoticed. Even if countless
antibiotics are known to be effective against infection-producing microorganisms, merely quinolones,
tetracyclines, aminoglycosides and cephalosporins have been applied to produce antimicrobial wound
dressings. Table 3 summarizes the antibiotics-containing wound dressings and their spectrum of action.

Table 3. Antibiotics contained within wound dressings.

Class Name Wound Dressing Material Tested Strains Ref.

Quinolones

Amoxicillin Flexible sponges from bacterial cellulose
E. coli,

C. albicans
S. aureus

[10]

Ciprofloxacin

Calcium alginate films
E. coli

S. aureus
P. aeruginosa

[86]

Films and nanofiber mats of Povidone
E. coli

Bacillus subtilis
[87]

Electrospun fibers based on thermoresponsive polymer
poly(N-isopropylacrylamide), poly(L–lactic

acid–co-ε-caprolactone)

E. coli
S. aureus

[88]

Hydrogels from 2-hydroxyethyl methacrylate/citraconic
anhydride–modified collagen

S. aureus [89]

Tetracyclines

Tetracycline
Cotton fabric coated with chitosan-Poly(vinyl

pyrrolidone)–PEG
E. coli

S. aureus
[11]

Doxycycline Poly(acrylic acid) nanofiber mats
S. aureus Streptococcus

agalactiae
[90]

Aminoglycosides Gentamicin

Thin films made from collagen, chitosan and
hyaluronic acid

E. coli
S. aureus

P. aeruginosa
[91]

Sodium carboxymethyl cellulose loaded with antibiofilm
agents (xylitol and ethylenediaminetetraacetic acid)

S. aureus
Bacillus subtilis

P. aeruginosa
E. coli

[12]
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Table 3. Cont.

Class Name Wound Dressing Material Tested Strains Ref.

Kanamycin
Nanofibers prepared with a combination of

polyethylene oxide and hyaluronic acid
Listeria monocytogenes

P. aeruginosa
[92]

Cephalosporins
Cefuroxime and

Cefepime

Biocompatible nanostructured composite based on
naturally derived biopolymers (chitin and

sodium alginate)

E. coli
S. aureus

[13]

These classes of antibiotics can obstruct some functions and/or the metabolic path of the bacteria
through one of the following four pathways: inhibition of bacterial cell wall synthesis, blockage of key
metabolic pathways, interference on protein synthesis, and inhibition of nucleic acids synthesis [93,94].
Even though many antibiotics are useful in the treatment of infected wounds, their repeated and/or
improper usage can initiate bacterial resistance [95]. It was found that about 70% of bacteria that cause
wound infections are resistant to minimum one of the most commonly used antibiotics [96]. According
to a study performed on 470 samples of wound secretions with bacteriological identification, S. aureus

and P. aeruginosa strains were both significantly resilient to antibiotics application [97]. In addition,
infectious strains are starting to acquire resistance to almost all classes of antibiotic, leading to an
imperative need for finding new healing substitutes, such as EO [98] and NPs [95].

4.2. Natural Antimicrobials for Wound Infections

As antibiotics are gradually becoming tolerated by infection-producing strains, people are now
appealing to the vast repertoire of bioresources. These are principally herbs but may include animal and
mineral ingredients. Many natural agents that have activities on wounds complicated by polymicrobial
infections have been reported in the literature [99]. Their bactericidal outcomes (at the biofilm level)
target both initial and advanced phases of wound infection [100].

This section contains recent published literature that refers to the application of EO and other
natural alternatives, like honey, as regenerative and antibacterial agents that accelerate wound healing
processes. Many in vitro and in vivo studies validate the antimicrobial and regenerative properties of
essential and/or edible oils and honey.

4.2.1. Essential Oils

EO, also termed as “volatile natural mixtures”, are plant secondary metabolites that possess
antioxidant, anti-inflammatory, anti-allergic, antiviral, antimicrobial and regenerative properties [101].
The EO are mostly synthesised from vegetable parts of plants (such as leaves, seeds, barks, twigs
and roots).

Various studies pointed towards the fact that the antimicrobial action of EO integrated in wound
dressings can be ascribed to their different constituents (like cinnamaldehyde, geraniol, thymol,
menthol and carvacrol, etc.) [21,102,103]. The amount and the presence of these constituents into EO is
highly dependent on the extraction procedure (e.g., hydrodistillation, microwave assisted extraction,
steam distillation, microwave-generated hydrodistillation, microwave steam diffusion and ultrasound
assisted extraction) [19], and the sample source [20]. Diverse published papers on EO that designate the
antimicrobial activity of EO to phenolic compounds (specifically to thymol and carvacrol) explain in
detail the mechanism through which these compounds act on bacteria. For example, Kavoosi et al. [104],
stated that EOs attack lipids and phospholipids existing in cell membranes and in the bacteria cell
wall, causing cytoplasm outflow, pH decrease, and impairment of cellular processes (such as ATP
biosynthesis, DNA transcription and protein synthesis). Other group described that EOs disrupt the
purpose of the cytoplasmic membrane, by interfering with the dynamic transport of nutrients through
the cell membrane, and coagulation of bacteria cell matters [105].

The great benefit is that EOs have no/little effect on the development of antimicrobial resistance
compared to antibiotics [106]. Moreover, there is a plethora of in vitro tests that point towards using
EO as innovative treatments for multidrug resilient microorganisms [107,108]. For example, EOs of
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thyme, peppermint, lavender, cinnamon, tea tree, rosemary, eucalyptus, lemongrass, etc., have been
found to have antimicrobial properties [109]. In addition to antibiotics and antiseptics, EOs have
been integrated in wound dressings to function as antibacterial agents [110,111]. However, despite
their helpfulness in treating wound infections, one may require a repetitive application and/or high
concentrations that may result in adverse effects on the patient.

Melaleuca alternifolia, commonly known as tea tree, is a well reputed plant in folk and traditional
remedies and remains of particular interest in modern medicine due to its prolonged historic status as
a healing agent. Now, useful properties of the tea tree EO and its components have been alternatively
integrated into various products, such as dermatological creams and ointments. Tea tree EO, extracted
from the leaves and terminal branches of the Melaleuca alternifolia, is composed from a mixture of ~100
different components, mostly monoterpenes and sesquiterpenes [112], from which terpinen-4-ol
and 1,8-cineole are the most active (analgesic, antiviral, antibacterial, antifungal, antiprotozoal,
anti-inflammatory).

There are encouraging data for the treatment of wound infections with tea tree EO integrated
into various functional dressings. For example, an electrospun polycaprolactone (PCL) nonwoven
mat covered with a layer of chitosan and containing tea tree EO were produced and investigated
in vitro [113]; tests proved that the mat effectively inhibited the growth of S. aureus. In vivo tests were
performed by skin subtraction having dimensions of (1.2 × 1.2) cm2 on the back of the C57BL6/J mice
in non-infected and infected animal models. After 7 days post-treatment, bacterial levels were found
to be lower for the nonwoven mat with 10 µL concentration of tea tree EO-treated groups than the
control: 81.6 ± 18.1% and 93.7 ± 9.57% decrease of bacterial contents, as compared to the control
group [113]. Other studies synthesized films of chitosan loaded with different contents of tea tree EO
droplets. The obtained films were tested in vitro against common wound pathogenic bacteria and
fungi, S. aureus, E. coli and C. albicans, respectively. The present study reported that films exhibited
antimicrobial activity against all strains and this activity is enhancing with the content of tea tree EO in
films. Furthermore, films were non-toxic to L929 fibroblasts and sustained their growth [114].

Tea tree EO was evaluated in a randomized controlled trial on chronic human wounds complicated
by MRSA strains. In an uncontrolled, open-label, pilot study for testing the effectiveness of tea tree
EO, Edmondson et al. [115] enrolled 19 patients to suffering from MRSA infected wounds. From 19
patients, 11 were treated with a water-miscible tea tree oil (3.3%) solution which was applied at each
dressing change. Even though 8 out of 11 wounds were reduced in size after treatment, the infection
was not fully eradicated. In a recent study, Lee et al. [116] used 10% of topical tea tree preparation for
chronic wounds colonized with MRSA in a nursing home residents. Infections occurred in 14 out of
16 patients treated with tea tree EO, were entirely eradicated after 4 weeks of treatment. Additionally,
regarding the wound healing process, 16 colonized wounds in the tea tree oil group closed in 28 days,
as compared to the control group. Moreover, tea tree EO is used to produce a commercially available
hydrogel dressing, namely Burnaid ® (Mundipharma Pty Limited, Sydney, Australia), used for the
treatment of burns [117].

Hypericum perforatum (St John’s Wort) has been used since ancient times for its beneficial effects
on combating depression, anxiety, inflammation, microbes, and pain [118]. In the last decades,
the plant has been studied for its constituents such as hypericin, hyperforin and flavonoids. The
antibacterial activity of Hypericum perforatum it attributed to hyperforin. Moreover, it was found that
the same hyperforin has a major role on the reepithelization of the skin [118]. As a result, the EO of
Hypericum perforatum has become one of the most operative and extensively spread herb for wound
therapy [118]. Different concentrations (0.25–1.5% v/v) of Hypericum perforatum oil were incorporated
into chitosan films for wound dressing applications. In vitro test performed on E. coli and S. aureus

strains showed that chitosan—Hypericum perforatum oil based films had antimicrobial effect on both
microorganisms [119].

Lavandula angustifolia (commonly known as lavender) has been used in traditional medicine
worldwide. It has been proved that the EO of lavender efficiently inhibits growth of infection-producing
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microorganisms [120]. The antimicrobial activity of lavender EO (LO) was attributed to its major
components, linalool and linalyl, but the chemical composition and antibacterial action of lavender
EO is mainly dependent on the lavender samples source [121]. In this respect, an interesting study
has been presented by Imane et al. [122] who reported on the chemical composition and antibacterial
effect of lavender EO. Their EO confirmed the presence of high amounts of linalool, linalyl acetate,
1,8-cineole, and camphor. Moreover, in vitro tests demonstrated a strong antibacterial activity and
inhibition against E. coli ATCC 25922, S. aureus ATCC 25923 and P. aeruginosa ATCC 27853, with a
minimal inhibitory concentration of 3.33, 1.33 and 42.67 µL/mL [122]. Nevertheless, lavender EO
was proposed to be used for the treatment of surface infection in the form of a prophylactic or topical
application [121].

Besides the demonstrated antibacterial and antifungal activity, lavender EO also plays an
important role in improving wound healing phases. It is noteworthy to mention a study by Mori et al.
on topical application of LO on a wounded rat model in which LO encouraged wound healing in the
primary phase by stimulating collagen production and differentiation of fibroblasts and by quickening
the establishment of granulation tissue [123].

The Origanum genus (commonly known as oregano) has ~39 species, from which Origanum vulgare

L. is the most considered in many scientific studies [124]. Oregano EO has been reported to have
several biological activities, like antioxidant, antimicrobial, and antimutagenic, which are correlated
with the presence of thymol and carvacrol in its composition [124]. Many in vitro and in vivo studies
have shown that EO can be used in the treatment of S. aureus, MRSA and E. coli bacterial infections [125].
In a work by Liakos et al., cellulose acetate electrospun fibers have efficiently incorporated oregano EO
for applications as improved antimicrobial wound dressings. Moreover, while analyzing the in vitro
development of bacteria and biofilms, the authors observed the inhibitory effect on all tested strains
at all studied EO concentrations (1% and 5%), but this effect is significant when the amount of 5%
oregano EO was used for the design of cellulose acetate fibers. Tests performed on fibers formed with
oregano EO revealed a very good antibacterial activity against all tested microbial strains with the
potency decreasing as follows: C. albicans > E. coli > S. aureus [126].

4.2.2. Honey

Honey has been used for decades as a natural healing agent for many human diseases for instance
cardiovascular and gastrointestinal tract ailments, and infections of upper respiratory tract, as well
as in infected wounds [127]. The therapeutic properties of honey such as the capability to provide a
topical nutrition to the wound, inflammation reduction, granulation and angiogenesis stimulation,
wound epithelialization, recommend it to be integrated into wound dressings [21]. The research
carried out during last decades demonstrated that honey’s bacteriostatic and bactericidal activity can
be ascribed to several factors:

- It’s acidic pH (regularly in the range of 3.4–6.1). It has been found that the acidic character
of honey may encourage macrophages to eradicate bacteria and inhibit microbial biofilm
establishment [128].

- The osmotic pressure applied by sugars found in its chemical composition. The high osmolality
obstructs microbial development [129].

- The presence of antibacterial components such as hydrogen peroxide, antioxidants, lysozyme,
phenolic acids, flavonoids, methylglyoxal and bee peptides (such as defensin-1) [130,131].
The production of hydrogen peroxide is a crucial component for the inhibition of bacterial
development. In particular, hydrogen peroxide is gradually released/formed when the wound
exudate interrelates with glucose oxidation, triggering the oxidative damage to pathogens’
macromolecules; hydrogen peroxide can react with the bacterial cell wall, as well as with
intracellular lipids, proteins and nucleic acids [132].
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Taking into account the abovementioned, studies on different honey types revealed their high
efficiency against the most prevalent microorganisms that are involved in wound infections. The
investigations published by Kuś and coworkers [133] have shown that from 14 honey varieties from
Poland analyzed for their antimicrobial activity, cornflower, buckwheat and thyme honeys were the
most active against the growth of S. aureus PCM 2051 strain at concentrations of 3.12 or 6.25% (v/v).
In the same study, adequate action was observed for linden tree, heather, savory and coriander honeys.
Likewise, growth inhibition of a broad range of MRSA microorganisms has been reported by using of
Ulmo tree [134], melaleuca [135] and longan flower [136] honeys, from many geographical regions.

However, in the presence of catalase- an enzyme that reduces the hydrogen peroxide- honey
displays a diminished antimicrobial action. Moreover, the composition of honey is dependent on the
floral source, bee species and geographical setting [137]. To surpass this limitation, and problems
generated by “traditional honeys” (such as the presence of spores that results in deactivation of glucose
oxidase) only honeys with certified activities are recommended to be applied in medical domains.
Therein, an assortment of medical honeys have entered the market (for example chestnut, manuka,
thyme, revamil) [138] which exhibit, by comparison with “traditional honeys” good predictability and
quality. At present, some companies are focused on producing dressings containing honey (mostly
Manuka honey): Actilite®, Algivon®, MediHoney®, and Activon Tulle® [21].

Manuka honey, which is obtained from the Manuka tree and comprises a non-peroxide,
non-degradable by the action of catalase component, can sustain its antibacterial activity in biological
fluids [21]. The antibacterial properties exerted by Manuka honey are not only attributed to the
hydrogen peroxide but also to the high amounts of the antibacterial compound, methylglyoxal, present
in its chemical composition [137]. It was found that Manuka honey impedes the growth of MRSA
and S. pyogenes, along with tested gram-negative strains (such as E. coli, and P. aeruginosa) [139]
and eludes biofilm establishment on the wound site [140]. Considering the beneficial multifaceted
properties of this specific type of honey, in terms of the anti-inflammatory activity, wound repair
efficacy and antibacterial properties, many research groups fabricated Manuka honey dressings.
Minden-Birkenmaier et al. focused their study on fabrication and characterization of Manuka
honey-containing poly(e-caprolactone) (PCL) nanofiber scaffolds to be applied as wound dressings and
precursors to tissue-engineered skin. The obtained results confirmed that honey positively influenced
in vitro fibroblasts infiltration into the scaffold, while inhibiting the growth of E. coli strain [141].
Moreover, Yang and coworkers, incorporated Manuka honey as a functional antibacterial agent in an
electrospun membrane produced with silk fibroin. The obtained fibrous matrices exhibited antibacterial
activity against MRSA and methicillin-susceptible S. aureus, E. coli and P. aeruginosa [142]. In a study
by Tavakoli et al., a highly concentrated honey-Poly(vinyl alcohol) hybrid hydrogel was produced not
only to promote antibacterial activity, but also to prove its biocompatibility. It was observed that the
honey/Poly (vinyl alcohol) hybrid effectively encouraged the wound healing process by establishing
a thin layer of hydrophilic gel that reduces the risk of contamination. Same dressing proved to be
effective against S. aureus and E. coli pathogens [143].

As regarding the clinical benefits of honey, a recent review outlines observation reports and
randomized controlled trials, as well as an update of the recently published literature [144]. However,
literature reports varied honey’s outcomes depending on the wound type and also it has been
shown that honey may even have harmful effects. These incongruous results point toward that
more information is needed and large randomized clinical trials are essential to demonstrate the
clinical benefit of honey in reducing the prevalence of wound infections.

4.3. Nanoparticles

Treating wound infections produced by multidrug-resistant bacteria is a major task owing to the
incapability of conventional antibiotics to treat such infections [145]. NPs are considered as promising
replacements to habitually applied antibiotics, as they alone demonstrated bactericidal activity against
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a big number of pathogens, are capable of diminishing side effects of medications and do not produce
microbial resistance [27].

When a NP encounters a bacterial cell wall, it can accomplish its bactericidal effect by
discharging toxic metal ions or by generating Reactive Oxygen Species (ROS) [146]. When in
intimate contact with bacterial cells walls, negatively-charged groups originated at bacteria surfaces
attract positively-charged NPs. At that time, van der Waals forces, receptor-ligand, and hydrophobic
interactions are established and the cell wall absorptivity is changed by the establishment of “holes” in
bacteria’s surfaces [147,148]. In addition, NPs can also penetrate the cell wall, affect metabolic paths,
disrupt mitochondria and can also affect proton efflux pumps subsequent with a pH modification
and a membrane’s surface charge disorder [146,149]. Bacteria species sensitivity is not only linked to
the structure of their cell walls. Extra factors can affect the weakness or tolerance of bacteria to NPs
treatment. The mechanisms of NP toxicity are very complicated but are usually determined by the
composition, surface modification of NP, intrinsic properties, and bacterial species. For instance, E. coli

is very vulnerable to CuO and ZnO NPs, while S. aureus and Bacillus subtilis are less susceptible [150].
Ag NPs antibacterial effect against E. coli and S. aureus bacterial strains is higher than that of Cu NPs
against same bacteria [151,152]. The toxicity of Cu NPs is governed by a combination of several factors
(e.g., high temperature, high aeration, low pH, NPs and bacteria concentration) that can increase the
toxicity [153]. Amongst CuO and ZnO NPs used against E. coli, B. subtilis, and S. aureus, CuO NPs
present the highest toxicity [96,146].

Many of the aforementioned NPs alone or functionalized with diverse antimicrobial compounds
(such as antibiotics and natural products) have been used for applications in wound healing. Ag
NPs have received extensive consideration by the scientific community owing to their inhibitory
action towards ~650 microbe species and against antibiotic resistant bacteria [24]. Ag NPs can inhibit
the bacterial reproduction by denaturing bacterial DNA which leads to bacterial cell alteration and
finally to cell death [154]. The toxicity of Ag and Ag nanoforms can eradicate microorganisms;
likewise, it can have the same effect on healthy human cells. It has been found that Ag has a
concentration-dependent cytotoxic effect on human dermal fibroblast cells [155]. With the expansion
of nanotechnology, specialists were able to establish a therapeutic window that boosts antimicrobial
properties of Ag, and decreases it’s minimum inhibitory concentration as well as reducing toxicity
to normal human cells [156]. Therefore, many wound dressings containing Ag (such as Acticoat,
Bactigrass, Tegaderm, Fucidin, PolyMem Silver) have been accepted for introduction in the market by
the U.S. Food and Drug Administration [157]. Among metallic NPs, Ag NPs are extensively applied in
formulating ointments for burns and wound dressings used in pressure ulcers [158,159]. In a latest
study using human keratinocytes and dermal fibroblasts, Ag NPs action considerably diminished
levels of inflammatory cytokines and encouraged healing [160].

A large number of studies are now focused on formulations of wound dressings made from
chitosan hydrogels that incorporate and release nano-Ag and Ag NPs [161–165]. For example, spherical
Ag NPs of (10–30) nm were embedded into surfaces of nano-fibers for wound healing applications.
This nanostructure demonstrated substantial antibacterial activities with over 99% reductions in E. coli,
S. aureus and P. aeruginosa and endorsed the progress of epidermal cells with no cytotoxicity [166]. Our
group used Ag NPs to coat polyester-nylon wound dressings for reducing the risk of exogenous wound
related infections caused by P. aeruginosa and S. aureus bacterial strains. The in vitro and in vivo studies
proved that tested NPs applied as coating allowed the normal development of cultured fibroblast cells
and showed toxicity within a mouse model. The modified and viable cells count analyses proved that
the modified wound dressing had an enhanced inhibitory activity against bacterial colonization, and
biofilm growth, especially against P. aeruginosa [167].

Zinc is active against some antibiotic-resistant microorganisms owing to its intricate antibacterial
mechanism [168,169]. Zinc oxide (ZnO) represents the core form studied for its antibacterial effect.
ZnO NPs are capable of yielding ROS that impede E. coli and S. aureus biofilm development [170–172].
Moreover, it was reported that ZnO NPs, at proper concentrations, have antibacterial activity without
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affecting normal cells [26,173]. When ZnO was embedded into a chitosan-dextran hydrogel, it proved
to have proper antimicrobial properties and be an appropriate component in wound dressings [174].
Knorasani et al. produced nanocomposite dressings by incorporating ZnO NPs into heparinized
PVA/chitosan/hydrogels. The results showed this composite dressings’ aantibacterial effect against
E. coli and S. aureus was enhanced with more than 70% by adding ZnO NPs into the hydrogels, as
compared to the sample without ZnO NPs. Furthermore, in vitro tests performed on mouse fibroblast
cells revealed that the nanocomposites are fully biocompatible [175].

Our group created a novel nano-modified coating for wound dressings, constructed on
functionalized ZnO nanostructures and orange oil. The antibacterial efficiency of obtained
nanocomposite was tested against E. coli and S. aureus. Results revealed the effectiveness of obtained
nanostructures against both planktonic and adherent bacteria, but the effect was more intense against
the S. aureus strain [176]. In another study [177], castor oil was used as a matrix material for
the development of nanocomposite films filled with different amounts of chitosan-modified ZnO
nanoparticles. The microbicidal properties of developed films were evaluated against E. coli, S. aureus

and Micrococcus luteus. The antibacterial action towards the last two strains was stronger than that
towards E. coli. Furthermore, cell viability records shown that composites with chitosan—ZnO
loading ≤ 5.0 wt % do not present toxic effects against the tested human dermal fibroblasts. The
in vivo healing study demonstrated that wounds treated with castor oil/chitosan-ZnO healed much
earlier than castor oil- and gauze-covered wounds, and exhibited a higher content and better aligned
collagen arrangement.

Au NPs are well known to be biocompatible and are extensively used in biomedical
domains [25,178–180]. The nanoforms of Au alone do not possess antimicrobial activity and must be
joined with other chemical species to be effectively applied in antimicrobial applications [181]. For
example, AuNPs can be linked with gelatin, chitosan and/or with collagen to be used in wound
healing [182–184]. In a study [185], Au NPs were combined with cryopreserved human fibroblasts
and topically applied to burn wounds; treated wounds exhibited a greater healing rate, reduced
inflammatory stage and amplified collagen installation. In other research, Au NPs were loaded into
N,N,N-trimethyl chitosan/alginate complex; this nanocomposite presented a good biocompatibility
and a high wound dressing prospective [186].

Although there are many methods for producing clinically safe NPs, their extrinsic properties can
cause damage to the human body. In common with various drug treatments, the overexposure to NPs
could lead to undesirable side effects. For example, the dispersal and accumulation of NPs into body
organs (such as the brain, lungs, kidneys and skin) can trigger toxicity to the host. In order to avoid
these risks, in vivo bio-distribution and safe degradation profile studies are crucial in advance to the
clinical application of non-biodegradable NPs [27]. Moreover, these studies are vital for verifying NPs
(residing from wound dressings) retention into skin layers, undesirable responses of the skin towards
NPs (such as inflammation and foreign body reaction) and to track any subsequent escape of NPs into
the bloodstream.

5. Conclusions

Non-healing wounds due to infection causes still remain a dare to treat, and therefore to the
design of advanced materials that could be used as wound dressings. Recent findings allow for the
production of wound dressings that have the potential to become ideal candidates for the delivery
of beneficial molecules and/or drugs to the wound site. In particular, in this review, we present the
incorporation of several antibiotics, essential oils, honey and inorganic NPs, the last ones allowing the
creation of composite materials for multi-pharmacological goals.
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