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Abstract 

Background:  Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 
(COVID-19) through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns 
and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory 
agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) blunts the broad inflammatory response 
induced by damage-associated molecular patterns via binding to extracellular high mobility group box 1 and heat 
shock proteins, as well as regulating the downstream Siglec10-Src homology 2 domain–containing phosphatase 
1 pathway. A recent randomized phase III trial evaluating CD24Fc for patients with severe COVID-19 (SAC-COVID; 
NCT04317040) demonstrated encouraging clinical efficacy.

Methods:  Using a systems analytical approach, we studied peripheral blood samples obtained from patients 
enrolled at a single institution in the SAC-COVID trial to discern the impact of CD24Fc treatment on immune homeo‑
stasis. We performed high dimensional spectral flow cytometry and measured the levels of a broad array of cytokines 
and chemokines to discern the impact of CD24Fc treatment on immune homeostasis in patients with COVID-19.

Results:  Twenty-two patients were enrolled, and the clinical characteristics from the CD24Fc vs. placebo groups were 
matched. Using high-content spectral flow cytometry and network-level analysis, we found that patients with severe 
COVID-19 had systemic hyper-activation of multiple cellular compartments, including CD8+ T cells, CD4+ T cells, and 
CD56+ natural killer cells. Treatment with CD24Fc blunted this systemic inflammation, inducing a return to homeo‑
stasis in NK and T cells without compromising the anti-Spike protein antibody response. CD24Fc significantly attenu‑
ated the systemic cytokine response and diminished the cytokine coexpression and network connectivity linked with 
COVID-19 severity and pathogenesis.
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Background
The pathogenesis associated with Severe Acute Res-
piratory Syndrome Coronavirus 2 (SARS-CoV-2) is a 
multistep process starting with the infection of angio-
tensin-converting enzyme 2 (ACE2)-expressing lung epi-
thelial cells [1]. Following infection, unconstrained viral 
replication leads to cell lysis and the release of damage-
associated molecular patterns (DAMPs) [2, 3]. Recogni-
tion of these molecules by neighboring cells produces a 
pro-inflammatory milieu by releasing cytokines (such 
as interleukin IL-6 and IL-10), which recruit and acti-
vate monocytes, macrophages, and T cells [4]. In severe 
COVID-19, this pro-inflammatory feedback loop results 
in a persistent and harmful response that leads to struc-
tural damage of the lung. The resulting cytokine storm 
can lead to acute respiratory distress syndrome (ARDS), 
multi-organ failure, and death [5].

Even though COVID-19 messenger RNA (mRNA) 
vaccines have shown great success in preventing severe 
disease [6], recent reports suggest that SARS-CoV-2 
variants may escape or subvert the immune response 
induced by existing vaccines [7]. Breakthrough infec-
tions following full vaccination can occur [8], espe-
cially in immunocompromised individuals [9], requiring 
urgent development of effective therapeutic agents 
against this disease. Interim results from the Solidarity 
trial (NCT04315948) indicate that several repurposed 
interventions do not significantly alter COVID-19 mor-
bidity and mortality [10]. Other approaches, includ-
ing cytokines and convalescent plasma, have also been 
largely ineffective [11, 12]. The anti-inflammatory gluco-
corticoid dexamethasone and the protease inhibitor rito-
navir represent the few interventions shown to reduce 
mortality in patients with critical-to-severe COVID-19 
([13] and NCT04960202), especially in combination with 
monoclonal antibodies against the SARS-CoV2 spike 
protein [14].

We previously demonstrated that CD24-deficient mice 
display increased inflammation and death in response 
to damage triggered by radiation and other means [15]. 
CD24 is an important checkpoint molecule for control-
ling the innate immune response [16]; it binds to extra-
cellular high-mobility group box  1 (HMGB1) and heat 
shock proteins, as well as the downstream Siglec10-SHP1 
pathway to blunt NF-κB activation [15]. Soluble CD24 
(CD24Fc), which is linked to the Fc domain of human 

IgG1, was developed to treat inflammatory conditions 
in patients. CD24Fc treatment can attenuate inflamma-
tion associated with viral infections, autoimmunity, and 
graft-versus-host diseases [17–19]. We launched and 
completed a phase III clinical trial to determine whether 
CD24Fc provides therapeutic benefit to patients with 
severe COVID-19. Interim analysis of results from 197 
patients (placebo treatment, n = 98; CD24Fc treatment, 
n = 99) found a statistically significant improvement in 
clinical status in patients treated with CD24Fc versus pla-
cebo (p = 0.005; HR = 1.61, 95% CI: 1.16 to 2.23) over the 
28-day study period with median times to clinical recov-
ery of 6  days for CD24Fc compared to 10  days for pla-
cebo (These results are under review at Lancet Infectious 
Diseases: “Therapeutic Efficacy and Safety of CD24Fc in 
Hospitalized Patients with COVID-19,” by Welker et al.). 
In the current study, we performed extensive correla-
tive analysis in 24 patients enrolled at a single academic 
setting (i.e., The Ohio State University Wexner Medical 
Center). We compared blood samples from COVID-
19 patients before (“baseline”) and after treatment with 
CD24Fc or placebo and compared to healthy donor (HD) 
controls. We examined dynamic changes in peripheral 
blood mononuclear cells (PBMCs) and systemic cytokine 
and chemokine levels. We demonstrated that CD24Fc 
reversed the inflammatory hallmarks associated with 
severe COVID-19, including cytokine storm and immune 
hyperactivation.

Methods
Patients and trial procedure
This study included samples from all patients enrolled 
in NCT04317040 at The Ohio State University Wexner 
Medical Center. Patients eligible for this trial were 
hospitalized with COVID-19, requiring supplemental 
oxygen but not mechanical ventilation and had a prior 
positive SARS-CoV-2 PCR test. Enrolled patients were 
randomized in a double-blinded fashion by the hospi-
tal pharmacist to receive either a single dose of CD24Fc 
antibody (480  mg IV infusion) or placebo control (IV 
saline). Peripheral blood samples were collected from 
patients prior to drug infusion (D1) and at subsequent 
time points 1, 3, 7, 14, and 28  days after drug infu-
sion (D2, D4, D8, D15, and D29). Patients were moni-
tored until D29, after which they completed the study 
endpoint. Samples from D1, D2, D4, and D8 were 

Conclusions:  Our data demonstrate that CD24Fc rapidly down-modulates systemic inflammation and restores 
immune homeostasis in SARS-CoV-2-infected individuals, supporting further development of CD24Fc as a novel 
therapeutic against severe COVID-19.
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evaluated as only 2 samples were acquired for D15, and 
we did not obtain D29 sample. Pertinent patient clini-
cal information was abstracted from the internal elec-
tronic medical record database, including demographic 
data, medical history, clinical laboratory findings, and 
treatment regimen for COVID-19 during hospital stay 
(Additional file 1: Table S1). All enrolled patients were 
able to complete the study endpoint with no death dur-
ing study enrollment in either group. After enrollment 
and completion of the study period, two patients were 
excluded from the analysis. One exclusion was due to 
a diagnosis of chronic lymphocytic leukemia (CLL), 
which confounded the subsequent immunological 
analyses. Another exclusion occurred with a patient 
who received an infusion but was discharged before any 
post-infusion peripheral blood sample could be col-
lected; hence, no comparative analysis could be made 
using this patient. Patient characteristics were clinically 
matched between the two groups. All patients enrolled 
in the study received a treatment regimen for COVID-
19 by hospital care teams regardless of their placebo/
CD24Fc treatment status. Patients were randomized in 
a double-blind fashion into CD24Fc antibody treatment 
group (n = 10) or placebo control group (n = 12).

PBMC collection and flow cytometry staining
Samples for this study were collected from patients 
enrolled in clinical trial NCT04317040. We ana-
lyzed samples from 22 patients hospitalized at The 
Ohio State University Wexner Medical Center with 
severe COVID-19. Peripheral blood mononuclear cells 
(PBMCs) were isolated per the manufacturer’s proto-
col using CPT tubes (BD Bioscience). Healthy donor 
(HD) PMBCs were obtained from STEMCELL Tech-
nologies™. We utilized a 36-color flow cytometry panel 
(Additional file  1: Table  S2, developed by Cytek [20]) 
to distinguish immune populations; we developed a 
25-color-panel to study the activation status of CD8+, 
CD4+, and CD56+ subsets. For the 25-color-panel, sur-
face markers were stained in 4 °C for 1 h, and FOXP3/
Transcription Factor Staining Buffer Set (eBioscience™) 
was used per manufacturers recommendation to per-
form intracellular staining. Cells were analyzed using 
the Cytek Aurora system.

Virus neutralization assay
Virus was produced as previously described [21] and 
incubated with COVID-19 patient sera for 1 h at 37  °C. 
Virus was then overlaid onto ACE2-expressing 293  T 
cells for 6 h. Gaussia luciferase (Gluc) activity was meas-
ured 24, 48, and 72 h after infection.

Cytokine and chemokine assay
Plasma samples were processed using multiplexed 
ELISA-based platform Quantibody® Human Inflamma-
tion Array 3 (RayBiotech QAH-INF-3) in accordance 
with the manufacturer’s protocol. Slides were shipped 
to the manufacturer site for scanning and data extrac-
tion services. Raw optical data were analyzed using 
the manufacturer’s analysis tool to construct standard 
curves and determine absolute cytokine concentra-
tions (Additional file 2: Table S3). Cytokines for which 
standards did not yield good standard curve fit or that 
were undetectable were excluded (IFNγ, IL1rα, IL2, 
IL13, MCP-1, TNFα, TNFβ, IL-11, IL-12p70, IL-17A). 
Seven of these cytokines were detected using an alter-
native method. Specifically, cytokines IFNγ, IL1rα, IL2, 
IL13, MCP-1, TNFα, and IL-12p70 were measured by 
Luminex analysis. For that, plasma samples were sent 
to EVE Technologies that performed the assay and pro-
vided cytokine concentration data (Additional file  3: 
Table S4).

Flow cytometry data analysis
We integrated flow cytometry marker data from all 
samples, and arcsinh scaling was applied using OMIQ 
(https://​www.​omiq.​ai/). Then, we visualized cells in 
a reduced two-dimensional space using the Uniform 
Manifold Approximation and Projection (UMAP) algo-
rithm implemented in the R package uwot [22]. We 
adopted a multivariate t-mixture model to cluster cells 
based on the normalized multivariate flow cytometry 
marker expression [23]. For each data set, we chose the 
optimal number of cell clusters by selecting the model 
with the minimum Bayesian information criterion 
(BIC) score [24]. Then, we annotated cell types by visu-
ally investigating heatmaps of median marker expres-
sions across clusters and expressions of these markers 
on the UMAP space.

Immune cell activation score construction
To measure activation, we defined a cell-level immune 
cell activation score for each flow cytometry data set. 
We selected a subset of immune cell activation markers 
from the panel [25, 26] and ran a principal component 
analysis (PCA) comparing cells from HD and base-
line (Day 1) COVID-19 patients using these activation 
markers as features. We used the first principal compo-
nent (PC1) as an activation score to reflect the differ-
ences in immune cell activation between groups. The 
loadings of each pre-selected activation marker onto 
PC1 were used as coefficients to compute an activation 
score for COVID-19 patients after baseline.

https://www.omiq.ai/
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Cytokine score construction
To construct the cytokine score, we implemented 
a weighted sum approach, motivated by the poly-
genic risk score calculation in the genome-wide asso-
ciation study (GWAS). First, we fit a generalized 
linear mixed model (GLMM) of each cytokine meas-
urement (base 10 log-transformed) on treatment, time, 
treatment*time, age, sex, and race as fixed-effect terms, 
along with subject-level random effect terms. To com-
pare longitudinal patterns across groups, each cytokine 
had its group-specific baseline mean adjusted to match 
the overall mean at D1, and consequent time points are 
normalized accordingly, followed by scaling-by-row. 
Second, the p-value for evaluating the overall difference 
in trends between CD24Fc and placebo groups across 
all the time points was calculated using the Kenward-
Roger method [27]. Finally, we obtained the weighted 
sum of cytokine measurements using the -2 log-trans-
formed p-value for the trend difference as weights, 
motivated by Fisher’s method. We validated the above 
approach using the PCA and autoencoder approaches 
[28].

Network‑level analysis of cytokine data
We first calculated Pearson correlation coefficients 
between cytokines (base 10 log-transformed). Then, 
we constructed a network, where a node represents a 
cytokine, and an edge between two nodes was built if the 
corresponding absolute correlation coefficient is larger 
than 0.4, a cutoff that is usually considered to be a mod-
erate correlation [29]. The weight of an edge represents 
the corresponding correlation coefficient. A network was 
built via the MetScape [30] (version 3.1.3) application 
in Cytoscape [31] (version 3.8.0). We evaluated the net-
work structure and the importance of each node in the 
network based on an eigenvector centrality (EC) score 
[32] using the CytoNCA [33] (version 2.1.6) application 
in Cytoscape (version 3.8.0). Nodes with larger EC scores 
can be considered of higher importance.

Treatment group determination
The treatment group (control vs. CD24Fc) was deter-
mined by the post-infusion sera to absorb anti-CD24 
antibody for staining of human CD24+ cells by flow 
cytometry. The patient group on the CD24Fc arm was 
further confirmed using CD24Fc ELISA (capture anti-
body: purified anti-human CD24, Clone ML5, BD biosci-
ence, Cat#555,426. San Jose, CA).

Bioinformatics and statistical analysis
Bioinformatic analyses were performed as previously 
described [23, 25, 26, 28–33]. Flow cytometry data were 
preprocessed using the OMIQ software, visualized using 

the UMAP algorithm, and analyzed using a multivari-
ate t-mixture model [23]. The immune cell activation 
score was constructed by aggregating pre-selected acti-
vation markers [25, 26] using a PCA applied to the flow 
cytometry data of HD and baseline COVID-19 patients. 
Cytokine score was constructed using a weighted sum 
approach and validated using PCA and autoencoder 
approaches [28]. Network-level analysis of cytokine data 
was implemented by constructing a correlation network 
between cytokines and evaluating the network structure 
and importance of each node in the network based on 
an eigenvector centrality (EC) score [32]. Group com-
parisons were evaluated using independent sample t-test 
or Kruskal–Wallis test for continuous variables and 
Chi-squared test for categorical variables. Longitudinal 
analyses were implemented using GLMMs. In the longi-
tudinal analyses, the overall differences in trends between 
CD24Fc and placebo groups across all the time points 
were evaluated using a GLMM of each measurement 
on treatment, time, treatment*time, age, sex, and race 
as fixed-effect terms, along with patient-level random 
intercepts. All data were analyzed using the R statistical 
package. All mixed models were fit using the lme4 pack-
age [34]. The p-value for evaluating the overall difference 
in trends between CD24Fc and placebo groups across all 
the time points was calculated using the Kenward-Roger 
method [27]. The observed values and trend lines are 
centered at the baseline.

Results
Impact on population dynamics of periperhal blood 
immune cells by CD24Fc
We utilized a high dimensional spectral flow cytometry 
panel with an extensive array of immune population 
markers (Additional file  1: Table  S2) to analyze the sys-
temic effects of SARS-CoV-2 and CD24Fc treatment on 
PBMCs. Using an unbiased clustering approach based 
on a multivariate t-mixture model [23], we identified 12 
statistically distinct clusters that we visualized in two 
dimensions using the UMAP algorithm (Fig. 1A). Using 
clustered heatmap analysis, we correlated expression 
intensity with clusters to annotate B cells (clusters 1, 6, 8), 
CD8+ T cells (clusters 7, 11, 12), CD4+ T cells (clusters 2, 
3), γδ T cells (cluster 4), natural killer (NK) cells (cluster 
10), and myeloid cells (clusters 5, 9) (Fig.  1B). Compar-
ing systemic immune population dynamics (Fig. 1C, D), 
we found significant increases in plasma B cells (cluster 
6; p < 0.01), NK cells (cluster 10; p < 0.001), and terminally 
differentiated CD8+ T cells (cluster 12; p < 0.05) in base-
line (D1) COVID-19 patients vs. healthy donors (HD). 
Conversely, we found that HD samples were enriched for 
naïve CD8+ T cells (cluster 11; p < 0.001) and a subset of 
myeloid cells (cluster 5; p < 0.05). These initial findings 
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are consistent with the established immunopathology of 
SARS-CoV-2 infection and the critical role of the adap-
tive immune system in viral pathogen response [35–38], 
thus validating our experimental approach.

We next used UMAP contour plots to investigate the 
effects of CD24Fc treatment on immune population 

dynamics over time (Fig.  1E, F). From baseline to D8, 
the CD24Fc group displayed a sharp and steady decline 
of plasma B cells (cluster 6), which coordinated with a 
proportional increase in mature B cells (cluster 8). The 
placebo group showed relatively stable cell proportions 
for these populations over the same time frame. There 
were no significant differences between the two groups 

Fig. 1  Population dynamics of peripheral blood mononuclear cells from healthy donors vs. patients with COVID-19 treated with placebo or 
CD24Fc. A total of 1,306,473 PBMCs from HD (n = 17) and COVID-19 patients (n = 22) were clustered using an unbiased multivariate t-mixture 
model, which identified 12 sub-clusters that reflect statistically distinct cell states. Visualization of the relative similarity of each cell and cell 
cluster on the two-dimensional UMAP space with a 10% downsampling (A). Cluster-by-marker heatmap characterizing the expression patterns 
of individual clusters (B). UMAP plots (C) and cluster frequencies (D) of HD vs. baseline COVID-19 patient samples (cluster 5, p = 0.03; cluster 6, 
p = 0.001; cluster 10, p < 0.001; cluster 11, p < 0.001; cluster 12, p = 0.01). Contour plots representing the density of cells throughout regions of the 
UMAP space from COVID-19 patients D2, D4, and D8 after CD24Fc vs. placebo treatment (E, white arrows indicate visual changes between CD24Fc 
vs. placebo contour plots). Cluster population dynamics as fold change over baseline for each group over time (F; p < 0.001 for cluster 1–12) (D2: 
placebo n = 12, CD24Fc n = 10; D4: placebo n = 11, CD24Fc n = 9; D8: placebo n = 4, CD24Fc n = 3). The p-value in D was calculated using the 
Wilcoxon rank-sum test. *p < 0.05; **p < 0.01; ***p < 0.001
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in mounting an effective anti-Spike protein antibody 
response (Additional file 1: Fig. S1).

CD24Fc treatment correlates with normalization of CD4+ 
and CD8+ T cells based on the changes of activation 
markers
We developed a 25-marker flow cytometry panel to 
examine the intricacies associated with effector cell (NK 
and CD4+/CD8+ T cell) activation and differentiation in 
response to SARS-CoV-2 infection and CD24Fc treat-
ment (Additional file  1: Table  S2). Using our unbiased 
clustering approach, we identified eight distinct clusters 
within CD8+ T cells from COVID-19 and HD samples 
(Fig. 2A–C). Clusters 1, 3, and 5 showed naïve and mem-
ory like signature with TCF-1 and CD62L expression, 
and cluster 6 showed increased expression of CD45RO. 
Cluster 4 showed intermediate T-bet and TOX expres-
sion indicating transitory state and cluster 8 expressed 
multiple activation markers including GZMB, suggestive 
of hyperactivation in this subset. At baseline, COVID-
19 samples showed enriched frequency of clusters 4, 5, 
7, and 8, which express markers of activation; HD sam-
ples were skewed toward cluster 1, which exhibits a naive 
phenotype (Fig. 2D–E; p < 0.001 for all clusters). To ana-
lyze the impact of CD24Fc on CD8+ T cell activation, 
we generated UMAP contour plots for each treatment 
group (Fig. 2F) and analyzed changes to cluster propor-
tions over time (Fig.  2G). CD24Fc treatment correlated 
with a modest increase in frequency of the phenotypi-
cally-naive cluster 1 over time, whereas placebo-treated 
patients showed marked decline. Conversely, the propor-
tion of cluster 8 cells (a population whose expression pat-
tern is suggestive of highly activated CD8+ T cells) were 
stagnant in CD24Fc-treated patients, compared to the 
marked increase seen in the placebo group (Fig. 2G).

While tracking cluster proportions over time provides 
an unbiased global view of the data, these statistically dis-
tinct cell clusters may not always correspond perfectly to 
biologically distinct cell types. Therefore, we augmented 
the unbiased clustering analysis with a semi-super-
vised approach to define a CD8+ T cell activation score. 
Known markers of CD8+ T cell activation (T-bet, Ki-67, 
CD69, TOX, and GZMB) were significantly increased in 
baseline COVID-19 patients compared to HD (Fig. 2H), 
supporting our hypothesis that SARS-CoV-2 infection 
increases peripheral T cell activation. To create a unified 
cell-level activation score, we used PCA to implement 
dimension reduction of the cell-by-activation marker 
expression data for all baseline COVID-19 and HD cells. 
The first principal component (PC1) loadings of each 
activation marker were used as coefficients in a linear 
model for defining the activation score (Additional file 1: 
Table  S5). Thus, while we manually selected key T cell 

activation markers, we determined the relative contribu-
tion of each activation marker to the final activation score 
in a data-adaptive manner, yielding a semi-supervised 
approach. We observed positive PC1 loadings and posi-
tive average log-fold changes for each activation marker, 
confirming that higher activation scores reflect higher T 
cell activation (Additional file 1: Table S5). Distributions 
of activation scores across cell clusters also confirmed 
that more highly activated cell subsets feature higher 
activation scores (Fig.  2I). To characterize the effect of 
CD24Fc treatment on global CD8+ T cell activation, we 
adopted a GLMM of activation scores over time. While 
CD8+ T cell activation scores at baseline were not statis-
tically different between groups, the predicted mean acti-
vation scores indicate significantly different trajectories 
between placebo and CD24Fc groups over time (Fig. 2J; 
p < 0.001). Thus, we conclude that CD24Fc treatment sig-
nificantly reduced hyperactivation of CD8+ T cells com-
pared to placebo.

CD4+ T cell activation also plays an important role 
in the immune response to SARS-CoV-2 infection, so 
we applied the analysis strategy presented above to this 
population [35]. To comprehensively understand the role 
of CD4+ T cells and Foxp3+ regulatory T cells (Treg), we 
analyzed total CD4+ T cells, including Foxp3+ subset 
(Fig.  3), and then the Foxp3+ Tregs exclusively (Fig.  4). 
We added Foxp3 to the existing 24-marker flow cytom-
etry panel for the identification of Foxp3+ Tregs. Using 
our unbiased clustering approach, we identified 10 clus-
ters of statistically distinct CD4+ T cell sub-populations 
that we projected onto UMAP space to observe global 
clustering patterns (Fig. 3A, D). To characterize cell clus-
ters in terms of differential marker expression, we com-
puted median expression levels of the 18 markers in the 
CD4+ flow cytometry panel and plotted cell-level marker 
expression for each marker on the UMAP space (Fig. 3B, 
C). Clusters 1 and 2 showed lowest CD44 expression 
indicating naïve-like phenotype, and cluster 3 showed 
GZMB expression. Cluster 4 showed highest expression 
level of CD25 and FOXP3 suggestive of Treg. Clusters 
5, 6, 7, and 10 expressed intermediate to high levels of 
TCF1, and Cluster 9 expressed multiple activation mark-
ers. CD4+ T cells revealed dramatic changes in the rela-
tive representation of each cluster upon SARS-CoV-2 
infection. Similar to the CD8+ T cell activation pattern 
we observed, CD4+ T cells from COVID-19 patients 
showed a significant reduction in clusters with lower 
activation marker expression levels, including clusters 1 
(p < 0.001), 2 (p < 0.001), and 8 (p = 0.002), and a signifi-
cant increase in clusters with higher activation marker 
expression levels, including clusters 4, 5, 6, 9, and 10 (all 
p < 0.001). These results suggest that clusters 1 and 2 are 
largely composed of less activated CD4+ T cells, while 
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Fig. 2  Subcluster analysis of peripheral blood CD8+ T cells in COVID-19 patients: activation following SARS-CoV-2 infection is dampened by 
CD24Fc treatment. 1,466,822 CD8+ cells from HD (n = 17) and COVID-19 (n = 22) patients were clustered using an unbiased multivariate t-mixture 
model, which identified eight statistically distinct CD8+ sub-clusters that reflect different activation states. The relative similarity of each cell and 
cell cluster on the two-dimensional UMAP space were visualized with a 10% downsampling (A). Using median expression of flow cytometry 
markers, a cluster-by-marker heatmap was generated to characterize the subsets (B) and visualize individual marker expression patterns on the 
UMAP space (C). To understand the effect of SARS-CoV-2 infection on cell population dynamics, a comparison was made with UMAP plots (D) and 
cluster frequencies (E) of HD vs. baseline COVID-19 patient samples (p < 0.001 for clusters 1, 4, 5, 7, 8). The samples from COVID-19 patients 2, 4, and 
8 days after CD24Fc vs. placebo are displayed using contour plots to represent density of cells throughout regions of the UMAP space (F, white 
arrows indicate visual changes between CD24Fc vs. placebo). Cluster population dynamics as fold change over baseline in each treatment group 
are shown (G; sample distribution described in Fig. 1F; p < 0.001 for cluster 1–8). To better characterize the activation status of CD8 T cells, a subset 
of markers (T-bet, Ki-67, CD69, TOX, GZMB) was linearly transformed to create a univariate cell-level activation score (H), where highly activated 
cell clusters (such as cluster 8) had highest activation scores (I). A GLMM was fit to the longitudinal cell-level activation scores to assess the effect 
of CD24Fc treatment on activation scores over time (J). The p-values in E and J were calculated using Wilcoxon rank-sum test and Kenward-Roger 
method, respectively. ***p < 0.001
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Fig. 3  Subcluster analysis of peripheral blood CD4+ T cells in COVID-19 patients: activation following SARS-CoV-2 infection is dampened by 
CD24Fc treatment. We clustered 1,203,034 CD4+ cells from HD (n = 17) and COVID-19 (n = 22) patients using an unbiased multivariate t-mixture 
model, which identified 10 CD4+ sub-clusters that reflect statistically distinct cell activation states. We visualized the relative similarity of each cell 
and cell cluster on the two-dimensional UMAP space with a 10% downsampling (A). Using median expression of flow cytometry markers, we 
generated a cluster-by-marker heatmap to characterize the subsets (B) and visualized individual marker expression patterns on the UMAP space 
(C). To understand the effect of SARS-CoV-2 infection on cell population dynamics, we compared UMAP plots (D) and cluster frequencies (E) of 
HD vs. baseline COVID-19 patient samples (p < 0.001 for clusters 1–6, 9, 10; cluster 8, p = 0.002). We visualized samples from COVID-19 patients D2, 
4, and 8 after CD24Fc vs. placebo using contour plots to represent the density of cells throughout regions of the UMAP space (F). We describe 
cluster population dynamics as fold change over baseline in each group (G; sample distribution described in Fig. 1F; p < 0.001 for cluster 1–10). 
To better characterize the activation status of CD4 T cells, we linearly transformed a subset of markers (T-bet, Ki-67, CD69, TOX, PD1) to create a 
univariate cell-level activation score (H), where highly activated cell clusters (such as cluster 9) had highest activation scores (I). We fit a GLMM to our 
longitudinal cell-level activation scores to assess the effect of CD24Fc treatment on activation scores over time (J; p < 0.001). The p-values in E and J 
were calculated using the Wilcoxon rank-sum test and the Kenward–Roger method, respectively. **p < 0.01; ***p < 0.001
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Fig. 4  Subcluster analysis of peripheral blood Foxp3+ Treg cells in COVID-19 patients: activation following SARS-CoV-2 infection is dampened by 
CD24Fc treatment. We clustered 98,525 Foxp3+ Treg cells from HD (n = 17) and COVID-19 (n = 22) patients using an unbiased multivariate t-mixture 
model, which identified 8 Foxp3+ Treg sub-clusters that reflect statistically distinct cell activation states. We visualized the relative similarity of each 
cell and cell cluster on the two-dimensional UMAP space with a 10% downsampling (A). Using median expression of flow cytometry markers, 
we generated a cluster-by-marker heatmap to characterize the subsets (B) and visualized individual marker expression patterns on the UMAP 
space (C). To understand the effect of SARS-CoV-2 infection on cell population dynamics, we compared UMAP plots and cluster frequencies of 
HD vs. baseline COVID-19 patient samples (D and E; p < 0.001 for clusters 1–5, 7). We visualized samples from COVID-19 patients D2, 4, and 8 after 
CD24Fc vs. placebo using contour plots to represent the density of cells throughout regions of the UMAP space (F). We describe cluster population 
dynamics as fold change over baseline in each treatment group (G; sample distribution described in Fig. 1F; p < 0.001 for cluster 1, 4, 6–8; cluster 3, 
p = 0.004). To better characterize the activation status of Treg cells, we linearly transformed a subset of markers (Ki-67, TOX, CD25, ICOS, CTLA4) to 
create a univariate cell-level activation score (H), where highly activated cell clusters (such as clusters 6, 7, 8) had highest activation scores (I). We fit 
a GLMM to our longitudinal cell-level activation scores to assess the effect of CD24Fc on activation scores over time (J). The p-values in E and J were 
calculated using the Wilcoxon rank-sum test and the Kenward-Roger method, respectively. ***p < 0.001
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other clusters are composed of relatively more activated 
phenotypes (Fig. 3D, E).

Next, we assessed the short-term longitudinal effect 
of CD24Fc treatment on CD4+ T cells in COVID-19 
patients. Using UMAP contour plots to visualize tempo-
ral and treatment-level changes in CD4+ T cell dynam-
ics (Fig.  3F), we quantified fold-changes in populations 
over time (Fig.  3G). In contrast to our CD8+ T cell 
results, wherein the phenotypically-naive cluster 1 sus-
tained its level during CD24Fc treatment (Fig.  2), clus-
ters 1 and 2 from the CD4+ T cell population decreased 
upon CD24Fc treatment, which we believe reflects 
reduced activation. Clusters 4, 5, and 10 were increased 
by CD24Fc treatment. Cluster 4 showed high expression 
level of CD25 and FoxP3 (likely Tregs), while clusters 5 
and 10 showed intermediate-to-high levels of CD62L 
and TCF-1 expression. Cluster 9, which expressed mul-
tiple activation markers and was presumably composed 
of hyper-activated cells, was decreased by CD24Fc treat-
ment, similar to CD8+ T cell results.

Using the univariate cell-level activation workflow 
described above, we determined CD4+ T cell activa-
tion scores. Known markers of CD4+ T cell activation 
(T-bet, Ki-67, CD69, TOX, and PD1) were significantly 
increased in baseline COVID-19 patients compared to 
HD (Fig.  3H). Distributions of activation scores across 
cell clusters also confirmed that more highly activated 
cell subsets feature higher activation scores (Fig. 3I). Pre-
dicted mean activation scores indicate significantly differ-
ent trajectories between the placebo and CD24Fc groups 
over time; CD24Fc-treated samples had significantly 
lower CD4+ cell activation levels relative to placebo 
(overall p < 0.001; Fig. 3J). Baseline values for CD4+ T cell 
activation were not statistically different between groups. 
In contrast, mean activation scores were significantly dif-
ferent between placebo and CD24Fc-treated at all other 
time points (D2, p = 0.001; D4, p < 0.001; D8, p < 0.001), 
with the most marked difference on day 8. Thus, we con-
clude that the attenuation of lymphocyte hyperactivation 
extends to the CD4+ T cell compartment.

We performed the same analyses on Foxp3+ Tregs 
exclusively (Fig. 4) and found that COVID-19 was asso-
ciated with hyperactivation in this population as well. 
Cluster 1 showed lowest expression of CD44 suggest-
ing less activated phenotype. Clusters 3 and 4 showed 
highest expression levels of PD1 and CD69, respec-
tively, and cluster 2 exhibited highest TCF1 expression 
level. Clusters 6, 7, and 8 expressed multiple activation 
markers including CTLA4. Upon SARS-CoV-2 infec-
tion, clusters 1 and 3, which represent less activated 
phenotype, were downregulated and clusters 6, 7, and 
8 reflecting more activated phenotype increased when 
COVID-19 patient samples were compared with HD 

samples. CD24Fc treatment was associated with a sub-
stantial reduction by day 8 (Fig. 4G) in the proportion 
of cells belonging to the most hyperactivated cell clus-
ter (Treg cluster 8; Fig. 4I). Using the GLMM activation 
score model, we found a significant reduction in Foxp3+ 
Treg activation associated with CD24Fc treatment by 
day 8 (p < 0.001), while we failed to detect a significant 
difference in predicted activation scores between treat-
ment groups at earlier time points (Fig. 4J).

CD24Fc reduces NK cell dysregulation
The increased number of NK cells in samples from 
patients with COVID-19 (Fig. 1C, D, cluster 10) implies 
they play an important role in SARS-CoV-2 infection. 
We investigated the activation and functional status 
of NK cells using our unbiased clustering and visuali-
zation approach and identified 12 statistically distinct 
NK cell clusters, which we visualized on heatmaps and 
UMAPs (Fig.  5A–C). Clusters 7 and 10 showed CD3 
expression indicating NKT cell property, and cluster 
11 expressed multiple activation markers suggesting 
hyperactivated phenotype. Clusters 1 and 5 showed 
minimal expression of activation markers indicative of 
resting NK cells, and clusters 3 and 12 showed CD11b 
expression. Cluster 5, the most highly represented clus-
ter in HD samples, displayed an expression pattern 
suggestive of a less activated population; it was signifi-
cantly downregulated in COVID-19 patients (p < 0.001; 
Fig.  5D–E). Samples from COVID-19 patients also 
revealed a significant reduction in cluster 2 (p = 0.003) 
and expansion of clusters 1, 4, 6, 8, 9, 11, and 12 
(Fig.  5D–E; p = 0.04 for cluster 1; p = 0.002 for cluster 
9; p = 0.03 for cluster 12; p < 0.001 for clusters 4, 6, 8, 
11).

To understand the role of CD24Fc treatment on NK 
cell population dynamics, we generated UMAP contour 
plots to visualize temporal and treatment-based changes 
(Fig. 5F), and quantified these differences (Fig. 5G). Clus-
ters 1 and 2, which showed a more naive phenotype, 
were increased by CD24Fc, whereas cluster 11, which 
expresses multiple activation markers, was decreased. To 
visualize activation, known NK cell activation markers 
(TOX, GZMB, KLRG1, Ki-67, and LAG3) were assessed 
(Fig. 5H) and plotted per cluster (Fig. 5I). Using a GLMM 
of activation scores over time, we found that while base-
line values for NK cell activation were not statistically 
different, the mean activation scores were significantly 
different between placebo and CD24Fc groups through-
out the study duration (p < 0.001; Fig. 5J). Thus, CD24Fc 
treatment rapidly normalized NK cell activation sta-
tus, and the impact was sustained throughout the study 
period.
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Fig. 5  Subcluster analysis of peripheral blood NK cells in COVID-19 patients: activation following SARS-CoV-2 infection is dampened by CD24Fc 
treatment. CD56+ cells (n = 783,623) from HD (n = 17) and COVID-19 (n = 22) patients were clustered using an unbiased multivariate t-mixture 
model, which identified 12 sub-clusters that reflect statistically distinct CD56+ T cell activation states. The relative similarity of each cell and cell 
cluster on the two-dimensional UMAP space were visualized with a 10% downsampling (A). Using median expression of flow cytometry markers, 
a cluster-by-marker heatmap was generated to characterize subsets (B) and visualize individual marker expression patterns on UMAP space (C). To 
understand effect of SARS-CoV-2 infection on NK population dynamics, we compared UMAP plots (D) and cluster frequencies (E; cluster 1, p = 0.04; 
cluster 2, p = 0.003; cluster 9, p = 0.002; cluster 12, p = 0.03; p < 0.01 for clusters 4–6, 8 and 11) of HD vs. baseline COVID-19 samples. D2, 4, 8 samples 
from placebo and CD24Fc-treated groups were visualized using contour plots to represent density of cells throughout regions of the UMAP space 
(F, white arrows indicate visual changes between CD24Fc vs. placebo). The cluster population dynamics as fold change over baseline in each group 
was shown (G; sample distribution described in Fig. 1; p < 0.001 for cluster 1, 3–12). To better characterize the activation status of NK cells, a subset 
of markers (TOX, GZMB, KLRG1, Ki-67, LAG-3) was linearly transformed to create a univariate cell-level activation score (H), where highly activated 
cell clusters (such as cluster 11) had highest activation scores (I). A GLMM was fit to the longitudinal cell-level activation scores to assess the effect 
of CD24Fc on activation scores over time (J). The p values in E and J were calculated using Wilcoxon rank-sum and Kenward–Roger method, 
respectively. *p < 0.05; **p < 0.01; ***p < 0.001
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CD24Fc attenuates systemic cytokine response
The profound changes in lymphocyte dynamics after 
CD24Fc treatment indicate that CD24Fc exerts its effect 
by regulating the systemic cytokine levels. To test this 
hypothesis, we compared plasma cytokine concentrations 
from HD and COVID-19 patients treated with CD24Fc 
or placebo. We used multiplex ELISA and Luminex anal-
ysis platforms to test 37 cytokines in total. Fifteen out of 
37 tested cytokines were significantly elevated (p < 0.05) 
during SARS-CoV-2 infection (p < 0.05, Fig.  6A, Addi-
tional file 1: Fig. S2A-B). These included cytokines asso-
ciated with type 1 (IL-12p40, CXCL9, IL-15) and type 
3 (IL-1α, IL-1β, RANTES) immunity, and chemokine 
MCP-1 (CCL2) that recruits monocytes and T cells to 
the sites of inflammation. Only three of 37 cytokines, 
including TNRFII, Eotaxin-2 and IL-8 were significantly 
downregulated in COVID-19 patients (p < 0.05; Fig. 6A).

We next studied the impact of CD24Fc on cytokine 
expression in patients with COVID-19. As shown in 
Fig. 6B, several cytokines (GM-CSF, IL-5, IL-7, IL-10) and 
chemokines (MIG, MIP-1α, MIP-1β) were down-modu-
lated over time. Serum levels dynamics of selected indi-
vidual cytokines are shown in Fig. 6C, D and Fig. S2C. At 
one week after treatment initiation, many cytokines and 
chemokines were reduced by tenfold or more. Notably, 
many of these inflammatory proteins were selectively 
reduced in the CD24Fc-treated patients or downregu-
lated more rapidly compared to placebo-treated patients. 
Specifically, CD24Fc significantly down-modulated 
plasma levels of IL-10 and IL-15 (p = 0.05 and p = 0.002, 
respectively; Fig.  6C, D). Other tested cytokines impli-
cated in COVID-19 pathogenesis, including IL-6 and 
GM-CSF [39], exhibit a similar trend toward a selective 
downregulation by CD24Fc, albeit these did not reach 
the levels of statistical significance (Fig.  6B, Additional 
file  1: Fig S2C). To increase the statistical power of the 
analysis of the influence of CD24Fc on systemic cytokine 
response, we calculated a cytokine scores for each 

treatment group by integrating expression of all markers 
tested by multiplex ELISA platform using weighted sum 
approach. Analysis of cytokine scores demonstrated a 
significant decrease in CD24Fc-treated groups compared 
to placebo (p < 0.001; Fig.  6E). This finding was inde-
pendently confirmed using Autoencoder [28] and PCA 
(Additional file 1: Fig. S2D).

To better understand the global modulation of systemic 
cytokine response by CD24Fc treatment, we studied cor-
relations between individual cytokines across groups. 
Correlation matrices wherein darker red lines indicate 
stronger correlation (Fig.  6F) showed that only a few 
groups of cytokines were co-expressed by HD. How-
ever, the numbers of co-regulated cytokines dramati-
cally increased in baseline COVID-19 samples (vs. HD 
controls) indicating activation of coordinated cytokine 
response. Remarkably, samples from CD24Fc-treated 
patients (pooled over time) showed a decline in cytokine 
correlations compared to baseline or placebo treatment. 
Similarly, cytokine network plots connecting cytokines 
with moderate and strong associations (Pearson cor-
relation r > 0.4 [29]) showed lower overall interconnect-
edness in CD24Fc group as compared to baseline or 
placebo treatment (right two panels, Fig. 6G). The over-
all cytokine network correlations and connectivity in 
CD24Fc-treated patients were significantly different from 
baseline or placebo treatment (Fig.  6H, I; p < 0.001 for 
both).

To understand the relevance of decreased correlation 
and connectivity of the cytokine network in CD24Fc-
treated patients to disease severity and therapeutic effect, 
we analyzed a previously published dataset of cytokine 
expression in serum from patients with COVID-19 
that were either treated in the intensive care unit (ICU 
patients) or did not require ICU treatment (non-ICU 
patients) [40]. Notably, we found that inter-cytokine cor-
relation and connectivity were lower in non-ICU patients 
than ICU patients (Fig.  7). These data suggest that the 

Fig. 6  CD24Fc treatment downregulates systemic cytokine response in patients with COVID-19. Relative differences in plasma concentrations 
of cytokines/chemokines between HD (n = 25) and COVID-19 patients (n = 22) is shown. Values were log-transformed and evaluated using 
independent sample t-test. Significantly up- and down-regulated markers are shown (A). Heatmap analysis (B) visualized relative levels of cytokines/
chemokines (Placebo: D1 n = 12, D2 n = 12, D4 n = 11, D8 n = 5; CD24Fc: D1 n = 10, D2 n = 10, D4 n = 9, D8 n = 3). Using log-10 transformation of 
cytokine concentrations (dots) and GLMM-predicted fixed effects trends (lines), changes in IL-10 (C; p = 0.05) and IL-15 (D; p = 0.002) in CD24Fc 
(red) and placebo (black) groups were revealed. Values and trend lines were centered at D1 mean. p-value was calculated using the Kenward–Roger 
method. The cytokine score was analyzed longitudinally using weighed sum approach (E; p < 0.001). Using Pearson correlation matrices (F) and 
network maps (G; weight of edge represents correlation coefficient), 30 plasma markers in HD (n = 25), COVID-19 baseline (D1, n = 22), placebo 
(pooled D2–D8, n = 28), and CD24Fc-treated (pooled D2–D8, n = 24) groups were visualized. Using these correlation coefficients, a density plot (H; 
D1 vs placebo, p = 0.07; D1 vs CD24Fc, p < 0.001; placebo vs CD24Fc, p < 0.001) was constructed. Kolmogorov–Smirnov test was used to evaluate 
equality of densities between groups. Analysis of connectivity (I) and centrality analysis of cytokine network (J) display the cytokine expression 
relationships. Network connectivity plots display highly correlated connections for each cytokine (i.e., node degree) and was evaluated using 
paired t-test. Centrality analysis of cytokine network used eigenvector centrality score that considers global network connectivity and correlation 
coefficients between cytokines (HD vs D1, p < 0.001; D1 vs placebo, p = 0.08; D1 vs CD24Fc, p < 0.001). Bartlett’s test evaluated the significance 
of variance of centrality scores (HD vs D1, p = 0.013; D1 vs placebo, p = 0.17; D1 vs CD24Fc, p = 0.008). Each dot in I and J represents a cytokine. 
*p < 0.05; **p < 0.01; ***p < 0.001

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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increased blood cytokine network correlation and con-
nectivity analysis we developed are associated with 
increased COVID-19 disease severity, while mild disease 
(without the need for ICU treatment) is characterized by 
lower correlation and connectivity. Therefore, decreased 
correlation and connectivity of the cytokine network is 
likely a novel useful tool to examine the therapeutic effi-
cacy of anti-inflammatory agents.

To identify factors that may play an important role in 
response to CD24Fc, we calculated centrality scores [32] 
for individual cytokines based on their connectivity and 
correlations within the global cytokine network (Addi-
tional file  1: Table  S6). The variances of the centrality 
scores of 30 cytokines were lower in baseline and pla-
cebo-treated COVID-19 patients compared to HD and 
CD24Fc-treated COVID-19 patients (Fig. 6J). These data 
indicate that distinct cytokines are highly heterogeneous 
in terms of their interconnectedness with other cytokines 
(centrality) in healthy individuals. Upon SARS-CoV-2 
infection, cytokine centralities become more uniform, 
and subsequent CD24Fc treatment abrogates this effect 
(Fig. 6J).

Discussion
Patients enrolled in the phase III SAC-COVID clinical 
trial, a subpopulation of which were studied herein, dem-
onstrated accelerated clinical recovery following CD24Fc 
treatment compared to placebo. CD24Fc was generally 
well-tolerated, reduced disease progression, and short-
ened hospital length of stay (results under review in Wel-
ker et al. “Therapeutic Efficacy and Safety of CD24Fc in 
Hospitalized Patients with COVID-19,” submitted to 
Lancet Infectious Diseases). Given the proposed mecha-
nism of action and pathophysiology of SARS-CoV-2, we 
hypothesized that CD24Fc reduced the hyperactive sys-
temic immune responses in infected patients leading to 
an accelerated return to immune homeostasis. Using 
deep immune profiling of longitudinal samples combined 
with our in-depth bioinformatic analysis, we uncovered 
the effects of CD24Fc on the systemic host immune 
response. Overall, we found that CD24Fc treatment 
blunted immune cell activation across several compart-
ments including B cells, CD4+ T cells CD8+ T cells and 
NK cells, and facilitated the return to a more normal phe-
notype following SARS-CoV-2 infection.

Comparing baseline COVID-19 patients with HD 
allowed us to identify the immune cell populations driv-
ing pathogenesis. As expected, we saw a significant 
increase in activated CD8+ T and NK cells in SARS-CoV-
2-infected patients. We augmented the unbiased cluster-
ing analysis with a semi-supervised approach to defining 
an unbiased activation score. CD24Fc-treated patients 
demonstrated a significant reduction in activation score 
over time for CD8+ T, CD4+ T, and NK cells compared to 
placebo-treated patients.

The changes in overall immune cell population dynam-
ics between HD and COVID-19 patients are intriguing 
and offer two separate interpretations. CD24Fc may pref-
erentially block the differentiation of mature B cells into 
effector plasma cells, resulting in relatively fewer plasma 
B cells (cluster 6) and more mature B cells (cluster 8). 
Alternatively, CD24Fc treatment may reduce the systemic 
burden of SARS-CoV-2 infection, which would limit the 
number of plasma cells due to accelerated recovery. In 
either scenario, the correlation between decreased cir-
culating plasma cells in CD24Fc-treated patient samples 
suggests significant immuno-modulatory roles of this 
treatment. The ability of patients to mount an effective 
anti-Spike antibody response was not compromised by 
CD24Fc treatment.

An aberrant and rapid increase in a broad spectrum 
of pro-inflammatory cytokines, known as a cytokine 
storm, plays a central role in the pathogenesis of ARDS 
and other severe complications of SARS-CoV-2 infection 
[41]. Of note, antibodies targeting IL-6R can effectively 
treat the cytokine storm associated with immunotherapy 
and many chronic inflammatory diseases [42]. However, 
the results of several clinical trials that investigated the 
benefits of IL-6 antagonists in patients with COVID-19 
were not consistent [43, 44]. Although the meta-analysis 
of 27 randomized clinical trials including 19,930 COVID-
19 patients in total did show lower 28-day mortality with 
IL-6 antagonists administration [45], high variability 
of the treatment outcome suggests that broader-acting 
interventions against COVID-19-associated cytokine 
storm may be needed to achieve a reliable benefit. Our 
longitudinal analysis revealed a broad-spectrum up-
regulation of systemic cytokines in patients with severe 
COVID-19. More importantly, CD24Fc treatment 
caused rapid and sustained reduction of the systemic 
cytokine response as indicated by down-modulation of 

(See figure on next page.)
Fig. 7  Patients with severe COVID-19 that require an ICU treatment display increased correlation and connectivity of the systemic cytokine 
network. We analyzed correlation (A) and connectivity (B) between circulating cytokines and chemokines in COVID-19 patients that either required 
(ICU patients), or did not require an ICU treatment (non-ICU patients). Cytokine measurements were obtained from previously published dataset 
[40]. Analysis was performed as described in Fig. 6. A density plot constructed based on connectivity between plasma cytokines is shown in C. D 
shows an association between the severity of COVID-19 infection and the degree of the connectivity between plasma cytokines with severe UCU 
cases displaying higher degree of connectivity. p-value was calculated using Wilcoxon Rank sum
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Fig. 7  (See legend on previous page.)
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the combined cytokine score, which was derived using 
expression levels of 30 cytokines and chemokines. This 
broad effect may explain the significant therapeutic 
efficacy of CD24Fc in treating hospitalized COVID-19 
patients.

In addition, we identified two cytokines that were sig-
nificantly downregulated after CD24Fc treatment: IL-10 
and IL-15. Both are linked with COVID-19 severity, 
increased intensive care admission, and COVID-19-asso-
ciated death [46–48]. Although generally associated with 
immunosuppressive functions, IL-10 can also stimulate 
NK and CD8+ T cells and induce B cell proliferation and 
antibody production [49]. IL-15 promotes activation 
and expansion of NK and CD8+ T cells [50, 51]. Thus, 
CD24Fc may prevent pathological activation of NK and 
CD8+ T cells by suppressing IL-10 and IL-15 production. 
Since IL-15 also promotes activation and recruitment of 
neutrophils to site of inflammation, CD24Fc may sup-
press COVID-19-associated neutrophil activation and 
neutrophilia [52]. Furthermore, CD24Fc may limit viral 
replication by suppressing IL-10 production, which has 
been shown to enhance viral replication of HIV, HCV 
and HBV [53]. These ideas warrant further investigation.

Importantly, unlike HD, COVID-19 patients dis-
played strong positive correlations between inflamma-
tory cytokines, consistent with broad misfiring of host 
immune responses [38, 40, 54]. Notably, CD24Fc treat-
ment reduced systemic cytokine levels and diminished 
correlations and connectivity in SARS-CoV-2-infected 
individuals, thus reshaping the systemic cytokine net-
work toward a less tightly co-regulated state character-
istic of homeostasis. Based on an analysis of the global 
cytokine landscape, we conclude that CD24Fc mitigates 
the exacerbated host systemic inflammatory responses 
to SARS-CoV-2. This conclusion was corroborated by 
the decrease of cytokine correlation and connectivity in 
patients with mild COVID-19 infections as compared to 
patients with severe disease that required an ICU treat-
ment that we uncovered using a published COVID-19 
patient dataset [40]. In addition, a detailed investigation 
of individual inflammatory markers revealed poten-
tial mechanisms of COVID-19 severity reduction by 
CD24Fc. Of note, our network-based analysis to demon-
strate connectivity and centrality of multiple inflamma-
tory mediators simultaneously may prove useful for the 
study of other disease settings, especially in the realm of 
developing and monitoring the impact of anti-inflamma-
tory therapeutics.

Conclusions
In conclusion, the data presented here offer unique 
immunological insights that underscore the encourag-
ing clinical findings from the SAC-COVID trial. These 

results strongly support further investigation of CD24Fc 
for various inflammatory conditions, including COVID-
19. Indeed, CD24Fc has been tested in Phase II clinical 
trial to attenuate graft versus host diseases and showed 
promising efficacy, opening potential use of this drug 
in other immune related diseases. Our unique cytokine 
centrality analysis and cellular activation index warrant 
further study as a prognostic tool for guiding therapy in 
COVID-19 and other systemic inflammatory conditions.
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