
Tree

Automata

Techniques and

Applications

Hubert Comon Max Dauchet Rémi Gilleron

Florent Jacquemard Denis Lugiez Sophie Tison

Marc Tommasi





Contents

Introduction 9

Preliminaries 13

1 Recognizable Tree Languages and Finite Tree Automata 17

1.1 Finite Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 The Pumping Lemma for Recognizable Tree Languages . . . . . 26
1.3 Closure Properties of Recognizable Tree Languages . . . . . . . . 27
1.4 Tree Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5 Minimizing Tree Automata . . . . . . . . . . . . . . . . . . . . . 33
1.6 Top Down Tree Automata . . . . . . . . . . . . . . . . . . . . . . 36
1.7 Decision Problems and their Complexity . . . . . . . . . . . . . . 37
1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.9 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Regular Grammars and Regular Expressions 49

2.1 Tree Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1.2 Regularity and Recognizabilty . . . . . . . . . . . . . . . 52

2.2 Regular Expressions. Kleene’s Theorem for Tree Languages . . . 52
2.2.1 Substitution and Iteration . . . . . . . . . . . . . . . . . . 53
2.2.2 Regular Expressions and Regular Tree Languages . . . . . 56

2.3 Regular Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4 Context-free Word Languages and Regular Tree Languages . . . 61
2.5 Beyond Regular Tree Languages: Context-free Tree Languages . 64

2.5.1 Context-free Tree Languages . . . . . . . . . . . . . . . . 65
2.5.2 IO and OI Tree Grammars . . . . . . . . . . . . . . . . . 65

2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.7 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Logic, Automata and Relations 71

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Automata on Tuples of Finite Trees . . . . . . . . . . . . . . . . 73

3.2.1 Three Notions of Recognizability . . . . . . . . . . . . . . 73
3.2.2 Examples of The Three Notions of Recognizability . . . . 75
3.2.3 Comparisons Between the Three Classes . . . . . . . . . . 77
3.2.4 Closure Properties for Rec× and Rec; Cylindrification and

Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

TATA — September 6, 2005 —



4 CONTENTS

3.2.5 Closure of GTT by Composition and Iteration . . . . . . 80
3.3 The Logic WSkS . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.4 Restricting the Syntax . . . . . . . . . . . . . . . . . . . . 88
3.3.5 Definable Sets are Recognizable Sets . . . . . . . . . . . . 89
3.3.6 Recognizable Sets are Definable . . . . . . . . . . . . . . . 92
3.3.7 Complexity Issues . . . . . . . . . . . . . . . . . . . . . . 94
3.3.8 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4 Examples of Applications . . . . . . . . . . . . . . . . . . . . . . 95
3.4.1 Terms and Sorts . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.2 The Encompassment Theory for Linear Terms . . . . . . 96
3.4.3 The First-order Theory of a Reduction Relation: the Case

Where no Variables are Shared . . . . . . . . . . . . . . . 98
3.4.4 Reduction Strategies . . . . . . . . . . . . . . . . . . . . . 99
3.4.5 Application to Rigid E-unification . . . . . . . . . . . . . 101
3.4.6 Application to Higher-order Matching . . . . . . . . . . . 102

3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.6 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.6.1 GTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.6.2 Automata and Logic . . . . . . . . . . . . . . . . . . . . . 108
3.6.3 Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.6.4 Applications of tree automata to constraint solving . . . . 108
3.6.5 Application of tree automata to semantic unification . . . 109
3.6.6 Application of tree automata to decision problems in term

rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.6.7 Other applications . . . . . . . . . . . . . . . . . . . . . . 110

4 Automata with Constraints 111

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Automata with Equality and Disequality Constraints . . . . . . . 112

4.2.1 The Most General Class . . . . . . . . . . . . . . . . . . . 112
4.2.2 Reducing Non-determinism and Closure Properties . . . . 115
4.2.3 Undecidability of Emptiness . . . . . . . . . . . . . . . . . 118

4.3 Automata with Constraints Between Brothers . . . . . . . . . . . 119
4.3.1 Closure Properties . . . . . . . . . . . . . . . . . . . . . . 119
4.3.2 Emptiness Decision . . . . . . . . . . . . . . . . . . . . . . 121
4.3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4 Reduction Automata . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.4.1 Definition and Closure Properties . . . . . . . . . . . . . . 126
4.4.2 Emptiness Decision . . . . . . . . . . . . . . . . . . . . . . 127
4.4.3 Finiteness Decision . . . . . . . . . . . . . . . . . . . . . . 129
4.4.4 Term Rewriting Systems . . . . . . . . . . . . . . . . . . . 129
4.4.5 Application to the Reducibility Theory . . . . . . . . . . 130

4.5 Other Decidable Subclasses . . . . . . . . . . . . . . . . . . . . . 130
4.6 Tree Automata with Arithmetic Constraints . . . . . . . . . . . . 131

4.6.1 Flat Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.6.2 Automata with Arithmetic Constraints . . . . . . . . . . 132
4.6.3 Reducing Non-determinism . . . . . . . . . . . . . . . . . 134

TATA — September 6, 2005 —



CONTENTS 5

4.6.4 Closure Properties of Semilinear Flat Languages . . . . . 136
4.6.5 Emptiness Decision . . . . . . . . . . . . . . . . . . . . . . 137

4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.8 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Tree Set Automata 145

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . 150

5.2.1 Generalized Tree Sets . . . . . . . . . . . . . . . . . . . . 150
5.2.2 Tree Set Automata . . . . . . . . . . . . . . . . . . . . . . 150
5.2.3 Hierarchy of GTSA-recognizable Languages . . . . . . . . 153
5.2.4 Regular Generalized Tree Sets, Regular Runs . . . . . . . 154

5.3 Closure and Decision Properties . . . . . . . . . . . . . . . . . . . 157
5.3.1 Closure properties . . . . . . . . . . . . . . . . . . . . . . 157
5.3.2 Emptiness Property . . . . . . . . . . . . . . . . . . . . . 160
5.3.3 Other Decision Results . . . . . . . . . . . . . . . . . . . . 162

5.4 Applications to Set Constraints . . . . . . . . . . . . . . . . . . . 163
5.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.4.2 Set Constraints and Automata . . . . . . . . . . . . . . . 163
5.4.3 Decidability Results for Set Constraints . . . . . . . . . . 164

5.5 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . 166

6 Tree Transducers 169

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2 The Word Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.2.1 Introduction to Rational Transducers . . . . . . . . . . . 170
6.2.2 The Homomorphic Approach . . . . . . . . . . . . . . . . 174

6.3 Introduction to Tree Transducers . . . . . . . . . . . . . . . . . . 175
6.4 Properties of Tree Transducers . . . . . . . . . . . . . . . . . . . 179

6.4.1 Bottom-up Tree Transducers . . . . . . . . . . . . . . . . 179
6.4.2 Top-down Tree Transducers . . . . . . . . . . . . . . . . . 182
6.4.3 Structural Properties . . . . . . . . . . . . . . . . . . . . . 184
6.4.4 Complexity Properties . . . . . . . . . . . . . . . . . . . . 185

6.5 Homomorphisms and Tree Transducers . . . . . . . . . . . . . . . 185
6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.7 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7 Alternating Tree Automata 191

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.2 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . 191

7.2.1 Alternating Word Automata . . . . . . . . . . . . . . . . 191
7.2.2 Alternating Tree Automata . . . . . . . . . . . . . . . . . 193
7.2.3 Tree Automata versus Alternating Word Automata . . . . 194

7.3 Closure Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.4 From Alternating to Deterministic Automata . . . . . . . . . . . 197
7.5 Decision Problems and Complexity Issues . . . . . . . . . . . . . 197
7.6 Horn Logic, Set Constraints and Alternating Automata . . . . . 198

7.6.1 The Clausal Formalism . . . . . . . . . . . . . . . . . . . 198
7.6.2 The Set Constraints Formalism . . . . . . . . . . . . . . . 199
7.6.3 Two Way Alternating Tree Automata . . . . . . . . . . . 200

TATA — September 6, 2005 —



6 CONTENTS

7.6.4 Two Way Automata and Definite Set Constraints . . . . . 202
7.6.5 Two Way Automata and Pushdown Automata . . . . . . 203

7.7 An (other) example of application . . . . . . . . . . . . . . . . . 203
7.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.9 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 205

TATA — September 6, 2005 —



CONTENTS 7

Acknowledgments

Many people gave substantial suggestions to improve the contents of this
book. These are, in alphabetic order, Witold Charatonik, Zoltan Fülöp, Werner
Kuich, Markus Lohrey, Jun Matsuda, Aart Middeldorp, Hitoshi Ohsaki, P.
K. Manivannan, Masahiko Sakai, Helmut Seidl, Stephan Tobies, Ralf Treinen,
Thomas Uribe, Sandor Vágvölgyi, Kumar Neeraj Verma, Toshiyuki Yamada.

TATA — September 6, 2005 —



8 CONTENTS

TATA — September 6, 2005 —



Introduction

During the past few years, several of us have been asked many times about refer-
ences on finite tree automata. On one hand, this is the witness of the liveness of
this field. On the other hand, it was difficult to answer. Besides several excellent
survey chapters on more specific topics, there is only one monograph devoted
to tree automata by Gécseg and Steinby. Unfortunately, it is now impossible
to find a copy of it and a lot of work has been done on tree automata since
the publication of this book. Actually using tree automata has proved to be a
powerful approach to simplify and extend previously known results, and also to
find new results. For instance recent works use tree automata for application
in abstract interpretation using set constraints, rewriting, automated theorem
proving and program verification, databases and XML schema languages.

Tree automata have been designed a long time ago in the context of circuit
verification. Many famous researchers contributed to this school which was
headed by A. Church in the late 50’s and the early 60’s: B. Trakhtenbrot,
J.R. Büchi, M.O. Rabin, Doner, Thatcher, etc. Many new ideas came out of
this program. For instance the connections between automata and logic. Tree
automata also appeared first in this framework, following the work of Doner,
Thatcher and Wright. In the 70’s many new results were established concerning
tree automata, which lose a bit their connections with the applications and were
studied for their own. In particular, a problem was the very high complexity
of decision procedures for the monadic second order logic. Applications of tree
automata to program verification revived in the 80’s, after the relative failure
of automated deduction in this field. It is possible to verify temporal logic
formulas (which are particular Monadic Second Order Formulas) on simpler
(small) programs. Automata, and in particular tree automata, also appeared
as an approximation of programs on which fully automated tools can be used.
New results were obtained connecting properties of programs or type systems
or rewrite systems with automata.

Our goal is to fill in the existing gap and to provide a textbook which presents
the basics of tree automata and several variants of tree automata which have
been devised for applications in the aforementioned domains. We shall discuss
only finite tree automata, and the reader interested in infinite trees should con-
sult any recent survey on automata on infinite objects and their applications
(See the bibliography). The second main restriction that we have is to focus on
the operational aspects of tree automata. This book should appeal the reader
who wants to have a simple presentation of the basics of tree automata, and
to see how some variations on the idea of tree automata have provided a nice
tool for solving difficult problems. Therefore, specialists of the domain probably
know almost all the material embedded. However, we think that this book can

TATA — September 6, 2005 —



10 Introduction

be helpful for many researchers who need some knowledge on tree automata.
This is typically the case of a PhD student who may find new ideas and guess
connections with his (her) own work.

Again, we recall that there is no presentation nor discussion of tree automata
for infinite trees. This domain is also in full development mainly due to appli-
cations in program verification and several surveys on this topic do exist. We
have tried to present a tool and the algorithms devised for this tool. Therefore,
most of the proofs that we give are constructive and we have tried to give as
many complexity results as possible. We don’t claim to present an exhaustive
description of all possible finite tree automata already presented in the literature
and we did some choices in the existing menagerie of tree automata. Although
some works are not described thoroughly (but they are usually described in ex-
ercises), we think that the content of this book gives a good flavor of what can
be done with the simple ideas supporting tree automata.

This book is an open work and we want it to be as interactive as possible.
Readers and specialists are invited to provide suggestions and improvements.
Submissions of contributions to new chapters and improvements of existing ones
are welcome.

Among some of our choices, let us mention that we have not defined any
precise language for describing algorithms which are given in some pseudo algo-
rithmic language. Also, there is no citation in the text, but each chapter ends
with a section devoted to bibliographical notes where credits are made to the
relevant authors. Exercises are also presented at the end of each chapter.

Tree Automata Techniques and Applications is composed of seven main
chapters (numbered 1– 7). The first one presents tree automata and defines
recognizable tree languages. The reader will find the classical algorithms and
the classical closure properties of the class of recognizable tree languages. Com-
plexity results are given when they are available. The second chapter gives
an alternative presentation of recognizable tree languages which may be more
relevant in some situations. This includes regular tree grammars, regular tree
expressions and regular equations. The description of properties relating reg-
ular tree languages and context-free word languages form the last part of this
chapter. In Chapter 3, we show the deep connections between logic and au-
tomata. In particular, we prove in full details the correspondence between finite
tree automata and the weak monadic second order logic with k successors. We
also sketch several applications in various domains.

Chapter 4 presents a basic variation of automata, more precisely automata
with equality constraints. An equality constraint restricts the application of
rules to trees where some subtrees are equal (with respect to some equality
relation). Therefore we can discriminate more easily between trees that we
want to accept and trees that we must reject. Several kinds of constraints are
described, both originating from the problem of non-linearity in trees (the same
variable may occur at different positions).

In Chapter 5 we consider automata which recognize sets of sets of terms.
Such automata appeared in the context of set constraints which themselves are
used in program analysis. The idea is to consider, for each variable or each
predicate symbol occurring in a program, the set of its possible values. The
program gives constraints that these sets must satisfy. Solving the constraints
gives an upper approximation of the values that a given variable can take. Such
an approximation can be used to detect errors at compile time: it acts exactly as

TATA — September 6, 2005 —



Introduction 11

a typing system which would be inferred from the program. Tree set automata
(as we call them) recognize the sets of solutions of such constraints (hence sets
of sets of trees). In this chapter we study the properties of tree set automata
and their relationship with program analysis.

Originally, automata were invented as an intermediate between function de-
scription and their implementation by a circuit. The main related problem in
the sixties was the synthesis problem: which arithmetic recursive functions can
be achieved by a circuit? So far, we only considered tree automata which accepts
sets of trees or sets of tuples of trees (Chapter 3) or sets of sets of trees (Chap-
ter 5). However, tree automata can also be used as a computational device.
This is the subject of Chapter 6 where we study tree transducers.

TATA — September 6, 2005 —



12 Introduction

TATA — September 6, 2005 —



Preliminaries

Terms

We denote by N the set of positive integers. We denote the set of finite strings
over N by N∗. The empty string is denoted by ε.

A ranked alphabet is a couple (F , Arity) where F is a finite set and Arity is
a mapping from F into N . The arity of a symbol f ∈ F is Arity(f). The set of
symbols of arity p is denoted by Fp. Elements of arity 0, 1, . . . p are respectively
called constants, unary, . . . , p-ary symbols. We assume that F contains at least
one constant. In the examples, we use parenthesis and commas for a short
declaration of symbols with arity. For instance, f(, ) is a short declaration for a
binary symbol f .

Let X be a set of constants called variables. We assume that the sets X
and F0 are disjoint. The set T (F ,X ) of terms over the ranked alphabet F and
the set of variables X is the smallest set defined by:

- F0 ⊆ T (F ,X ) and
- X ⊆ T (F ,X ) and
- if p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F ,X ), then f(t1, . . . , tp) ∈ T (F ,X ).
If X = ∅ then T (F ,X ) is also written T (F). Terms in T (F) are called

ground terms. A term t in T (F ,X ) is linear if each variable occurs at most
once in t.

Example 1. Let F = {cons(, ), nil, a} and X = {x, y}. Here cons is a
binary symbol, nil and a are constants. The term cons(x, y) is linear; the
term cons(x, cons(x, nil)) is non linear; the term cons(a, cons(a, nil)) is a ground
term. Terms can be represented in a graphical way. For instance, the term
cons(a, cons(a, nil)) is represented by:

a

a nil

cons

cons

Terms and Trees

A finite ordered tree t over a set of labels E is a mapping from a prefix-closed
set Pos(t) ⊆ N∗ into E. Thus, a term t ∈ T (F ,X ) may be viewed as a finite

TATA — September 6, 2005 —



14 Preliminaries

ordered ranked tree, the leaves of which are labeled with variables or constant
symbols and the internal nodes are labeled with symbols of positive arity, with
out-degree equal to the arity of the label, i.e.a term t ∈ T (F ,X ) can also be
defined as a partial function t : N∗ → F ∪X with domain Pos(t) satisfying the
following properties:

(i) Pos(t) is nonempty and prefix-closed.

(ii) ∀p ∈ Pos(t), if t(p) ∈ Fn, n ≥ 1, then {j | pj ∈ Pos(t)} = {1, . . . , n}.

(iii) ∀p ∈ Pos(t), if t(p) ∈ X ∪ F0, then {j | pj ∈ Pos(t)} = ∅.

We confuse terms and trees, that is we only consider finite ordered ranked trees
satisfying (i), (ii) and (iii). The reader should note that finite ordered trees with
bounded rank k – i.e.there is a bound k on the out-degrees of internal nodes –
can be encoded in finite ordered ranked trees: a label e ∈ E is associated with
k symbols (e, 1) of arity 1, . . . , (e, k) of arity k.

Each element in Pos(t) is called a position. A frontier position is a
position p such that ∀j ∈ N , pj 6∈ Pos(t). The set of frontier positions is
denoted by FPos(t). Each position p in t such that t(p) ∈ X is called a variable

position. The set of variable positions of p is denoted by VPos(t). We denote
by Head(t) the root symbol of t which is defined by Head(t) = t(ε).

SubTerms

A subterm t|p of a term t ∈ T (F ,X ) at position p is defined by the following:

- Pos(t|p) = {j | pj ∈ Pos(t)},
- ∀q ∈ Pos(t|p), t|p(q) = t(pq).

We denote by t[u]p the term obtained by replacing in t the subterm t|p by
u.

We denote by � the subterm ordering , i.e.we write t � t′ if t′ is a subterm
of t. We denote t � t′ if t � t′ and t 6= t′.

A set of terms F is said to be closed if it is closed under the subterm
ordering, i.e.∀t ∈ F (t � t′ ⇒ t′ ∈ F ).

Functions on Terms

The size of a term t, denoted by ‖t‖ and the height of t, denoted by Height(t)
are inductively defined by:

- Height(t) = 0, ‖t‖ = 0 if t ∈ X ,
- Height(t) = 1, ‖t‖ = 1 if t ∈ F0,
- Height(t) = 1+max({Height(ti) | i ∈ {1, . . . , n}}), ‖t‖ = 1+

∑
i∈{1,...,n} ‖ti‖

if Head(t) ∈ Fn.

Example 2. Let F = {f(, , ), g(, ), h(), a, b} and X = {x, y}. Consider the
terms

TATA — September 6, 2005 —



Preliminaries 15

t =

a b

g a

b

h

f

; t′ =

x y

g a

x y

g

f

The root symbol of t is f ; the set of frontier positions of t is {11, 12, 2, 31}; the
set of variable positions of t′ is {11, 12, 31, 32}; t|3 = h(b); t[a]3 = f(g(a, b), a, a);
Height(t) = 3; Height(t′) = 2; ‖t‖ = 7; ‖t′‖ = 4.

Substitutions

A substitution (respectively a ground substitution) σ is a mapping from X
into T (F ,X ) (respectively into T (F)) where there are only finitely many vari-
ables not mapped to themselves. The domain of a substitution σ is the subset
of variables x ∈ X such that σ(x) 6= x. The substitution {x1←t1, . . . , xn←tn}
is the identity on X \ {x1, . . . , xn} and maps xi ∈ X on ti ∈ T (F ,X ), for every
index 1 ≤ i ≤ n. Substitutions can be extended to T (F ,X ) in such a way that:

∀f ∈ Fn, ∀t1, . . . , tn ∈ T (F ,X ) σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

We confuse a substitution and its extension to T (F ,X ). Substitutions will
often be used in postfix notation: tσ is the result of applying σ to the term t.

Example 3. Let F = {f(, , ), g(, ), a, b} and X = {x1, x2}. Let us consider
the term t = f(x1, x1, x2). Let us consider the ground substitution σ = {x1←
a, x2←g(b, b)} and the substitution σ′ = {x1←x2, x2←b}. Then

tσ = t{x1←a, x2←g(b, b)} =
a a

b b

g

f

; tσ′ = t{x1←x2, x2←b} =
x2 x2 b

f

Contexts

Let Xn be a set of n variables. A linear term C ∈ T (F ,Xn) is called a context

and the expression C[t1, . . . , tn] for t1, . . . , tn ∈ T (F) denotes the term in T (F)
obtained from C by replacing variable xi by ti for each 1 ≤ i ≤ n, that is
C[t1, . . . , tn] = C{x1← t1, . . . , xn← tn}. We denote by Cn(F) the set of contexts
over (x1, . . . , xn).

We denote by C(F) the set of contexts containing a single variable. A context
is trivial if it is reduced to a variable. Given a context C ∈ C(F), we denote
by C0 the trivial context, C1 is equal to C and, for n > 1, Cn = Cn−1[C] is a
context in C(F).

TATA — September 6, 2005 —







Chapter 2

Regular Grammars and

Regular Expressions

2.1 Tree Grammar

In the previous chapter, we have studied tree languages from the acceptor point
of view, using tree automata and defining recognizable languages. In this chap-
ter we study languages from the generation point of view, using regular tree
grammars and defining regular tree languages. We shall see that the two no-
tions are equivalent and that many properties and concepts on regular word
languages smoothly generalize to regular tree languages, and that algebraic
characterization of regular languages do exist for tree languages. Actually, this
is not surprising since tree languages can be seen as word languages on an infi-
nite alphabet of contexts. We shall show also that the set of derivation trees of
a context-free language is a regular tree language.

2.1.1 Definitions

When we write programs, we often have to know how to produce the elements of
the data structures that we use. For instance, a definition of the lists of integers
in a functional language like ML is similar to the following definition:

Nat = 0 | s(Nat)
List = nil | cons(Nat, List)

This definition is nothing but a tree grammar in disguise, more precisely the
set of lists of integers is the tree language generated by the grammar with axiom
List, non-terminal symbols List, Nat, terminal symbols 0, s, nil, cons and rules

Nat → 0
Nat → s(Nat)
List → nil

List → cons(Nat, List)

Tree grammars are similar to word grammars except that basic objects are
trees, therefore terminals and non-terminals may have an arity greater than 0.
More precisely, a tree grammar G = (S, N,F , R) is composed of an axiom

TATA — September 6, 2005 —



50 Regular Grammars and Regular Expressions

S, a set N of non-terminal symbols with S ∈ N , a set F of terminal

symbols, a set R of production rules of the form α→ β where α, β are trees
of T (F∪N∪X ) where X is a set of dummy variables and α contains at least one
non-terminal. Moreover we require that F ∩N = ∅, that each element of N ∪F
has a fixed arity and that the arity of the axiom S is 0. In this chapter, we
shall concentrate on regular tree grammars where a regular tree grammar
G = (S, N,F , R) is a tree grammar such that all non-terminal symbols have
arity 0 and production rules have the form A→ β, with A a non-terminal of N

and β a tree of T (F ∪N).

Example 17. The grammar G with axiom List, non-terminals List, Nat

terminals 0, nil, s(), cons(, ), rules

List→ nil

List→ cons(Nat, List)
Nat→ 0
Nat→ s(Nat)

is a regular tree grammar.

A tree grammar is used to build terms from the axiom, using the corre-
sponding derivation relation. Basically the idea is to replace a non-terminal
A by the right-hand side α of a rule A → α. More precisely, given a regu-
lar tree grammar G = (S, N,F , R), the derivation relation →G associated to
G is a relation on pairs of terms of T (F ∪ N) such that s →G t if and only
if there are a rule A → α ∈ R and a context C such that s = C[A] and
t = C[α]. The language generated by G, denoted by L(G), is the set of
terms of T (F) which can be reached by successive derivations starting from the

axiom, i.e.L(G) = {s ∈ TF | S
+
→G s} with

+
→ the transitive closure of →G.

We write → instead of →G when the grammar G is clear from the context. A
regular tree language is a language generated by a regular tree grammar.

Example 18. Let G be the grammar of the previous example, then a derivation
of cons(s(0), nil) from List is

List→G cons(Nat, List)→G cons(s(Nat), List) →G cons(s(Nat), nil)
→G cons(s(0), nil)

and the language generated by G is the set of lists of non-negative integers.

From the example, we can see that trees are generated top-down by replacing
a leaf by some other term. When A is a non-terminal of a regular tree grammar
G, we denote by LG(A) the language generated by the grammar G′ identical to
G but with A as axiom. When there is no ambiguity on the grammar referred to,
we drop the subscript G. We say that two grammars G and G′ are equivalent

when they generate the same language. Grammars can contain useless rules or
non-terminals and we want to get rid of these while preserving the generated
language. A non-terminal is reachable if there is a derivation from the axiom

TATA — September 6, 2005 —



2.1 Tree Grammar 51

containing this non-terminal. A non-terminal A is productive if LG(A) is non-
empty. A regular tree grammar is reduced if and only if all its non-terminals
are reachable and productive. We have the following result:

Proposition 2. A regular tree grammar is equivalent to a reduced regular tree

grammar.

Proof. Given a grammar G = (S, N,F , R), we can compute the set of reach-
able non-terminals and the set of productive non-terminals using the sequences
(Reach)n and (Prod)n which are defined in the following way.

Prod0 = ∅
Prodn = Prodn−1

∪
{A ∈ N | ∃(A→ α) ∈ R s.t.each non-terminal of α is in Prodn−1}

Reach0 = {S}
Reachn = Reachn−1

∪
{A ∈ N | ∃(A′ → α) ∈ R s.t.A′ ∈ Reachn−1 and A occurs in α}

For each sequence, there is an index such that all elements of the sequence
with greater index are identical and this element is the set of productive (resp.
reachable) non-terminals of G. Each regular tree grammar is equivalent to a
reduced tree grammar which is computed by the following cleaning algorithm.

Computation of an equivalent reduced grammar

input: a regular tree grammar G = (S, N,F , R).

1. Compute the set of productive non-terminals NProd =
⋃

n≥0 Prodn for G

and let G′ = (S, NProd,F , R′) where R′ is the subset of R involving rules
containing only productive non-terminals.

2. Compute the set of reachable non-terminals NReach =
⋃

n≥0 Reachn for
G′ (not G) and let G′′ = (S, NReach,F , R′′) where R′′ is the subset of R′

involving rules containing only reachable non-terminals.

output: G′′

The equivalence of G, G′ and G′′ is left to the reader. Moreover each non-
terminal A of G′′ must appear in a derivation S

∗
→G′′ C[A]

∗
→G′′ C[s] which

proves that G′′ is reduced. The reader should notice that exchanging the two
steps of the computation may result in a grammar which is not reduced (see
Exercise 22).

Actually, we shall use even simpler grammars, i.e.normalized regular tree
grammar, where the production rules have the form A → f(A1, . . . , An) or
A → a where f, a are symbols of F and A, A1, . . . , An are non-terminals. The
following result shows that this is not a restriction.

Proposition 3. A regular tree grammar is equivalent to a normalized regular

tree grammar.

TATA — September 6, 2005 —



52 Regular Grammars and Regular Expressions

Proof. Replace a rule A→ f(s1, . . . , sn) by A→ f(A1, . . . , An) with Ai = si if
si ∈ N otherwise Ai is a new non-terminal. In the last case add the rule Ai → si.
Iterate this process until one gets a (necessarily equivalent) grammar with rules
of the form A → f(A1, . . . , An) or A → a or A1 → A2. The last rules are

replaced by the rules A1 → α for all α 6∈ N such that A1
+
→Ai and Ai → α ∈ R

(these A′
is are easily computed using a transitive closure algorithm).

From now on, we assume that all grammars are normalized, unless this is
stated otherwise explicitly.

2.1.2 Regularity and Recognizabilty

Given some normalized regular tree grammar G = (S, N,F , RG), we show how
to build a top-down tree automaton which recognizes L(G). We define A =
(Q,F , I, ∆) by

• Q = {qA | A ∈ N}

• I = {qS}

• qA(f(x1, . . . , xn)) → f(qA1
(x1), . . . , qAn

(xn)) ∈ ∆ if and only if A →
f(A1, . . . , An) ∈ RG.

A standard proof by induction on derivation length yields L(G) = L(A). There-
fore we have proved that the languages generated by regular tree grammar are
recognizable languages.

The next question to ask is whether recognizable tree languages can be
generated by regular tree grammars. If L is a regular tree language, there
exists a top-down tree automata A = (Q,F , I, ∆) such that L = L(A). We
define G = (S, N,F , RG) with S a new symbol, N = {Aq | q ∈ Q}, RG =
{Aq → f(Aq1

, . . . , Aqn
) | q(f(x1, . . . , xn))→ f(q1(x1), . . . , qn(xn)) ∈ R}∪{S →

AI | AI ∈ I}. A standard proof by induction on derivation length yields L(G) =
L(A).

Combining these two properties, we get the equivalence between recogniz-
ability and regularity.

Theorem 18. A tree language is recognizable if and only if it is a regular tree

language.

2.2 Regular Expressions. Kleene’s Theorem for

Tree Languages

Going back to our example of lists of non-negative integers, we can write the
sets defined by the non-terminals Nat and List as follows.

Nat = {0, s(0), s(s(0)), . . .}
List = {nil, cons( , nil), cons( , cons( , nil), . . .}

where stands for any element of Nat. There is some regularity in each set
which reminds of the regularity obtained with regular word expressions con-
structed with the union, concatenation and iteration operators. Therefore we

TATA — September 6, 2005 —



2.2 Regular Expressions. Kleene’s Theorem for Tree Languages 53

can try to use the same idea to denote the sets Nat and List. However, since we
are dealing with trees and not words, we must put some information to indicate
where concatenation and iteration must take place. This is done by using a
new symbol which behaves as a constant. Moreover, since we have two indepen-
dent iterations, the first one for Nat and the second one for List, we shall use
two different new symbols 21 and 22 and a natural extension of regular word
expression leads us to denote the sets Nat and List as follows.

Nat = s(21)
∗,21 .21

0
List = nil + cons( (s(21)

∗,21 .21
0) , 22)

∗,22 .22
nil

Actually the first term nil in the second equality is redundant and a shorter
(but slightly less natural) expression yields the same language.

We are going to show that this is a general phenomenon and that we can
define a notion of regular expressions for trees and that Kleene’s theorem for
words can be generalized to trees. Like in the example, we must introduce a
particular set of constants K which are used to indicate the positions where
concatenation and iteration take place in trees. This explains why the syntax
of regular tree expressions is more cumbersome than the syntax of word regular
expressions. These new constants are usually denoted by 21, 22, . . .. Therefore,
in this section, we consider trees constructed on F∪K where K is a distinguished
finite set of symbols of arity 0 disjoint from F .

2.2.1 Substitution and Iteration

First, we have to generalize the notion of substitution to languages, replacing
some 2i by a tree of some language Li. The main difference with term sub-
stitution is that different occurrences of the same constant 2i can be replaced
by different terms of Li. Given a tree t of T (F ∪ K), 21, . . . , 2n symbols of K
and L1, . . . , Ln languages of T (F ∪K), the tree substitution (substitution for
short) of 21, . . . , 2n by L1, . . . , Ln in t, denoted by t{21←L1, . . . , 2n←Ln}, is
the tree language defined by the following identities.

• 2i{21←L1, . . . , 2n←Ln} = Li for i = 1, . . . , n,

• a{21←L1, . . . , 2n←Ln} = {a} for all a ∈ F ∪ K such that arity of a is 0
and a 6= 21, . . . , a 6= 2n,

• f(s1, . . . , sn){21← L1, . . . , 2n← Ln} = {f(t1, . . . , tn) | ti ∈ si{ 21←L1

. . .

2n←Ln}}

Example 19. Let F = {0, nil, s(), cons(, )} and K = {21, 22}, let

t = cons(21, cons(21, 22))

and let

L1 = {0, s(0)}

TATA — September 6, 2005 —



54 Regular Grammars and Regular Expressions

then
t{21←L} = {cons(0, cons(0, 22)),

cons(0, cons(s(0), 22)),
cons(s(0), cons(0, 22)),
cons(s(0), cons(s(0), 22))}

Symbols of K are mainly used to distinguish places where the substitution
must take place, and they are usually not relevant. For instance, if t is a tree
on the alphabet F ∪ {2} and L be a language of trees on the alphabet F , then
the trees of t{2← L} don’t contain the symbol 2.

The substitution operation generalizes to languages in a straightforward way.
When L, L1, . . . , Ln are languages of T (F ∪ K) and 21, . . . , 2n are elements of
K, we define L{21←L1, . . . , 2n←Ln} to be the set

⋃
t∈L{ t{21←L1, . . . , 2n←

Ln}}.
Now, we can define the concatenation operation for tree languages. Given L

and M two languages of TF∪K, and 2 be a element of K, the concatenation

of M to L through 2, denoted by L .2 M , is the set of trees obtained by
substituting the occurrence of 2 in trees of L by trees of M , i.e.L .2 M =⋃

t∈L{t{2←M}}.
To define the closure of a language, we must define the sequence of successive

iterations. Given L a language of T (F∪K) and 2 an element of K, the sequence
Ln,2 is defined by the equalities.

• L0, 2 = {2}

• Ln+1, 2 = Ln, 2 ∪ L .2 Ln, 2

The closure L∗,2 of L is the union of all Ln, 2 for non-negative n, i.e., L∗,2 =
∪n≥0L

n,2. From the definition, one gets that {2} ⊆ L∗,2 for any L.

Example 20. Let F = {0, nil, s(), cons(, )}, let L = {0, cons(0, 2)} and
M = {nil, cons(s(0), 2)}, then

L .2 M = {0, cons(0, nil), cons(0, cons(s(0), 2))}
L∗,2 = {2}∪

{0, cons(0, 2)}∪
{0, cons(0, 2), cons(0, cons(0, 2))} ∪ . . .

We prove now that the substitution and concatenation operations yield reg-
ular languages when they are applied to regular languages.

Proposition 4. Let L be a regular tree language on F ∪ K, let L1, . . . , Ln be

regular tree languages on F ∪K, let 21, . . . , 2n ∈ K, then L{21←L1, . . . , 2n←
Ln} is a regular tree language.

Proof. Since L is regular, there exists some normalized regular tree grammar
G = (S, N,F ∪ K, R) such that L = L(G), and for each i = 1, . . . , n there
exists a normalized grammar Gi = (Si, Ni,F ∪ K, Ri) such that Li = L(Gi).
We can assume that the sets of non-terminals are pairwise disjoint. The idea
of the proof is to construct a grammar G′ which starts by generating trees like

TATA — September 6, 2005 —



2.2 Regular Expressions. Kleene’s Theorem for Tree Languages 55

G but replaces the generation of a symbol 2i by the generation of a tree of
Li via a branching towards the axiom of Gi. More precisely, we show that
L{21←L1, . . . , 2n←Ln} = L(G′) where G′ = (S, N ′,F ∪K, R′) such that

• N ′ = N ∪N1 ∪ . . . ∪Nn,

• R′ contains the rules of Ri and the rules of R but the rules A→ 2i which
are replaced by the rules A→ Si, where Si is the axiom of Li.

2i 2i

A→ 2i A→ 2i

Si
+
→ s Si

+
→ s′

Figure 2.1: Replacement of rules A→ 2i

A straightforward induction on the height of trees proves that G′ generates
each tree of L{21←L1, . . . , 2n←Ln}.

The converse is to prove that L(G′) ⊆ L{21←L1, . . . , 2n←Ln}. This is
achieved by proving the following property by induction on the derivation length.

A
+
→ s′ where s′ ∈ T (F ∪ K) using the rules of G′

if and only if

there is some s such that A
+
→ s using the rules of G and

s′ ∈ s{21←L1, . . . , 2n←Ln}.

• base case: A→ s in one step. Therefore this derivation is a derivation of
the grammar G and no 2i occurs in s, yielding s ∈ L{21←L1, . . . , 2n←
Ln}

• induction step: we assume that the property is true for any terminal and
derivation of length less than n. Let A be such that A → s′ in n steps.

This derivation can be decomposed as A→ s1
+
→ s′. We distinguish several

cases depending on the rule used in the derivation A→ s1.

– the rule is A→ f(A1, . . . , Am), therefore s′ = f(t1, . . . , tm) and ti ∈
L(Ai){21← L1, . . . , 2n← Ln}, therefore s′ ∈ L(A){21← L1, . . . , 2n←
Ln},

TATA — September 6, 2005 —



56 Regular Grammars and Regular Expressions

– the rule is A → Si, therefore A → 2i ∈ R and s′ ∈ Li and s′ ∈
L(A){21←L1, . . . , 2n←Ln}.

– the rule A→ a with a ∈ F , a of arity 0, a 6= 21, . . . , a 6= 2n are not
considered since no further derivation can be done.

The following proposition states that regular languages are stable also under
closure.

Proposition 5. Let L be a regular tree language of T (F ∪K), let 2 ∈ K, then

L∗,2 is a regular tree language of T (F ∪ K).

Proof. There exists a normalized regular grammar G = (S, N,F ∪ K, R) such
that L = L(G) and we obtain from G a grammar G′ = (S′, N ∪{S′},F ∪K, R′)
for L∗,2 by replacing rules leading to 2 such as A→ 2 by rules A→ S′ leading
to the (new) axiom. Moreover we add the rule S′ → 2 to generate {2} = L0,2

and the rule S′ → S to generate Li,2 for i > 0. By construction G′ generates
the elements of L∗,2.

Conversely a proof by induction on the length on the derivation proves that
L(G′) ⊆ L∗,2.

2.2.2 Regular Expressions and Regular Tree Languages

Now, we can define regular tree expression in the flavor of regular word expres-
sion using the +, .2,∗,2 operators.

Definition 2. The set Regexp(F ,K) of regular tree expressions on F and

K is the smallest set such that:

• the empty set ∅ is in Regexp(F ,K)

• if a ∈ F0 ∪ K is a constant, then a ∈ Regexp(F ,K),

• if f ∈ Fn has arity n > 0 and E1, . . . , En are regular expressions of

Regexp(F ,K) then f(E1, . . . , En) is a regular expression of Regexp(F ,K),

• if E1, E2 are regular expressions of Regexp(F ,K) then (E1 + E2) is a

regular expression of Regexp(F ,K),

• if E1, E2 are regular expressions of Regexp(F ,K) and 2 is an element of

K then E1 .2 E2 is a regular expression of Regexp(F ,K),

• if E is a regular expression of Regexp(F ,K) and 2 is an element of K
then E∗,2 is a regular expression of Regexp(F ,K).

Each regular expression E represents a set of terms of T (F ∪ K) which we
denote [[E]] and which is formally defined by the following equalities.

• [[∅]] = ∅,

• [[a]] = {a} for a ∈ F0 ∪ K,

• [[f(E1, . . . , En)]] = {f(s1, . . . , sn) | s1 ∈ [[E1]], . . . , sn ∈ [[En]]},

TATA — September 6, 2005 —



2.2 Regular Expressions. Kleene’s Theorem for Tree Languages 57

• [[E1 + E2]] = [[E1]] ∪ [[E2]],

• [[E1.2 E2]] = [[E1]]{2←[[E2]]},

• [[E∗,2]] = [[E]]∗,2

Example 21. Let F = {0, nil, s(), cons(, )} and 2 ∈ K then

(cons(0, 2)∗,2).2nil

is a regular expression of Regexp(F ,K) which denotes the set of lists of zeros:

{nil, cons(0, nil), cons(0, cons(0, nil)), . . .}

In the remaining of this section, we compare the relative expressive power
of regular expressions and regular languages. It is easy to prove that for each
regular expression E, the set [[E]] is a regular tree language. The proof is done
by structural induction on E. The first three cases are obvious and the two last
cases are consequences of Propositions 5 and 4. The converse, i.e.a regular tree
language can be denoted by a regular expression, is more involved and the proof
is similar to the proof of Kleene’s theorem for word language. Let us state the
result first.

Proposition 6. Let A = (Q,F , QF , ∆) be a bottom-up tree automaton, then

there exists a regular expression E of Regexp(F , Q) such that L(A) = [[E]].

The occurrence of symbols of Q in the regular expression denoting L(A)
doesn’t cause any trouble since a regular expression of Regexp(F , Q) can denote
a language of TF .

Proof. The proof is similar to the proof for word languages and word automata.
For each 1 ≤ i, j,≤ |Q|, K ⊆ Q, we define the set T (i, j, K) as the set of trees
t of T (F ∪ K) such that there is a run r of A on t satisfying the following
properties:

• r(ǫ) = qi,

• r(p) ∈ {q1, . . . , qj} for all p 6= ǫ labelled by a function symbol.

Roughly speaking, a term is in T (i, j, K) if we can reach qi at the root by
using only states in {q1, . . . , qj} when we assume that the leaves are states of K.
By definition, L(A) the language accepted by A is the union of the T (i, |Q|, ∅)’s
for i such that qi is a final state: these terms are the terms of T (F) such
that there is a successful run using any possible state of Q. Now, we prove
by induction on j that T (i, j, K) can be denoted by a regular expression of
Regexp(F , Q).

• Base case j = 0. The set T (i, 0, K) is the set of trees t where the root is
labelled by qi, the leaves are in F ∪ K and no internal node is labelled
by some q. Therefore there exist a1, . . . , an, a ∈ F ∪ K such that t =
f(a1, . . . , an) or t = a, hence T (i, 0, K) is finite and can be denoted by a
regular expression of Regexp(F ∪Q).

TATA — September 6, 2005 —



58 Regular Grammars and Regular Expressions

• Induction case. Let us assume that for any i′, K ′ ⊆ Q and 0 ≤ j′ < j, the
set T (i′, j′, K ′) can be denoted by a regular expression. We can write the
following equality:

T (i, j, K) = T (i, j − 1, K)
∪
T (i, j − 1, K ∪ {qj}) .qj T (j, j − 1, K ∪ {qj})

∗,qj .qj T (j, j − 1, K)

The inclusion of T (i, j, K) in the right-hand side of the equality can be
easily seen from Figure 2.2.2.

qj

qj

qj

T
(j,

j
−

1
,
K

∪
{
q
j }

)
∗
,q

j
.q

j
T

(j,
j
−

1
,
K

)

qi

qj

qj

T (j, j − 1, K)

T
(j,

j
−

1
,
K

∪
{
q
j }

)
∗
,q

j
.q

j
T

(j,
j
−

1
,
K

)

T (j, j − 1, K)

qj

Figure 2.2: Decomposition of a term of T (i, j, K)

The converse inclusion is also not difficult. By definition:
T (i, j − 1, K) ⊆ T (i, j, K)

and an easy proof by induction on the number of occurrences of qj yields:
T (i, j − 1, K ∪ {qj}) .qj T (j, j − 1, K ∪ {qj})

∗,qj .qj T (j, j − 1, K) ⊆ T (i, j, K)

By induction hypothesis, each set of the right-hand side of the equality
defining T (i, j, K) can be denoted by a regular expression of Regex(F∪Q).
This yields the desired result because the union of these sets is represented
by the sum of the corresponding expressions.

TATA — September 6, 2005 —



2.3 Regular Equations 59

Since we have already seen that regular expressions denote recognizable tree
languages and that recognizable languages are regular, we can state Kleene’s
theorem for tree languages.

Theorem 19. A tree language is recognizable if and only if it can be denoted

by a regular tree expression.

2.3 Regular Equations

Looking at our example of the set of lists of non-negative integers, we can
realize that these lists can be defined by equations instead of grammar rules.
For instance, denoting set union by +, we could replace the grammar given in
Section 2.1.1 by the following equations.

Nat = 0 + s(Nat)
List = nil + cons(Nat, List)

where the variables are List and Nat. To get the usual lists of non-negative
numbers, we must restrict ourselves to the least fixed-point solution of this set
of equations. Systems of language equations do not always have solution nor
does a least solution always exists. Therefore we shall study regular equation

systems defined as follows.

Definition 3. Let X1, . . . , Xn be variables denoting sets of trees, for 1 ≤ j ≤ p,

1 ≤ i ≤ mj,let s
j
i ’s be terms over F ∪ {X1, . . . , Xn}, then a regular equation

system S is a set of equations of the form:

X1 = s1
1 + . . . + s1

m1

. . .

Xp = s
p
1 + . . . + sp

mp

A solution of S is any n-tuple (L1, . . . , Ln) of languages of T (F) such that

L1 = s1
1{X1←L1, . . . , Xn←Ln} ∪ . . . ∪ s1

m1
{X1←L1, . . . , Xn←Ln}

. . .

Lp = s
p
1{X1←L1, . . . , Xn←Ln} ∪ . . . ∪ sp

mp
{X1←L1, . . . , Xn←Ln}

Since equations with the same left-hand side can be merged into one equa-
tion, and since we can add equations Xk = Xk without changing the set of
solutions of a system, we assume in the following that p = n.

The ordering ⊆ is defined on T (F)n by

(L1, . . . , Ln) ⊆ (L′
1, . . . , L

′
n) iffLi ⊆ L′

i for all i = 1, . . . , n

By definition (∅, . . . , ∅) is the smallest element of ⊆ and each increasing
sequence has an upper bound. To a system of equations, we associate the fixed-
point operator T S : T (F)n → T (F)n defined by:

T S(L1, . . . , Ln) = (L′

1, . . . , L
′

n)
where

L′

1 = L1 ∪ s1
1{X1←L1, . . . , Xn←Ln} ∪ . . . ∪ s1

m1
{X1←L1, . . . , Xn←Ln}

. . .

L′

n = Ln ∪ sn
1 {X1←L1, . . . , Xn←Ln} ∪ . . . ∪ sn

mn
{X1←L1, . . . , Xn←Ln}

TATA — September 6, 2005 —



60 Regular Grammars and Regular Expressions

Example 22. Let S be

Nat = 0 + s(Nat)
List = nil + cons(Nat, List)

then
T S(∅, ∅) = ({0}, {nil})
T S2(∅, ∅) = ({0, s(0)}, {nil, cons(0, nil)})

Using a classical approach we use the fixed-point operator to compute the
least fixed-point solution of a system of equations.

Proposition 7. The fixed-point operator T S is continuous and its least fixed-

point T Sω(∅, . . . , ∅) is the least solution of S.

Proof. We show that T S is continuous in order to use Knaster-Tarski’s theorem
on continuous operators. By construction, T S is monotonous, and the last
point is to prove that if S1 ⊆ S2 ⊆ . . . is an increasing sequence of n-tuples of
languages, the equality T S(

⋃
i≥1 Si) =

⋃
i≥1 T S(Si)) holds. By definition, each

Si can be written as (Si
1, . . . , S

i
n).

• We have that
⋃

i=1,... T S(Si) ⊆ T S(
⋃

i=1,...(Si) holds since the sequence
S1 ⊆ S2 ⊆ . . . is increasing and the operator T S is monotonous.

• Conversely we must prove T S(
⋃

i=1,... Si) ⊆
⋃

i=1,... T S(Si)).

Let v = (v1, . . . , vn) ∈ T S(
⋃

i=1,... Si). Then for each k = 1, . . . , n

either vk ∈
⋃

i=1,... Si hence vk ∈ Slk for some lk, or there is some

u = (u1, . . . , un) ∈
⋃

i≥1 Si such that vk = sk
jk
{X1 ← u1, . . . , Xn ← un}.

Since the sequence (Si, i≥1) is increasing we have that u ∈ Slk for some lk.
Therefore vk ∈ T S(SL) ⊆ T S(

⋃
i=1,... Si) for L = max{lk | k = 1, . . . , n}.

We have introduced systems of regular equations to get an algebraic charac-
terization of regular tree languages stated in the following theorem.

Theorem 20. The least fixed-point solution of a system of regular equations

is a tuple of regular tree languages. Conversely each regular tree language is a

component of the least solution of a system of regular equations.

Proof. Let S be a system of regular equations, and let Gi = (Xi, {X1, . . . , Xn},F , R)
where R = ∪k=1,...,n{Xk → s1

k, . . . , Xk → s
jk

k } if the kth equation of S is

Xk = s1
k + . . . + s

jk

k . We show that L(Gi) is the ith component of (L1, . . . , Ln)
the least fixed-point solution of S.

• We prove that T Sp(∅, . . . , ∅) ⊆ (L(G1), . . . , L(Gn)) by induction on p.

Let us assume that this property holds for all p′ ≤ p. Let u = (u1, . . . , un)
be an element of TSp+1(∅, . . . , ∅) = T S(T Sp(∅, . . . , ∅)). For each i in

TATA — September 6, 2005 —



2.4 Context-free Word Languages and Regular Tree Languages 61

1, . . . , n, either ui ∈ T Sp(∅, . . . , ∅) and ui ∈ L(Gi) by induction hypoth-
esis, or there exist vi = (vi

1, . . . , v
i
n) ∈ TSp(∅, . . . , ∅) and s

j
i such that

ui = s
j
i{X1 → vi

1, . . . , Xn → vi
n}. By induction hypothesis vi

j ∈ L(Gj) for
j = 1, . . . , n therefore ui ∈ L(Gi).

• We prove now that (L(X1), . . . , L(Xn)) ⊆ T Sω(∅, . . . , ∅) by induction on
derivation length.

Let us assume that for each i = 1, . . . , n, for each p′ ≤ p, if Xi →p′

ui then
ui ∈ T Sp′

(∅, . . . , ∅). Let Xi →p+1 ui, then Xi → s
j
i (X1, . . . , Xn) →p vi

with ui = s
j
i (v1, . . . , vn) and Xj →p′

vj for some p′ ≤ p. By induction

hypothesis vj ∈ T Sp′

(∅, . . . , ∅) which yields that ui ∈ T Sp+1(∅, . . . , ∅).

Conversely, given a regular grammar G = (S, {A1, . . . , An},F , R), with R =
{A1 → s1

1, . . . , A1 → s1
p1

, . . . , An → sn
1 , . . . , An → sn

pn
}, a similar proof yields

that the least solution of the system

A1 = s1
1 + . . . + s1

p1

. . .

An = sn
1 + . . . + sn

pn

is (L(A1), . . . , L(An)).

Example 23. The grammar with axiom List, non-terminals List, Nat termi-
nals 0, s(), nil, cons(, ) and rules

List → nil

List → cons(Nat, List)
Nat → 0
Nat → s(Nat)

generates the second component of the least solution of the system given in
Example 22.

2.4 Context-free Word Languages and Regular

Tree Languages

Context-free word languages and regular tree languages are strongly related.
This is not surprising since derivation trees of context-free languages and deriva-
tions of tree grammars look alike. For instance let us consider the context-free
language of arithmetic expressions on +,∗ and a variable x. A context-free word
grammar generating this set is E → x | E + E | E ∗ E where E is the axiom.
The generation of a word from the axiom can be described by a derivation tree
which has the axiom at the root and where the generated word can be read
by picking up the leaves of the tree from the left to the right (computing what
we call the yield of the tree). The rules for constructing derivation trees show
some regularity, which suggests that this set of trees is regular. The aim of this
section is to show that this is true indeed. However, there are some traps which

TATA — September 6, 2005 —



62 Regular Grammars and Regular Expressions

must be avoided when linking tree and word languages. First, we describe how
to relate word and trees. The symbols of F are used to build trees but also
words (by taking a symbol of F as a letter). The Yield operator computes a
word from a tree by concatenating the leaves of the tree from the left to the
right. More precisely, it is defined as follows.

Yield(a) = a if aıF0,

Yield(f(s1, . . . , sn)) = Yield(s1) . . .Yield(sn) if f ∈ Fn, si ∈ T (F).

Example 24. Let F = {x, +, ∗, E(, , )} and let

s =
x ∗

x + x

E

E

then Yield(s) = x ∗ x + x which is a word on {x, ∗, +}. Note that ∗ and + are
not the usual binary operator but syntactical symbols of arity 0. If

t =

x ∗ x

E + x

E

then Yield(t) = x ∗ x + x.

We recall that a context-free word grammar G is a tuple (S, N, T, R)
where S is the axiom, N the set of non-terminals letters, T the set of terminal
letters, R the set of production rules of the form A → α with A ∈ N, α ∈
(T ∪N)∗. The usual definition of derivation trees of context free word languages
allow nodes labelled by a non-terminal A to have a variable number of sons,
which is equal to the length of the right-hand side α of the rule A→ α used to
build the derivation tree at this node.

Since tree languages are defined for signatures where each symbol has a fixed
arity, we introduce a new symbol (A, m) for each A ∈ N such that there is a rule
A → α with α of length m. Let G be the set composed of these new symbols
and of the symbols of T . The set of derivation trees issued from a ∈ G, denoted
by D(G, a) is the smallest set such that:

• D(G, a) = {a} if a ∈ T ,

• (a, 0)(ǫ) ∈ D(G, a) if a→ ǫ ∈ R where ǫ is the empty word,

• (a, p)(t1, . . . , tp) ∈ D(G, (a, p)) if t1 ∈ D(G, a1), . . . , tp ∈ D(G, ap) and
(a→ a1 . . . ap) ∈ R where ai ∈ G.

The set of derivation trees of G is D(G) = ∪(S,i)∈GD(G, (S, i)).

Example 25. Let T = {x, +, ∗} and let G be the context free word grammar
with axiom S, non terminal Op, and rules

TATA — September 6, 2005 —



2.4 Context-free Word Languages and Regular Tree Languages 63

S → S Op S

S → x

Op→ +
Op→ ∗

Let the word u = x ∗ x + x, a derivation tree for u with G is dG(u), and the
same derivation tree with our notations is DG(u) ∈ D(G, S)

dG(u) =

x

S

∗

Op

x

S

+

Op

x

S

S

S

; DG(u) =

x

(S, 1)

∗

(Op, 1)

x

(S, 1)

+

(Op, 1)

x

(S, 1)

(S, 3)

(S, 3)

By definition, the language generated by a context-free word grammar G is
the set of words computed by applying the Yield operator to derivation trees of
G. The next theorem states how context-free word languages and regular tree
languages are related.

Theorem 21. The following statements hold.

1. Let G be a context-free word grammar, then the set of derivation trees of

L(G) is a regular tree language.

2. Let L be a regular tree language then Yield(L) is a context-free word lan-

guage.

3. There exists a regular tree language which is not the set of derivation trees

of a context-free language.

Proof. We give the proofs of the three statements.

1. Let G = (S, N, T, R) be a context-free word language. We consider the
tree grammar G′ = (S, N,F , R′)) such that

• the axiom and the set of non-terminal symbols of G and G′ are the
same,

• F = T ∪ {ǫ} ∪ {(A, n) | A ∈ N, ∃A→ α ∈ R with α of length n},

• if A→ ǫ then A→ (A, 0)(ǫ) ∈ R′

• if (A→ a1 . . . ap) ∈ R then (A→ (A, p)(a1, . . . , ap)) ∈ R′

Then L(G) = {Yield(s) | s ∈ L(G′)}. The proof is a standard induction on
derivation length. It is interesting to remark that there may and usually
does exist several tree languages (not necessarily regular) such that the
corresponding word language obtained via the Yield operator is a given
context-free word language.

2. Let G be a normalized tree grammar (S, X, N, R). We build the word
context-free grammar G′ = (S, X, N, R′) such that a rule X → X1 . . . Xn

(resp. X → a) is in R′ if and only if the rule X → f(X1, . . . , Xn) (resp.
X → a) is in R for some f . It is straightforward to prove by induction on
the length of derivation that L(G′) = Yield(L(G)).

TATA — September 6, 2005 —



64 Regular Grammars and Regular Expressions

3. Let G be the regular tree grammar with axiom X , non-terminals X, Y, Z,
terminals a, b, g and rules

X → f(Y, Z)
Y → g(a)
Z → g(b)

The language L(G) consists of the single tree (arity have been indicated
explicitly to make the link with derivation trees):

a

(g, 1)

b

(g, 1)

(f, 2)

Assume that L(G) is the set of derivation trees of some context-free word
grammar. To generate the first node of the tree, one must have a rule
F → G G where F is the axiom and rules G→ a, G→ b (to get the inner
nodes). Therefore the following tree:

a

(g, 1)

a

(g, 1)

(f, 2)

should be in L(G) which is not the case.

2.5 Beyond Regular Tree Languages: Context-

free Tree Languages

For word language, the story doesn’t end with regular languages but there is a
strict hierarchy.

regular ⊂ context-free ⊂ recursively enumerable

Recursively enumerable tree languages are languages generated by tree gram-
mar as defined in the beginning of the chapter, and this class is far too general
for having good properties. Actually, any Turing machine can be simulated by
a one rule rewrite system which shows how powerful tree grammars are (any
grammar rule can be seen as a rewrite rule by considering both terminals and
non-terminals as syntactical symbols). Therefore, most of the research has been
done on context-free tree languages which we describe now.

TATA — September 6, 2005 —



2.5 Beyond Regular Tree Languages: Context-free Tree Languages 65

2.5.1 Context-free Tree Languages

A context-free tree grammar is a tree grammar G = (S, N,F , R) where the
rules have the form X(x1, . . . , xn)→ t with t a tree of T (F ∪N ∪{x1, . . . , xn}),
x1, . . . , xn ∈ X where X is a set of reserved variables with X ∩ (F ∪ N) = ∅,
X a non-terminal of arity n. The definition of the derivation relation is slightly
more complicated than for regular tree grammar: a term t derives a term t′

if no variable of X occurs in t or t′, there is a rule l → r of the grammar, a
substitution σ such that the domain of σ is included in X and a context C

such that t = C[lσ] and t′ = C[rσ]. The context-free tree language L(G)
is the set of trees which can be derived from the axiom of the context-free tree
grammar G.

Example 26. The grammar of axiom Prog, set of non-terminals {Prog, Nat, Fact()},
set of terminals {0, s, if(, ), eq(, ), not(), times(, ), dec()} and rules

Prog → Fact(Nat)
Nat → 0
Nat → s(Nat)
Fact(x) → if(eq(x, 0), s(0))
Fact(x) → if(not(eq(x, 0)), times(x, Fact(dec(x))))

where X = {x} is a context-free tree grammar. The reader can easily see that
the last rule is the classical definition of the factorial function.

The derivation relation associated to a context-free tree grammar G is a gen-
eralization of the derivation relation for regular tree grammar. The derivation
relation→ is a relation on pairs of terms of T (F∪N) such that s→ t iff there is
a rule X(x1, . . . , xn)→ α ∈ R, a context C such that s = C[X(t1, . . . , tn)] and
t = C[α{x1← t1, . . . , xn← tn}]. For instance, the previous grammar can yield
the sequence of derivations

Prog → Fact(Nat)→ Fact(0)→ if(eq(0, 0), s(0))

The language generated by G, denoted by L(G) is the set of terms of T (F)
which can be reached by successive derivations starting from the axiom. Such
languages are called context-free tree languages. Context-free tree languages are
closed under union, concatenation and closure. Like in the word case, one can
define pushdown tree automata which recognize exactly the set of context-free
tree languages. We discuss only IO and OI grammars and we refer the reader
to the bibliographic notes for more informations.

2.5.2 IO and OI Tree Grammars

Context-free tree grammars have been extensively studied in connection with
the theory of recursive program scheme. A non-terminal F can be seen as
a function name and production rules F (x1, . . . , xn) → t define the function.
Recursive definitions are allowed since t may contain occurrences of F . Since we
know that such recursive definitions may not give the same results depending

TATA — September 6, 2005 —



66 Regular Grammars and Regular Expressions

on the evaluation strategy, IO and OI tree grammars have been introduced to
account for such differences.

A context-free grammar is IO (for innermost-outermost) if we restrict legal
derivations to derivations where the innermost terminals are derived first. This
control corresponds to call by value evaluation. A context-free grammar is OI

(for outermost-innermost) if we restrict legal derivations to derivations where
the outermost terminals are derived first. This corresponds to call by name
evaluation. Therefore, given one context-free grammar G, we can define IO-G
and OI-G and the next example shows that the languages generated by these
grammars may be different.

Example 27. Let G be the context-free grammar with axiom Exp, non-
terminals {Exp, Nat, Dup}, terminals {double, s, 0}) and rules
Exp→ Dup(Nat)
Nat→ s(Nat)
Nat→ 0
Dup(x)→ double(x, x)

Then outermost-innermost derivations have the form

Exp→ Dup(Nat)→ double(Nat, Nat)
∗
→ double(sn(0), sm(0))

while innermost-outermost derivations have the form

Exp→ Dup(Nat)
∗
→Dup(sn(0))→ double(sn(0), sn(0))

Therefore L(OI-G) = {double(sn(0), sm(0)) | n, m ∈ N} and
L(IO-G) = {double(sn(0), sn(0)) | n ∈ N}.

A tree language L is IO if there is some context-free grammar G such that
L = L(IO-G). The next theorem shows the relation between L(IO-G), L(OI-G)
and L(G).

Theorem 22. The following inclusion holds: L(IO-G) ⊆ L(OI-G) = L(G)

Example 27 shows that the inclusion can be strict. IO-languages are closed
under intersection with regular languages and union, but the closure under
concatenation requires another definition of concatenation: all occurrences of a
constant generated by a non right-linear rule are replaced by the same term, as
shown by the next example.

Example 28. Let G be the context-free grammar with axiom Exp, non-
terminals {Exp, Nat, Fct}, terminals {2, f( , , )} and rules
Exp→ Fct(Nat, Nat)
Nat→ 2

Fct(x, y)→ f(x, x, y)
and let L = IO-G and M = {0, 1}, then L.2M contains f(0, 0, 0),f(0, 0, 1),
f(1, 1, 0), f(1, 1, 1) but not f(1, 0, 1) nor f(0, 1, 1).

TATA — September 6, 2005 —



2.6 Exercises 67

There is a lot of work on the extension of results on context-free word gram-
mars and languages to context-free tree grammars and languages. Unfortu-
nately, many constructions and theorem can’t be lifted to the tree case. Usually
the failure is due to non-linearity which expresses that the same subtrees must
occur at different positions in the tree. A similar phenomenon occurred when we
stated results on recognizable languages and tree homomorphisms: the inverse
image of a recognizable tree language by a tree homorphism is recognizable, but
the assumption that the homomorphism is linear is needed to show that the
direct image is recognizable.

2.6 Exercises

Exercise 20. Let F = {f(, ), g(), a}. Consider the automaton A = (Q,F , Qf , ∆)
defined by: Q = {q, qg , qf}, Qf = {qf}, and ∆ =

{ a → q(a) g(q(x)) → q(g(x))
g(q(x)) → qg(g(x)) g(qg(x)) → qf (g(x))

f(q(x), q(y)) → q(f(x, y)) }.

Define a regular tree grammar generating L(A).

Exercise 21.

1. Prove the equivalence of a regular tree grammar and of the reduced regular tree
grammar computed by algorithm of proposition 2.

2. Let F = {f(, ), g(), a}. Let G be the regular tree grammar with axiom X,
non-terminal A, and rules

X → f(g(A),A)
A→ g(g(A))

Define a top-down NFTA, a NFTA and a DFTA for L(G). Is it possible to
define a top-down DFTA for this language?

Exercise 22. Let F = {f(, ), a}. Let G be the regular tree grammar with axiom X,
non-terminals A, B, C and rules

X → C

X → a

X → A

A→ f(A, B)
B → a

Compute the reduced regular tree grammar equivalent to G applying the algorithm

defined in the proof of Proposition 2. Now, consider the same algorithm, but first

apply step 2 and then step 1. Is the output of this algorithm reduced? equivalent to

G?

Exercise 23.

1. Prove Theorem 6 using regular tree grammars.

2. Prove Theorem 7 using regular tree grammars.

Exercise 24. (Local languages) Let F be a signature, let t be a term of T (F), then
we define fork(t) as follows:

• fork(a) = ∅, for each constant symbol a;

TATA — September 6, 2005 —



68 Regular Grammars and Regular Expressions

• fork(f(t1, . . . , tn)) = {f(Head(t1), . . . ,Head(tn))} ∪
Si=n

i=1
fork(ti)

A tree language L is local if and only if there exist a set F ′ ⊆ F and a set

G ⊆ fork(T (F)) such that t ∈ L iff root(t) ∈ F ′ and fork(t) ⊆ G. Prove that every

local tree language is a regular tree language. Prove that a language is local iff it is

the set of derivation trees of a context-free word language.

Exercise 25. The pumping lemma for context-free word languages states:

for each context-free language L, there is some constant k ≥ 1 such that
each z ∈ L of length greater than or equal to k can be written z = uvwxy

such that vx is not the empty word, vwx has length less than or equal to
k, and for each n ≥ 0, the word uvnwxny is in L.

Prove this result using the pumping lemma for tree languages and the results of this

chapter.

Exercise 26. Another possible definition for the iteration of a language is:

• L0, 2 = {2}

• Ln+1, 2 = Ln, 2 ∪ Ln, 2 .2 L

(Unfortunately that definition was given in the previous version of TATA)

1. Show that this definition may generate non-regular tree languages. Hint: one
binary symbol f( , ) and 2 are enough.

2. Are the two definitions equivalent (i.e.generate the same languages) if Σ consists
of unary symbols and constants only?

Exercise 27. Let F be a ranked alphabet, let t be a term of T (F), then we define
the word language Branch(t) as follows:

• Branch(a) = a, for each constant symbol a;

• Branch(f(t1, . . . , tn)) =
Si=n

i=1
{fu | u ∈ Branch(ti)}

Let L be a regular tree language, prove that Branch(L) =
S

t∈L
Branch(t) is a regular

word language. What about the converse?

Exercise 28.

1. Let F be a ranked alphabet such that F0 = {a, b}. Find a regular tree language
L such that Yield(L) = {anbn | n ≥ 0}. Find a non regular tree language L

such that Yield(L) = {anbn | n ≥ 0}.

2. Same questions with Yield(L) = {u ∈ F∗

0 | |u|a = |u|b} where |u|a (respectively
|u|b) denotes the number of a (respectively the number of b) in u.

3. Let F be a ranked alphabet such that F0 = {a, b, c}, let A1 = {anbncp | n, p ≥
0}, and let A2 = {anbpcp | n, p ≥ 0}. Find regular tree languages such that
Yield(L1) = A1 and Yield(L2) = A2. Does there exist a regular tree language
such that Yield(L) = A1 ∩A2.

Exercise 29.

1. Let G be the context free word grammar with axiom X, terminals a, b, and
rules

X → XX

X → aXb

X → ǫ

where ǫ stands for the empty word. What is the word language L(G)? Give a
derivation tree for u = aabbab.

TATA — September 6, 2005 —



2.7 Bibliographic notes 69

2. Let G′ be the context free word grammar in Greibach normal form with axiom
X, non terminals X ′, Y ′, Z′ terminals a, b, and rules l

X ′ → aX ′Y ′

X ′ → aY ′

X ′ → aX ′Z′

X ′ → aZ′

Y ′ → bX ′

Z′ → b

prove that L(G′) = L(G). Give a derivation tree for u = aabbab.

3. Find a context free word grammar G′′ such that L(G′′) = A1 ∪ A2 (A1 and A2

are defined in Exercise 28). Give two derivation trees for u = abc.

Exercise 30. Let F be a ranked alphabet.

1. Let L and L′ be two regular tree languages. Compare the sets Yield(L ∩ L′)
and Yield(L) ∩Yield(L′).

2. Let A be a subset of F0. Prove that T (F , A) = T (F ∩ A) is a regular tree
language. Let L be a regular tree language over F , compare the sets Yield(L ∩
T (F , A)) and Yield(L) ∩Yield(T (F , A)).

3. Let R be a regular word language over F0. Let T (F ,R) = {t ∈ T (F) |
Yield(t) ∈ R}. Prove that T (F , R) is a regular tree language. Let L be a regu-
lar tree language over F , compare the sets Yield(L ∩ T (F , R)) and Yield(L) ∩
Yield(T (F , R)). As a consequence of the results obtained in the present exer-
cise, what could be said about the intersection of a context free word language
and of a regular tree language?

2.7 Bibliographic notes

This chapter only scratches the topic of tree grammars and related topics. A
useful reference on algebraic aspects of regular tree language is [GS84] which
contains a lot of classical results on these features. There is a huge litterature on
tree grammars and related topics, which is also relevant for the chapter on tree
transducers, see the references given in this chapter. Systems of equations can
be generalized to formal tree series with similar results [BR82, Boz99, Boz01,
Kui99, Kui01]. The notion of pushdown tree automaton has been introduced by
Guessarian [Gue83] and generalized to formal tree series by Kuich [Kui01] The
reader may consult [Eng82, ES78] for IO and OI grammars. The connection
between recursive program scheme and formalisms for regular tree languages is
also well-known, see [Cou86] for instance. We should mention that some open
problems like equivalence of deterministic tree grammars are now solved using
the result of Senizergues on the equivalence of deterministic pushdown word
automata [Sén97].

TATA — September 6, 2005 —







Bibliography

[AD82] A. Arnold and M. Dauchet. Morphismes et bimorphismes d’arbres.
Theorical Computer Science, 20:33–93, 1982.

[AG68] M. A. Arbib and Y. Give’on. Algebra automata I: Parallel program-
ming as a prolegomena to the categorical approach. Information

and Control, 12(4):331–345, April 1968.

[AKVW93] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complex-
ity of set constraints. In E. Börger, Y. Gurevich, and K. Meinke,
editors, Proceedings of Computer Science Logic, volume 832 of Lec-

ture Notes in Computer Science, pages 1–17, 1993. Techn. Report
93-1352, Cornell University.

[AKW95] A. Aiken, D. Kozen, and E.L. Wimmers. Decidability of systems
of set constraints with negative constraints. Information and Com-

putation, 122(1):30–44, October 1995.

[AM78] M.A. Arbib and E.G. Manes. Tree transformations and semantics
of loop-free programs. Acta Cybernetica, 4:11–17, 1978.

[AM91] A. Aiken and B. R. Murphy. Implementing regular tree expressions.
In Proceedings of the ACM conf. on Functional Programming Lan-

guages and Computer Architecture, pages 427–447, 1991.

[AU71] A. V. Aho and J. D. Ullmann. Translations on a context-free gram-
mar. Information and Control, 19:439–475, 1971.

[AW92] A. Aiken and E.L. Wimmers. Solving Systems of Set Constraints.
In Proceedings, Seventh Annual IEEE Symposium on Logic in Com-

puter Science [IEE92], pages 329–340.

[Bak78] B.S. Baker. Generalized syntax directed translation, tree transduc-
ers, and linear space. Journal of Comput. and Syst. Sci., 7:876–891,
1978.

[BGG97] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision

Problem. Perspectives of Mathematical Logic. Springer Verlag,
1997.

[BGW93] L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are
the monadic class. In Proceedings, Eighth Annual IEEE Sympo-

sium on Logic in Computer Science, pages 75–83. IEEE Computer
Society Press, 19–23 June 1993.

TATA — September 6, 2005 —



208 BIBLIOGRAPHY

[BJ97] A. Bouhoula and J.-P. Jouannaud. Automata-driven automated
induction. In Proceedings, 12th Annual IEEE Symposium on Logic

in Computer Science [IEE97].

[BKMW01] A. Brüggemann-Klein, M.Murata, and D. Wood. Regular tree and
regular hedge languages over unranked alphabets. Technical Report
HKTUST-TCSC-2001-05, HKUST Theoretical Computer Science
Center Research, 2001.

[Boz99] S. Bozapalidis. Equational elements in additive algebras. Theory

of Computing Systems, 32(1):1–33, 1999.

[Boz01] S. Bozapalidis. Context-free series on trees. ICOMP, 169(2):186–
229, 2001.

[BR82] Jean Berstel and Christophe Reutenauer. Recognizable formal
power series on trees. TCS, 18:115–148, 1982.

[Bra68] W. S. Brainerd. The minimalization of tree automata. Information

and Control, 13(5):484–491, November 1968.

[Bra69] W. S. Brainerd. Tree generating regular systems. Information and

Control, 14(2):217–231, February 1969.

[BT92] B. Bogaert and S. Tison. Equality and disequality constraints on
direct subterms in tree automata. In A. Finkel and M. Jantzen, ed-
itors, 9th Annual Symposium on Theoretical Aspects of Computer

Science, volume 577 of Lecture Notes in Computer Science, pages
161–171, 1992.

[Büc60] J. R. Büchi. On a decision method in a restricted second order
arithmetic. In Stanford Univ. Press., editor, Proc. Internat. Congr.

on Logic, Methodology and Philosophy of Science, pages 1–11, 1960.

[CCC+94] A.-C. Caron, H. Comon, J.-L. Coquidé, M. Dauchet, and F. Jacque-
mard. Pumping, cleaning and symbolic constraints solving. In Pro-

ceedings, International Colloquium Automata Languages and Pro-

gramming, volume 820 of Lecture Notes in Computer Science, pages
436–449, 1994.

[CD94] H. Comon and C. Delor. Equational formulae with membership
constraints. Information and Computation, 112(2):167–216, Au-
gust 1994.

[CDGV94] J.-L. Coquide, M. Dauchet, R. Gilleron, and S. Vagvolgyi. Bottom-
up tree pushdown automata : Classification and connection with
rewrite systems. Theorical Computer Science, 127:69–98, 1994.

[CG90] J.-L. Coquidé and R. Gilleron. Proofs and reachability problem
for ground rewrite systems. In Proc. IMYCS’90, Smolenice Castle,
Czechoslovakia, November 1990.

[Chu62] A. Church. Logic, arithmetic, automata. In Proc. International

Mathematical Congress, 1962.

TATA — September 6, 2005 —



BIBLIOGRAPHY 209

[CJ97a] H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-
complete. In Proceedings, 12th Annual IEEE Symposium on Logic

in Computer Science [IEE97], pages 26–34.

[CJ97b] H. Comon and Y. Jurski. Higher-order matching and tree au-
tomata. In M. Nielsen and W. Thomas, editors, Proc. Conf. on

Computer Science Logic, volume 1414 of LNCS, pages 157–176,
Aarhus, August 1997. Springer-Verlag.

[CK96] A. Cheng and D. Kozen. A complete Gentzen-style axiomatization
for set constraints. In Proceedings, International Colloquium Au-

tomata Languages and Programming, volume 1099 of Lecture Notes

in Computer Science, pages 134–145, 1996.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation.
Journal of the ACM, 28:114–133, 1981.

[Com89] H. Comon. Inductive proofs by specification transformations. In
Proceedings, Third International Conference on Rewriting Tech-

niques and Applications, volume 355 of Lecture Notes in Computer

Science, pages 76–91, 1989.

[Com95] H. Comon. Sequentiality, second-order monadic logic and tree au-
tomata. In Proceedings, Tenth Annual IEEE Symposium on Logic

in Computer Science. IEEE Computer Society Press, 26–29 June
1995.

[Com98a] H. Comon. Completion of rewrite systems with membership con-
straints. Part I: deduction rules. Journal of Symbolic Computation,
25:397–419, 1998. This is a first part of a paper whose abstract ap-
peared in Proc. ICALP 92, Vienna.

[Com98b] H. Comon. Completion of rewrite systems with membership con-
straints. Part II: Constraint solving. Journal of Symbolic Compu-

tation, 25:421–453, 1998. This is the second part of a paper whose
abstract appeared in Proc. ICALP 92, Vienna.

[Cou86] B. Courcelle. Equivalences and transformations of regular systems–
applications to recursive program schemes and grammars. Theori-

cal Computer Science, 42, 1986.

[Cou89] B. Courcelle. On Recognizable Sets and Tree Automata, chapter
Resolution of Equations in Algebraic Structures. Academic Press,
m. Nivat and Ait-Kaci edition, 1989.

[Cou92] B. Courcelle. Recognizable sets of unrooted trees. In M. Nivat
and A. Podelski, editors, Tree Automata and Languages. Elsevier
Science, 1992.

[CP94a] W. Charatonik and L. Pacholski. Negative set constraints with
equality. In Proceedings, Ninth Annual IEEE Symposium on Logic

in Computer Science, pages 128–136. IEEE Computer Society
Press, 4–7 July 1994.

TATA — September 6, 2005 —



210 BIBLIOGRAPHY

[CP94b] W. Charatonik and L. Pacholski. Set constraints with projections
are in NEXPTIME. In Proceedings of the 35th Symp. Foundations

of Computer Science, pages 642–653, 1994.

[CP97] W. Charatonik and A. Podelski. Set Constraints with Intersec-
tion. In Proceedings, 12th Annual IEEE Symposium on Logic in

Computer Science [IEE97].

[Dau94] M. Dauchet. Rewriting and tree automata. In H. Comon and J.-P.
Jouannaud, editors, Proc. Spring School on Theoretical Computer

Science: Rewriting, Lecture Notes in Computer Science, Odeillo,
France, 1994. Springer Verlag.

[DCC95] M. Dauchet, A.-C. Caron, and J.-L. Coquidé. Reduction properties
and automata with constraints. Journal of Symbolic Computation,
20:215–233, 1995.

[DGN+98] A. Degtyarev, Y. Gurevich, P. Narendran, M. Veanes, and
A. Voronkov. The decidability of simultaneous rigid e-unification
with one variable. In T. Nipkow, editor, 9th International Con-

ference on Rewriting Techniques and Applications, volume 1379 of
Lecture Notes in Computer Science, 1998.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Com-

puter Science, volume B, chapter Rewrite Systems, pages 243–320.
Elsevier, 1990.

[DM97] I. Durand and A. Middeldorp. Decidable call by need computations
in term rewriting. In W. McCune, editor, Proc. 14th Conference on

Automated Deduction, volume 1249 of Lecture Notes in Artificial

Intelligence, pages 4–18. Springer Verlag, 1997.

[Don65] J. E. Doner. Decidability of the weak second-order theory of two
successors. Notices Amer. Math. Soc., 12:365–468, March 1965.

[Don70] J. E. Doner. Tree acceptors and some of their applications. Journal

of Comput. and Syst. Sci., 4:406–451, 1970.

[DT90] M. Dauchet and S. Tison. The theory of ground rewrite systems
is decidable. In Proceedings, Fifth Annual IEEE Symposium on

Logic in Computer Science, pages 242–248. IEEE Computer Soci-
ety Press, 4–7 June 1990.

[DT92] M. Dauchet and S. Tison. Structural complexity of classes of tree
languages. In M. Nivat and A. Podelski, editors, Tree Automata

and Languages, pages 327–353. Elsevier Science, 1992.

[DTHL87] M. Dauchet, S. Tison, T. Heuillard, and P. Lescanne. Decidability
of the confluence of ground term rewriting systems. In Proceed-

ings, Symposium on Logic in Computer Science, pages 353–359.
The Computer Society of the IEEE, 22–25 June 1987.

TATA — September 6, 2005 —



BIBLIOGRAPHY 211

[DTT97] P. Devienne, J.-M. Talbot, and S. Tison. Solving classes of set
constraints with tree automata. In G. Smolka, editor, Proceedings

of the 3th International Conference on Principles and Practice of

Constraint Programming, volume 1330 of Lecture Notes in Com-

puter Science, pages 62–76, oct 1997.

[Eng75] J. Engelfriet. Bottom-up and top-down tree transformations. a
comparision. Mathematical System Theory, 9:198–231, 1975.

[Eng77] J. Engelfriet. Top-down tree transducers with regular look-ahead.
Mathematical System Theory, 10:198–231, 1977.

[Eng78] J. Engelfriet. A hierarchy of tree transducers. In Proceedings of the

third Les Arbres en Algèbre et en Programmation, pages 103–106,
Lille, 1978.

[Eng82] J. Engelfriet. Three hierarchies of transducers. Mathematical Sys-

tem Theory, 15:95–125, 1982.

[ES78] J. Engelfriet and E.M. Schmidt. IO and OI II. Journal of Comput.

and Syst. Sci., 16:67–99, 1978.

[Esi83] Z. Esik. Decidability results concerning tree transducers. Acta

Cybernetica, 5:303–314, 1983.

[EV91] J. Engelfriet and H. Vogler. Modular tree transducers. Theorical

Computer Science, 78:267–303, 1991.

[EW67] S. Eilenberg and J. B. Wright. Automata in general algebras. In-

formation and Control, 11(4):452–470, 1967.

[FSVY91] T. Frühwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic pro-
grams as types for logic programs. In Proc. 6th IEEE Symp. Logic

in Computer Science, Amsterdam, pages 300–309, 1991.

[FV88] Z. Fülöp and S. Vágvölgyi. A characterization of irreducible sets
modulo left-linear term rewiting systems by tree automata. Un
type rr ??, Research Group on Theory of Automata, Hungarian
Academy of Sciences, H-6720 Szeged, Somogyi u. 7. Hungary, 1988.

[FV89] Z. Fülöp and S. Vágvölgyi. Congruential tree languages are the
same as recognizable tree languages–A proof for a theorem of D.
kozen. Bulletin of the European Association of Theoretical Com-

puter Science, 39, 1989.

[FV98] Z. Fülöp and H. Vögler. Formal Models Based on Tree Transduc-

ers. Monographs in Theoretical Computer Science. Springer Verlag,
1998.

[GB85] J. H. Gallier and R. V. Book. Reductions in tree replacement
systems. Theorical Computer Science, 37(2):123–150, 1985.

[Gen97] T. Genet. Decidable approximations of sets of descendants and
sets of normal forms - extended version. Technical Report RR-
3325, Inria, Institut National de Recherche en Informatique et en
Automatique, 1997.

TATA — September 6, 2005 —



212 BIBLIOGRAPHY

[GJV98] H. Ganzinger, F. Jacquemard, and M. Veanes. Rigid reachability.
In Proc. ASIAN’98, volume 1538 of Lecture Notes in Computer

Science, pages 4–??, Berlin, 1998. Springer-Verlag.

[GMW97] H. Ganzinger, C. Meyer, and C. Weidenbach. Soft typing for or-
dered resolution. In W. McCune, editor, Proc. 14th Conference on

Automated Deduction, volume 1249 of Lecture Notes in Artificial

Intelligence. Springer Verlag, 1997.

[Gou00] Jean Goubault-Larrecq. A method for automatic cryptographic
protocol verification. In Proc. 15 IPDPS 2000 Workshops, Can-

cun, Mexico, May 2000, volume 1800 of Lecture Notes in Computer

Science, pages 977–984. Springer Verlag, 2000.

[GRS87] J. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid
E-unification: Equational matings. In Proc. 2nd IEEE Symp. Logic

in Computer Science, Ithaca, NY, June 1987.

[GS84] F. Gécseg and M. Steinby. Tree Automata. Akademiai Kiado, 1984.

[GS96] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 1–68. Springer Verlag, 1996.

[GT95] R. Gilleron and S. Tison. Regular tree languages and rewrite sys-
tems. Fundamenta Informaticae, 24:157–176, 1995.

[GTT93] R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set
constraints with negated subset relationships. In Proceedings of

the 34th Symp. on Foundations of Computer Science, pages 372–
380, 1993. Full version in the LIFL Tech. Rep. IT-247.

[GTT99] R. Gilleron, S. Tison, and M. Tommasi. Set constraints and au-
tomata. Information and Control, 149:1 – 41, 1999.

[Gue83] I. Guessarian. Pushdowm tree automata. Mathematical System

Theory, 16:237–264, 1983.

[Hei92] N. Heintze. Set Based Program Analysis. PhD thesis, Carnegie
Mellon University, 1992.

[HJ90a] N. Heintze and J. Jaffar. A Decision Procedure for a Class of Set
Constraints. In Proceedings, Fifth Annual IEEE Symposium on

Logic in Computer Science, pages 42–51. IEEE Computer Society
Press, 4–7 June 1990.

[HJ90b] N. Heintze and J. Jaffar. A finite presentation theorem for approx-
imating logic programs. In Proceedings of the 17th ACM Symp. on

Principles of Programming Languages, pages 197–209, 1990. Full
version in the IBM tech. rep. RC 16089 (#71415).

[HJ92] N. Heintze and J. Jaffar. An engine for logic program analysis. In
Proceedings, Seventh Annual IEEE Symposium on Logic in Com-

puter Science [IEE92], pages 318–328.

TATA — September 6, 2005 —



BIBLIOGRAPHY 213

[HL91] G. Huet and J.-J. Lévy. Computations in orthogonal rewriting
systems I. In J.-L. Lassez and G. Plotkin, editors, Computational

Logic: Essays in Honor of Alan Robinson, pages 395–414. MIT
Press, 1991. This paper was written in 1979.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison Wesley, 1979.

[IEE92] IEEE Computer Society Press. Proceedings, Seventh Annual IEEE

Symposium on Logic in Computer Science, 22–25 June 1992.

[IEE97] IEEE Computer Society Press. Proceedings, 12th Annual IEEE

Symposium on Logic in Computer Science, 1997.

[Jac96] F. Jacquemard. Decidable approximations of term rewriting sys-
tems. In H. Ganzinger, editor, Proceedings. Seventh International

Conference on Rewriting Techniques and Applications, volume 1103
of Lecture Notes in Computer Science, 1996.

[JM79] N. D. Jones and S. S. Muchnick. Flow Analysis and Optimization
of LISP-like Structures. In Proceedings of the 6th ACM Symposium

on Principles of Programming Languages, pages 244–246, 1979.

[Jon87] N. Jones. Abstract interpretation of declarative languages, chapter
Flow analysis of lazy higher-order functional programs, pages 103–
122. Ellis Horwood Ltd, 1987.

[Jr.76] William H. Joyner Jr. Resolution strategies as decision procedures.
Journal of the ACM, 23(3):398–417, 1976.

[KFK97] Y. Kaji, T. Fujiwara, and T. Kasami. Solving a unification problem
under constrained substitutions using tree automata. Journal of

Symbolic Computation, 23(1):79–118, January 1997.

[Koz92] D. Kozen. On the Myhill-Nerode theorem for trees. Bulletin of

the European Association of Theoretical Computer Science, 47:170–
173, June 1992.

[Koz93] D. Kozen. Logical aspects of set constraints. In E. Börger, Y. Gure-
vich, and K. Meinke, editors, Proceedings of Computer Science

Logic, volume 832 of Lecture Notes in Computer Science, pages
175–188, 1993.

[Koz95] D. Kozen. Rational spaces and set constraints. In Proceedings of

the 6th International Joint Conference on Theory and Practice of

Software Development, volume 915 of Lecture Notes in Computer

Science, pages 42–61, 1995.

[Koz98] D. Kozen. Set constraints and logic programming. Information

and Computation, 142(1):2–25, 1998.

[Kuc91] G. A. Kucherov. On relationship between term rewriting systems
and regular tree languages. In R. Book, editor, Proceedings. Fourth

International Conference on Rewriting Techniques and Applica-

tions, volume 488 of Lecture Notes in Computer Science, pages
299–311, April 1991.

TATA — September 6, 2005 —



214 BIBLIOGRAPHY

[Kui99] W. Kuich. Full abstract families of tree series i. In Juhani
Karhumäki, Hermann A. Maurer, and Gheorghe Paun andy Grze-
gorz Rozenberg, editors, Jewels are Forever, pages 145–156. SV,
1999.

[Kui01] W. Kuich. Pushdown tree automata, algebraic tree systems, and
algebraic tree series. Information and Computation, 165(1):69–99,
2001.

[KVW00] O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic
approach to branching time model-checking. Journal of the ACM,
47(2):312–360, 2000.

[LD02] Denis Lugiez and Silvano DalZilio. Multitrees automata, pres-
burger’s constraints and tree logics. Technical Report 8, Labo-
ratoire d’Informatique Fondamentale de Marseille, 2002.

[LM87] J.-L. Lassez and K. Marriott. Explicit representation of terms
defined by counter examples. Journal of Automated Reasoning,
3(3):301–318, September 1987.

[LM93] D. Lugiez and J.-L. Moysset. Complement problems and tree au-
tomata in AC-like theories. In P. Enjalbert, A. Finkel, and K. W.
Wagner, editors, 10th Annual Symposium on Theoretical Aspects

of Computer Science, volume 665 of Lecture Notes in Computer

Science, pages 515–524, Würzburg, 25–27 February 1993.

[LM94] Denis Lugiez and Jean-Luc Moysset. Tree automata help one to
solve equational formulae in ac-theories. Journal of Symbolic Com-

putation, 18(4):297–318, 1994.

[Loh01] M. Lohrey. On the parallel complexity of tree automata. In Proceed-

ings of the 12th Conference on Rewriting and Applications, pages
201–216, 2001.

[MGKW96] D. McAllester, R. Givan, D. Kozen, and C. Witty. Tarskian set con-
straints. In Proceedings, 11th Annual IEEE Symposium on Logic in

Computer Science, pages 138–141. IEEE Computer Society Press,
27–30 July 1996.

[Mis84] P. Mishra. Towards a Theory of Types in PROLOG. In Proceedings

of the 1st IEEE Symposium on Logic Programming, pages 456–461,
Atlantic City, 1984.

[MLM01] M. Murata, D. Lee, and M. Mani. Taxonomy of xml schema lan-
guages using formal language theory. In In Extreme Markup Lan-

guages, 2001.

[Mon81] J. Mongy. Transformation de noyaux reconnaissables d’arbres.

Forêts RATEG. PhD thesis, Laboratoire d’Informatique Fonda-
mentale de Lille, Université des Sciences et Technologies de Lille,
Villeneuve d’Ascq, France, 1981.

TATA — September 6, 2005 —



BIBLIOGRAPHY 215

[MS96] A. Mateescu and A. Salomaa. Aspects of classical language theory.
In G. Rozenberg and A. Salomaa, editors, Handbook of Formal

Languages, volume 1, pages 175–246. Springer Verlag, 1996.

[Mur00] M. Murata. “Hedge Automata: a Formal Model for XML
Schemata”. Web page, 2000.

[MW67] J. Mezei and J. B. Wright. Algebraic automata and context-free
sets. Information and Control, 11:3–29, 1967.

[Niv68] M. Nivat. Transductions des langages de Chomsky. Thèse d’etat,
Paris, 1968.

[NP89] M. Nivat and A. Podelski. Resolution of Equations in Algebraic

Structures, volume 1, chapter Tree monoids and recognizable sets
of finite trees, pages 351–367. Academic Press, New York, 1989.

[NP93] J. Niehren and A. Podelski. Feature automata and recognizable
sets of feature trees. In Proceedings TAPSOFT’93, volume 668 of
Lecture Notes in Computer Science, pages 356–375, 1993.

[NP97] M. Nivat and A. Podelski. Minimal ascending and descending tree
automata. SIAM Journal on Computing, 26(1):39–58, February
1997.

[NT99] T. Nagaya and Y. Toyama. Decidability for left-linear growing
term rewriting systems. In M. Rusinowitch F. Narendran, editor,
10th International Conference on Rewriting Techniques and Appli-

cations, volume 1631 of Lecture Notes in Computer Science, pages
256–270, Trento, Italy, 1999. Springer Verlag.

[Ohs01] Hitoshi Ohsaki. Beyond the regularity: Equational tree automata
for associative and commutative theories. In Proceedings of CSL

2001, volume 2142 of Lecture Notes in Computer Science. Springer
Verlag, 2001.

[Oya93] M. Oyamaguchi. NV-sequentiality: a decidable condition for call-
by-need computations in term rewriting systems. SIAM Journal

on Computing, 22(1):114–135, 1993.

[Pel97] N. Peltier. Tree automata and automated model building. Funda-

menta Informaticae, 30(1):59–81, 1997.

[Pla85] D. A. Plaisted. Semantic confluence tests and completion method.
Information and Control, 65:182–215, 1985.

[Pod92] A. Podelski. A monoid approach to tree automata. In Nivat and
Podelski, editors, Tree Automata and Languages, Studies in Com-

puter Science and Artificial Intelligence 10. North-Holland, 1992.

[PQ68] C. Pair and A. Quere. Définition et étude des bilangages réguliers.
Information and Control, 13(6):565–593, 1968.

TATA — September 6, 2005 —



216 BIBLIOGRAPHY

[Rab69] M. O. Rabin. Decidability of Second-Order Theories and Automata
on Infinite Trees. Transactions of the American Mathematical So-

ciety, 141:1–35, 1969.

[Rab77] M. O. Rabin. Handbook of Mathematical Logic, chapter Decidable
theories, pages 595–627. North Holland, 1977.

[Rao92] J.-C. Raoult. A survey of tree transductions. In M. Nivat and
A. Podelski, editors, Tree Automata and Languages, pages 311–
325. Elsevier Science, 1992.

[Rey69] J. C. Reynolds. Automatic Computation of Data Set Definition.
Information Processing, 68:456–461, 1969.

[Sal73] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

[Sal88] K. Salomaa. Deterministic tree pushdown automata and monadic
tree rewriting systems. Journal of Comput. and Syst. Sci., 37:367–
394, 1988.

[Sal94] K. Salomaa. Synchronized tree automata. Theorical Computer

Science, 127:25–51, 1994.

[Sei89] H. Seidl. Deciding equivalence of finite tree automata. In Annual

Symposium on Theoretical Aspects of Computer Science, 1989.

[Sei90] H. Seidl. Deciding equivalence of finite tree automata. SIAM Jour-

nal on Computing, 19, 1990.

[Sei92] H. Seidl. Single-valuedness of tree transducers is decidable in poly-
nomial time. Theorical Computer Science, 106:135–181, 1992.

[Sei94a] H. Seidl. Equivalence of finite-valued tree transducers is decidable.
Mathematical System Theory, 27:285–346, 1994.

[Sei94b] H. Seidl. Haskell overloading is DEXPTIME-complete. Information

Processing Letters, 52(2):57–60, 1994.

[Sén97] G. Sénizergues. The equivalence problem for deterministic push-
down automata is decidable. In P. Degano, R. Gorrieri, and
A. Marchetti-Spaccamela, editors, Automata, Languages and Pro-

gramming, 24th International Colloquium, volume 1256 of Lec-

ture Notes in Computer Science, pages 671–681, Bologna, Italy,
7–11 July 1997. Springer-Verlag.

[Sey94] F. Seynhaeve. Contraintes ensemblistes. Master’s thesis, LIFL,
1994.

[Slu85] G. Slutzki. Alternating tree automata. Theorical Computer Sci-

ence, 41:305–318, 1985.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring ex-
ponential time. In Proc. 5th ACM Symp. on Theory of Computing,
pages 1–9, 1973.

TATA — September 6, 2005 —



BIBLIOGRAPHY 217

[Ste94] K. Stefansson. Systems of set constraints with negative constraints
are nexptime-complete. In Proceedings, Ninth Annual IEEE Sym-

posium on Logic in Computer Science, pages 137–141. IEEE Com-
puter Society Press, 4–7 July 1994.

[SV95] G. Slutzki and S. Vagvolgyi. Deterministic top-down tree transduc-
ers with iterated look-ahead. Theorical Computer Science, 143:285–
308, 1995.

[Tha70] J. W. Thatcher. Generalized sequential machines. Journal of Com-

put. and Syst. Sci., 4:339–367, 1970.

[Tha73] J. W. Thatcher. Tree automata: an informal survey. In A.V.
Aho, editor, Currents in the theory of computing, pages 143–178.
Prentice Hall, 1973.

[Tho90] W. Thomas. Handbook of Theoretical Computer Science, volume B,
chapter Automata on Infinite Objects, pages 134–191. Elsevier,
1990.

[Tho97] W. Thomas. Languages, automata and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 389–456. Springer Verlag, 1997.

[Tis89] S. Tison. Fair termination is decidable for ground systems. In Pro-

ceedings, Third International Conference on Rewriting Techniques

and Applications, volume 355 of Lecture Notes in Computer Sci-

ence, pages 462–476, 1989.

[Tiu92] J. Tiuryn. Subtype inequalities. In Proceedings, Seventh Annual

IEEE Symposium on Logic in Computer Science [IEE92], pages
308–317.

[Tom92] M. Tommasi. Automates d’arbres avec tests d’égalité entre cousins
germains. Mémoire de DEA, Univ. Lille I, 1992.

[Tom94] M. Tommasi. Automates et contraintes ensemblistes. PhD thesis,
LIFL, 1994.

[Tra95] B. Trakhtenbrot. Origins and metamorphoses of the trinity: Logic,
nets, automata. In Proceedings, Tenth Annual IEEE Symposium on

Logic in Computer Science. IEEE Computer Society Press, 26–29
June 1995.

[Tre96] R. Treinen. The first-order theory of one-step rewriting is undecid-
able. In H. Ganzinger, editor, Proceedings. Seventh International

Conference on Rewriting Techniques and Applications, volume 1103
of Lecture Notes in Computer Science, pages 276–286, 1996.

[TW65] J. W. Thatcher and J. B. Wright. Generalized finite automata.
Notices Amer. Math. Soc., 820, 1965. Abstract No 65T-649.

[TW68] J. W. Thatcher and J. B. Wright. Generalized finite automata
with an application to a decision problem of second-order logic.
Mathematical System Theory, 2:57–82, 1968.

TATA — September 6, 2005 —



218 BIBLIOGRAPHY

[Uri92] T. E. Uribe. Sorted Unification Using Set Constraints. In D. Ka-
pur, editor, Proceedings of the 11th International Conference on

Automated Deduction, New York, 1992.

[Vea97a] M. Veanes. On computational complexity of basic decision prob-
lems of finite tree automata. Technical report, Uppsala Computing
Science Department, 1997.

[Vea97b] M. Veanes. On simultaneous rigid E-unification. PhD thesis, Com-
puting Science Department, Uppsala University, Uppsala, Sweden,
1997.

[Zac79] Z. Zachar. The solvability of the equivalence problem for determin-
istic frontier-to-root tree transducers. Acta Cybernetica, 4:167–177,
1979.

TATA — September 6, 2005 —



Index

axiom, 13
equivalent, 14
non-terminal, 14
regular tree grammars, 14
terminal, 14

arity, 9

c, 29
closed, 10
closure, 18
concatenation, 18
context, 11
context-free tree grammar, 29
context-free tree language, 29
context-free word grammar, 26

derivation relation, 14
derivation trees, 26
domain, 11

frontier position, 10

ground substitution, 11
ground terms, 9

height, 10

IO, 30

language generated, 14
linear, 9
local, 32

normalized, 15

OI, 30

position, 10
production rules, 14
productive, 15

ranked alphabet, 9

reachable, 14
reduced, 15
regular equation systems, 23
regular tree expressions, 20
regular tree language, 14
root symbol, 10

size, 10
substitution, 11
subterm, 10
subterm ordering, 10

terms, 9
tree, 9
tree grammar, 13
tree substitution, 17

variable position, 10
variables, 9

Yield, 26

TATA — September 6, 2005 —


