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Abstract. We investigate tree-automatic well-founded trees. For this, we intro-
duce a new ordinal measure for well-founded trees, called∞-rank. The∞-rank
of a well-founded tree is always bounded from above by the ordinary (ordinal)
rank of a tree. We also show that the ordinal rank of a well-founded tree of
∞-rank α is smaller than ω · (α+ 1). For string-automatic well-founded trees, it
follows from [16] that the∞-rank is always finite. Here, using Delhommé’s de-
composition technique for tree-automatic structures, we show that the∞-rank of
a tree-automatic well-founded tree is strictly below ωω . As a corollary, we obtain
that the ordinal rank of a string-automatic (resp., tree-automatic) well-founded
tree is strictly below ω2 (resp., ωω). The result for the string-automatic case nicely
contrasts a result of Delhommé, saying that the ranks of string-automatic well-
founded partial orders reach all ordinals below ωω . As a second application of the
∞-rank we show that the isomorphism problem for tree-automatic well-founded
trees is complete for level∆0

ωω of the hyperarithmetical hierarchy (under Turing-
reductions). Full proofs can be found in the arXiv-version [11] of this paper.

1 Introduction

Various classes of infinite but finitely presented structures received a lot of attention in
algorithmic model theory [2]. Among the most important such classes of structures is
the class of string-automatic structures [13]. A (relational) structure is string-automatic
if its universe is a regular set of words and all relations can be recognized by syn-
chronous multi-tape automata. During the past 15 years a theory of string-automatic
structures has emerged. This theory was developed along two interrelated branches.
The first is a structural branch, which leads to (partial) characterizations of particu-
lar classes of string-automatic structures [6,12,14,15,18]. The second is an algorithmic
branch, which leads to numerous decidability and undecidability, as well as complex-
ity results for important algorithmic problems for string-automatic structures [4,14,17].
One of the most fundamental results for string-automatic structures states that their
first-order theories are uniformly decidable [13].

By replacing strings and string automata by trees and tree automata, Blumensath
[3] generalized string-automatic structures to tree-automatic structures and proved that
their first-order theories are still uniformly decidable. However compared to string-
automatic structures, the theory of tree-automatic structures is less developed. The only
? The first and third author are supported by the DFG research project GELO.



non-trivial characterization of a class of tree-automatic structures we are aware of con-
cerns ordinals. Delhommé proved in [6] that an ordinal is tree-automatic if and only if it
is strictly below ωω

ω

. Some complexity results for first-order theories of tree-automatic
structures are shown in [17]. Recently, Huschenbett proved that it is decidable whether
a given tree-automatic scattered linear order is string-automatic [9].

In this paper, we study tree-automatic well-founded trees.1 Our main tool is a an
ordinal measure for well-founded trees called∞-rank, which is related to the classical
(ordinal) rank of a well-founded tree. Consider a well-founded tree T with root r. The
rank of T is the smallest ordinal, which is strictly larger than the ranks of the subtrees
rooted in the children of r. In contrast to this, we only require the∞-rank of T to be (i)
strictly larger than the ∞-ranks of those subtrees that are rooted (up to isomorphism)
in infinitely many children of r and (ii) to be at least as large as the∞-ranks of those
subtrees that are rooted (up to isomorphism) in finitely many children of r. For instance,
if a tree T has finite depth, then∞-rank(T) is the largest number i ∈ N such that the
tree N≤i can be embedded into T.

Clearly, the∞-rank of a well-founded tree is bounded from above by the classical
(ordinal) rank of a tree. We also show that the rank of a well-founded tree of∞-rank α
is strictly bounded by ω · (α + 1). For string-automatic well-founded trees, it follows
from [16] that the ∞-rank is always finite. Here, using a refinement of Delhommé’s
decomposition technique for tree-automatic structures [6], we show that the ∞-rank
of a tree-automatic well-founded tree is strictly below ωω . As a corollary, we obtain
that the rank of a string-automatic (resp., tree-automatic) well-founded tree is strictly
below ω2 (resp., ωω). The result for the string-automatic case nicely contrasts a result
from [6,12], saying that the ranks of string-automatic well-founded partial orders reach
exactly all ordinals below ωω .

Our second application of the∞-rank concerns the isomorphism problem for tree-
automatic well-founded trees. In [16], it was shown that the isomorphism problem for
string-automatic well-founded trees is complete for level ∆0

ω of the hyperarithmetical
hierarchy. In other words, the isomorphism problem for string-automatic well-founded
trees is recursively equivalent to true arithmetic. We show that the ∞-rank of well-
founded computable trees determines the complexity of the isomorphism problem in
the following sense: The isomorphism problem for well-founded computable trees of
∞-rank at most λ + k (where k ∈ N and λ is a computable limit ordinal) belongs to
levelΣ0

λ+3(k+1) of the hyperarithmetical hierarchy. Since we know that the∞-rank of a
tree-automatic well-founded tree is strictly below ωω , we can use this fact and show that
the isomorphism problem for tree-automatic well-founded trees belongs to level∆0

ωω =
Σ0
ωω ∩Π0

ωω of the hyperarithmetical hierarchy. We also provide a corresponding lower
bound w.r.t. Turing-reductions. Thus, the isomorphism problem for tree-automatic well-
founded trees is ∆0

ωω -complete under Turing-reductions.
Let us remark that for non-well-founded order trees, the isomorphism problem is

complete for Σ1
1 (the first existential level of the analytical hierarchy) already in the

string-automatic case [16], and this complexity is in a certain sense maximal, since the
isomorphism problem for the class of all computable structures is Σ1

1 -complete as well

1 In this paper tree always refers to an order tree T = (T,≤) as opposed to a successor tree, i.e.,
a tree is a partial order (without successor relation).
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[5,7]. Let us also emphasize that all our results only hold for order trees, i.e., trees are
seen as particular partial orders.

2 Preliminaries

A relational structure S consists of a domain D and atomic relations on the set D. In
this paper we will only consider structures with countable domains. Let A = (A,≤) be
a partial order. A subset B ⊆ A is a chain if for all a, b ∈ B, a ≤ b or b ≤ a. A subset
B ⊆ A is an antichain if for all pairs of distinct a, b ∈ B, neither a ≤ b nor b ≤ a.

Trees and forests. A forest is a partial order F = (F,≤) where for every a ∈ F the set
{b ∈ F | b < a} is a finite chain. A tree is a forest which has a smallest element, which
is called the root of the tree. Thus, a forest is a disjoint union of (an arbitrary number
of) trees. For a given forest F, we denote by 〈F〉 the tree that results from adding a new
root, i.e., a new smallest element, to F. If F is the domain of F we denote by 〈F 〉 the
domain of 〈F〉. For a node u in F, let F(u) be the subtree of F at u, i.e., F(u) is the
restriction of F to the set {v ∈ F | v ≥ u}. We define the successor relation of F as

EF = {(x, y) ∈ F × F | x < y,¬∃z : x < z < y}.

For x ∈ F the set of children of x in F is EF(x) = {y ∈ F | (x, y) ∈ EF}. A
forest F = (F,≤) is well-founded if it does not contain an infinite ascending chain
a1 < a2 < a3 < · · · .

Let us now define inductively the classical (ordinal) rank of a well-founded tree as
well as the new notion of ∞-rank. We use standard terminology concerning ordinals;
see e.g. [20]. For a set of ordinals M , let sup(M) be its supremum, where sup(∅) = 0.
Let T be a well-founded tree with root r. Thus, C = ET(r) is the set of children of the
root. We define the rank of T inductively as the ordinal

rank(T) = sup{rank(T(a)) + 1 | a ∈ C}.

We define the ordinal∞-rank(T) inductively using α = sup{∞-rank(T(a)) | a ∈ C}:

∞-rank(T) =

{
α if {a ∈ C | ∞-rank(T(a)) = α} is finite,
α+ 1 otherwise.

The∞-rank of a forest F without smallest element is ∞-rank(F) = ∞-rank(〈F〉). A
simple application of König’s lemma shows that a well-founded forest F has ∞-rank
0 if and only if F is finite; in contrast, the rank of a finite tree can reach any finite
ordinal. More generally,∞-rank(F) = n < ω if and only if there is an embedding of
the tree N≤n (the tree of height n where every non-leaf has ℵ0 many children) into 〈F〉
but no embedding of N≤n+1 into 〈F〉. The following lemma is crucial for studying the
∞-rank:

Lemma 1. Let F = (F,≤) be a well-founded forest. There are only finitely many a ∈ F
with∞-rank(F(a)) =∞-rank(F).
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Proof. Let α = ∞-rank(F). We show that D = {a ∈ 〈F 〉 | ∞-rank(〈F〉(a)) = α}
is finite. Note that D is a downward-closed subset of the tree 〈F〉. Assume that this
set is infinite. Since 〈F〉 is well-founded, König’s lemma implies that D contains a
node a which has infinitely many children ai (i ∈ N) that all belong to D. But then
α =∞-rank(〈F〉(a)) ≥ α+ 1, which is a contradiction. ut

It is obvious that ∞-rank(T) ≤ rank(T) for every well-founded tree T. On the other
hand, we can also bound rank(T) in terms of∞-rank(T) as follows.

Lemma 2. For a well-founded tree T we have rank(T) < ω · (∞-rank(T) + 1).

Proof. Let T = (T,≤) We proceed by induction on ∞-rank(T). If T is finite, then
∞-rank(T) = 0 and rank(T) ≤ |T | < ω. Now assume that∞-rank(T) = α for some
ordinal α > 0 such that the theorem holds for all trees of∞-rank strictly below α. By
Lemma 1, Tα = {a ∈ T | ∞-rank(T(a)) = α} is a finite and downward-closed subset
of T . Let Mα ⊆ Tα be the set of ≤-maximal elements of Tα and consider a tree T(a)
for a ∈ Mα. The definition of Mα implies the following. If b ∈ T with b > a, then
∞-rank(T(b)) = β for some ordinal β < α. By the induction hypothesis it follows that
rank(T(b)) < ω · (β + 1) ≤ ω · α. In particular, rank(T(b)) < ω · α for all children b
of a. Thus, rank(T(a)) ≤ ω · α. Finally, since Tα is a finite set, we have

rank(T) ≤ sup{rank(T(a)) | a ∈Mα}+ |Tα| ≤ ω · α+ |Tα| < ω · (α+ 1). ut

Note that the upper bound of ω · (∞-rank(T) + 1) = ω · ∞-rank(T) + ω is optimal as
for any n < ω, the linear order of size n has∞-rank 0 but rank ω · 0 + n.

Finite labeled trees. A finite binary tree is a prefix-closed finite subset T ⊆ {0, 1}∗,
i.e., uv ∈ T implies u ∈ T . We denote the set of all finite binary trees by T fin

2 . Let �
be the prefix relation on {0, 1}∗. Clearly (T,�) is a tree in the above sense.

Let Σ be a finite alphabet. A finite Σ-labeled binary tree is a pair (T, λ), where
T ∈ T fin

2 and λ : T → Σ is a labeling function. By T fin
2,Σ we denote the set of all finite

Σ-labeled binary trees. Elements of T fin
2,Σ are denoted by lower case letters (s, t, . . .).

Next, we define the convolution t1 ⊗ · · · ⊗ tn of t1, . . . , tn ∈ T fin
2,Σ as follows:

Let ti = (Ti, λi) where λi : Ti → Σ and � /∈ Σ. Let T =
⋃n
i=1 Ti and define

λ′i : T → Σ ∪ {�} by λ′i(u) = λi(u) for u ∈ Ti and λ′i(u) = � for u ∈ T \ Ti. Then
t1 ⊗ · · · ⊗ tn is the finite ((Σ ∪ {�})n \ {�}n)-labeled tree (T, λ) where λ is defined
by λ(u) = (λ′1(u), . . . , λ

′
n(u)) for each u ∈ T .

Tree automata and tree-automatic structures. For T ∈ T fin
2 let

cl(T ) = T ∪ {ui | u ∈ T, i ∈ {0, 1}}

be its closure, which is again prefix-closed. LetΣ be a finite alphabet. A tree automaton
overΣ is a tupleA = (Q,∆,QI , QF ), whereQ is the finite set of states,QI ⊆ Q is the
set of initial states, QF ⊆ Q is the set of final states, and ∆ ⊆ (Q \QF )×Σ ×Q×Q
is the transition relation. Given t = (T, λ) ∈ T fin

2,Σ , a successful run of A on t is a
mapping ρ : cl(T ) → Q such that (i) ρ(ε) ∈ QI , (ii) ρ(cl(T ) \ T ) ⊆ QF , and (iii)
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for every d ∈ T , (ρ(d), λ(d), ρ(d0), ρ(d1)) ∈ ∆. By L(A) we denote the set of all
t ∈ T fin

2,Σ on which A has a successful run. A set L ⊆ T fin
2,Σ is called regular if there is a

tree automaton A over Σ with L = L(A).
An n-ary relation R ⊆ (T fin

2,Σ)n is called tree-automatic if there is a tree automaton
AR over (Σ ∪ {�})n \ {�}n such that L(AR) = {t1 ⊗ · · · ⊗ tn | (t1, . . . , tn) ∈ R}. A
relational structure S is called tree-automatic over Σ if its domain is a regular subset
of T fin

2,Σ and each of its atomic relations is tree-automatic; any tuple P of automata that
accepts the domain and the relations of S is called a tree-automatic presentation of S.
In this case, we write S(P) for S. If a tree-automatic structure S is isomorphic to a
structure S′, then S is called a tree-automatic copy of S′ and S′ is tree-automatically
presentable. In this paper we sometimes abuse the terminology referring to S′ as sim-
ply tree-automatic and calling a tree-automatic presentation of S also a tree-automatic
presentation of S′. We also simplify our statements by saying “given/compute a tree-
automatic structure S” for “given/compute a tree-automatic presentation P of a struc-
ture S(P)”. The structures (N,+) and (N,×) are examples of tree-automatic structures.
We will make use of the following simple lemma.

Lemma 3. For every tree-automatic structure there is an isomorphic tree-automatic
structure S over the alphabet {a}, i.e., the domain can be seen as a subset of T fin

2 .

Consider FO+∃∞+∃n,m+∃chain, i.e., first-order logic extended by the quantifiers ∃∞
(there exists infinitely many), ∃n,m (there exists finitely many and the exact number is
congruent n modulo m, where m,n ∈ N) and the chain-quantifier ∃chain (if ϕ(x, y) is
some formula, then ∃chainϕ(x, y) asserts thatϕ(x, y) defines a partial order that contains
an infinite ascending chain). Results from [3,10,21] show that the FO + ∃∞ + ∃n,m +
∃chain theory of any tree-automatic structure S is (uniformly) decidable. Note that the
property of being a tree is expressible in FO + ∃∞ and well-foundedness of a tree is
expressible in FO + ∃chain. Hence, we get:

Theorem 4. It is decidable whether a given tree-automatic structure is a well-founded
tree.

Let K be a class of tree-automatic presentations. The isomorphism problem Iso(K) is
the set of pairs (P1,P2) ∈ K×K of tree-automatic presentations with S(P1) ∼= S(P2).
If K is the class of tree-automatic presentations for a class C of relational structures
(e.g. trees), then we will briefly speak of the isomorphism problem for (tree-automatic
members of) C. The isomorphism problem for the class of all tree-automatic structures
is complete for Σ1

1 , the first level of the analytical hierarchy; this holds already for (non
well-founded) string-automatic trees [14,16].

Hyperarithmetical sets. We use standard terminology concerning recursion theory;
see e.g. [19]. We use the definition of the hyperarithmetical hierarchy from Ash and
Knight [1] (cf. [8]). We first define inductively a set of ordinal notations O ⊆ N. Si-
multaneously we define a mapping a 7→ |a|O from O into ordinals and a strict partial
order <O on O. The set O is the smallest subset of N satisfying the following condi-
tions:

– 1 ∈ O and |1|O = 0, i.e., 1 is a notation for the ordinal 0.
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– If a ∈ O, then also 2a ∈ O. We set |2a|O = |a|O + 1 and let b <O 2a if and only
if b = a or b <O a.

– If e ∈ N is such that Φe (the eth partial computable function) is total, Φe(n) ∈ O
for all n ∈ N, and Φe(0) <O Φe(1)O <O Φe(2) <O · · · , then also 3 · 5e ∈ O. We
set |3 · 5e|O = sup{|Φe(n)|O | n ∈ N} and let b <O 3 · 5e if and only if there is an
n ∈ N with b <O Φe(n).

An ordinal α is computable if there is an a ∈ O with |a|O = α. The smallest non-
computable ordinal is the Church-Kleene ordinal ωck

1 . If a ∈ O then the restriction of
the partial order (O,<O) to Oa = {b ∈ O | b <O a} is isomorphic to the ordinal
|a|O [1, Proposition 4.9]. Based on ordinal notations we define the hyperarithmetical
hierarchy. For this we define sets H(a) for each a ∈ O as follows:

– H(1) = ∅,
– H(2b) = H(b)′ (the Turing jump of H(b); see e.g. [19]),
– H(3 · 5e) = {〈b, n〉 | b <O 3 · 5e, n ∈ H(b)}; here 〈·, ·〉 denotes some computable

pairing function.

Spector has shown that |a|O = |b|O implies that H(a) and H(b) are Turing equivalent.
The levels of the hyperarithmetical hierarchy can be defined as follows, where α is a
computable ordinal.

– Σ0
α is the set of all subsets A ⊆ N that are recursively enumerable in some H(a)

with |a|O = α (by Spector’s theorem, the concrete choice of a is irrelevant).
– Π0

α is the set of all complements of Σ0
α sets.

– ∆0
α = Σ0

α ∩Π0
α, i.e., ∆0

α is the set of all subsets A ⊆ N that are Turing-reducible
to some H(a) with |a|O = α.

For any two computable ordinals α and β, α < β implies Σα ∪Πα ( ∆β . The union
of all classes Σ0

α where α < ωck
1 yields the class of all hyperarithmetical sets. By

a classical result of Kleene, the hyperarithmetical sets are exactly the sets in ∆1
1 =

Σ1
1 ∩ Π1

1 , where Σ1
1 is the first existential level of the analytical hierarchy, and Π1

1 is
the set of all complements of Σ1

1 -sets.

3 Bounding the ∞-rank of tree-automatic well-founded trees

The first main result of this paper is:

Theorem 5. If T is a tree-automatic well-founded tree, then∞-rank(T) < ωω .

Before we sketch a proof of this result, let us first deduce a corollary:

Corollary 6. For T = (T,≤) a string-automatic (tree-automatic, respectively) well-
founded tree we have rank(T) < ω2 (rank(T) < ωω , respectively).

Proof. For a string-automatic well-founded tree T,∞-rank(T) is finite by [16]2. With
Lemma 2 we get rank(T) ≤ ω · i < ω2 for some i ∈ N. For a tree-automatic well-
founded tree T we have ∞-rank(T) < ωω by Theorem 5. Thus, there is some i ∈ N
such that∞-rank(T) ≤ ωi. With Lemma 2 we get rank(T) < ω · ωi + ω < ωω . ut

2 In [16], the notion of embedding rank of an arbitrary tree is defined. Comparison of the defi-
nitions shows that the embedding rank of a well-founded tree is finite iff its∞-rank is finite.
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Note that Corollary 6 contrasts with results on the ranks of string-automatic well-
founded partial orders.3 By [6,12], the ordinal ranks of string-automatic well-founded
partial orders are the ordinals strictly below ωω . In fact, the result still holds for partial
orders without infinite chains [11]. Moreover, Delhommé’s characterization of tree-
automatic ordinals yields tree-automatic well-founded partial orders of rank α for each
α < ωω

ω

[6].
Let us sketch the proof of Theorem 5. The first part relies on Delhommé’s decom-

position technique for tree-automatic structures from [6] where he proved that the or-
dinal ωω

ω

is not tree-automatic. Let us explain his decomposition technique for a tree-
automatic graph G = (V,E). Because of Lemma 3 we can assume that V ⊆ T fin

2 .
Consider a tree automaton A that accepts a subset of V ⊗ T fin

2 , and for each s ∈ T fin
2

let Gs be the subgraph of G induced by the set {t ∈ V | t⊗ s ∈ L(A)}.
Delhommé’s main proposition from [6] shows that every subgraph Gs can be ob-

tained from a finite set of subgraphs C by using the operations of box-augmentation
and sum-augmentation. Roughly speaking, a graph G is a sum-augmentation of sub-
graphs G1, . . . ,Gn if it is the disjoint union of G1, . . . ,Gn where we may add edges
between different Gi (but not within a single Gi). G is a box-augmentation of the graphs
G1, . . . ,Gn with node sets V1, . . . , Vn if the node set of G is the product

∏n
i=1 Vi and

for every 1 ≤ i ≤ n and all v1 ∈ V1, . . . , vi−1 ∈ Vi−1, vi+1 ∈ Vi+1, . . . , vn ∈ Vn,
the subgraph of G induced by the set {(v1, . . . , vi−1, v, vi+1, . . . , vn) | v ∈ Vi} is
isomorphic to Gi.

Now, let ν be a function that maps graphs to some set M such that isomorphic
graphs are mapped to the same element. We say that m ∈M is ν-sum-indecomposable
(ν-box-indecomposable, resp.) if for all graphs G,G1, . . . ,Gn such that G is a sum-
augmentation (box-augmentation, resp.) of G1, . . . ,Gn the following implication holds:
If ν(G) = m then ν(Gi) = m for some 1 ≤ i ≤ n. Delhommé’s decomposition result
implies that the set {ν(Gs) | s ∈ T fin

2 } contains only finitely many values that are both
ν-sum-indecomposable and ν-box-indecomposable.

In order to show that ωω
ω

is not tree-automatic, Delhommé takes a tree-automatic
copy G = (V,≤) of some ordinal and a tree automaton A for the first-order formula
y < x. Hence, the substructures Gs are the initial segments of G. Moreover let ν0 be
the function that maps an initial segment of G to the corresponding ordinal. Delhommé
proves that every ordinal of the form ωω

α

is both ν0-sum-indecomposable and ν0-box-
indecomposable. Hence, G = (V,≤) can contain only finitely many initial segments of
the form ωω

α

, which is not the case for ωω
ω

.
We follow a similar strategy. Heading for a contradiction to Theorem 5, take a well-

founded tree-automatic forest F = (F,≤) with ∞-rank(F) = ωω . Let A be a tree
automaton for the first-order formula x ≤ y. Hence, the substructures Fs are the sub-
trees F(v) of F for v ∈ F . It is not difficult to show that for every ordinal α < ωω , F
must contain a subtree of∞-rank α. In particular, F contains a subtree of∞-rank ωi

for every i ∈ N. Now, let ν1 be the function that maps a subtree F(v) to its ∞-rank.
We would obtain a contradiction by proving that every ordinal of the form ωα is both
ν1-sum-indecomposable and ν1-box-indecomposable. Indeed, we can prove that every

3 The rank generalizes naturally to all well-founded partial orders (considering roots as maximal
elements of trees).
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ordinal of the form ωα is ν1-sum-indecomposable. But there is a problem with ν1-box-
indecomposability: The ordinals 0 and 1 are the only ν1-box-indecomposable ordinals.
The problem is that any forest can be embedded into the box-augmentation of two
infinite antichains. Hence, box-augmentations of two infinite antichains may have ar-
bitrarily high ∞-rank. To solve this problem, we observe that the box-augmentations
that are used for building up the subtrees Fs of F (s ∈ T fin

2 ) have a particular property
that we call tame colorability (this is joint work with Martin Huschenbett). If a graph
G = (V,E) is a box-augmentation of subgraphs Gi = (Vi, Ei) (1 ≤ i ≤ n), then
this box-augmentation is tamely colorable if for each 1 ≤ i ≤ n there is a finite col-
oring ci of Vi × Vi such that whether ((v1, . . . vn), (v′1, . . . , v

′
n)) ∈ E only depends on

the colors ci(vi, v′i) for 1 ≤ i ≤ n. A careful analysis of box-augmentations of forests
shows that ωα is also ν1-tamely-colorable-box-indecomposable (tamely-colorable-box-
indecomposability is defined as box-indecomposability, but only considering tamely
colorable box-augmentations). As in Delhommé’s argument, we conclude that a well-
founded tree-automatic forest F only contains finitely many subtrees of pairwise distinct
∞-ranks of the form ωi. Hence,∞-rank(F) < ωω and Theorem 5 follows.

4 The isomorphism problem for well-founded tree-automatic trees

It turns out that the∞-rank for well-founded computable trees yields an upper bound on
the recursion-theoretic complexity of the isomorphism problem. Recall that we defined
trees and forests as particular partial orders. For the isomorphism problem, it is useful
to assume that also the direct successor relation is computable. When speaking of a
computable forest in the following theorem, we mean a forest F = (F,≤) such that
F ⊆ N,≤ ⊆ N×N, and the direct successor relation EF are all computable sets.4 Note
that the direct successor relation of a tree-automatic forest is still tree-automatic (and
hence computable) because it is first-order definable.

Lemma 7. Let α be a computable ordinal and assume that α = λ+k, where k ∈ N and
either λ = 0 or λ is a limit ordinal. The isomorphism problem for well-founded com-
putable trees of∞-rank at most α belongs to level Σ0

λ+2(k+1) of the hyperarithmetical
hierarchy.

For the proof of Lemma 7 we use a characterization of the hyperarithmetical lev-
els by computable infinitary formulas (cf. [1]). These are first-order formulas over
the structure (N,+,×), where countably infinite conjunctions and disjunctions are al-
lowed. Computability of such an infinitary formula means that for an infinite conjunc-
tion

∨
n∈N ϕn there is a computable function that maps n to a representation of ϕn

(note that ϕn may again contain infinite conjunctions and disjunctions), and similarly
for infinite disjunctions. Roughly speaking, such an infinitary formula can be encoded
by a computable tree (the syntax tree of the formula) and if that tree has rank α (a
computable ordinal) then the relation defined by the formula belongs to level α of the
hyperarithmetical hierarchy.

4 On the other hand, if we would omit the requirement of a computable direct successor relation
in Lemma 7, then we would only have to replace the constant 2 in the lemma by a larger value.
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In order to prove Lemma 7, we construct for a computable ordinal α a computable
infinitary formula isoα(x, y) that is satisfied in a well-founded computable forest F if
and only if F(x) and F(y) have∞-rank at most α and F(x) ∼= F(y). The construction
is carried out inductively along the ordinal α, similarly to the proof of Lemma 25 in
[16].

From Theorem 5 and Lemma 7 it follows that the isomorphism problem for well-
founded tree-automatic trees belongs to Π0

ωω . Using similar formulas as those con-
structed in our proof of Lemma 7, we can also show that the isomorphism problem for
well-founded tree-automatic trees belongs to Σ0

ωω . Hence, we get:

Corollary 8. The isomorphism problem for well-founded tree-automatic trees belongs
to ∆0

ωω .

Let us now turn to lower bounds. Our main technical result is:

Lemma 9. From a given i ∈ N, one can compute a well-founded tree-automatic tree
Vi such that the following holds: From a given Π0

ωi -set P ⊆ N (represented e.g. by
a computable infinitary formula) and n ∈ N one can compute a well-founded tree-
automatic tree WP,n such that n ∈ P if and only if Vi

∼= WP,n.

We prove Lemma 9 by a reduction from the isomorphism problem for well-founded
computable trees. We use a construction from [8]. Basically, [8, Proposition 3.2] states
Lemma 9 for well-founded computable trees (instead of well-founded tree-automatic
trees) and all computable ordinals (instead of ordinals ωi). It turns out that the trees
constructed in [8] for a certain ordinal α consist of computable subtrees of a “univer-
sal” well-founded computable tree Sα. In case α = ωi for i ∈ N we can moreover
show that the tree Sωi is tree-automatic. Roughly speaking this yields a weaker version
of Lemma 9, where instead of well-founded tree-automatic trees we have the (tree-
automatic) trees Sωi enriched by a computable unary predicate K on the node set of
Sωi . In fact K can be assumed to be a subset of the leaves of Sωi ; it yields a com-
putable subtree of the universal tree Sωi by removing all leaves from K. Finally, to get
rid of K we use a technique from [16]. In Lemma 41 from [16] it was shown that there
are non-isomorphic (string-automatic) trees U0 and U1 with the following property:
from an index of a computable set of strings L ⊆ {0, 1}∗ one can compute a string-
automatic forest FL of height 3 such that: (i) the set of roots is {0, 1}∗, (ii) if x ∈ L
then FL(x) ∼= U0, and (iii) if x /∈ L then FL(x) ∼= U1. In [16], this statement was used
in order to reduce the isomorphism problem for (non-well-founded) computable trees
to the isomorphism problem for (non-well-founded) string-automatic trees. Hence, the
latter problem is Σ1

1 -complete. In our situation, we first prove a tree version of [16,
Lemma 41], where {0, 1}∗ is replaced by T fin

2 . Then, one can eliminate the additional
computable unary predicate K on the leaves of Sωi . For this, every leaf from K is
replaced by the height-3 tree U0, whereas all other leaves are replaced by the height-3
tree U1. This yields a well-founded tree automatic tree that encodes the pair (Sωi ,K).

From Lemma 9 we can deduce that the isomorphism problem for well-founded
tree-automatic trees is ∆0

ωω -hard under Turing-reductions. With Corollary 8, we finally
obtain our main result for the isomorphism problem.

Theorem 10. The isomorphism problem for well-founded tree-automatic trees is ∆0
ωω -

complete under Turing-reductions.
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