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Compressed sensing (CS) is a theory which exploits the sparsity characteristic of the original signal in signal sampling and coding.
By solving an optimization problem, the original sparse signal can be reconstructed accurately. In this paper, a new Tree-based
BacktrackingOrthogonalMatching Pursuit (TBOMP) algorithm is presentedwith the idea of the treemodel inwavelet domain.�e
algorithm can convert the wavelet tree structure to the corresponding relations of candidate atoms without any prior information of
signal sparsity.�us, the atom selection process will be more structural and the search space can be narrowed. Moreover, according
to the backtracking process, the previous chosen atoms’ reliability can be detected and the unreliable atoms can be deleted at each
iteration, which leads to an accurate reconstruction of the signal ultimately. Compared with other compressed sensing algorithms,
simulation results show the proposed algorithm’s superior performance to that of several other OMP-type algorithms.

1. Introduction

Compressive sensing (CS) [1, 2] aims to recover sparse or
compressible signal with low amount of information and high
probability. It breaks the traditional rule of Nyquist sampling
theorem, which states that a signal’s information is preserved
if it is uniformly sampled at a rate at least two times faster than
its Fourier bandwidth. By this state-of-the-art signal com-
pression and processing theory, the signal sampling fre-
quency, the cost of processing time, data storage, and trans-
mission can be greatly reduced.

For a given orthogonal basis Ψ = {�1, . . . , ��}, the signal
� ∈ ��×1 can be represented in terms of the coe�cient vector
� as

� =
�
∑
�=1

���� = Ψ�. (1)

�e corresponding inverse transformation is � = Ψ��,
ΨΨ� = Ψ�Ψ = 	, and Ψ ∈ 
�×�. Here, 	 is the identity

matrix. We say that � is�-sparse under the orthogonal basis
Ψ if only� ≪  coe�cients �� of � are nonzero.

Usually, the signal is not sparse but its coe�cient can be
considered to be sparse or compressible aer some transfor-
mations, such as the wavelet transformation.

Suppose that a matrix Φ represents the�×measure-
mentmatrix.�en� is accomplished by collecting ameasure-
ment vector � of dimension � with � ≪ . � can be
expressed as � = Φ�. �en, (1) becomes

� = Φ� = ΦΨ��. (2)

Φ is called as the CS measurement matrix and its columns
are called atoms. �e matrix Φ is rank de�cient and hence
loses information in general. �e CS reconstruction problem
wishes to recover the coe�cient vector � from the set of �
linear measurements �. Since � < , the reconstruction of
� from � is generally ill-posed.

�e two major algorithmic approaches to sparse recov-
ery are methods based on (�1) minimization and iterative
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methods (matching pursuits). We now brie�y describe these
methods, as follows.

1.1. (�1) Minimization. �e sparse recovery of this approach
can be stated as the problem of �nding the sparsest signal � =
Ψ�� with the given measurements �:

(�0) : min
�����Ψ
��������0

s.t. � = ΦΨ��.
(3)

Donoho and his associates advocated the principle that
for some measurement matrices Φ, the highly nonconvex
combinatorial optimization problem (�0) should be equiva-
lent to its convex relaxation:

(�1) : min
�����Ψ
��������1

s.t. � = ΦΨ��.
(4)

Reference [3] showed that if the measurement matrix sat-
is�es the restricted isometry property (RIP), then a�-sparse
signal can be recovered exactly; that is,

(1 − ��) ‖�‖22 ≤ ‖Φ�‖22 ≤ (1 + ��) ‖�‖22. (5)

�� is called as the Restricted Isometry Constant of Φ. It has
been shown that (�1) minimization can recover a sparse signal
exactly under various conditions on restricted isometry con-
stants, see [4, 5]. �en, the convex problem (�1) can be solved
using method of convex and even linear programming.

1.2. Orthogonal Matching Pursuit (OMP). An alternative
approach to sparse recovery is via iterative algorithms, which
�nd the support of the�-sparse signal � progressively. Once
� = supp(�) is found correctly, it is easy to compute the signal

� from its measurements � as � = (Φ�)−1�, whereΦ� denotes
the measurement matrixΦ restricted to columns indexed by
�.

A basic iterative algorithm is Orthogonal Matching Pur-
suit (OMP) [6]. OMP recovers the support of �, one index at
a time, in � steps. Under a hypothetical assumption that is an
isometry, that is, the columns ofΦ are orthogonal, the signal
� can be exactly recovered from its measurements � as � =
Φ∗�.

�e problem is that the � ×  matrix Φ is never an
isometry in the interesting range where the number of mea-
surements� is smaller than the ambient dimension. Even
though the matrix is not an isometry, one can still use the
notion of coherence in recovery of sparse signals. In that
setting, greedy algorithms are used with incoherent dictio-
naries to recover such signals, see [7, 8]. In our setting, for the
commonly used random matrices, one expects the columns
to be approximately orthogonal, and the observation vector
� = Φ∗� to be a good approximation to the original signal �.

Tropp and Gilbert [6] analyzed the performance of OMP
for Gaussian measurement matrices Φ; a similar result holds
for general sub-gaussianmatrices.�ey proved that, for every

�xed �-sparse -dimensional signal � and a random Gaus-
sian measurement matrix Φ, OMP recovers (the support of)
� from the measurements � correctly with high probability,
provided the number of measurements is� ∼ � log.

�e (�1)-minimization method has the strongest known
guarantees of sparse recovery. Once the measurement matrix
Φ satis�es the Restricted Isometry Condition, this method
works correctly for all sparse signals �. (�1)-minimization is
based on linear programming, which has its advantages and
disadvantages. One thinks of linear programming as a black
box and any development of fast solvers will reduce the run-
ning time of the sparse recovery method. On the other hand,
it is not very clear what this running time is, as there is no
strongly polynomial time algorithm in linear programming
yet. All known solvers take time polynomial not only in the
dimension of the program  but also on certain condition
numbers of the program. While for some classes of random
matrices the expected running time of linear programming
solvers can be bounded, estimating condition numbers is
hard for speci�c matrices. For example, there is no result yet
showing that the Restricted Isometry Condition implies that
the condition numbers of the corresponding linear program
is polynomial in.

OMP is quite fast, both theoretically and experimentally.
It makes � iterations, where each iteration amounts to a mul-
tiplication by a×�matrixΦ∗ (computing the observation
vector �) and solving a least squares problem in dimensions
at most�×�. �is yields strongly polynomial running time.
In practice, OMP is observed to perform faster and is easier to
implement than (�1)-minimization. For more details, see [6].
OMP is quite transparent; at each iteration, it selects a new
coordinate from the support of the signal � in a very speci�c
and natural way. In contrast, the known (�1)-minimization
solvers, such as the simplex method and interior point meth-
ods, compute a path toward the solution. However, the geom-
etry of (�1) is clear, whereas the analysis of greedy algorithms
can be di�cult simply because they are iterative.

On the other hand, OMP has weaker guarantees of exact
recovery. Unlike (�1)-minimization, the guarantees of OMP
are nonuniform: for each �xed sparse signal � and not for all
signals, the algorithm performs correctly with high probabil-
ity. Rauhut has shown that uniform guarantees for OMP are
impossible for natural random measurement matrices [9].

Moreover, OMP’s condition on measurement matrices
given in [6] is more restrictive than the Restricted Isometry
Condition. In particular, it is not known whether OMP suc-
ceeds in the important class of partial Fourier measurement
matrices.

�ese open problems about OMP, �rst stated in [6] and
oen reverberated in the Compressed Sensing community,
motivated the recentworks on themodi�edOMPalgorithms,
such as the model-based Compressive Sensing [10], Tree-
Based Orthogonal Matching Pursuit [11], Compressive Sam-
pling Matching Pursuit (CoSaMP) [12], Regularized Orthog-
onal Matching Pursuit (ROMP) [13], and Backtracking-
BasedMatching Pursuit (BAOMP) [14]. ROMP and CoSaMP
require the sparsity level as an input parameter. However,
in the most practical applications, this information may not
be known before reconstruction. Although the sparsity level
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is not required for the OMP and BAOMP, they do not use
the characteristics of the sparse representation, such as the
tree structure of wavelet transform. In this paper, a new Tree-
based Backtracking Orthogonal Matching Pursuit (TBOMP)
algorithm is presented based on the tree model in wavelet
domain. Our algorithm converts the wavelet tree structure to
the corresponding relations of candidate atoms without the
prior information of signal sparsity level. Also, combing with
the backtracking algorithm, the unreliable atoms can be
deleted. Compared with OMP, ROMP, and BAOMP algo-
rithms, the atom selection process will be more traceable,
normalizable, and structural.

2. Tree-Based Backtracking Orthogonal
Matching Pursuit (TBOMP) Algorithm

In this section, we will �rst review the wavelet tree structure.
Second, the proposed TBOMP algorithmwill be presented in
detail.

2.1. Wavelet Tree Structure. Consider a signal � of length =
2	, aer �-level wavelet transformations, the set of �-tree
sparse signals is de�ned as

Γ� =
{
{
{
� =  	] +

1
∑

=	

2�−�

∑
�=1

!
,��
,� : !|Ω� = 0, |Ω| = �
}
}
}

, (6)

where ] is the scaling function and�
,� is the wavelet function
at scale & and o�set '. �e wavelet transform consists of the
scale coe�cient  	 and wavelet coe�cients !
,� at scale &, 1 ≤
& ≤ �, and position ', with 1 ≤ ' ≤ 2	−
.

Suppose that � = [ 	, !	,0, !	−1,0, !	−1,1, !	−2,0, . . . ] is
the vector of the scaling and wavelet coe�cients of �with the
maximum decomposition level �. Also, it is a set of wavelet
coe�cients Ω forms a connected subtree [10]. �e set Ω
de�nes a subspace of signals whose support is contained in
Ω, which means that all wavelet coe�cients outside Ω are
approximately zero. �e nested structure of wavelet coef-
�cients creates a parent/child relationship between wavelet
coe�cients at di�erent scales. We say that !
+1,⌊�/2⌋ (⌊⋅⌋
denotes rounded down) is the parent of !
,�. Also, !
−1,2� and
!
−1,2�+1 are the children of !
,�. �ese relations can be
expressed graphically by the wavelet coe�cient tree in Fig-
ure 2(a).�e relationship between the parent and child nodes
is that the index value of the parent node in a level is 1/2 times
the index of the child node.

A kind of tree structure (greedy tree) was proposed in
[15]. For the greedy tree, if a coe�cient is signi�cant then
its child and all of its grandchildren are likely signi�cant
[11]. Figure 1 depicts two cases of greedy tree approximation.
�e number of each node is the wavelet coe�cient modulus.
Nodes not labeled depict zeros. In the �rst case, the wavelet
coe�cients decay monotonically along the tree branches
toward the leaves. Suppose that the wavelet treeΩ containing
3 wavelet coe�cients; that is, |Ω| = 3. �e 3-term greedy
tree approximation (here, we assume that 3 = 4) can be pro-
ceeded in three steps: (1) �nd the5,5 ≤ 4 largest wavelet coef-
�cient terms; (2) form the smallest connected rooted subtree

that contains all of these 5 coe�cients; and then (3) increase
5 until |Ω| = 4.

Initializing 5 = 2, two coe�cients 10 and 8 will be found
and will form a minimum, connected subtree Ω. Gradually
increase 5 until 5 = 4, the greedy tree approximation forms
the connected rooted subtree Ω, 10-8-4-3, with 4 nodes that
maximize the sum of the wavelet coe�cients in the subtree.
�is process was shown in Figure 1(a), the error is small.
Another case was shown in Figure 1(b), when the wavelet
coe�cients do not decay monotonically along the tree
branches toward the leaves, an isolated signi�cant coe�cient
away from the root will be selected, either of its all ancestor
coe�cients. �ese ancestor coe�cients may be very small,
which will increase the approximation error. For example,
initializing 5 = 2, then two coe�cients 10 and 8 will be found
and the resulted subtree is 10-0-0-8 with 5 = |Ω| = 4. Obvi-
ously, the error is large.

We can see that the process of greedy tree approximation
is simple, but when the tree includes isolated large coe�cients
far from the tree root, the approximation error will be
increased. �us, backtracking is imposed to deleting the
wrong nodes selected by the greedy tree. �is will be illus-
trated in the Section 2.2.

2.2. Tree-Based Backtracking Orthogonal Matching Pursuit
(TBOMP) Algorithm. Our proposed Tree-based Backtrack-
ing Orthogonal Matching Pursuit (TBOMP) is as follows.

Algorithm 1 (TBOMP).

Symbol Description

!—wavelet high frequency coe�cient vector;

!̂—reconstruction wavelet high frequency coe�cient
vector;

7—measurement matrix, � = 7!;
8
—the &th column vector of 7, 1 ≤ & ≤ ;

91, 92—parameters of thresholds, 91, 92 ∈ [0, 1];
Λ �—index set,Λ denotes the index set of all columns
{8
} of matrix 7;
�max—number of maximum iterations allowed;

Γ�—atom-deleting set in the �th iteration;


�—candidate set of the root atoms in the �th
iteration;

>�—family set that consists of the subtrees corre-
sponding to the root nodes in 
�.

Initialization. ?0 = � (initial residual), Λ 0 = 0, Γ0 = 0, and

0 = 0.
Loop

(1) Initial selection: select the candidate set
� with abso-
lute values of correlations satisfying:

AAAAA⟨?�−1, 8��⟩
AAAAA ≥ 91 ⋅max


∈Λ �

AAAA⟨?�−1, 8
⟩
AAAA ,

Λ � = Λ \ Λ �−1.
(7)
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Figure 1: Greedy tree search.
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(b) Process of tree nodes selection in the
TBOMP

Figure 2: Wavelet tree structure.

(2) According to the 2-times relationship of wavelet tree
node indices, �nd thewavelet tree rooted at each node
in 
�. �en the family set >� consists of the atoms
indexed by 
� and all of their families can be found.

For example, assume that 
� = {G1� , G2� , . . . , G�� }, then
the wavelet subtrees rooted at G1� , G2� , . . . , G�� will be
found, respectively, in this step.�e index sets of these

H trees are denoted as >1� , >2� , . . . , >�� .
(3) Compute !̂���� = (7����7��� )

−17�����, 1 ≤ I ≤ H.
(4) Find >�̃� such that !���̃� minimizing the residual as fol-

lows:

Ĩ = arg min
1≤�≤�

������ − 7��� !̂
�
���
�����2. (8)

(5) Select atom deleting index set Γ� satisfying
AAAAAA!̂
�
Λ �−1∪�

�̃
�

AAAAAA ≤ 92 ⋅max
AAAAAA!̂
�
��̃�

AAAAAA . (9)

(6) SetΛ � = {Λ �−1 ∪>�̃� } \Γ�, 8{
:
∈Λ �} = 0, and update the
residual as follows:

?� = � − 7Λ � !̂
�
Λ � . (10)

(7) If ‖?�‖2 < Lor if � = �max, quit the iteration; otherwise,
set � = � + 1, go to step 1.

End Loop.

Output. the estimated support set Λ � and the nonzero values
!̂Λ � = (7�Λ �7Λ �)

−17�Λ ��.
As seen in the above algorithm, we combined the charac-

teristics of tree structure and the BAOMP algorithm. In the
�rst step, TBOMP selects candidate set
� whose correlations

between the columns of ΦΛ � and the residual ?�−1 are not
smaller than 91 ⋅max
∈Λ � |⟨?�−1, 8
⟩|,Λ � = Λ\Λ �−1. Here, the
constant 91 is used to adaptively decide how many atoms are
chosen at each time.�en the atoms corresponding to the ele-
ments of 
� are set as the root nodes of subtrees. As we men-
tioned in Section 2.1, due to the 2-times relationship between
the indices of parent and child nodes, the subtree of each atom
corresponding to an index in 
� can be found to form the
family set>�� , which consists of the indices of the family atoms
in the Ith subtree. In the third step, least square method is
applied to obtain the reconstruction wavelet high frequency
coe�cients !̂���� corresponding to the atoms indexed by >�� .
�en the optimal subtree indexed by >�̃� will be selected
according to step (4). In this step, theremay exist insigni�cant
atoms in 8��̃� . �is is because that we only simply applied the

2-times relationship discipline in the searching processing of
subtrees. �us, the backtracking deleting method is intro-

duced in the algorithm to identify the true support set of >�̃� .
�e backtracking deleting set Γ� consists of the indices cor-
responding to all the reconstructed coe�cients satisfying (9).

�en, the index set is updated byΛ � = {Λ �−1 ∪>�̃� } \Γ� at this
iteration. According to the atoms corresponding to the
indices in the set Λ �, the reconstruction coe�cients !̂�Λ � can
be computed. Finally, update the residual by (10) and go to the
next iteration. If ‖?�‖2 < L or � = �max, quit the iteration.

In the TBOMP, the process of tree nodes selection was
shown in Figure 2; the �rst step of the algorithm is to select
candidate set 
� by (7). For example, suppose that 
1 =
{!	,0, !	−2,3} was chosen at the �rst iteration. �e nodes of
subtreeB rooted at!	,0 and the family nodes rooted at!	−2,3
are the signi�cant coe�cients needed to be found. According
to the 2-times relationship of wavelet tree node indices and
Figure 2(b), !	−1,0 and !	−2,0 are the child and grandchild
nodes of !	,0. �us, subtree A rooted at the node !	,0 will
be found in the �rst iteration.



Journal of Applied Mathematics 5

0 50 100 150 200 250

0
10
20

−10

(a) Original signal

−50

0

50

100

0 50 100 150 200 250

(b) Wavelet coe�cients of 4-level decompositions. �e coe�cients
are arrayed as {�4, �4, �3, �2, �1}

−50

0

50

100

0 50 100 150 200 250

(c) Wavelet coe�cients recovery of the TBOMP algorithm

Figure 3: Reconstruction signal by TBOMP algorithm.
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Figure 4: Reconstruction of TBOMP algorithm.

Nowwe assume that the subtreeA is the optimal tree cor-
responding to!	,0. At the end of this iteration, the backtrack-
ing algorithm will remove the node !	−2,0 according to step 5
of the TBOMP algorithm described above. In the remaining
iteration, node !	−2,1 will be choosen as the child node
of !	−1,0. Ultimately, subtree B will be found accurately.
Analogously, the searching process of the subtree rooted at
the node !	−2,3 is the same, and it can be proceeded simul-
taneously.

�ese characteristics of tree structure provide a new way
for the study of reconstruction algorithm. �anks to the tree
structure of wavelet coe�cients, when the signal is sparsely
represented by the wavelet transform, it also provides a clew
for the selection of atoms in the reconstruction algorithm.
�is will greatly improve the reliability of the atom selection.

�e coe�cients of wavelet decomposition include low-
frequency coe�cients and high-frequency coe�cients (scal-
ing coe�cients and wavelet coe�cients in �).�emore levels
of wavelet decomposition, the less low-frequency coe�cients,
and more important information is reserved in the high-
frequency coe�cients. Compared with the high-frequency
coe�cients, the number of low-frequency coe�cients are
much less if the decomposition level is big enough. Since
the low-frequency coe�cients play an important role in the
wavelet reconstruction, in our proposed algorithm, only the
high-frequency coe�cients are measured by measurement

matrix. For the reconstruction, we combine the reconstructed
high-frequency coe�cients !̂ and the unprocessed low-
frequency coe�cients. �en the inverse wavelet transform is
applied to obtain a reconstructed �̂ of the original signal �.

3. Simulation Results

In this section, several experiments will be given for the
TBOMPalgorithm. In the �rst experiment, the original signal
� is a one-dimensional blocks signal with length  = 256.
It was recovered from � = 64 measurements by using the
Gaussian random measurement matrix. �e wavelet decom-
position level is 4 and the wavelet function is Db1. Figure 3
shows the reconstruction result of 7th iterations by using the
TBOMP algorithm.

In the �rst iteration of the TBOMP algorithm, according
to the parent-child relations of wavelet tree, some unreliable
atoms will be chosen, which leads to a wrong reconstruction
result. Asmarked by the cycles in Figure 4(a).�en according
to the backtracking deleting method, the wrong selected
atoms can be deleted. Aer the second and the third itera-
tions, some atoms are still not found. Aer the 7th iteration,
the reconstruction result (Figure 3(c)) with TBOMP algo-
rithm is exactly same as the original wavelet coe�cients
shown in Figure 3(b).
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Figure 5: Reconstruction results of Doppler and HeavySine signal by TBOMP and OMP algorithms.

Similar results can be obtained for other signals. Recon-
struction results of Doppler and Heavysine signals by using
our TBOMP algorithm are shown in Figure 5. Here, we com-
pared our reconstruction results with the classical OMP algo-
rithm,�/ = 1/4.

In the next experiment, wewill compare theTBOMPwith
some popular algorithms such as OMP, ROMP, and BAOMP.
Here, only the high frequency coe�cients are measured; the
low-frequency coe�cients will not be processed [16]. �e
wavelet function is choosen as the “sym8” in MATLAB. �e
decomposition level is 5 for these four algorithms. De�ne
SNR = 20 log10(std(�)/std(�̂ − �)), where std denotes

the standard deviation. Because of the randomness of the
sensing matrix, numerical result at each time is di�erent.
Hereaer, we use the same sensing matrix in one experiment
for these four algorithms.

We use the Bumps signal of length = 2048 and change
the values of� simultaneously in order to guarantee the same
experiment condition. Aer 5 layers of wavelet decomposi-
tions, there are 64 low-pass coe�cients in the 5th decom-
position layer and total 1984 high-pass coe�cients in the 5
decomposition layers. In order to obtain a fair comparison,
in the Figure 6, the measurements number used in these four
algorithms is 500 − 64 = 436. For sake of simplicity, when
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Figure 6: Comparison signal of TBOMP and BAOMP in time domain.
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we mention that�measurements in the TBOMP, we means
that� is the sum of the low-pass coe�cient number and the
measurement number of the high-pass coe�cients.

When � = 500, the compression ratio is about 1/4.
�e reconstruction results of Bumps signal of TBOMP and
BAOMP are shown Figure 6. �e SNR of TBOMP is about
1.8 dB higher than the BAOMP.

Since ROMP requires the sparsity level � to be known
for exact recovery, in the experiments, the best sparsity value
� of the wavelet coe�cients can be estimated according to
repeated experiments and then used in the simulations. Fig-
ure 7 shows the SNR comparison results for di�erent values
of�. �e values of� are selected as 200, 500, 800, 1100, and
1400, respectively. For each�, we conduct the experiment 10
independent trials and calculate the average SNR. It is obvi-
ously that the reconstruction result of TBOMP algorithm is
superior to others.

4. Conclusion

Sparse reconstruction algorithm is one of the three core
problems (signal sparse representation, measurement matrix
design, and reconstruction algorithm design) of CS. �e
existed sparse reconstruction algorithms such as ROMP and

CoSaMP algorithms employ the sparsity � as the prior
knowledge for exact recovery, which hasmany limitations for
the realistic applications. However, although the sparsity level
are not required for OMP and BAOMP algorithms, they do
not use the characteristics of special sparse basis to improve
the performance of the algorithms. In this paper, a new Tree-
based Backtracking Orthogonal Matching Pursuit (TBOMP)
algorithm was proposed based on the tree model in wavelet
domain. Our algorithm can convert the wavelet tree struc-
tures to the corresponding relations of candidate atoms with-
out any prior information of signal sparsity level. Moreover,
the unreliable atoms can be deleted according to the back-
tracking algorithm. Compared with other compressive sens-
ing algorithms (OMP, ROMP, andBAOMP), the signal recon-
struction results of TBOMPoutperform the abovementioned
CS algorithms.
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