
Tree Based Broadcast in Ad Hoc Networks

Alpár Jüttner 1,2, Ádám Magi1

1Ericsson Research,

Traffic Analysis and Network Performance Laboratory

Budapest, Hungary

2Department of Operations Research,

Eötvös University,

Pázḿany Ṕeter śet́any 1/C, Budapest, Hungary, H-1117

e-mail:{Alpar.Juttner, Adam.Magi }@eth.ericsson.se

September 9, 2004

Abstract

Although broadcasting using tree structure established in a network is a well known and widely

used technique, it is typically claimed to be inappropriate for ad hoc networks, being the maintained

tree very sensitive to network changes. On the contrary this paper presents an efficient tree based

broadcasting scheme, which is reliable and stable even in case of the ever changing network structure

of the ad hoc networks.

To achieve this, first, a novel method is presented to maintain a spanning tree in an ad hoc network

in a fully distributed, on-line and asynchronous way. Once the tree is established the broadcast itself

is performed based on this tree. Some further improvements on the basic algorithm are also presented

that reduce the resource requirements even more, increase the stability of the tree, enable the mobility

of the nodes to be taken into account and make the method more configurable.

As it is shown by simulation, the obtained broadcast scheme is stable, reliable and it uses small

amount of resources: the acyclic structure of the broadcast tree ensures that the nodes get the broadcast

messages only once, so the broadcast needs little bandwidth and the nodes need not store the recent

broadcast messages, reducing the computational and memory requirements.

As a byproduct a technique is proposed to measure the mobility of the nodes. This technique needs

no additional GPS device or any geographical information but it is based on the stability of the links of

the node.

Keywords: Ad-hoc networks, Broadcast, Multicast, Routing algorithms, Wireless LANs.

1



1 Introduction

Mobile ad hoc networks (MANETs) are communication networks formed by mobile radio-equipped ter-

minals (e.g. laptop computers, PDAs) without a fixed infrastructure in such a way, that each communi-

cating device (hereafternode) can serve as a router for the others. MANETs present a number of specific

challenges for the communication protocols used to operate them. First and foremost, the protocols have

to take into account the constant changes in the network topology due to node mobility, and in most

applications the protocols should use fully distributed algorithms since no central entities are available

due to the lack of fixed infrastructure. On the other hand communication should be kept to a minimum

over the air interface which is often a scarce resource in these networks, and energy expenditure has to

be minimized since most nodes are hand-held devices operating on limited battery.

In the present work the focus is on network-wide broadcast, that is a procedure in which some infor-

mation is passed on to all participating nodes.

This paper proposes a new solution to the problem of broadcasting in ad hoc networks. The idea is to

maintain a spanning tree in the network, and broadcast using this tree by forwarding a broadcast message

not to all neighbors but only to those who are neighbors in this tree as well. Since a tree is acyclic, each

message is received only once by each node, giving two advantages over the existing methods. Firstly,

it is needless to store the previous broadcasts in order to avoid endless multiplications of the broadcast

messages along a cycle of links. Only the originator node of a broadcast message need to store it and pay

attention to whether its broadcast was probably successful or not if it is of great importance. Secondly,

it is very economical considering how many times a broadcast message should be forwarded. Supposing

that the broadcast tree is in stable state, a broadcast message should be forwarded only once per a node

in case of one-to-one broadcast forwarding. If local broadcast is available, a broadcast message should

be forwarded as many times as many non-leaf nodes there are in the broadcast tree.

Broadcasting or multicasting in a network using a tree is not a novel idea. Several algorithms can

also be found in the literature that aim at automated and distributed building of spanning tree in the net-

work (see Section 2.4). These methods are designed to be applied in networks having fixed architecture.

However, as it was mentioned above, application to ad hoc networks raise special demands about such an

algorithm. Namely, no node knows the whole network structure, but only their direct neighbors. So, the

nodes have to build the spanning tree by communicating with each other. Of course, we want to minimize

this communication. The algorithm should treat each node in the same way, in order to avoid that the

whole network relies on the reachability of one ore more dedicated nodes. We also want to minimize the

data structure that each node has to store during and after the tree computation. Most importantly,this

algorithm should be able to cope with the continuous change of the network topology. Links disappear

and new links appear from time to time, damaging the tree or connecting two previously disconnected

2



networks. The tree algorithm should react immediately to these changes.

In fact, due to these strong requirements, the tree based broadcast is widely considered to be inappro-

priate for ad hoc networks, being too difficult and resource consuming to maintain (neither connectivity

nor the acyclic property are local characteristics) and being too sensitive to the link failures.

On the contrary, as the main contribution, this paper presents a novel distributed spanning tree al-

gorithm that meets all the above requirements. The proposedTreeCastmethod isfully distributedand

fully decentralized. It does not need dedicated nodes or any kind of “leader election” process. Each node

executes exactly the same (very simple) process. It is alsoasynchronous, that is the nodes do not need a

common timer. Each node has to know only about its direct neighbors. No other information is needed

about the actual network.

The TreeCast algorithm ison-line in the sense that whenever a new node appears or two separated

local networks become connected because a new link appears, the algorithm automatically extends the

tree and whenever the tree breaks up because a link ceases, it will repair the tree automatically. The

algorithm handles the simultaneous link setups and ceases, and gets quickly into a stable state even after

significant changes in the network structure. It works with only a small amount of communication and

computing resources.

The TreeCast algorithm is also able to take themobility of the nodesinto account. A method is given

to measure this property based on the stability of the node’s links. Moreover the algorithm allows one to

explicitly prescribe some nodes to be a leaf in the tree, if it is necessary to prevent a node from spending

lot of resources on broadcasting.

Once the spanning tree is built, the broadcast mechanism is quite simple, as it is seen in details in

Section 3.2.

In the case when the network changes really frequently, the proposed spanning tree algorithm may

need some fine-tuning in order to increase stability of the tree (i. e. to decrease the time required to reach

a stable state even after fundamental change in the network) and to decrease required communication

even more. Section 4 proposes several improvements for this purpose. The proposed mobility measure

is described in Section 4.3. After some discussion in Section 5, numerical results of the performance

of the algorithm under real-life conditions are shown in Section 6. Finally the conclusions are drawn in

Section 7.

2 State-of-the-Art

Network-wide broadcasthas two major uses, namely the dissemination of control (e.g. routing related)

information and that of user data. According to this distinction we can formulate different requirements

3



for the two types of broadcast.

Broadcast of user dataoften requires reliability to some degree. This is because application-level

acknowledgments from all peer nodes would unnecessarily overload the network. These broadcast algo-

rithms can sometimes benefit from the routing information gathered by the underlying (unicast) routing

algorithm. Since these broadcast events are rare and they constitute user traffic they can be relatively

expensive in terms of resource usage.

Control data broadcaston the other hand typically needs less reliability. The most widespread use of

network wide broadcast in MANET routing protocols is the propagation of “route query” type packets.

In most cases it is sufficient that the broadcast reaches a single node that is aware of the location of the

node ID in the query. Thus the requirement is that the broadcast should notsystematicallyleave out some

nodes or parts of the network. Usually these broadcast algorithms have to rely on very little available

routing and topology information. Also they can be quite frequent (e.g. ”route query” each time a priorly

unknown node is contacted) and they constitute control traffic. Thus resource usage has to be kept to a

minimum.

Network-wide broadcast mechanisms often rely onlocal broadcastif it is available. This is a mech-

anism by which the message is sent to all of the node’s neighbors for further distribution. Such a mech-

anism is sometimes built into the air interface e.g. in IEEE 802.11b the most popular air interface for

MANETs at the moment. If no local broadcast is available then a node has to send the message to all

of its neighbors (or a subset of those) one by one. However one must always keep in mind that local

broadcast is always unacknowledged and suffers from the loss of messages because of their collisions,

thus much less reliable than point-to-point message distribution.

It was shown in [1] that achieving network wide broadcast in a fully distributed, low energy, mobility-

aware way is not a trivial task.

2.1 Flooding

The current method of achieving network-wide broadcast in a MANET is calledflooding (or classical

flooding) [2]. In this procedure each node receiving a copy of a broadcast message first checks whether it

has already received it. If so, the message is silently discarded. If the message was received by the node

for the first time then it is sent to all of its neighbors.

In [1] it is shown that the classical flooding algorithm has several drawbacks. First of all it is rather

costly in terms of air interface usage and energy expenditure. This is because each node receives the

broadcast message (in an ideal case) from each of its neighbors while theoretically one reception per

node would be sufficient.

Secondly, flooding is not reliable. This is because neighboring nodes try to use the unreliable local

4



broadcast all at the same time. Thus collisions are likely to occur and remain mostly unnoticed. So, the

multiple transmissions may have a reverse effect leading to the total loss of the broadcast message.

2.2 Extended Topological Knowledge Based Solutions

A number of network-wide broadcast algorithms [3, 4, 5] are based on each node having some non-local

knowledge of network topology. Typically the connectivity of the node’sk hop neighborhood for some

small integerk is assumed to be known. The algorithms use this partial topology knowledge to reduce

the number of nodes which relay the broadcast message.

The authors of [3] propose two related solutionsSelf PruningandDominant Pruning. In the first

one each node decides whether it should refrain from forwarding a broadcast message based on the

knowledge of its own neighborhood and the neighbors of the sending node (which is included in the

broadcast message in this solution). The second algorithm builds on each noden knowing its two hop

neighborhood, and computing a forwarding set of its neighbors. Nodes are selected into this set in such

a way that they covern’s entire two hop neighborhood. When forwarding the broadcast messagen

communicates the forwarding set as well, and only the nodes included in it will forward the message.

In [4] the LENWBalgorithm is presented, in which each node computes whether it should forward the

message based on the knowledge of its two hop neighborhood and the degree of its one and two hop

neighbors. The algorithm is shown to be reliable in the case that local broadcast is reliable.

The Internet draft [5] presents theBordercast Resolution Protocolas part of the Zone Routing Proto-

col framework. The algorithm builds on the concept of routing zones (k ≥ 2 hop neighborhood of each

noden), arbitrary broadcast inside each zone, forwarding border nodes (a subset ofn’s k hop neighbors),

and full knowledge ofn’s 2k hop neighborhood topology.

These solutions expect the nodes to acquire and store large amounts of information about the topolog-

ical or geographical structure of the network. In methods that are based on non-local topology knowledge

the node has to store and keep up-to-date its 2, 3 or 4 hop neighborhoods. This requires substantial com-

munications between neighboring nodes.

2.3 Geographical Location Based Solutions

Another set of algorithms [1, 6] assumes each node in a network to be equipped with a GPS device.

The nodes communicate their location to their neighbors and this geographical knowledge is exploited to

reduce the number of forwarding nodes.

In [1] the authors propose, among several others, two schemes which make use of geographical data.

In the first one (Distance-Based Scheme) only the nodes’ distance (relative to the radius of their radio

coverage area) is used, while theLocation-Based Schemeassumes that all nodes know the geographical

5



location of their neighbors. In both cases each node decides whether to forward a broadcast packet based

on the size of the expected extra coverage area.

The Internal Node Based Broadcastingalgorithm of [6] supposes that each node has knowledge of

all of its neighbors’ geographical coordinates as well as their degrees. With this knowledge each node

decides whether or not it is an internal node with regards to broadcasting. Only internal nodes relay the

broadcast messages.

The methods that are based on the knowledge of the exact location of the nodes need an additional

GPS hardware component, which is expensive and quite unrealistic in case of many devices such as

wireless mice, keyboards or headsets. Why should anyone carry 4 or 5 GPSs with oneself all the time?

(One in his notebook, other ones in his mobile phone, headset, palm-top or camera.) Moreover these

methods suppose that visibility can be estimated merely from the position of the nodes, i.e. it mainly

depends on the distance of the nodes. This is realistic only if there are no shading objects, that is, the

users are in a plain field.

2.4 Algorithms for Tree Creation and Maintenance

One more common drawback of all the methods mentioned above is that the nodes have to store the

broadcast messages to be able to respond only to the first reception of each message. Otherwise the

messages could arbitrarily multiply in the network. The most evident way to avoid the multiple reception

of a message is to forward the broadcast messages only on an acyclic subset of the links, i.e. on a tree.

There are several algorithms in telecommunication networks for creating and maintaining tree struc-

tures such as the spanning tree algorithm of bridged Ethernet networks [7]. Unfortunately most of these

algorithms are designed to work in fairly stable networks and not the constantly changing topology of an

ad hoc environment.

There is an important body of work dealing with multicast trees [8, 9, 10, 11, 12] and more specifi-

cally multicast trees in ad hoc networks (e.g. [13]). These algorithms however usually maintain several

rather sparse trees over a pre-existing routing architecture. In the current work we focus on broadcast

of primarily control information which implies one tree spanning all of the network built without prior

unicast routing data.

The protocols for the widely examined leader election problem (e.g. [14]) typically generate a span-

ning tree as a byproduct. Moreover, even the minimal cost spanning tree can be found by an efficient

distributed algorithm[16]. These algorithms however deal only with the construction of the tree, they are

not suitable for handling the topology changes. The algorithm presented in [15] implicitly also involves

in constructing a spanning tree. Although the algorithm is designed for wireless ad hoc context, it is not

appropriate for the maintenance of the tree.

6



There are indeed some ad hoc routing protocols that rely on some underlying tree or forest topology.

The DST protocol [18] maintains a spanning tree and uses it to forward data packets, however some

aspects of tree maintenance (such as tree merging) involves centralized decision and extensive signaling.

DDR [17] on the other hand uses a dynamically maintained forest. Although the authors prove that their

algorithm always yields a forest in one step, they do not even aim at constructing a single tree for the

network. Moreover the performance of the protocol in an unreliable environment (e.g. possible loss of

beacons) is also questionable.

3 The TreeCast Algorithm

This section presents a communication-efficient algorithm to maintain a spanning tree and a broadcasting

method based on the spanning tree.

As we mentioned above, the full broadcast mechanism includes two separate tasks: the maintenance

of the Broadcast Tree and the broadcast process itself using this tree.

3.1 Maintenance of the Broadcast Tree

Each node is supposed to have an individual ID referred asNodeID. NodeID’s are supposed to be ordered,

that is NodeID’s can be compared. For example, the IP address is suitable for this purpose.

Each node belongs to a single Broadcast Tree. These trees also have an ID calledTreeID. A TreeID

is a pair of an integerserial numberand a NodeID and it is generated by the algorithm. The NodeID of

a node and the NodeID in its TreeID will typically be different.

TreeID’s are lexicographically ordered, i.e. they also can be compared and the comparison is defined

as follows. If their serial numbers are different, then the TreeID having the greater one is defined to be

greater. If their serial numbers are the same, then the TreeID having the greater NodeID is defined to be

greater.

In addition to its TreeID, each nodes stores that from among its links, which ones belong to the

Broadcast Tree. For the sake of simplicity, these links are referred asBroadcast Link.

Each link can be added to or deleted from the Broadcast Tree by its end-nodes. Both end-nodes have

up-to-date information about whether the link is a Broadcast Link or not. This can be achieved e.g. by

an acknowledged message, that has precedence over all other messages related to the broadcasting.

Now we are ready to present the algorithm establishing and maintaining the Broadcast Tree. It is

going to be done by describing how a node reacts to different events such as the setup or ceasing of a link

or getting a message from one of its neighbor.

• Whenevera new link appearsand the two newly adjacent nodes recognize that their TreeID’s are

7



different (i.e. they belongs to different Broadcast Trees), then this link becomes a Broadcast Link

and the two nodesmergetheir Broadcast Trees. The TreeID of the merged tree will be the greater

one of their TreeID’s. LetG denote the node having greater TreeID and letS be the other node.

Thus,S updates its TreeID to the TreeID ofG and starts a “NewID” process described later. This

process will update the TreeID’s of the remaining nodes.

TreeIDs differ?

START

Set to be
Broadcast Link

Is my TreeID
higher?

NewID

STOP

yes

no

no

yes

Figure 1: New link process

• If a Broadcast Link ceases, that is the Broadcast Tree breaks up into two parts, one of the parts will

get a new TreeID. First, the two endpoints of the ceased link make decisions about whose tree will

get a new TreeID. Obviously, this decision must be made without communication. However, it is

worth mentioning that if both of them will decide to generate new TreeID, it causes no problem,

only the process will be a bit more resource consuming. For example a simple way to do this is that

the end-node having greater NodeID executes this process. Namely, this nodeA generates a new

TreeID (this process is described later), sets its TreeID to this value and starts a “NewID” process.

The other end-nodeB of the ceased link waits for getting a new TreeID for a certain time. If no

new TreeID arrives, then it means that nodeA has totally disconnected fromB. Then nodeB also

generates a new TreeID in the same way asA did, sets its TreeID to this value and starts a “NewID”

process.

• Thegeneration of a new TreeIDis quite simple. If the serial number of the previous TreeID was

s, then the new TreeID will be(s + 1, N), whereN is the NodeID of the node that executes this

8



process. If a new node comes into being, its first TreeID is(0, N), whereN is its NodeID. This

TreeID generation ensures, that a newly generated TreeID is certainly unique and it is greater then

the previous TreeID of the node was.

• The “NewID” process simply sends an“I have new TreeID” message including the new TreeID

to each of its neighbors excluding the node where it received this new TreeID from. If the TreeID

was generated by this node, it sends this message to all of its neighbors.

• When a node receives an“I have new TreeID” message on the linkL, it compares the received

TreeID with its own. If the received one is smaller, then it must be obsolete information, so it does

nothing. If it is greater, then the node setL to be a Broadcast Link, updates its TreeID and starts

a “NewID” process. If these TreeID’s are equal, then it means that the node gets this TreeID for

the second time, indicating that the “Broadcast Tree” together withL would contain a cycle. To fix

this, it setsL not to be a Broadcast Link.

Claim 1 Whenever the network gets into a stable state, the above algorithm establishes a tree that spans

all the nodes of its connected components within(d + 1)T time, whered is the maximum hop-by-hop

distance between the node pairs of the component andT is the time required by sending an“I have new

ID” message and handling it by the receiver node.

Proof. After the time of sendingd messages each nodes receives the highest generated TreeID(s,N).

After the time of one more message sending, the nodes do not generate new messages related to the tree

maintenance, so the setB of Broadcast Links stabilizes as well. The setB is exactly the set of links on

which the TreeID(s,N) was forwarded to a node for the first time, soB forms a connected and acyclic

graph. �

3.2 The Broadcast Mechanism

Once the Broadcast Tree is established, the broadcast itself is quite simple. A broadcast message consists

of a TreeID and the message itself. When a node receives a broadcast message, it compares the TreeID of

the message with its own. If they are different, then it deletes the message since it is obsolete. If they are

the same then it forwards the message on each Broadcast Link but the one it got the message from. Only

the originator of a broadcast message has to store it. If the originator had to update its TreeID because

of an “I have new TreeID” message within a certain time after broadcasting, it draws the conclusion that

some nodes possibly did not get the broadcast message because of the inconsistency of the Broadcast

Tree. Then the node decides on the rebroadcast of the message depending on its importance.

If local broadcast is available, the above method can be used with the difference that a Broadcast

Message sent by the nodeN also contains theNodeID of the node where the nodeN got this message

9



from. A received broadcast is forwarded by a nodeM only if the M is not a leaf, theNodeID in the

message differs fromM and if the message arrived from one of the tree neighbors ofM .

Remarks

• If the Broadcast Tree is in transitional state then a node may occasionally get a broadcast message

twice or more. It causes no problem since it rarely occurs and the messages cannot circulate in the

network irrespectively of whether or not the Broadcast Tree gets into a stable state.

• On the other hand if the Broadcast Tree is in transitional state then a broadcast message may fail to

reach every node. Unfortunately this is an unavoidable phenomenon that occurs with any kind of

broadcast mechanisms if links break up. This algorithm ensures however, that the Broadcast Tree

gets into stable state soon after the network changes, so the amount of lost messages will not be

large. Moreover, as we mentioned above, the originator of the message will recognize the possible

occurrence of this phenomenon by getting new TreeID within a certain interval after initiating the

broadcast. So, in this case it may decide on re-sending the message.

4 Improvements on the Performance and the Scalability

This section presents some improvements that reduce the amount of resources required by the Broadcast

Tree maintenance and update process. They also improve the stability of the tree.

4.1 Reducing the Number of TreeID updates

In the basic algorithm, whenever a Broadcast Link ceases, each network node has to update its TreeID.

However the Broadcast Tree can be often repaired locally. The simplest case is when one of the endpoints

of the ceased link is a leaf in the Broadcast Tree, i.e. it has no other Broadcast Links. Then, this node

can repair the Broadcast Tree by setting one of its other links to be a Broadcast Link. If it has more links,

then it can follow different strategies. For example it can use the oldest link (as it seems to be the most

stable), the link that connects to a node having the most Broadcast Links (since this may ensure the “best”

connectivity and since the Broadcast Trees having more leaves are preferred) or the link that connects to

the least “mobile” node (see Section 4.3).

4.2 Further Improvement on the Stability of the Tree

Whenever the Broadcast Tree gets a new TreeID, the updating process almost completely changes the

Broadcast Tree. If the stability of the Broadcast Tree is of great importance, the following modification

10



Broadcast link to
node ‘N’ ceased

Am I a leaf?

NewID

Is ‘N’ a leaf?from tree?
Other node

Connect
to tree

STOP

yes

no

no no

yes yes

Figure 2: Improved “link ceasing” process

can be used that significantly reduces the difference between the Broadcast Tree before and after a TreeID

update.

The modification is in the“NewID” process. Namely, first the node sends“I have new TreeID”

messages only on its Broadcast Links. Then it waits a certain amount of timeNoTreeDelay, and finally

it sends the“I have new TreeID”message to its remaining neighbors. With this technique, if two nodes

are separated and one of them generates a new TreeID there is a chance that it will reach most of the other

nodes on the original tree links before the delayed messages radically reshape the Broadcast Tree.

4.3 Taking Mobility into Account

4.3.1 Measuring the mobility

First, the “mobility” of a node has to be measured. This can be done in several ways, for example based

on the physical location of the node or based on how often its links disappear or new links appear. We

chose this latter one. We give three alternative ways to measure this quantity.

• Exponential Mobility.Using this method, the mobility of a node decreases exponentially with the

time but it increases by1 whenever a new link sets up. For a precise definition, suppose that new

links of a nodeN set up at time instancest1, t2, · · · , tk. (Some of them may have ceased and set

11



up again. These links appear twice or more in this list.) So, the mobility factor of nodeN at the

time instanceT is

M(N) :=
k∑

i=1

FT−ti , (1)

whereF < 1 is a parameter controlling how fast the mobility decreases with the time.

• Reactive Mobility Measure.This measure is similar to (1) with the difference that the increment at

a link setup is not constant amount, but the less mobile the newly appeared link is, the greater the

increment. To give a formal definition, suppose that new links of a nodeN set up at time instances

t1, t2, · · · , tk, and the mobility of the corresponding nodes wasm1,m2, · · · ,mk at those times.

Then the mobility factor of the nodeN at the time instanceT is

M(N) :=
k∑

i=1

(
1 − min(mi,M)

M

)
FT−ti , (2)

whereM is a normalizing parameter.

• Average Age Mobility.Another way is the reciprocal of the mean value of the age of the link. Let

suppose that the current links of the nodeN is established at time instancest1, t2, · · · , tl. Then the

mobility factor of the nodeN at the time instanceT is

M(N) :=
l

l∑
i=1

T − ti

(3)

• A similar expression for the mobility is

M(N) :=
1
l

l∑
i=1

1
T − ti

, (4)

wheret1, t2, · · · , tl are also the time instances of the establishments of the current links of the node

N .

Each measure described above expresses the recent behavior of the nodeN . If some of its links

disappear and some new appear, then the valueM(N) increases, but if its links stop changing, then

M(N) decreases continuously.

This mobility information can be utilized in several ways.

4.3.2 Who starts the TreeID update process?

If the mobility factors of the neighbors are known for the nodes, then a simple alternative strategy is to

decide which endpoint node of a broken Broadcast Link should start the TreeID update process: the less

mobile one.

This strategy is based on the obvious observation that the node which starts the TreeID update process,

will have relatively high number of Broadcast Links and the other one will have fewer.

12



4.3.3 Mobility Delay

This is a modification of the “NewID” process. The node waits a certain amount of timeMobilityDelay

before it sends the first “I have new TreeID” message. The value ofMobilityDelay depends on the

mobility of the node. The higher the mobility factor is the higher theMobilityDelay is. Nodes with

small mobility factor will have noMobilityDelay .

Using this method, mobile nodes tend to become a leaf in the Broadcast Tree. So, when such a node

loses its Broadcast Link, it is able to fix it locally, instead of generating new TreeID (See Section 4.1)

4.3.4 Where to connect a leaf node?

Whenever a Broadcast Link connecting a single nodeA to the Broadcast Tree ceases, the algorithm can

use the idea of Section 4.1 to avoid to the TreeID update process. IfA has more than one living links

then we have a choice to decide on the link to become a Broadcast Link.

One possible strategy is to connect to the least mobile node. The idea behind this strategy is that the

previous techniques result in that the more mobile nodes have less Broadcast Link. So, connecting to the

least mobile node helps to keep the most mobile nodes to remain a leaf node in the tree.

5 Discussion

The TreeCast algorithm presented above has a number of attractive features. In this chapter we will

discuss these features and compare them with those of some selected algorithms found in the literature.

MANETs have many fields of use from military operations and save-and-rescue missions to office

applications. In the present paper we focus on indoor office-like applications of ad-hoc networks where

the communicating nodes are laptops, handheld computers, etc. used and carried by humans.

Indoor application means that network connectivity depends much more on the distribution of obsta-

cles as indoor walls, rooms etc. than on geographical distance between communicating devices. Thus,

we exclude geographical location based solutions due to their inaptitude in the targeted scenarios.

The number of messages needed to complete a network wide broadcast is rather low in the TreeCast

algorithm. If we only use point-to-point messaging it is equal toN − 1, that is one less than the number

of nodes in the network. This is by the way the theoretically achievable minimum. Extended topology

knowledge based methods of course try to reach this optimal value, but they usually use more transmis-

sions. Flooding would useN ∗ (d − 1) + 1 messages whered is the average degree of the nodes in the

network.

If the network employs local broadcasts the theoretical minimum is less but it depends on the network

topology. In this case flooding usesN local broadcasts. TreeCast still uses considerably less messages

13



Figure 3: Snapshot of tree in a 100-node network. Tree links connecting non-leaf nodes are indicated by

thicker lines.

than flooding, since the leaf nodes don’t need to forward the broadcast message. As you can see from

Figures 3, 6 and 5, the majority of the nodes are actually leaves in practice.

One advantage of TreeCast over all other presented methods is that nodes do not have to remember

previous broadcast messages. Any broadcast message coming from a tree-neighbor is to be relayed

(unless the node is a leaf) while all other broadcast messages are to be ignored. The tree topology

guarantees that no message can reach a node from two different tree-neighbors.

Another feature that differentiates TreeCast from the other algorithms is that it has been specifically

optimized for using one-to-one transmissions. This way the many drawbacks of local broadcasts (e.g. it

being unacknowledged and collision-prone) do not affect the algorithm. It means that TreeCast is very

well suited to perform reliable broadcasts. And this reliability can be achieved with the same number of

transmissions as in case of the widely used, unreliable flooding.

TreeCast has advantages over the extended topology knowledge based methods as well. While all of

these methods require some extra messaging to keep up some state in the network, TreeCast has been

optimized to minimize this extra signaling traffic. This will be demonstrated in Section 6.

The fact that TreeCast relies on an underlying tree topology raises some questions. A tree is very

vulnerable to changes in topology as the loss of any tree-link or node (unless it is a leaf) destroys its

connectivity. However TreeCast has both explicit and implicit methods to increase the stability of the

tree.

The mobility based extensions (see section 4.3) force nodes of high mobility to the perimeter of

broadcast tree. Thus the topology changes caused by the mobility of these nodes do not generate new

tree topologies. Furthermore the “NoTreeDelay” extension of section 4.2 can enforce the stability of

14



undamaged parts of the tree even in case of loss of tree connectivity.

6 Testing the Behavior of the Algorithm

Several tests were performed through event driven simulation in order to measure the capability of the

algorithm in realistic environment.

The simulation works on message level. The several different delay parameters were chosen so that

the behavior will be similar to a real WLAN network.

The simulator handles the collisions of local broadcast messages.

The nodes take place in a rectangular area. For the sake of simplicity, the visibility merely depends

on their distance in our test cases.

As our prime targets are humans carrying their computers the mobility of the network is special.

Nodes do not move with high speeds, and do not move all the time. Think of employees in an office or

customers in a coffee shop. Possible scenarios will thus have only one part of the nodes moving at any

given time with relatively low speeds (up to 6 km/h).

To simulate a usual office environment we defined different node-types as follows:

• Walking User. This kind of node simulate a user that is walking continuously. It repeats the

following: It randomly chooses a walking direction and speed between3 to 6 km/h and it takes a

random distance in that direction with the chosen speed.

• Mobile User. This type of node intends to model the behavior of employees’ palmtops. It takes

walks for2 to 15 minutes and waits a random interval between2 and90 minutes between these

walks.

• Laptop Node.It chooses a random position, goes there with a randomly chosen speed, stays there

a longer time (1 to 5 hours) and repeats this process.

• Immobile Node.This type of node does not move at all.

6.1 Effect of mobility

In the following test we compared TreeCast and the extended topology knowledge based algorithms with

respect to the resource requirement of the maintenance of their respective data structures.

We modeled the extended topology knowledge methods by simulating a network where nodes notify

all of their neighbors whenever there is a change in their connectivity (i.e. a neighbor is lost or a new one

appears). This models an algorithm that keeps all nodes’ 2 hop neighborhoods up-to-date as described

15



0

5

10

15

20

25

30

35

40

0 60 120 180 240 300 360 420 480 540 600

#m
sg

/n
od

e/
se

c

sec

NewID
2-Neigh

2-Neigh w Local Br.

0

0.2

0.4

0.6

0.8

1

0 60 120 180 240 300 360 420 480 540 600

#m
sg

/n
od

e/
se

c

sec

NewID
2-Neigh

2-Neigh w Local Br.

Figure 4: Effect of swapping the set of mobile and non-mobile nodes (the second picture gives a rescaled

view)

in [3] or [4]. We termed this algorithm2-Neighin the following comparisons. This algorithm was tested

both with and without local broadcast .

In order to perform the comparison we set up two groups of 50 nodes each. At any given time all of

the members of one group are moving continuously while the members of the other group are immobile.

The role of these groups is changed in every10 minutes. Figure 4 shows the number of the messages per

node per second sent by all three algorithms (the figure shows the average of 100 subsequent iterations).

It can be seen that whenever the roles of the mobile and immobile groups have been changed quite

a lot messages have to be sent to maintain the Broadcast Tree. But after a short period the algorithm

recognizes the mobile nodes and as they become a leaf in the Broadcast Tree the number of sent messages

declines well below that of 2-Neigh even when local broadcast is available. In fact, after 60 second, there

are no “I have NewID” messages disregarding some sporadic TreeID updates.

It also has to be taken into account that this comparison only shows the number of transmitted mes-

sages. However while control messages in TreeCast only carry a single TreeID the messages of 2-Neigh

16



have to include a node’s full neighborhood (Dominant Pruning[3]) or even more additional information

such as neighbors’ degrees (LENWB[4]).

6.2 Office Day Scenario

In order to compare the behavior of 2-Neigh and TreeCast under more realistic conditions, we simulated a

full virtual day of an office of 300 employees with PDAs (Mobile Users) and 100 laptops (Laptop Users)

from 8AM to 6PM. The simulation was done in a rectangular area with a ratio of its sides’ lengths1 : 5.

This elongated form intends to decrease the connectivity, thus modeling the effect of various obstacles in

an indoor environment.

The nodes come to life at random time instances between 8AM and 9AM and they switch off at

randomly chosen times between 5PM to 6PM.

There are some special events during the day. A department meeting is organized at 10AM in a

relatively small meeting room. Half of the mobile users take part in it, so they start to go to that room

at between 9:50 an 9:55. They stay there until 10:45AM and then they start to “walk” again. A similar

meeting is held at 3PM. Each employee (mobile node) goes to the canteen to have a lunch between

11:30AM and 13:00PM. They spend form 15 to 30 minutes there.

A snapshot of the spanning tree in the network at 9:10AM and 10:15AM are shown in Figures 5 and

6. The meeting room is located in the lower right corner of the simulation area.

Figure 5: Snapshot of the spanning tree during the full-day simulation at 9:10

Figure 6: Snapshot of the spanning tree during the full-day simulation at 10:15

Again, three algorithms were tested: TreeCast and 2-Neigh with and without local broadcast. Figure 7

shows the number of control messages for each algorithm. Even at first glance one can conclude that 2-

17



Neigh with point-to-point transmissions provides the worst performance, far worse than the other two.

It is clearly visible as well that all three algorithms react to the two meetings with definite peaks in

the number of messages. The lunch break can also be easily spotted.

We can point out that while TreeCast’s peaks are higher during these periods its control traffic stays

well below that of 2-Neigh during most of the day. This is remarkable if we take into account that nodes

change their behavior from immobile to mobile and vice versa all through the day.

0

10

20

30

40

50

60

70

80

8 9 10 11 12 13 14 15 16 17 18

#m
sg

/n
od

e/
se

c

time

NewID
2-Neigh

2-Neigh w Local Br.

0

0.5

1

1.5

2

8 9 10 11 12 13 14 15 16 17 18

#m
sg

/n
od

e/
se

c

time

NewID
2-Neigh

2-Neigh w Local Br.

Figure 7: Full-day simulation: Frequency of the “NewID” messages compared to Neighbor distribution

(the second picture gives a rescaled view)

6.3 Broadcast Efficiency of TreeCast vs. Flooding

To compare the efficiency of traditional flooding and TreeCast we simulated the office day with broadcast

messages emitted by random nodes in every10 seconds. Of course, in a real application there could be

much more broadcast messages, but this amount of messages seems enough to measure the efficiency of

the different methods. The broadcast events take place between 9AM and 5PM.

We used two measures in our comparisons: the average of the percentage of uncovered nodes for all

18



broadcasts and the average number of times that a node receives the same broadcast message. The first

one indicates how reliable the broadcast is, while the second one measures the number of unnecessary

transmissions.

Table 1 shows the above two measures averaged out for the whole day. In case of flooding collisions

were taken into account, resulting in the high percentage of lost messages. For comparison we show that

without collisions each node would receive broadcasts many times.

Table 1: Performance of flooding vs. TreeCast

Lost msg Avg # received msg

TreeCast 0.116% 1.016

Flooding 19.333% 1.608

Flooding w.o. coll. 0% 30.689

7 Further Remarks and Conclusion

In the paper we presented TreeCast, a novel method for broadcasting suitable for MANETs. The method

is based on a fully distributed, decentralized and resource-efficient algorithm that maintains a spanning

tree. This algorithm can also take into account nodes’ mobility to minimize tree maintenance. For this

purpose we propose a novel measure of node mobility which is based solely on the changes in the nodes

connectivity and does not require any geographical data from GPS devices.

The algorithm performs especially well in case of point-to-point transmissions, so it is particularly

useful for networks with radio technologies that do not support point-to-multipoint transmissions. This

also ensures that TreeCast does not suffer from the negative effects of local broadcasts in IEEE 802.11b

based networks.

We have shown that for indoor office-type scenarios our broadcast algorithm performs better than

those found in the literature. We have demonstrated that TreeCast is both more reliable and more

resource-efficient than traditional flooding. It was also shown that it performs efficient and reliable broad-

cast in such a way that its handling of topology data is better suited to realistic office-type user behaviors

than the topology update mechanisms of earlier proposed broadcast methods.

There are several directions to continue the present research. One interesting idea is to use the

TreeCast algorithm and its underlying spanning tree to disseminate routing information in the network.

Then the overlying routing could benefit from the existence of an implicit backbone. This is due to

the fact that TreeCast forces nodes of high mobility to be leaves of the tree, thus currently immobile

19



nodes form a rather reliable backbone. It would be interesting to see the performance gain if the routing

information of some routing algorithm (e.g. DST [18]) would be disseminated with TreeCast.

Another possible direction is to explore the applicability of the presented mobility measure for en-

hancing existing MANET routing protocols. For example routes containing more stable nodes could be

favored over those containing high mobility nodes.

References

[1] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, J.-P. Sheu, “The Broacast Storm Problem in a Mobile Ad Hoc

Network”, Proc. ACM/IEEE MobiCom, August 1999, pp. 151-162.

[2] C. E. Perkins, E. M. Belding-Royer, S. R. Das, “IP Flooding in Ad hoc Mobile Networks”,IETF

Internet-Draft, draft-ietf-manet-bcast-00.txt, work in progress, 14 November 2001.

[3] H. Lim, C. Kim, “Multicast Tree Construction and Flooding in Wireless Ad Hoc Networks”,Proc.

3rd ACM International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile

Systems, 2000, pp. 61-68.

[4] J. Sucec, I. Marsic, “An Efficient Distributed Network-Wide Broadcast Algorithm for Mobile Ad

Hoc Networks”,CAIP Technical Report, TR-248, July 2000.

[5] Z. J. Haas, M. R. Pearlman, P. Samar, “The Bordercast Resolution Protocol (BRP) for Ad Hoc

Networks”IETF Internet-Draft, draft-ietf-manet-zone-brp-01.txt, work in progress, June 2001.

[6] I. Stojmenovic, M. Seddigh, J. Zunic, “Internal node Based broadcasting algorithms in wireless

networks”in Proceedings of the Hawaii Int. Conf. on System Sciences, Jan. 2001.

[7] IEEE Specification 820.1d“MAC Bridges” D9, July 14, 1989

[8] A. Ballardie, P. Francis, J. Crowcroft “Core Based Trees (CBT) an Architecture for Scalable Inter-

domain Multicast Routing”SIGCOMM’93, San Francisco 1993, pp. 85-95.

[9] D. Estrin et al. “Protocol Independent Multicast – Sparse Mode (PIM-SM): Protocol Specification”

RFC 2362, June 1998.

[10] A. Adams, J. Nicholas, W. Siadak “Protocol Independent Multicast - Dense Mode (PIM-DM):

Protocol Specification (Revised)”IETF Internet-Draft, draft-ietf-pim-dm-new-v2-02.txt, work in

progress, October 2002.

[11] D. Waitzman, C. Partridge, S. Deering “Distance Vector Multicast Routing Protocol”RFC 1075,

November 1988.

20



[12] J. Moy “Multicast Routing Extensions for OSPF”CACM, Vol. 37, Aug 1994, pp. 61-66.

[13] C. Perkins, E. Royer, S. Das “Ad hoc On-demand Distance Vector (AODV) Routing”IETF Internet-

Draft, draft-ietf-manet-aodv-11.txt, work in progress, Aug 2002.

[14] Ch. Lee, M. H. Ammar, J. E. Burns “An Improved Leader Election Protocol in Multi-hop Radio

Networks”International Conference On Computer CommunicationSeoul, Korea, 1995.

[15] P.-J. Wan, K. M. Alzoubi, O. Frieder “Distributed Construction of Connected Dominating Set in

Wireless Ad Hoc Networks”IEEE INFOCOM, New York, June 2002.

[16] R. G. Gallager, P. A. Humblet, P. M. Spira “A distributed algorithm for minimum weight spanning

trees”ACM Trans. on Programming Languages and Systems, 5(1) Jan. 1983, pp. 66-77.

[17] N. Nikaein, H. Labiod, C. Bonnet “DDR: distributed dynamic routing algorithm for mobile ad hoc

networks”International Conference on Mobile Computing and Networking, 2000, pp. 19-27.

[18] S. Radhakrishnan, N. S. V. Rao G. Racherla, C. N. Sekharan, and S. G. Batsell “DST - a routing

protocol for ad hoc networks using distributed spanning trees”IEEE Wireless Communications and

Networking Conference, 1999, pp. 100-104.

Biography

Alpár Jüttner received his M. Sc. degree in 1998 at the Eötvös Loŕand Uni-

versity of Budapest, where he is currently working on his Ph. D. at Operational

Research Departement. He also works as a research fellow at Ericsson Traffic

Analysis and Network Performance Laboratory in Budapest, Hungary. His main

interests are combinatorial optimization and its applications.

Ádám Magi received his M. Sc. degree in 1996 at the Technical University

of Budapest in Electrical Engineering. He is currently working on his Ph. D.

there. He also works as a research fellow at Ericsson Traffic Analysis and Net-

work Performance Laboratory in Budapest, Hungary. His main interests are mo-

bile ad hoc networks and routing in telecommunication networks.

21


	Introduction
	State-of-the-Art
	Flooding
	Extended Topological Knowledge Based Solutions
	Geographical Location Based Solutions
	Algorithms for Tree Creation and Maintenance

	The TreeCast Algorithm
	Maintenance of the Broadcast Tree
	The Broadcast Mechanism

	Improvements on the Performance and the Scalability
	Reducing the Number of TreeID updates
	Further Improvement on the Stability of the Tree
	Taking Mobility into Account
	Measuring the mobility
	Who starts the TreeID update process?
	Mobility Delay
	Where to connect a leaf node?


	Discussion
	Testing the Behavior of the Algorithm
	Effect of mobility
	Office Day Scenario
	Broadcast Efficiency of TreeCast vs. Flooding

	Further Remarks and Conclusion

