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Tree-based fitted Q-iteration for multi-objective Markov

decision processes in water resource management

F. Pianosi, A. Castelletti and M. Restelli
ABSTRACT
Multi-objective Markov decision processes (MOMDPs) provide an effective modeling framework for

decision-making problems involving water systems. The traditional approach is to define many

single-objective problems (resulting from different combinations of the objectives), each solvable by

standard optimization. This paper presents an approach based on reinforcement learning (RL) that

can learn the operating policies for all combinations of objectives in a single training process. The key

idea is to enlarge the approximation of the action-value function, which is performed by single-

objective RL over the state-action space, to the space of the objectives’ weights. The batch-mode

nature of the algorithm allows for enriching the training dataset without further interaction with the

controlled system. The approach is demonstrated on a numerical test case study and evaluated on a

real-world application, the Hoa Binh reservoir, Vietnam. Experimental results on the test case show

that the proposed approach (multi-objective fitted Q-iteration; MOFQI) becomes computationally

preferable over the repeated application of its single-objective version (fitted Q-iteration; FQI) when

evaluating more than five weight combinations. In the Hoa Binh case study, the operating policies

computed with MOFQI and FQI have comparable efficiency, while MOFQI provides a continuous

approximation of the Pareto frontier with no additional computing costs.
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INTRODUCTION
Many decision-making problems involving the management

of water resource systems have two distinctive features:

(i) they involve a sequence of decisions made at discrete

time instants over a system affected by stochastic inputs,

and (ii) each decision has an immediate effect, but also influ-

ences the long-term dynamics of a wide range of multiple

environmental, social and economic issues (see e.g. Hipel

()). In other and more rigorous terms, these problems con-

cern the sequential multi-objective optimization of discrete-

time dynamic systems affected by stochastic disturbances.

For these problems, multi-objectiveMarkov decision processes

(MOMDPs) provide a powerful theoretical and operational

framework for analysis and resolution (White , ).

The conventional approach to solving MOMDPs is to

convert the problems themselves into a single-objective
optimization, combining all the objective functions into a

single functional form that can be handled by any standard

single-objective optimization method. A well-known option

is the linear combination of the objectives, known as the

weighted-sum method: many single-objective problems

associated with different combination coefficients (weights)

are solved and a subset of the theoretical Pareto-optimal

solutions (operating policies) to the multi-objective problem

is obtained. Yet, with the growth in the number of

objectives, the repetitions of single-objective problems

scale exponentially, thus making the approach computation-

ally intensive, if not prohibitive.

Multi-objective reinforcement learning (MORL) has

recently emerged as a potentially interesting alternative to

the above two approaches to efficiently design
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multi-objective operating policies (Gábor et al. ;

Mannor & Shimkin ; Natarajan & Tadepalli ; Bar-

rett & Narayanan ; Vamplew et al. ; Lizotte et al.

). For a recent survey of MORL, we refer the reader to

Vamplew et al. ().

In this paper, we present a novel MORL algorithm,

which is a multi-objective extension of the single-objective

fitted Q-iteration (FQI) algorithm (Ernst et al. ; Castel-

letti et al. ). The key idea of multi-objective FQI

(MOFQI) is to enlarge the continuous approximation of

the action-value function, which FQI performs over the

state-control space, and also the weight space by including

new variables, the weights, within the arguments of the

action-value function. As a result, MOFQI is able to approxi-

mate, with a single learning process, all the optimal policies

associated with any convex linear combination of the objec-

tives. MOFQI inherits the benefits of the FQI algorithm,

including the possibility of using both parametric and non-

parametric regression algorithms. In this paper, we use

extremely randomized trees (Extra Trees) to approximate

the action-value function because of their capability both

to reduce the bias with respect to traditional linear approxi-

mation schemes and to keep the variance low with respect

to other non-parametric techniques. In particular, we pro-

pose a modified version of the original Extra Trees (Geurts

et al. ), where an improved pre-pruning criterion is

introduced to deal with functions that need different degrees

of generalization over the regression domain, as happens

when applying MOFQI.

The properties of MOFQI are first evaluated by appli-

cation to a numerical test case study of a two-objective

reservoir system. Pareto-optimal operating policies designed

by tree-based MOFQI are compared with those generated

by several runs of tree-based FQI for different linear

combinations of the objectives, and the nearly optimal sol-

ution provided by stochastic dynamic programming (SDP).

The potential of the proposed MOFQI approach is sub-

sequently explored by application to a real-world case

study, the operation of Hoa Binh reservoir in Northern

Vietnam.

The remainder of the paper is organized as follows: in

the next section, the formulation of Markov decision pro-

cesses (MDPs) and MOMDPs is presented with reference

to optimal reservoir operation. Then, we describe the FQI
://iwaponline.com/jh/article-pdf/15/2/258/386917/258.pdf
and MOFQI algorithms and the Extra Trees models, both

in the original and the modified version introduced for the

first time in this paper. The subsequent sections present

the comparative analysis of iterated FQI and MOFQI

applied to the numerical test case study and the real-world

case study. The paper closes with concluding remarks and

directions for future research.
MOMDPS

MDPs have been used since the early 1950s for the planning

and operation of reservoir systems because natural reservoir

inflows can be modeled using Markov stochastic processes

and the mass conservation equations describing the state

(reservoir storage) transitions are very similar to those

found in inventory theory, where MDPs have been originally

developed (e.g. Wang & Adams ; Lamond & Boukh-

touta ; Turgeon ).

MDPs

A discrete-time continuous MDP is described as a tuple 〈X,

U, P, R, γ, μ〉, where X ⊂ Rn is the continuous state space,

U ⊂ Rm is the continuous action space, P(y|x, u) is the tran-

sition model that defines the transition density between state

x and y under action u, R(x, u, y) is a reward function that

specifies the immediate reward when state y is reached by

taking action u in state x, γ∈ [0,1) is a discount factor, and

μ is the initial-state distribution from which the initial state

is drawn. For a reservoir system composed of several reser-

voirs, the m action variables are the release decisions at

each reservoir outlet (e.g. taken on a daily basis), the n

state variables are the storages in each reservoir, possibly

augmented with any other state variable required by the

catchment models, the transition density P(y|x, u) is the

probability of the next storage (or augmented state) y,

given the current state x and action u resulting from the

probability density function of the residual of the catchment

model, and R(x, u, y) is the immediate reward (e.g. daily

hydropower production) associated with the operation

objective. An operating policy is a mapping from states

(e.g. storage) to controls (release volumes), π:X ! U, so

that u¼ π(x).
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The value Vπ(x) of state x under the operating policy π is

the expected return when starting in x and following π there-

after:

Vπ(x) ¼
ð
X

R(x, π(x), y)þ γVπ(y)ð ÞP(dyjx, π(x))

Given the initial-state distribution μ, the expected return

of operating policy π is defined as:

Jπμ ¼
ð
X
Vπ(x)μ(dx) (1)

To simplify the notation, in the following, subscript μ

will be omitted where possible.

Solving an MDP means finding an operating policy that

maximizes the value function V in each state. The optimal

value function is the solution of the Bellman optimality

equation (Bellman ). For control purposes, it is better

to consider action values, i.e. the value of taking action u

in state x and following a policy π thereafter. The optimal

action-value function is the solution of the following refor-

mulation of the Bellman equation:

Q�(x, u) ¼
ð
X

R(x, u, y)þ γ max
u0∈U

Q�(y, u0)
� �

P(dyjx, u)

Given the optimal action-value function, the associated

optimal operating policy is the one that takes in each state

the action with the highest value (greedy policy),

π�(x) ¼ argmax
u∈U

Q�(x, u).
MOMDPs

MOMDPs are an extension of the MDP model, where sev-

eral reward functions are defined, one for each objective.

MOMDPs are a particularly suitable formalism to model

multi-purpose reservoir systems that are generally operated

to balance multiple, often conflicting objectives (Castelletti

et al. ).

Formally, an MOMDP is described as a tuple 〈X, U, P,

R, γ, μ〉, where R ¼ [R1, . . . , Rq] is a q-dimensional vector

of reward functions (for instance, daily hydropower
om http://iwaponline.com/jh/article-pdf/15/2/258/386917/258.pdf
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production, water supply for irrigation or civil use, etc.). In

MOMPDs, any policy π is associated with q value functions

Vπ ¼ [Vπ
1 , . . . , V

π
q ], where Vπ

i is defined as:

Vπ
i (x) ¼

ð
X

Ri(x, π(x), y)þ γiV
π
i (y)

� �
P(dyjx, π(x))

Given the initial-state distribution μ and the vector of

value functions Vπ for policy π, it is possible (as done in

Equation (1)) to compute the vector of expected returns

Jπ ¼ [ Jπ1 , . . . , J
π
q ].

Solving an MOMDP means finding the set of Pareto-

optimal policies Π*, which maps onto the so-called Pareto

frontier J � ¼ { Jπ
� jπ� ∈ Π�}.

The traditional approach to MOMDPs is to transform

them into multiple single-objective problems by combining

the different rewards with some scalarizing

function ψ:Rq ! R (Perny & Weng ). The most

straightforward choice for ψ is a convex combination

of the objectives (weighted-sum method) using

weights λ ¼ [λ1, . . . , λq] ∈ Λq�1, where Λq�1 is the unit

(q� 1)-dimensional simplex (so that
Pq

i¼1 λi ¼ 1 and

λi � 0 for all i). To simplify notation, in the following,

we drop the superscript q� 1 from the simplex symbol

when there is no risk of confusion. Each vector of weights

λ defines a single-objective MDP with the following

reward function:

Rλ(x, u, y) ¼ λ0 � R ¼
Xq
i¼1

λiRi(x, u, y)

By linearity of the mathematical expectation and the

weighted sum, the expected return of policy π with

weight vector λ is: Jπλ ¼ λ0 � Jπ . Since all optimal policies

of such single-objective MDPs are provably Pareto-optimal

solutions of the original MOMDP (Chatterjee et al. ),

the Pareto frontier can be estimated by computing the set

of expected-return vectors obtained for all possible values

of λ.

An approximation of the set of Pareto-optimal pol-

icies, and the associated Pareto frontier, is obtained by

considering a finite number of sample weight combi-

nations Λ̂ , Λ. The more weight combinations that are

evaluated, the more accurate the frontier approximation,
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but also the longer the computational time required. The

advantage is that each single-objective MDP can be

solved by standard single-objective methods like dynamic

programming and linear programming, or reinforcement

learning (RL) techniques. A major limitation is that if

the Pareto frontier has concave regions, Pareto-optimal

solutions lying in such regions cannot be found by the

weighted-sum method.
TREE-BASED FQI

RL algorithms are receiving growing attention in reservoir

operation design (e.g. Lee & Labadie ; Castelletti

et al. ) for their ability in alleviating the dual dynamic

programming’s curse of dimensionality (Bellman ) and

modeling (Tsitsiklis & Roy ). RL allows the compu-

tation of Q*(x,u) by directly interacting with the

environment (online learning) by a trial-and-error process

or, more interestingly for natural systems applications, on

the basis of experience samples previously collected from

the system, which enables the solution to the optimization

problem to be learned offline (batch mode).

Fitted Q-iteration

The batch-mode RL approach we adopt in this paper aims at

determining the best operating policy given a set of N tuples

D ¼ {〈xi, ui, yi, ri〉}1�i�N , where ri ¼ R(xi, ui, yi), previously

collected according to a given sampling strategy.

In particular, good results have been recently achieved

by the FQI algorithm (Ernst et al. ), a model-free

approach derived from the fitted value iteration approach

(Gordon ). The underlying idea of FQI is to reformulate

the RL problem as a sequence of non-linear regression

problems.

Given the dataset D, in the first iteration of the algor-

ithm, for each tuple 〈xi, ui, yi, ri〉, the corresponding

training pair is set as having (xi, ui) as input and ri as

output (i.e. (xi, ui)→ ri), and the goal is to use a regression

algorithm to estimate a function that approximates the

expected immediate reward Q1(x, u) ¼ Ey∼P(�jx,u)[R(x, u, y)].

The second iteration, based on the approximation Q̂1 of

the Q1-function, extends the optimization horizon one step
://iwaponline.com/jh/article-pdf/15/2/258/386917/258.pdf
further, by estimating function Q̂2 through regression on

the following training dataset:

Algorithm 1 FQI algorithm

input: D¼ 〈xi;ui; yi; ri〉f g1�i�N ; a regression algorithm R, the
number of iterations L

initialize: Q̂0 x;uð Þ ¼ 0;∀x ∈ X;∀u ∈ U

for k ¼ 1 to L do� �� 	

Tk ¼ xi;uið Þ ! ri þ γmax

u0∈U
Q̂k�1 yi;u0ð Þ

1�i�N

Q̂k ¼ R Tkð Þ

end for

return π̂�L xð Þ ¼ arg max
u∈U

Q̂L x;uð Þ

T2 ¼ ðxi;uiÞ → ri þ γmax
u∈U

Q̂1(yi;u)
� �� 	

1�i�N

By proceeding in the same way, at the kth iteration, the

approximation Q̂k�1 is used to compute the optimal action-

value function at horizon k. The procedure iterates until the

action-value function converges or a maximum number of

iterations is reached (see Ernst et al. () for a discussion

about the stopping condition and the convergence proper-

ties of the algorithm). The FQI algorithm is summarized in

Algorithm 1.

Several studies have reported very good results with a

wide range of approximation techniques: kernel-based

regressors (Ormoneit & Sen ), tree-based regressors

(Ernst et al. ), neural networks (Riedmiller ),

CMAC (Timmer & Riedmiller ) and advantage

weighted regression (Neumann & Peters ). All these

works show that batch-mode RL algorithms effectively

exploit the information contained in the collected samples,

so that very good performance can be achieved, even

using small datasets. The size of the dataset is a key factor

for many real-world applications, since collecting a large

amount of data from a real system may be considerably

expensive. Finally note that, while in stochastic approxi-

mation algorithms (e.g. Tsitsiklis & Roy ) only

parametric function approximators can be used, the batch

nature of FQI allows for also using non-parametric
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regression. In this work, we used extremely randomized

trees (Extra Trees) (Geurts et al. ), a non-parametric,

tree-based ensemble method for supervised problems, that

offers several advantages, such as robustness against irrele-

vant features, good trade-off between bias and variance,

and high computational efficiency. As shown in Ernst

et al. (), Castelletti et al. (), Bonarini et al. ()

and Tognetti et al. (), Extra Trees performs provably

well when used in the FQI algorithm, even with relatively

small datasets.

Extremely randomized trees

Tree-based methods are non-parametric supervised learning

methods based on the idea of decision-tree models, which

are tree-like structures representing a cascade of rules lead-

ing to numerical values (Breiman et al. ). These

structures, composed of decision nodes, branches and

leaves, are obtained by partitioning, according to a certain

splitting criterion, the set of the input variables into a

series of subsets, until either the numerical values belonging

to each subset vary just slightly or only few elements remain.

When the splitting process is over, the branches represent

the hierarchical structure of the subset partitions, while

the leaves are the finest subsets associated with the terminal

branches. Each leaf is finally associated with a numerical

value.

In this study, we explore Extra Trees (Geurts et al. ),

which randomizes (totally or partially) both the input vari-

able and the cut-point selection when splitting a node, and

creates an ensemble of trees to compensate for the ran-

domization, via averaging of the constituent tree

outcomes. The Extra Trees building algorithm grows an

ensemble of M trees. Nodes are split using the following

rule: K alternative cut directions (input variables) are ran-

domly selected and, for each one, a random cut-point is

chosen; a score is then associated with each cut direction,

and the one maximizing the score is adopted to split the

node. The algorithm stops partitioning a node if its cardinal-

ity is smaller than nmin, and the node is therefore a leaf. Each

leaf is assigned a value obtained as the average of the out-

puts associated with the inputs falling in that leaf. The

estimates produced by the M trees are finally aggregated

with an arithmetic average. The rationale behind the
om http://iwaponline.com/jh/article-pdf/15/2/258/386917/258.pdf
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approach is that the combined use of randomization and

ensemble averaging provides more effective variance

reduction than other randomization methods, while mini-

mizing the bias of the final estimate. Extra Trees is thus

characterized by three parameters (i.e. K, nmin and M),

whose values can be fixed on the basis of empirical

evaluations.
TREE-BASED MOFQI

In this paper, we propose to extend the FQI algorithm to

multi-objective problems, thus producing the MOFQI. The

idea is to enlarge the state space X with the unit (q� 1)-

dimensional simplex Λq�1, in order to consider different

weight combinations of the q objectives. The dataset used

in MOFQI thus takes the form:

DMO ¼ f〈xi; λi;ui; yi; λi; λ0i � Rðxi;ui; yiÞ〉g1�i�NMO
(2)

Note that the weight vector λi is regarded as a further

state variable whose transition density always returns the

same value λi. The result of regression on dataset (2) is an

optimal action-value function parameterized by λ:

Q̂�ðx; λ;uÞ. In this way, it is possible to generalize infor-

mation even over the weight space and, after a single

training process, MOFQI learns a continuous approxi-

mation of the optimal policy over the weight space:

π̂�λðxÞ ¼ argmax
u∈U

Q̂ðx; λ;uÞ

from which the approximate Pareto frontier can be derived.

The state space wherein MOFQI operates has a higher

dimension than the corresponding single-objective algor-

ithm. As a consequence, to obtain similar performances,

MOFQI, in general, requires more tuples than the ones

used by FQI for a given weight vector (i.e. NMO>N), but,

exploiting the generalization over the weight space, fewer

tuples than the ones needed by reiterated application of

FQI. Furthermore, the cost of generating the experience

samples< xi, ui, yi> (by either data collection or model

simulation) is the same for MOFQI and FQI. In fact, the

dataset DMO can be generated from the dataset D of FQI
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without collecting new experience samples from the system,

but simply reusing the same samples many times with differ-

ent, randomly generated weight values. The number of

tuples in the MOFQI dataset DMO will thus be given by

the number of tuples in D multiplied by a factor k equal to

the number of weight samples, NMO¼ k ×N.

Improved Extra Trees

In Extra Trees, the degree of generalization is controlled by

the nmin parameter, which determines the minimum number

of samples to split a node. As a result, the size of the leaves

(which determines the degree of generalization) will be

approximately the same all over the regression domain,

while, in general, different regions may require different

levels of regularization. This is particularly the case with

the action-value function that must be estimated by

MOFQI, where different regions of the weight space corre-

spond to different combinations of the objectives, which

may vary more or less rapidly with the state and action

values. Since using a fixed generalization degree for all the

possible weight-state-action combinations is unlikely to

yield good results, in this paper, we propose a pre-pruning

criterion that adaptively determines whether or not to split

a node based on the input/output data under consideration,

increasing the leaf size when the output variability decreases

and vice versa.

The criterion works as follows. Given a dataset

D ¼ f〈il;ol〉g1�l�N , a cut that partitions D into two distinct

subsets, Dl and Dr, with Nl and Nr samples respectively, is

evaluated on the basis of the probability that the samples

of the two subsets have been generated by two distributions

with different means. This score actually requires the com-

putation of a two-tailed Student’s t-test in which the null

hypothesis is that the two distributions have the same

mean; the t-statistic to test whether the two distribution

means are different can be calculated as follows:

tDl ;Dr ¼
μ̂ ojDlð Þ � μ̂ ojDrð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂2 ojDlð Þ

Nl
þ σ̂2 ojDrð Þ

Nr

s

where μ̂ðojDlÞ and μ̂ðojDrÞ are the sample means of the

output values of the two subsets, and σ̂2ðojDlÞ and
://iwaponline.com/jh/article-pdf/15/2/258/386917/258.pdf
σ̂2ðojDrÞ are the sample variances. The distribution of

the test statistic is approximated as being an ordinary Stu-

dent’s t-distribution with the degrees of freedom ν

calculated using:

νDl ;Dr ¼
σ̂2ðojDlÞ

Nl
þ σ̂2ðojDrÞ

Nr

� �2

σ̂2ðojDlÞ
Nl

� �2
1

Nl � 1
þ σ̂2ðojDrÞ

Nr

� �2
1

Nr � 1

Finally, the score function is defined as the two-tailed p-

value:

ScoreðDl;DrÞ ¼ 2ð1� FðtDl ;Dr jνDl;Dr ÞÞ

where F(x|ν) is the Student’s t cumulative distribution func-

tion in x of a t-distribution with ν degrees of freedom. The

larger the score, the higher the probability that the means

of the outputs of the two partitions are different; among

the K random cuts, the one with the best score is chosen.

The split process is stopped when no cut scores above a

predefined threshold τ. The idea is that it is not worth choos-

ing a cut direction which produces two subsets that have a

probability larger than 1� τ of sharing the same mean. In

other words, no split occurs when the null hypothesis (i.e.

the two partitions have the same mean) is accepted for all

the cuts at (1� τ)% confidence level. This stop criterion gen-

erates trees with unequal size leaves: larger leaves in regions

of the input space where the function to be approximated is

nearly constant, and smaller leaves where the output values

rapidly change.
TEST CASE STUDY

To evaluate the proposed MOFQI approach, we consider a

numerical case study of a two-objective reservoir. The scalar

state variable x represents the water volume stored in the

reservoir, the action u is the release decision, and the

state-transition model that provides the future state y is the

mass balance equation:

y ¼ xþ ε�max u;minð�u;uÞð Þ (3a)
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where ε is the reservoir inflow, generated by a white noise

process with normal distribution ε∼N(40,100), and u and

�u are the minimum and maximum feasible release associ-

ated with the storage x according to the relations:

�u ¼ x and u ¼ maxðx� 100;0Þ (3b)

The reservoir operation must balance two conflicting

objectives: to control flooding along the reservoir shores

and to supply water for irrigation. The reward associated

with the flood objective is the negative of the cost due to

the excess level with respect to a flooding threshold
�h : R1ðx;u; yÞ ¼ �maxðh� �h;0Þ; where h is the reservoir

level, given by the storage x divided by the reservoir

surface S (in the following experiments, S¼ 1 and �h¼ 50).

The reward function for the irrigation objective is the nega-

tive of the deficit in the water supply with respect to

the water demand �ρ : R2ðx;u; yÞ ¼ �maxð�ρ� ρ; 0Þ; where

ρ ¼ max u;minð�u;uÞð Þ is the actual release from the reservoir

and the water demand �ρ is 50. Given the non-economic

nature of the above performance indicators and since

the MOMDP can be solved optimizing over a finite-time

horizon, we set the discount factor γ to 1 for all the

objectives.
Experimental setup for SDP

As a reference solution, we consider the nearly optimal

solutions computed by SDP at 11 different values of the

weight vector, namely λ ¼ ½λ1;1� λ1� with λ1 ∈ Λ̂ ¼
f0:0;0:1; 0:2; . . . ; 1:0g. For each λ, a single-objective problem

is defined and solved by SDP. Although this solution is still

an approximation due to the discretization of x, u and y, the

dense discretization grid used allows for achieving near-opti-

mal performance.
Experimental setup for FQI and MOFQI

The simple reservoir model considered in this case study

allows us to feed both FQI and MOFQI algorithms with

experience samples drawn uniformly random from the

state-action space; for each sample, the next state and

reward values are obtained from the generative model (3).
om http://iwaponline.com/jh/article-pdf/15/2/258/386917/258.pdf
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The only difference between the two datasets is that in the

multi-objective case, the state space has one more dimension

that represents the value of weight λ1. As a result, the dataset

takes the shape presented in Equation (2).

In both FQI and MOFQI, the optimal action-value

function was approximated by Extra Trees with M=100

trees and a number K of alternative cut directions equal

to the number of state and actions variables (2 for FQI

and 3 for MOFQI). The threshold τ for computing the

score function described in the section on improved

Extra Trees was tuned by trial and error: the results

shown in the following were obtained by setting τ¼ 0.98;

however, other values in the range [0.8,1) provided similar

performances. The number of algorithm iterations L is set

to 10, which is the same number of iterations performed

by SDP.
Performance evaluation methodology

The operating policies designed by SDP and RL algorithms

are evaluated using Monte Carlo simulations. Each simu-

lation consists of 100 steps and is repeated 10 times (using

independent realizations of inflow trajectories) under 10

different initial states chosen uniformly random over the

state space X. As a consequence, the performance of each

policy π is evaluated on 100 scenarios of 100 steps. The

result is a performance vector �J
π
whose components are

the average immediate rewards associated with each objec-

tive under π.

To compare the different policies, we use a performance

metric L similar to the one presented in Hansen & Jaszkie-

wicz (). It is based on pair comparison of the aggregate

objective value Jπλ ¼ λ0 � Jπ provided by the policy π under

examination and the optimal value Jπ
�

λ , at all possible λ. Dif-

ferently from Hansen & Jaszkiewicz (), in our metric,

the differences Jπ
�

λ � Jπλ are normalized by the range of vari-

ation of the optimal function values, i.e.,

ΔJ�λ ¼
Xq
i¼1

λi max
λ0∈Λ

J
π�
λ0

i �min
λ0∈Λ

J
π�
λ0

i

� �

In the proposed test case study, the solutions by SDP are

used as the reference Pareto-optimal policies π*, and the loss
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L takes the form:

L ¼ 1
Nλ

XNλ

i¼1

Jπ
SDP

λi
� Jπλi

ΔJSDP
λ

(4)

where Nλ is the number of evaluated weight vectors (11).

According to this (non-negative) measure, the smaller the

loss value, the better the approximation of the Pareto

frontier.
Experimental results

Figure 1 shows the Pareto frontiers obtained by Monte Carlo

simulations (as explained in the previous section) of the non-
Table 1 | Test case study: average loss L over 10 runs with related standard deviation for FQI an

sizes are considered

MOFQI

Samples FQI k¼ 1 k¼ 2

1,000 0.332± 0.008 0.603± 0.034 0.539± 0.02

2,000 0.255± 0.004 0.508± 0.024 0.480± 0.02

3,000 0.249± 0.007 0.506± 0.023 0.427± 0.01

4,000 0.231± 0.005 0.453± 0.015 0.368± 0.00

5,000 0.217± 0.007 0.361± 0.010 0.339± 0.02

10,000 0.191± 0.010 0.302± 0.029 0.219± 0.01

Figure 1 | Test case study: comparison between the approximated Pareto frontiers

obtained with SDP, FQI and MOFQI for 11 weight values.
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dominated solutions produced by the different algorithms.

The approximation of the Pareto frontier produced by FQI

using 10,000 tuples is similar (if not slightly worse) to the

one of MOFQI when using the same 10,000 samples to

build a dataset with 20,000 tuples. Nonetheless, from the

computational perspective, it is worth recalling that FQI

has to solve as many single-objective learning problems

(using 10,000 tuples for each of them) as the number of

weight samples to be evaluated.

As MOFQI has been proposed as an alternative

approach to the repeated application of single-objective

FQI following the weighting method, we will discuss in

what conditions MOFQI outperforms repeated FQI.

Table 1 shows the loss L (as defined in Equation (4)) for

FQI and MOFQI with respect to SDP, as the number of

experience samples varies between 1000 and 10,000 and

the multiplication factor k varies from 1 to 5. In the table,

we have reported the average loss over 10 runs and the

related standard deviation. As expected, the loss reduces

for both the approaches as the number of experience

samples increases. Also, the number of tuples required by

MOFQI is larger than the one needed by FQI in order for

the accuracy to be the same. More interestingly, Table 1

shows that, starting from the same set of experience

samples, MOFQI performs as well as FQI (or even better)

when its training dataset is about five times larger than the

one of FQI. From the computational perspective, while the

training time of FQI grows linearly with the number of

weight combinations to be evaluated, MOFQI is indepen-

dent of such a number. So, we can conclude that, to have

a dense approximation of the Pareto frontier, MOFQI is
d MOFQI (with different multiplication factors k) with respect to SDP when different sample

k¼ 3 k¼ 4 k¼ 5

7 0.482± 0.021 0.406± 0.017 0.329± 0.017

5 0.446± 0.018 0.383± 0.021 0.287± 0.009

5 0.365± 0.021 0.280± 0.015 0.251± 0.010

8 0.302± 0.016 0.256± 0.013 0.232± 0.010

4 0.256± 0.010 0.243± 0.009 0.221± 0.015

2 0.195± 0.009 0.191± 0.008 0.187± 0.009
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computationally preferable to repeated FQI. In the proposed

test case, this is true as long as more than five weight com-

binations are required.
HOA BINH RESERVOIR CASE STUDY

The second case study considered in this paper is a real-

world system, Hoa Binh reservoir in Northern Vietnam

(Figure 2). The reservoir has a surface area of about

198 km2 and an active storage of 6 × 109m3. The main objec-

tives of reservoir operation are hydropower production (the

plant has a capacity of 1,920 MW and produces more than

7,000 GWh per year) and flood mitigation in the down-

stream city of Hanoi. The reservoir and the downstream

river network are modeled by a combination of conceptual

and data-driven models with a daily resolution time step.

A detailed description of the system and associated model

can be found in Castelletti et al. (); here, we will provide

a brief description of the problem formulation as an

MOMDP.

The problem can be modeled with two state variables,

the reservoir storage and the corresponding day of the

year. Since the system can be described as cyclostationary

with period T=365 days, we can obtain a stationary MDP

by enlarging the state space with the time variable (Castel-

letti et al. ). The action variable u is the release

decision for the next 24 hours, and the future state is the

reservoir storage y on the day after, estimated by a mass bal-

ance equation such as (3a), and tþ1. The minimum and
Figure 2 | The Hoa Binh reservoir water system in Northern Vietnam.
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maximum feasible release u and �u are computed based on

the storage and inflow values, and taking into account the

rating curves of the bottom and intermediate gates and the

spillways. The reward associated with the hydropower

objective (R1) is the value (ranging from 0 to 1) of the

daily hydropower production, the one of flood control (R2)

is the cost of floods changed in sign, i.e. it ranges from �1

(maximum cost) to 0 (minimum cost), and it is estimated

by a non-linear function of the water level in Hanoi.

Experimental setup for FQI and MOFQI

Time series of measured flows over the period 1957–1978,

together with the simulation model, were used to generate

the dataset for FQI and MOFQI. For each day in the time

series, 10 storage and action values were randomly sampled:

the storage is drawn uniformly over the range 3.7151 × 109

to 1.0415 × 1010m3, while the action is randomly chosen

from a finite set of 20 values of daily average release, ranging

from 0 to 13,000 m3/s. The total number of experience

samples is 73,650. First, FQI is repeatedly applied under

six different values of the weight λ1. Then, MOFQI is

applied once, using the enriched dataset of Equation (2).

Such a dataset is obtained by associating each original

experience sample with k random sampled weight values.

In this experiment, k� 2 weight values were randomly

chosen, while the remaining two were set to λ1¼ 1 (hydro-

power only) and λ1¼ 0 (flood control only). In the

following, results relevant to the case k¼ 3 and k¼ 7 will

be compared.

In all the optimization experiments, Extra Trees was

used to approximate the state-action-value function, with

M¼ 100 trees and a number of alternative cut directions K

equal to 3 for FQI and 4 for MOFQI. After some trial and

error, the threshold τ for computing the score function

described in the section on improved Extra Trees was set

to 0.9 (again, threshold values higher than 0.8 all provided

comparable results). The number of algorithm iterations L

was decided based on the analysis of the system functioning.

From the definition of the hydropower objective, it follows

that the optimal reservoir operation should allocate the

hydropower production in the period of maximum energy

value, i.e. from April to June. The storage to sustain such pro-

duction must have been created in the previous flood season
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(August–September of the previous year), that is, around 200

days before. The optimal operation horizon for the flood

objective, instead, is much shorter since the time required

to empty the reservoir in anticipation of a big flood is

around 10 days. Since the number of algorithm iterations

should correspond to the maximum length of the operation

horizon for the considered objectives, L was set to 200.

Experimental results

All the operating policies were simulated under the time

series of observed reservoir inflows and Lo and Thao dis-

charges over the time horizon 1957–1978 (calibration

dataset) and the horizon 1995–2004 (validation dataset).

The performances over the validation dataset can be com-

pared with the historical operation (average reward

values: J1¼ 0.292, J2¼�0.129), as the reservoir construc-

tion was finished in 1989 and its filling was completed in

1994.

Table 2 reports the objective values over the calibration

dataset, Table 3 those of the validation dataset. Figure 3

shows the policy performances over the validation dataset.

First, it can be noticed that the performances of MOFQI

are obviously higher with a larger multiplication factor k.

More interestingly, the comparison of FQI and MOFQI

(with k¼ 7) for λ1 between 0 and 0.5 (i.e. flood control is

more relevant than hydropower production) shows that

while FQI outperforms MOFQI over the calibration dataset,

it is outperformed over the validation dataset. The result is

consistent with the findings of Caruana () for the multi-

task learning algorithm: learning the solutions of multiple
Table 2 | Hoa Binh case study: objective values (hyd¼ hydropower; flo¼ flooding) over the ca

FQI MOFQI (k¼ 3)

λ1 hyd flo J hyd fl

0.0 0.244 �0.043 �0.043 0.222 �
0.1 0.269 �0.046 �0.015 0.225 �
0.5 0.284 �0.056 0.114 0.232 �
0.7 0.300 �0.057 0.194 0.236 �
0.9 0.326 �0.076 0.286 0.262 �
1.0 0.328 �0.100 0.328 0.326 �
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tasks simultaneously, as in MOFQI, improves generalization

abilities, while learning on a single task, as in reiterate FQI, is

more likely to overfit the data.

For λ1> 0.5, it can be noticed that MOFQI performs

rather poorly with respect to FQI. The reason is that, as

stated above, the maximization of the hydropower objective

requires a longer time horizon (around 200 days) than the

flood control objective (about 30 days). Therefore, as the

number L of algorithm iterations is increased to properly

approximate the ‘component’ of the action-value function

related to the hydropower maximization, the approximation

errors in the flood control ‘component’ accumulate and

override the overall quality of the function approximation.

To reduce such approximation errors, the number of

tuples must be increased, i.e. a much larger multiplication

factor k must be used for MOFQI.
CONCLUSIONS

In this paper, we presented an extension of batch-mode RL to

solve MOMDP problems. The MOFQI algorithm we pro-

posed relies on the continuous approximation of the

action-value function over the weight space and the sub-

sequent approximation of the Pareto frontier by simply

sampling this function for a desired number of weight values.

Experience gained from experiments on a numerical test

case of a multi-purpose water reservoir shows that MOFQI

provides an accurate approximation of the Pareto frontier

as computed with several repetitions of SDP for different

values of the weight vector. In addition, MOFQI becomes
libration dataset 1957–1978

MOFQI (k¼ 7)

o J hyd flo J

0.043 �0.043 0.206 �0.041 �0.041

0.062 �0.033 0.207 �0.050 �0.024

0.068 0.082 0.247 �0.057 0.095

0.075 0.143 0.260 �0.064 0.163

0.088 0.228 0.283 �0.077 0.247

0.100 0.326 0.328 �0.093 0.328



Table 3 | Hoa Binh case study: objective values (hyd¼ hydropower; flo¼ flooding) over the validation dataset 1995–2004

FQI MOFQI (k¼ 3) MOFQI (k¼ 7)

λ1 hyd flo J hyd flo J hyd flo J

0.0 0.244 �0.106 �0.106 0.215 �0.076 �0.076 0.210 �0.076 �0.076

0.1 0.278 �0.110 �0.071 0.223 �0.091 �0.060 0.221 �0.083 �0.053

0.5 0.279 �0.119 0.080 0.234 �0.102 0.066 0.244 �0.083 0.081

0.7 0.299 �0.124 0.173 0.250 �0.181 0.121 0.272 �0.174 0.138

0.9 0.335 �0.184 0.284 0.268 �0.194 0.223 0.278 �0.178 0.233

1.0 0.338 �0.203 0.339 0.336 �0.201 0.337 0.335 �0.195 0.336

Figure 3 | Hoa Binh case study: comparison between the approximated Pareto frontiers

obtained with FQI and MOFQI with different multiplication factors (validation

dataset). The diamond is the historical operation performance.
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computationally more efficient than the reiterated appli-

cation of its single-objective twin FQI, when more than

five points are used to approximate the Pareto frontier.

This result is obtained on a bi-objective control problem.

Supposedly, the advantage over FQI grows as the number

of objectives increases, thus making the approach particu-

larly suitable to many real-world problems including two,

three or more objectives (the so-called many-objective pro-

blems), such as the operation of multi-purpose water

reservoir networks, and, generally, any other water resource

management problem involving various environmental,

economic and social issues.

The Hoa Binh reservoir case study was used to evaluate

the benefits from the applicability of MOFQI on a real-
om http://iwaponline.com/jh/article-pdf/15/2/258/386917/258.pdf
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world sized problem. Performance of the operating policies

designed by MOFQI and FQI were compared for different

weight combinations via simulation using inflow data for a

historical period not included in the policy design. The

approximation of the Pareto frontier produced by FQI

using 73,650 tuples dominates the one by MOFQI when

using the same 73,650 samples to build a dataset with 3 ×

73,650 tuples. By enlarging the dataset to 7 × 73,650 tuples,

MOFQI provides comparable results, in terms of aggregated

objective value, to those by FQI, especially at the extreme

ends of the weight range, while providing slightly poorer per-

formances for more balanced weight combinations, probably

due to the mismatch in time scales of the two considered

objectives. However, the advantage of MOFQI is that, with

no additional computation cost, the approximation of the

Pareto front by MOFQI can be made much more dense,

in principle nearly continuous, thus allowing for amore accu-

rate exploration of trade-offs and, correspondingly, for better

informed decision making.

The current implementation of MOFQI has two main

limitations, which will be the subject of future study. First,

the computational cost associated with the use of extremely

randomized trees to approximate the action-value function

becomes particularly high as the number of tuples increases,

becoming unfeasible with datasets with more than 1 × 106

tuples. A parallel implementation of the tree building algor-

ithm would reduce by about 1/M the time required by

MOFQI to compute the Pareto front. Alternatively, more effi-

cient regression schemes (e.g. artificial neural networks or

kernel regression) could be explored. Second, a more exten-

sive evaluation of the advantage of MOFQI against its
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single-objective twin for a higher number of objectives is

required to generalize the analysis of the algorithm’s compu-

tational requirements, also compared with the evolutionary

multi-objectives method.
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