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Abstract

Psychometric measurement models are only valid if measurement invariance holds
between test takers of different groups. Global model tests, such as the well-established
likelihood ratio (LR) test, are sensitive to violations of measurement invariance, such as
differential item functioning and differential step functioning. However, these traditional
approaches are only applicable when comparing previously specified reference and focal
groups, such as males and females. Here, we propose a new framework for global
model tests for polytomous Rasch models based on a model-based recursive partition-
ing algorithm. With this approach, a priori specification of reference and focal groups is
no longer necessary, because they are automatically detected in a data-driven way. The
statistical background of the new framework is introduced along with an instructive
example. A series of simulation studies illustrates and compares its statistical properties
to the well-established LR test. While both the LR test and the new framework are sen-
sitive to differential item functioning and differential step functioning and respect a given
significance level regardless of true differences in the ability distributions, the new data-
driven approach is more powerful when the group structure is not known a priori—as
will usually be the case in practical applications. The usage and interpretation of the new
method are illustrated in an empirical application example. A software implementation
is freely available in the R system for statistical computing.
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Introduction

A major concern in educational and psychological testing is the stability of measure-

ment properties of a test or questionnaire between different groups of subjects, also

known as measurement invariance. Violations of this property at the item level are

known as differential item functioning (DIF). To assess whether DIF is present, a

variety of procedures have been proposed (for a review, see, e.g., Holland & Wainer,

1993).

Nearly all these procedures require an a priori specification of (two or more)

groups, which are then analyzed for DIF, such as the likelihood ratio (LR) test

(Andersen, 1973), the Mantel-Haenszel test (Holland & Thayer, 1988), logistic

regression procedures (Swaminathan & Rogers, 2000), and extensions thereof (De

Boeck & Wilson, 2004; Van den Noortgate & De Boeck, 2005), which also allow

for hierarchical group structures by means of a flexible mixed model approach.

In practice, the groups are often formed by splitting the sample based on a few

standard covariates such as gender, ethnicity, or age. For numeric covariates such as

age, the median is often (arbitrarily) used as the split point (like, e.g., in the study of

Sauer, Walach, Kohls, & Strobl, 2013, that is, reanalyzed in the section

‘‘Application: The Freiburg Mindfulness Inventory’’). An advantage of this

approach—as opposed to pure mixture distribution (or latent class) approaches (cf.,

e.g., von Davier & Carstensen, 2007)—is that the usage of observed covariates as

splitting variables automatically provides some guidance for the interpretation of

detected DIF. However, an obvious disadvantage is that DIF can only be denied for

groups explicitly compared by the researcher, leaving the possibility that a later

found group difference is only an artifact due to unnoticed DIF.

An approach that combines the benefits of mixture distribution and observed cov-

ariate approaches is the extension of logistic regression procedures suggested by

Tay, Newman, and Vermunt (2011), which lets the latent class probability depend on

concomitant variables (and contains the observed-covariates-only approach as a spe-

cial case when the number of latent classes is set to one). A strong advantage of

this approach is that it is able to incorporate numeric covariates without a priori dis-

cretization. As the authors note, ‘‘There may be greater sensitivity and power in this

approach, as more information is utilized in contrast to a ‘median-split’ approach’’

(Tay et al., 2011, p.169-172). However, like any parametric model, it requires that

the functional form of the association between the covariate and DIF (in this case a

logistic regression model for predicting the latent class membership from the

observed covariates) be specified in advance. If this specification is wrong, for exam-

ple, because the true association is nonmonotonic, it might again go unnoticed.

Based on a statistical algorithm called model-based recursive partitioning (Zeileis,

Hothorn, & Hornik, 2008), Strobl, Kopf, and Zeileis (2015) proposed an alternative

global model testing procedure for dichotomous items, which is sensitive to DIF and

requires neither a prespecification of the group structure nor of the specific functional

form of the association between covariate and DIF. Given a number of covariates,

this procedure identifies groups of persons violating measurement invariance due to
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DIF in dichotomous Rasch models. This is achieved by means of a recursive, data-

driven comparison of all possible groups formed by (combinations of) covariates.

Strobl et al. (2015) illustrated this for a variety of complex but realistic group pat-

terns, for example, DIF that is present only between females over a certain age and

all other subjects (i.e., DIF associated with an interaction of the two covariates age

and gender), groups formed by nonmedian splits in numeric covariates such as age

and nonmonotonic patterns (e.g., when both young and old participants are affected).

Since the procedure is based on the conditional likelihood and forms a closed testing

procedure, it does not lead to an inflation of the Type I error rate even in the presence

of true ability differences. Consequently, this approach provides a more thorough and

informative basis for further DIF analysis than fixed group or parametric approaches

while still maintaining the interpretability of the results.

Besides dichotomous items, polytomous items are often used as an alternative to

allow for a more detailed response. As for dichotomous items, various DIF detection

procedures exist for polytomous items (for a review, see, e.g., Potenza & Dorans,

1995). Most of these procedures again require a prespecification of the groups or the

exact functional form and are therefore susceptible to the same problems as described

above. As the model-based recursive partitioning algorithm is not restricted to the

dichotomous Rasch model, an extension of this algorithm to polytomous Rasch mod-

els can provide a similarly thorough global model test for polytomous items as was

provided by Strobl et al. (2015) for dichotomous items. Therefore, the aim of this

article is to develop and illustrate an extension of the framework presented by Strobl

et al. (2015) to polytomous items.

The extension of the model-based recursive partitioning algorithm to polytomous

Rasch models not only provides a global model testing procedure that can identify

previously unspecified groups of persons exhibiting DIF. Depending on the underly-

ing model, it also provides a procedure that is sensitive to violations of measurement

invariance at the individual score level, a phenomenon termed differential step func-

tioning (DSF; Penfield, 2007). The rationale is the following: Since the model-based

recursive partitioning algorithm can detect instabilities in any parameter of a statisti-

cal model, and the parameters in polytomous Rasch models most often describe some

form of a transition between score levels, a procedure which is sensitive to DIF and

DSF is the consequence. In addition, this sensitivity is independent of the sign of the

effects and therefore not prone to a cancellation of diverging DSF effects within an

item, as some other existing procedures are, for example, the polytomous SIBTEST

procedure (Chang, Mazzeo, & Roussos, 1996).

Unlike itemwise tests for DIF and DSF, the framework proposed here offers a glo-

bal test for DIF and DSF that does not flag individual items or score levels. However,

as opposed to other global DIF tests, such as the LR test, our data-driven approach

for detecting groups of subjects with different item parameters is much more flexible

and the graphical representation of the results can provide additional information

about the parameter profiles of these groups, as illustrated below. In summary, the

extension of the model-based recursive partitioning algorithm to polytomous Rasch
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models will provide a global model testing procedure that is able to detect groups of

persons violating measurement invariance and is sensitive to both DIF and DSF.

In this article, we present the extension of the model-based recursive partitioning

algorithm to two well-known polytomous models from item response theory (IRT),

the rating scale model (RSM; Andrich, 1978) and the partial credit model (PCM;

Masters, 1982), and thus present a general framework for the detection of groups

exhibiting DIF and/or DSF in polytomous items. After an introduction of the RSM

and PCM in the next section, a more detailed introduction of the model-based recur-

sive partitioning algorithm, along with an artificial instructive example, follows in

the section ‘‘Detecting Noninvariant Groups.’’ The section ‘‘Simulation Studies’’

contains the results of a series of simulation studies to support and illustrate the sta-

tistical properties of the proposed procedures together with performance comparisons

to the well-established LR test. Finally, an application example with empirical data

is presented in the section ‘‘Application: The Freiburg Mindfulness Inventory.’’ A

software implementation of the proposed procedures is freely available in the add-on

package psychotree (Zeileis, Strobl, Wickelmaier, Komboz, & Kopf, 2015b) for the

R system for statistical computing (R Core Team, 2016).

Rating Scale and Partial Credit Model

The RSM and the PCM are two widely applied polytomous Rasch models. The

RSM describes the probability that subject i with person parameter ui scores in one

of the categories xij 2 f0, 1, . . . , pg of item j with item parameter bj and a vector of

thresholds t:

P(Xij = xijjui, bj, t) =

exp
Pxij

k = 0

(ui � (bj + tk))

Pp

‘ = 0

exp
P‘

k = 0

(ui � (bj + tk))

ð1Þ

with all sums
P0

k = 0 defined to be 0.

In the RSM, items are modeled by means of two types of parameters: an item loca-

tion parameter bj, describing the overall location of item j on the latent scale and a

set of threshold parameters t = (t1, . . . , tp)T , describing the distance between the

overall location bj, and the transition points from one category to the next category

(see Figure 1 for an illustration).

As becomes clear from Equation 1, the number and values of the threshold para-

meters tk are constant over all items j, which restricts the RSM to a set of items

with the same number of categories and also assumes equal distances between the

intersections of the category characteristic curves of two adjacent categories over

all items.

The PCM relaxes these assumptions by allowing a variable number of categories

and spacing of the intersections of the category characteristic curves per item:
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P(Xij = xijjui, dj) =

exp
Pxij

k = 0

(ui � djk)

Ppj

‘ = 0

exp
P‘

k = 0

(ui � djk)

ð2Þ

While ui is still the person parameter of subject i, each item is now described by a

set of threshold parameters dj = (dj1, . . . , djk , . . . , djpj
)T , which mark the intersections

between the probability curves of two adjacent categories, that is, the point where the

probability of scoring in category k � 1 is the same as scoring in category k. This is

illustrated in Figure 1.

In the upper part of Figure 1, the category characteristic curves of an artificial item

with five categories are shown. For given item and person parameters, these curves

describe the probability of responding in a category as predicted under the RSM or

the PCM. The positions of the RSM and the PCM threshold parameters are depicted,

showing their location at the intersection between the category characteristic curves

of two adjacent categories.

An alternative illustration that was already used by Van der Linden and

Hambleton (1997) in the context of IRT and that is similar to the ‘‘effect displays’’

by Fox and Hong (2009) for ordinal regression models is shown in the lower part of

Figure 1. In this illustration, only the regions of the most probable category responses

of an item over the range of the latent trait are shown. This type of illustration will

be called ‘‘region plot’’ from here on and will be later used as a means of illustrating

the results of the new methods.

Figure 1. Category characteristic curves (above) and region plot (below) with regions of
most probable category responses of an item with five categories. In addition, the locations of
RSM and PCM parameters are depicted.
Note. RSM = rating scale model; PCM = partial credit model.
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For ordered threshold parameters, which are increasing in their value with the

response categories, the locations of the borders of the regions in the plot directly

correspond to the values of the threshold parameters. Otherwise they are given by

the mean between two adjacent unordered threshold parameters (Wilson & Masters,

1993). A discussion of the meaning of unordered threshold parameters can be found

in Andrich (2013). One possibility to inform the user about the existence of unor-

dered threshold parameters within an item is to depict their locations with dashed

lines (see Figure 1) that is employed in all region plots shown here. From the point

of view of the proposed procedures, unordered threshold parameters do not pose a

problem because only parameter differences between groups and not their order is

considered.

Detecting Noninvariant Groups

Similar to the procedure proposed by Strobl et al. (2015), the new framework for

polytomous items proposed in the following is based on a statistical algorithm called

model-based recursive partitioning (Zeileis et al., 2008). Model-based recursive par-

titioning is a semiparametric approach that employs statistical tests for structural

change adopted from econometrics. The aim is to detect differences in the para-

meters of a statistical model between groups of subjects defined by (combinations

of) covariates.

Model-based recursive partitioning is related to—but by means of modern statisti-

cal techniques avoids the earlier weaknesses of—the method of classification and

regression trees (CART; Breiman, Friedman, Olshen, & Stone, 1984; see Strobl,

Malley, & Tutz, 2009, for a thorough introduction), where the covariate space is

recursively partitioned to identify groups of subjects with different values of a cate-

gorical or numeric response variable. As an advancement of this approach, in model-

based recursive partitioning it is the parameters of a parametric model—rather than

the values of a single response variable—that vary between groups. Such parameters

could be, for example, intercept and slope parameters in a linear regression model

or, as it is the case here, the parameters of a RSM or a PCM that may vary between

groups of subjects and thus indicate violations of measurement invariance.

This principle is now first illustrated by means of an artificial instructive example,

before the technical details are addressed in the next sections. The data for the

instructive example are the responses of 500 hypothetical subjects to 8 items with 3

categories per item simulated under the PCM. These data from a single-case simula-

tion can be thought of, for example, as responses to an attainment test. In addition to

the responses, the data set includes three covariates: gender, age, and a motivation

score (all discretely uniformly distributed over their respective ranges). The summary

statistics of these covariates are reported in Table 1.

The data of the instructive example were simulated with DIF between males and

females in Items 2 and 3: All threshold parameters of these items were higher for

males than for females, that is, it was simulated to be more difficult for males to get
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a higher score on these items. In addition, the threshold parameters of Items 6 and 7

have been reversed for males but not for females to illustrate how unordered thresh-

old parameters are indicated in the graphical output of our procedure. Between

females up to the age of 40 and females over the age of 40, DSF was simulated in

Items 4 and 5, that is, only the first threshold parameter of these items was different

between these two groups such that younger females were simulated to have a lower

threshold between the first and second category (see Figure 2 for an illustration of

the results). This means that in this example there is no measurement invariance

between the groups defined by males, females up to the age of 40 and females over

the age of 40 so that these groups should not be compared based on a single mea-

surement model.

No DIF was simulated with respect to the covariate motivation, so that this vari-

able induces no additional violations of measurement invariance. All ability para-

meters were drawn from a standard normal distribution.

In order to test whether a single measurement model holds for all persons by

means of the model-based recursive partitioning procedure, the item responses are

assessed with respect to possible group differences related to the three covariates

gender, age, and motivation, as described in detail below. The resulting model, which

is partitioned with respect to a combination of the covariates gender and age, is pre-

sented in Figure 2 and will be termed a partial credit tree (or a rating scale tree if

the RSM is used for partitioning) from here on. In each of the terminal nodes of the

tree, a region plot like that in Figure 1 (rotated by 90�) is shown for each item. As in

Figure 1, these plots show regions of the most probable category responses over the

range of the latent trait, as defined by the estimated threshold parameters of the PCM

in the corresponding node.

Overall, the mere fact that there is more than one terminal node in Figure 2 means

that the null hypothesis of measurement invariance (i.e., a single PCM would fit for

the entire sample) must be rejected. This is how the procedure serves as a global

model test for the underlying IRT model. In contrast to standard global model tests,

however, we gain much more information from the entire tree structure than from a

Table 1. Summary Statistics of the Covariates of the Instructive Example (Artificial Data).

Variable Summary Statistics

Gender Female: 261 Male: 239

xmin x0:25 xmed �x x0:75 xmax

Age(years) 20 35 49 49.69 64 80
Motivation 1 2 3 2.91 4 5

Note. For the categorical variable gender the frequency distribution is displayed, while for the numeric

variables age and motivation the minimum xmin, the first quartile x0:25, the median xmed, the mean �x, the

third quartile x0:75 and the maximum xmax are listed.
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simple test statistic: The visualization shows the identified subgroups, which did not

have to be prespecified but were automatically detected from the data from (combi-

nations of) the available covariates. This structure of noninvariant groups of per-

sons—or, in cases where the tree does not split, the information that no significant

violations of measurement invariance were detected in the available covariates—is

the main information provided by the model-based recursive partitioning approach.

In addition to the group structure, the visualization of the tree also gives a first

impression of the item parameter profiles within the groups. Together, these informa-

tion can help generate hypotheses about possible underlying sources of the group dif-

ferences and guide the decision how to proceed.

With respect to the results of the instructive example (Figure 2), we find that the

simulated DIF pattern has been correctly recovered: Different threshold parameters

have been detected for males and females, and within the group of females for those

up to the age of 40 and those over the age of 40. The estimated threshold parameters

of Items 2 and 3 have higher values for males (Node 2) than for females (Nodes 4 and

5). In addition, reversed threshold parameters for males in Items 6 and 7 are indicated

by dashed lines. Within the group of females, the first threshold parameters of Items 4

and 5 are much lower for females up to the age of 40 (Node 4) than for females above

the age of 40 (Node 5). This means that the noninvariant groups and the item para-

meter profiles within the groups were correctly recovered by the algorithm.

It is important to note that in order to come to this result, all that was passed over

to the algorithm was the three covariates age, gender, and the motivation score.

Neither the specific subgroups nor the cutpoint within the numeric covariate age were

prespecified. Both had to be detected by means of the available data. Especially the

data-driven detection of the cutpoint within the numeric covariate age is in contrast

Figure 2. Partial credit tree for the instructive example (artificial data for illustration
purposes). In the terminal nodes, region plots are depicted for each item with the estimated
threshold parameters of the partial credit model in the corresponding node.
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to the widely employed approach of arbitrarily splitting a numeric variable at the

median (which for the subgroups of females would have been at the value 47 and

thus too high). This common practice would not only have concealed the actual age

at which the parameter change occurs but may even result in not detecting significant

noninvariance in a numeric variable at all, as was shown by Strobl et al. (2015) for

the Rasch tree approach and as is further illustrated in the simulation studies below

for the extension to polytomous items proposed here. As will be explained in more

detail in the section ‘‘Selecting the Cutpoints,’’ the exact value of the empirical cut-

point may vary between random samples from the same population, but on average

is very well able to recover the true cutpoint and has a clear advantage over arbitra-

rily chosen cutpoints such as the median (also illustrated in Strobl et al., 2015).

In addition to the successful recovery of the noninvariant groups, the item para-

meter profiles within the groups were correctly identified. In particular, besides the

general effect of DIF, that is, the shift in all threshold parameters of an item, the fact

that in two items only single threshold parameters differ between females up to the

age of 40 years and above the age of 40 years (i.e., DSF) was also correctly discov-

ered by the partial credit tree. Moreover, the variable motivation was not selected for

splitting, which also correctly replicates the simulated pattern where this variable

induced no violation of measurement invariance.

The data-driven identification of the group structure is a key feature of the model-

based recursive partitioning framework employed here, which makes it very flexible

for detecting noninvariant groups and distinguishes it from other procedures, where

DIF can only be detected between those groups or with respect to the functional form

that was specified a priori.

Technically, the following consecutive steps are used to infer the structure of a

partial credit tree like that depicted in Figure 2 from the data:

1. Estimate the model parameters jointly for all subjects in the current sample,

starting with the full sample.

2. Assess the stability of the item or threshold parameters with respect to each

available covariate.

3. If there is significant instability, split the sample along the covariate with the

strongest instability and in the cutpoint leading to the highest improvement of

model fit.

4. Repeat Steps 1 to 3 recursively in the resulting subsamples until there are no

more significant instabilities (or the subsample becomes too small).

These four steps are now explained in more detail and the extension of the approach

of Strobl et al. (2015) for the polytomous Rasch models is explicitly formulated.

Estimating the Model Parameters

Since the person raw-scores ri =
Pm

j = 1 xij form sufficient statistics for the person

parameters in the family of Rasch models (Andersen, 1977), a conditional maximum
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likelihood approach can be used. In this approach, the conditional likelihoods given

in Equation 3 for the RSM and in Equation 4 for the PCM are maximized by means

of iterative procedures to estimate the item and threshold parameters.

Lc(b, tjr1, . . . , rn) =
Yn

i = 1

Lc(b, tjri) =
Yn

i = 1

exp (�
Pm

j = 1 (xij � bj +
Pxij

k = 0 tk)

gri
(b, t)

ð3Þ

Lc(djr1, . . . , rn) =
Yn

i = 1

Lc(djri) =
Yn

i = 1

exp (�
Pm

j = 1

Pxij

k = 0 djk)

gri
(d)

ð4Þ

In Equation 3 as well as in Equation 4, gri
are the elementary symmetric functions

of order ri (cf. e.g., Fischer & Molenaar, 1995). To fix the origin of the scale, for both

equations some constraint has to be applied, leaving m + p� 2 free parameters in the

RSM and
Pm

j = 1 pj � 1 free parameters in the PCM.

Here, we use the common constraint to set the first threshold parameter of the first

item to zero, that is, d11 = 0 for the PCM and b1 = 0 as well as t1 = 0 for the RSM.

Note, however, that all subsequent analyses are not affected by the choice of this

constraint because—unlike itemwise DIF tests, where the selection of anchor items

is crucial (Kopf, Zeileis, & Strobl, 2015; Wang, 2004)—in a global test framework

like the one employed here, the result is independent of the choice of the constraint

because under the global null hypothesis all item parameters are equal, which would

hold under any constraint, and any deviation correctly leads to a rejection of mea-

surement invariance.

Testing for Parameter Instability

To test whether the model parameters vary between groups of subjects defined by

covariates, we use the approach of structural change tests from econometrics. The

rationale of these tests is the following: The model parameters are first estimated

jointly for the entire sample. Then the individual deviations from this joint model are

ordered with respect to a covariate, such as age. If there is systematic DIF or DSF

with respect to groups formed by the covariate, the ordering will exhibit a systematic

change in the individual deviations. If, on the other hand, no DIF or DSF is present,

the values will merely fluctuate randomly.

Note that, in the case of DIF or DSF, the joint model used in the starting node,

which assumes the same parameter values for the entire sample, is actually misspeci-

fied and thus misfits. However, the method is not relying on the initial model to fit—

to the contrary, it is exactly the misfit that is used by the structural change test

approach: The misfit is reflected in the score contributions from the initial model, so

that the first split can start resolving the misfit with respect to the variable most

strongly associated with DIF. As long as there is still misfit in the resulting models,

the splitting will continue. Therefore, at every level of the tree any remaining mis-

specification of the current model should be considered as a valuable means for

Komboz et al. 137



quantifying the misfit to recursively resolve it, rather than an erroneous violation of

the model assumptions.

The statistical theory behind the structural change tests is explained in detail by

Merkle and Zeileis (2013) and in the context of recursive partitioning by Zeileis et

al. (2008), Strobl et al. (2015), and Strobl, Wickelmaier, and Zeileis (2011), but is

shortly illustrated in Figure 3: In this example, the individual contributions of all sub-

jects to the score function, which is used for the estimation of a parameter, are

ordered with respect to the variable age. The score contributions are the derivatives

of the individual observations’ contributions to the log-likelihood with respect to the

parameter vector and quantify the individual deviations from a joint parameter esti-

mate. By construction the sum over all deviations from the joint estimate is zero

(i.e., fulfill the first-order condition of the likelihood maximization), but some sub-

jects will have positive and other subjects will have negative score contributions (that

are illustrated as dashed lines in Figure 3).

When these score contributions are ordered with respect to the variable age, it

becomes obvious that they do not fluctuate randomly around the mean zero—which

would be the case under the null hypothesis that one joint parameter estimate is

appropriate for the entire sample—but there is a systematic change at the age of 40.

This systematic change indicates that, instead of one joint parameter estimate for the

entire sample, different parameter estimates should be permitted for subjects up to

the age of 40 and above the age of 40.

Based on statistical theory described in Zeileis et al. (2008), p values can be pro-

vided for each candidate variable. An advantage of the underlying score-based

Figure 3. Structural change in the variable age (artificial data for illustration purposes). The
individual score contributions are ordered with respect to the variable age. The dashed lines
indicate deviations from the overall mean zero, which are positive before the structural
change and negative afterward.
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approach is that the model does not have to be reestimated for all splits in all covari-

ates, because the individual score contributions remain the same and only their order-

ing needs to be adjusted for evaluating the different covariates.

For the RSM and the PCM, the individual score functions can easily be computed

from the conditional likelihoods given in Equations 3 and 4 and are provided in

Appendix A. Based on the individual score functions, the structural change tests out-

lined above can be applied straightforwardly. The results of these tests for the instruc-

tive example are shown in Table 2.

In the first node, the variable with the smallest p value—in this case gender—is

selected for splitting (cf. Table 2 and Figure 2). In each daughter node the splitting

continues recursively: Here, the variable age is selected for splitting in the third node,

whereas no further splits are found significant in the second and all the following

nodes.

Note that the model-based recursive partitioning algorithm performs only binary

splits in each step but can capture any type of group structure by means of multiple

splits in the same variable, as illustrated in Figure 4, or by using combinations of

variables, as was already illustrated in Figure 2 (see also Strobl, 2013; Strobl et al.,

2009). Thus, as opposed to parametric approaches, the model-based recursive parti-

tioning framework can approximate any functional form even when it is not known a

priori—as will likely be the case in practical applications.

Splitting continues until all p values exceeded the significance level (commonly

5%), indicating that there is no more significant parameter instability, or until the

number of observations in a subsample falls below a given threshold (see also section

‘‘Stopping Criteria’’).

Selecting the Cutpoints

After a covariate has been selected for splitting, the optimal cutpoint is determined by

maximizing the partitioned log-likelihood (i.e., the sum of the log-likelihoods for two

separate models: one for the observations to the left and up to the cutpoint, and one

Table 2. Summary of the Parameter Instability Test Statistics and Corresponding Bonferroni-
Adjusted p Values for the Instructive Example.

Node 1 Node 2 Node 3 Node 4 Node 5

Age Statistic 51.031 30.448 76.765 20.716 22.407
p .001 .341 \.001* .911 .904

Gender Statistic 212.909 — — — —
p \.001* — — — —

Motivation Statistic 62.941 68.663 47.415 56.068 46.593
p .753 .372 .986 .856 .989

Note. Variables whose p values are highlighted with an asterisk are selected for splitting in the respective

node.
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for the observations to the right of the cutpoint) over all candidate cutpoints within

the range of this variable.

For the first split in the instructive example, the selection of the cutpoint is

trivial—since the binary variable gender only allows for a single split between the

subgroups of females and males. In the second split, however, all possible cutpoints

in the variable age for the female subsample are considered and the associated parti-

tioned log-likelihood is displayed in Figure 5. The value 40 is selected as the optimal

cutpoint, because it shows the highest value of the partitioned log-likelihood, that is,

the strongest differences in the item parameters exist between females up to the age

of 40 and over the age of 40.

Note that other potential cutpoints close to this value also show a high value of

the partitioned log-likelihood, so that in different random samples from the same

underlying population not always the exact same value for the optimal cutpoint may

be detected. However, from Figure 5 it is obvious that the median (dotted line) that

is often used for prespecifying the reference and focal groups from a numeric predic-

tor variable such as age may be far off the maximum of the partitioned log-likelihood

indicating the strongest parameter change. As opposed to that, the data-driven

approach suggested here cannot only reliably detect the parameter instability in the

variable age, but it can also identify at what age the strongest parameter change

occurs (as was also systematically illustrated by the simulation results of Strobl et

al., 2015).

While this approach can be applied to numeric and ordered covariates, for unor-

dered categorical covariates the categories can be split into any two groups in each

split. From all these candidate binary partitions, again the one that maximizes the

partitioned log-likelihood is chosen. This means that the algorithm can also detect

Figure 4. Approximation of unknown functional forms by means of recursive partitioning.
The dotted line represents the true functional form (left: quadratic, right: cubic), the dashed
line represents a linear model fit and the solid line represents the approximation through
recursive partitioning.
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which groups formed by a multicategorical covariate, such as ethnicity, actually

show different item parameters—rather than having to specify a priori a reference

group (usually the majority group) and a focal group (usually all minority groups

combined, even though empirically there might be additional differences between

the minority groups, or some of the minority groups may not differ from the majority

group while others do).

From a technical point of view, selecting the optimal cutpoint by maximizing the

partitioned (log-)likelihood corresponds directly to using the maximum LR statistic

of the joint versus the partitioned model. Hence for testing whether there is signifi-

cant DIF or DSF in a covariate, the computationally cheap score test from the section

‘‘Testing for Parameter Instability’’ is used, while for estimating where the strongest

DIF or DSF occurs, the computationally costly LR test is used.

This two-step approach has two important advantages: Not only does it consider-

ably reduce the computational burden but at the same time it also prevents an artifact

termed variable selection bias (see Strobl, Boulesteix, & Augustin, 2007, and the

references therein), which was inherent in earlier recursive partitioning algorithms.

Stopping Criteria

For creating a rating scale or partial credit tree, the four basic steps outlined above—

(1) estimating the parameters of a joint model, (2) testing for parameter instability,

(3) selecting the splitting variable and cutpoint, and (4) splitting the sample

accordingly—are repeated recursively until a stopping criterion is reached.

Figure 5. Partitioned log-likelihood for the second split in the covariate age. The dashed
line indicates the location of the optimal cutpoint (at the value 40), while the dotted line
indicates the location of the median (at the value 47) for the subgroup of females.
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Two kinds of stopping criteria are currently implemented: The first is to stop split-

ting if there is no (more) significant instability with respect to any of the covariates.

Thus, the significance level—usually set to 5%—serves as stopping criterion. As a

second stopping criterion, a minimum sample size per node can be specified. This

minimal node size should be chosen such as to provide a sufficient basis for para-

meter estimation in each subsample and should thus be adjusted to the number of

model parameters. In our examples, we have chosen a significance level of 5% and

by default the minimal node size is 10 times the average number of parameters per

item (as a simple rule of thumb for assuring reasonable parameter estimates).

Finally, one should keep in mind that when a large number of covariates is avail-

able in a data set, and all those covariates are to be tested for measurement invar-

iance, multiple testing becomes an issue—as will be the case for any statistical test.

To account for the fact that multiple testing might lead to an increased false-positive

rate when the number of available covariates is large, a Bonferroni adjustment for

the p value splitting criterion is applied internally.

As explained in detail in Strobl et al. (2009) and Strobl et al. (2015), pruning, a

procedure employed in classical algorithms (e.g., CART; Breiman et al., 1984) to

avoid overfitting, is no longer necessary in the inference-based approach employed

here. Moreover, the model-based recursive partitioning algorithm is not affected by

an inflation of chance due to its recursive nature but forms a closed testing procedure

(cf., e.g., Hochberg & Tamhane, 1987). This ensures that noninvariance groups are

not erroneously detected as an artifact of the recursive nature of the algorithm.

In the following, the statistical properties of rating scale and partial credit trees are

further investigated by means of a series of simulation studies.

Simulation Studies

A series of three simulation studies was conducted to illustrate the statistical proper-

ties of the new framework and compare them to those of the well-established LR test

in the spirit of Andersen (1973) and Gustafsson (1980). This LR test provides a good

basis for comparison, because it is also a global model test procedure that is based on

an underlying IRT model and uses the conditional maximum likelihood approach.

All simulation studies were conducted in the statistical software R (R Core Team,

2016). To fit rating scale and partial credit models in prespecified subgroups for the

LRT the add-on package psychotools (Zeileis, Strobl, Wickelmaier, Komboz, &

Kopf, 2015a) is used and for the rating scale and partial credit trees psychotree is

employed (Zeileis et al., 2015b), which reuses the psychotools functions. R itself as

well as all add-on packages are freely available under the General Public License

(GPL) from the Comprehensive R Archive Network (CRAN).

Table 3 gives an overview over the three following simulation studies, indicating

the central question addressed in each study as well as the experimental factors and

criterion variables.
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Criterion Variables

In each simulation setting, the percentage of significant test results is recorded. In

cases where no DIF is simulated, the percentage of significant test results reflects

the Type I error rate, that is, the percentage of simulation runs where the methods

indicate noninvariant groups despite the fact that no DIF is simulated. In cases

where DIF is simulated, on the other hand, the percentage of significant test results

reflects the power, that is, the percentage of simulation runs where the methods

indicate noninvariant groups when DIF is actually present. A method performs

well when the Type I error rate does not exceed the given significance level and

the power is high.

For LR tests, the percentage of significant test results directly corresponds to the

percentage of simulation runs where the tests show a significant difference between

the prespecified groups. For rating scale and partial credit trees, the percentage of sig-

nificant test results corresponds to the percentage of simulation runs where the trees

made at least one split, forming two or more noninvariant groups.

Note that the terms Type I error rate and power (or hit rate) may be used in a dif-

ferent context in other DIF studies, where itemwise tests are conducted. In those

studies, terms such as error rate and hit rate often refer to the percentage of items

incorrectly and correctly classified as DIF items. Here, however, the terms Type I

error rate and power are used in their statistically precise meaning to describe the

performance of the global tests and refer to the percentage of incorrect and correct

test decision over all items.

Table 3. Overview of the Aims and Settings of the Following Simulation Studies.

Study Central question Experimental factors Criterion variables

I Are the methods mislead
by actual differences in
the person parameter
distributions (PPD)?

DIF: No/Yes
Mean difference in PPD:

No/Yes
Variance difference in

PPD: No/Yes
Covariate pattern: Binary/

Numeric

Type I error/Power

II Are the methods
sensitive to DIF in
groups formed by
complex covariate
patterns?

DIF: No/Yes
Covariate pattern:
Categorical/Numeric-80/

U-shaped/Interaction

Type I error/power

III Are the methods also
sensitive to DSF?

DSF pattern: Single-level/
Convergent/Divergent/
Balanced

Power

Note. DIF = differential item functioning; DSF = differential step functioning.
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Fixed Experimental Settings

The following settings were the same for all three simulation studies, whereas spe-

cific settings are discussed below for each study individually.

Significance level: a = .05 was used as the significance level.

Number of replications: 10,000 replications were conducted for each experimental

scenario to ensure an appropriate precision of the estimates of the criterion

variables.

Number of observations: n = 1,000 was used as the overall sample size.

Number of items, categories, and item parameters: To make the simulation stud-

ies realistic as well as comparable to previously published simulation studies,

we used a set of item parameters that were estimated in a calibration of the

1992 NAEP study (Johnson & Carlson, 1994) by means of the graded response

model (GRM; Samejima, 1969). The same parameter values were also used

for polytomous items in previous simulation studies by Chang et al. (1996),

Camilli and Congdon (1999), and Penfield and Algina (2006). The parameter

set consisted of threshold parameters djk and discrimination parameters aj for

eight polytomous items with four categories each, which are displayed in

Table 4. With this setup, we were able to generate data based on the more gen-

eral GRM for a preparatory study presented in Appendix B to rule out a poten-

tial effect of model misspecification on the following results. For the

simulations based on the RSM and the PCM, however, the threshold para-

meters djk from Johnson and Carlson (1994) were used as described in detail

below, while the discrimination parameters aj were all fixed to 1.

Person parameters: Person ability parameters were drawn from the same baseline

distribution (except for those settings of Simulation Study I, where the person

parameters were drawn from two different distributions to simulate differences

in the person parameter distributions, as described in detail below). The base-

line distribution was a normal distribution N (m, 1), where m is the mean over

Table 4. Item Threshold and Discrimination Parameters of a 1992 NAEP Calibration by
Johnson and Carlson (1994) Estimated With the GRM.

Parameter

Item

1 2 3 4 5 6 7 8

dj1 �0:203 �0:342 �1:804 �0:345 �1:559 �2:105 �2:299 �2:449
dj2 1:344 1:008 �0:368 2:428 0:218 �0:452 �1:060 �0:089
dj3 2:549 1:797 0:219 2:822 1:804 2:873 0:581 2:416
aj 1:004 1:359 0:535 0:779 1:215 0:794 0:689 0:563

Note. NAEP = National Assessment of Educational Progress; GRM = graded response model.
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all item threshold parameters, that is, m = 1
m�p

Pm
j = 1

Pp
k = 1 (bj + tk) for the

RSM and m = 1Pm

j = 1
pj

Pm
j = 1

Ppj

k = 1 djk for the PCM.

Methods: Four methods were compared in all simulation studies that result from

the combination of the two underlying models—RSM and PCM—and the two

testing frameworks—LR tests and model-based recursive partitioning trees:

LR tests based on RSMs (abbreviated as ‘‘LRT-RSM’’ in this entire section to

enhance readability of the results), rating scale trees (‘‘TREE-RSM’’), LR tests

based on PCMs (‘‘LRT-PCM’’), and partial credit trees (‘‘TREE-PCM’’).

Data generating models: The data were generated either with the RSM or the

PCM. For the RSM, the mean over all item threshold parameters djk of an item

j from Table 4 has been used as the item location parameter bj and the mean

of all differences between successive item threshold parameters dj(k�1) and djk

has been used as the threshold parameter tk . For the PCM, the item threshold

parameters djk listed in Table 4 have been used directly.

The analysis method was chosen according to the data-generating model in

Simulation Studies I and II, whereas Simulation Study III and Appendix B also

include cases of model-misspecification.

Simulation Study I: Mean and Variance Differences in the Person Parameter
Distributions

The aim of this study is to investigate how the methods perform in the presence of

actual differences in the person parameter distributions. In particular, we will see

whether differences in the mean and/or variance of the ability distributions are mista-

ken for violations of measurement invariance in cases where indeed no DIF is pres-

ent (Type I error rate) and whether actual violations of measurement invariance can

be detected despite differences in the mean and/or variance of the ability distribu-

tions in cases where DIF is indeed present (power).

Moreover, through the investigation of a binary covariate (offering only one pos-

sible split into two groups) and a numeric covariate (for which the TREE methods

search the optimal cutpoint), the results of this simulation study would show any

inflating effect that the exhaustive search over all possible cutpoints may have on the

Type I error rate of the TREE methods.

Design of Simulation Study I
Ability mean difference: In settings with no ability mean difference, the person

parameters of both reference and focal group were drawn from the baseline

N (m, 1) distribution (with m as defined above). In settings with an ability mean

difference, the person parameters of the reference group were drawn from a

normal N (m� 0:5, 1) distribution, whereas the person parameters of the focal

group were drawn from a normal N (m + 0:5, 1) distribution. Additionally, the
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mean differences here can be combined with the variance differences

described in the next paragraph.

Ability variance difference: In settings with no ability variance difference, the per-

son parameters of both reference and focal group were drawn from a normal

N (m, 1) distribution. In settings with an ability variance difference, the person

parameters of the reference group were drawn from a normal N(m, 1) distribu-

tion, whereas the person parameters of the focal group were drawn from a nor-

mal N (m, 2) distribution.

DIF: Scenarios where no DIF is simulated represent the null hypothesis that there

are no differences in any item parameters between the reference and the focal

group. Scenarios where DIF is present, on the other hand, represent the alter-

native where for the fifth item all item threshold parameters in the PCM (or

item location parameters in the RSM, respectively) have been shifted by a con-

stant value of e = 0:5 for the focal group.

Covariate pattern: Under the ‘‘binary’’ covariate pattern, covariate values were

sampled from a binomial distribution with equal class probabilities. In those

scenarios with DIF, it was then simulated between the two groups correspond-

ing directly to the two categories of this binary covariate.

Under the ‘‘numeric’’ covariate pattern, covariate values were sampled from a

discrete uniform distribution over the values 1 to 100. In those scenarios with

DIF, it was then simulated between the two groups specified by splitting the

observations at the median of the numeric covariate.

Note that, while the TREE methods have to select the optimal cutpoint in all set-

tings with the numeric covariate in a data-driven way, for the LR tests a cutpoint

defining reference and focal group has to be specified a priori. In Simulation Study I,

the LR tests were given the correct cutpoint, that is, the median, while in Simulation

Study II, we will investigate the influence of misspecified cutpoints. This means that

in this first simulation study the LR tests have an advantage over the TREE methods,

because they are provided with the correct group structure while the TREE methods

have to search for it.

Results of Simulation Study I. As can be seen from Table 5, all methods roughly respect

the given significance level of a = .05 under the null hypothesis of no DIF—both for

the binary and for the numeric covariate. This shows that the optimal cutpoint selec-

tion over numeric covariates does not lead to an inflated Type I error rate in the

model-based recursive partitioning framework.

Moreover, we can see that mean and/or variance differences between the person

parameter distributions of reference and focal group do not lead to an inflation of the

Type I error: None of the methods is mislead to identify differences between the per-

son parameter distributions as violations of measurement invariance. In cases with a

binary covariate and ability mean differences, the TREE-PCM procedure even shows

a conservative Type I error.
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The same trend was already noted by Strobl et al. (2015) for the Rasch tree proce-

dure. A first investigation of this effect (results not shown here for brevity) indicated

that in principle all likelihood-based DIF tests—the score test employed in the TREE

procedures, but also the LR test and the Wald test (Glas & Verhelst, 1995)—are

affected by this phenomenon. However, for the LR test (and similarly for the TREE-

RSM) the effect occurs only for larger ability differences than those that were pre-

sented in this simulation study. However, the direction of the effect is that all meth-

ods behave conservatively rather than showing an inflated Type I error rate in the

presence of ability mean differences, so that true ability differences (often termed

impact) are not mistaken for DIF.

Table 6 shows the power of the four methods under the alternative of DIF being

present. The results illustrate that the TREE methods achieve a lower power for the

numeric covariate—where they have to search for the optimal cutpoint, while the LR

tests are given the correct cutpoint—as compared to the binary covariate—where for

both types of methods the correct cutpoint is specified in advance. This may seem

like a disadvantage of the TREE methods at first sight, but we will show in

Simulation Study II that the data-driven cutpoint selection of the TREE methods is

actually an advantage in the more realistic settings where the true cutpoint is not

known.

The results also show that—as a consequence of the higher number of parameters

estimated in the PCM as compared to the more parsimonious RSM—the power of

those methods based on the PCM is in general lower than the power of those methods

based on the RSM. While the higher number of parameters results in a disadvantage

for methods based on the PCM in situations with simple DIF like here, we will see

Table 5. Results of Simulation Study I: Type I Error Rate of the Four Methods Depending on
Ability Mean and/or Variance Differences and Covariate Pattern Under the Null Hypothesis of
No DIF.

Type I error rate

Covariate
pattern

Mean
difference

Variance
difference

Method

LRT-RSM TREE-RSM LRT-PCM TREE-PCM

Binary No No 0.053 0.050 0.054 0.047
Yes No 0.049 0.045 0.049 0.015
No Yes 0.048 0.053 0.052 0.046
Yes Yes 0.051 0.050 0.052 0.023

Numeric No No 0.051 0.052 0.051 0.050
Yes No 0.053 0.048 0.052 0.044
No Yes 0.052 0.051 0.054 0.045
Yes Yes 0.052 0.047 0.052 0.045

Note. DIF = differential item functioning; LRT-PCM = likelihood ratio test partial credit model; LRT-RSM =

rating scale model.
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that it turns out to be an advantage in situations where DSF is present, as illustrated

in Simulation Study III. Note also that in this simulation design the sample size was

held constant for brevity, whereas future research should investigate to what degree

increasing the sample size can compensate for the higher number of parameters of

the PCM methods.

As another general tendency, the presence of ability mean and/or variance differ-

ences to some extent reduces the power of all four methods. The power is lower when

either one of these effects is present and is lowest when both occur simultaneously—

especially for the methods based on the PCM.

In summary, the results of Simulation Study I show that neither of the methods is

mislead to identify differences between the person parameter distributions as viola-

tions of measurement when no actual DIF is simulated. However, the power for

detecting violations of measurement invariance when it is present is alleviated by dif-

ferences between the person parameter distributions for all methods.

Simulation Study II: Complex Covariate Patterns

In Simulation Study I, the covariate patterns specifying reference and focal groups

have been very simple. However, this will not often be the case in empirical data,

where the true group structure can result from various more complex covariate pat-

terns. Simulation Study II therefore illustrates how the investigated methods perform

when the noninvariant groups are specified by more complex patterns, such as non-

median splits, U-shaped patterns, and interactions of covariates—none of which

would typically be specified in a LR test.

Table 6. Results of Simulation Study I: Power of the Four Methods Depending on Ability
Mean and/or Variance Differences and Covariate Pattern Under the Alternative Hypothesis
of DIF.

Power

Covariate
pattern

Mean
difference

Variance
difference

Method

LRT-RSM TREE-RSM LRT-PCM TREE-PCM

Binary No No 0.997 0.997 0.898 0.892
Yes No 0.996 0.995 0.874 0.776
No Yes 0.994 0.991 0.883 0.864
Yes Yes 0.993 0.988 0.867 0.772

Numeric No No 0.997 0.975 0.898 0.723
Yes No 0.995 0.969 0.875 0.568
No Yes 0.991 0.956 0.878 0.686
Yes Yes 0.989 0.950 0.855 0.576

Note. DIF = differential item functioning; LRT-PCM = likelihood ratio test-partial credit model; LRT-RSM =

likelihood ratio test-rating scale model.
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Since in one setting of this simulation study both covariates are presented at a

time, another aspect of interest is a potential inflating effect that the multiple testing

over more than one covariate may have on the Type I error rate of the methods.

Design of Simulation Study II
DIF: Again, scenarios where no DIF is simulated represent the null hypothesis of

measurement invariance, where there are no differences in any item para-

meters between the reference and the focal group. Scenarios where DIF is

present, on the other hand, represent the alternative where for the fifth item all

item threshold parameters in the PCM (or the item location parameter in the

RSM, respectively) have been shifted by a constant value of e = 0:5 for the

focal group.

Covariate pattern: Under the ‘‘categorical-4’’ covariate pattern, the covariate val-

ues were sampled from a multinomial distribution with four classes and equal

class probabilities. In those scenarios with DIF, it was then simulated between

two groups that were each specified by a combination of two levels of the

categorical covariate: Levels 1 and 3 for the reference group and Levels 2 and

4 for the focal group. This covariate pattern mimics noninvariance between

groups formed by multicategorical covariates, such as ethnicity or language

groups, where it is not known in advance which—if any—categories show a

significant difference in the item parameter values.

Under the ‘‘numeric-80’’ covariate pattern, the covariate values were sampled

from a discrete uniform distribution over the values 1 to 100. In those scenarios

with DIF, it was now simulated between two groups specified by splitting the

observations at the value 80. This pattern mimics noninvariance in a numeric

covariate such as age, where DIF is present between elderly subjects and the

rest of the population.

Under the ‘‘U-shaped’’ covariate pattern, the covariate values were again

sampled from a discrete uniform distribution over the values 1 to 100. In those

scenarios with DIF, it was now simulated between two groups specified by

those observations with values up to 20 and from 80 onward versus those

observations with values between 20 and 80. This patterns mimics noninvar-

iance in a numeric covariate such as age, where DIF is present for young and

elderly subjects as compared to middle-aged subjects.

Under the ‘‘interaction’’ covariate pattern, again numeric covariate values were

sampled from a discrete uniform distribution over the values 1 to 100, and bin-

ary covariate values were sampled from a binomial distribution with equal class

probabilities. In those scenarios with DIF, it was now simulated between two

groups specified by those observations with a value of 1 in the binary covariate

in combination with a value above the median in the numeric covariate versus

all other observations. This pattern mimics a situation where noninvariance is

present only with respect to a subgroup of subjects resulting from a combina-

tion of two covariates, such as females above the median age.
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Due to the more complex covariate patterns, there are now several aspects that are

automatically incorporated by the TREE methods, but need to be explicitly specified

for the LR tests: Like in the previous simulation study, when confronted with a

numeric covariate the TREE methods automatically select the optimal cutpoint,

while for the LR tests a cutpoint has to be specified a priori: We used the median as

is often found in practice.

A similar issue arises for multicategorical variables: while the TREE methods

automatically detect which—if any—categories show a significant difference in the

item parameter values, the groups need to be prespecified for the LR tests. An

approach often found in practice is to define one class (e.g., an ethnic majority) as

the reference group and combine all other classes to form the focal group. This may

lead to severe information and power loss if the actual parameter differences do not

follow this grouping. Since the LR test can straightforwardly deal with more than

two classes, here, we have chosen an approach more favorable for the LR test,

namely, to create four separate groups for the four categories of our simulated cate-

gorical covariate. This ensures that the power of the LR test is not underestimated—

but it also means that a significant test result for the LR tests is not informative as to

which categories actually differ.

The last aspect where the TREE and LR test methods differ in their general proce-

dure is the treatment of more than one covariate. In the interaction pattern, two cov-

ariates are involved in the data-generating process and thus both covariates were

made available to all four methods. This is indicated in the results tables for the LR

tests, where for the interaction pattern a result is displayed for both the binary and

the numeric variable, while in all other settings only the variable of interest is pre-

sented to the methods and the other fields are left blank. In this scenario, the LR tests

deal with one variable at a time, while the TREE methods can search over several

covariates recursively, so that only one result is listed in the results tables for the

TREE methods.

From a statistical point of view, this means that LR tests are limited to detecting

DIF associated with the main effect of a single covariate (or interaction effects expli-

citly specified in advance—but we have never seen this in practice because usually

there is no a priori information what interactions should be tested), while the TREE

methods can also detect DIF associated with interactions of more than one variable.

As pointed out in the section ‘‘Stopping Criteria,’’ however, the TREE methods

employ a Bonferroni correction to ensure that their searching over several potential

splitting variables does not lead to an inflated Type I error. For a fair comparison,

we have therefore applied a Bonferroni correction, that is, adjusting p values from k

comparisons to 1� (1� p)k—to the LR tests as well for the interaction pattern,

where both the binary and the numeric variable are presented to the methods.

Results of Simulation Study II. As can be seen from Table 7, again all methods roughly

respect the given significance level of a = .05 under the null hypothesis of no DIF.

As noted above, in the interaction pattern, where both the binary and the numeric
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covariate were presented to the methods, we used the Bonferroni adjustment for all

methods to make the results comparable. The corresponding Type I error rates for

the LR test have to be added for the binary and the numeric splitting variables for

comparison with the TREE methods, in which case the LR tests also meet the speci-

fied significance level.

If no Bonferroni adjustment was applied, the results of Strobl et al. (2015) indicate

that all methods, but in particular LR tests, show a severe inflation of the Type I error

rate, so that some type of adjustment is suggested for any method when more than

one covariate is investigated for DIF at the same time, as is done by default for the

TREE methods. The TREE-PCM again behaves even slightly conservative in the

interaction pattern where both covariates are presented, indicating that the Bonferroni

adjustment may be a little strict and less conservative forms of adjustments could be

considered in future research.

Table 8 shows the power of the four methods under the alternative of DIF being

present. As a general tendency, we see again that—as a consequence of the higher

number of parameters and again based on a constant sample size—the power of those

methods based on the PCM is lower than the power of those based on the RSM, as

already discussed for Simulation Study I.

More interestingly, however, the results also illustrate that—as compared to

Simulation Study I—the power of the LR tests drastically decreases when the true

group structure is not known. This effect is especially pronounced in the u-shaped

pattern, where the power of the LR tests is only around chance level, whereas the

TREE methods pick up the DIF with a notably higher power.

In the interaction pattern, too, the more flexible TREE methods have an advan-

tage: Overall, this is a hard setting where the power for all methods is lower than for

the simpler settings. However, while the LR tests can only assess one variable at a

time (which in this case still gives them some power, because the main effects

account for part of the DIF), the TREE methods again show a notably higher power

Table 7. Results of Simulation Study II: Type I Error of the Four Methods Depending on the
Covariate Pattern Under the Null Hypothesis of No DIF.

Type I error rate

LRT-RSM TREE-RSM LRT-PCM TREE-PCM

Covariate pattern Binary Numeric Categorical Binary Numeric Categorical

Categorical-4 — — 0.049 0.050 — — 0.059 0.048

Numeric-80 — 0.049 — 0.047 — 0.052 — 0.049

U-shaped — 0.051 — 0.052 — 0.050 — 0.049

Interaction 0.025 0.026 — 0.050 0.026 0.024 — 0.043

Note. DIF = differential item functioning; LRT-PCM = likelihood ratio test-partial credit model; LRT-RSM =

likelihood ratio test-rating scale model.
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because they can also pick up the interaction effect formed by the combination of

the two covariates. Here, it would also be interesting to investigate to what degree

increasing the sample size can compensate for the complexity of this setting.

For the categorical covariate pattern (where the LR tests considered the four cate-

gories as distinct groups, while the TREE methods searched for the optimal partition

of the categories) the power alone is not very informative and gives comparable val-

ues for the LR tests and TREE methods. However, it is important to note that the

TREE methods have the additional advantage that they provide more information

about the group structure, as illustrated in Figure 6.

Here, we have labeled the four groups simulated in the categorical covariate pat-

tern with the four language groups present in Switzerland (to provide an invented but

plausible illustrative example). In this case, a naive analysis might either treat all

four groups separately, like the LR test in our simulation, or divide the four groups

into one reference and one focal group, for example, by testing the German-speaking

majority against all other languages. Either of these arbitrary specifications would

make it impossible to reveal the true group structure that, in this illustrative example,

the Rhaeto-Romanic minority should be grouped together with the German majority

rather than with the other language minorities. A similar information gain can be

expected from the TREE methods for other multicategorical covariates, such as eth-

nicity, where it is also common in practice to test only the majority group against a

combination of all minority groups.

In summary, the results of Simulation Study II show that in complex covariate

patterns—that are more realistic and not known a priori—the TREE methods show a

comparable to substantially higher power for detecting DIF in the first place and also

a better recovery of the group structure, which is of high relevance for interpretabil-

ity in practical applications.

Table 8. Results of Simulation Study II: Power of the Four Methods Depending on the
Covariate Pattern Under the Alternative Hypothesis of DIF.

Power

LRT-RSM TREE-RSM LRT-PCM TREE-PCM

Covariate pattern Binary Numeric Categorical Binary Numeric Categorical

Categorical-4 — — 0.960 0.952 — — 0.673 0.637

Numeric-80 — 0.325 — 0.810 — 0.168 — 0.430

U-shaped — 0.051 — 0.677 — 0.054 — 0.284

Interaction 0.389 0.392 — 0.523 0.166 0.174 — 0.222

Note. DIF = differential item functioning; LRT-PCM = likelihood ratio test-partial credit model; LRT-RSM =

likelihood ratio test-rating scale model.
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Simulation Study III: Differential Step Functioning

While Simulation Studies I and II assessed the performance of the methods when DIF

(i.e., a constant shift of all score categories) is present, Simulation Study III illustrates

the performance under various patterns of DSF (i.e., different combinations of shifts

in individual score categories). For brevity only the power is reported as the criterion

variable in this simulation study.

Design of Simulation Study III. Due to the parametrization in the RSM (the same dis-

tance between two categories is assumed for all items) it is not possible to simulate

DSF in a single item with this model. Therefore, the PCM was used in all settings as

the data-generating model. This automatically implies a model misspecification for

the TREE-RSM procedure and the LRT-RSM procedure.

The model misspecification is not the main focus of this study. However, we have

conducted a preparatory study on this issue, which is presented in Appendix B. In

this preparatory study, we could show that the results of Bolt (2002) for an itemwise

LR test also extend to the global LR tests and TREE methods used here: Both find-

ings indicate that likelihood-based methods for DIF detection in polytomous items

can show an increased Type I error rate not when faced with model misspecification

alone (like in the following Simulation Study III), but when model misspecification

co-occurs with mean differences in the person parameter distributions.

The results of our preparatory study also indicate that this is not an issue when the

analysis model contains the actual data-generating model as a special case—so, even

in the presence of both model misspecification and mean differences, there is no

problem when, for example, TREE-PCM and LRT-PCM are applied to RSM data.

However, when the data-generating model is more general than the analysis model,

Figure 6. Exemplary result for a TREE method in the setting with a multicategorical
covariate.
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problems arise in the presence of both model misspecification and mean differences

if, for example, TREE-RSM and LRT-RSM are applied to PCM data. Due to these

findings—and also due to the results we will show for Simulation Study III below—

we do not generally recommend RSM trees over PCM trees, as is further elaborated

in the discussion section.

The DSF patterns implemented in Simulation Study III were inspired by previous

simulation studies (Chang et al., 1996; Penfield, 2007; Su & Wang, 2005; Wang &

Su, 2004) and form a combination of the most often used scenarios:

Single-level: In this setting, the first item threshold parameter of the fifth item of

the focal group was shifted by e = 0:5. This corresponds to DSF in a single

category.

Convergent: In this setting, the first and third item threshold parameter of the fifth

item of the focal group were shifted by e = 0:5 and e = 0:25, respectively.

Divergent: In this setting, the first and third item threshold parameter of the fifth

item of the focal group were shifted by e = 0:5 and e = � 0:25, respectively.

Balanced: In this setting, the first and third item threshold parameter of the fifth

item of the focal group were shifted by e = 0:5 and e = � 0:5, respectively.

This leads to a cancellation of DSF in Item 5, that is, the region covered by

this item on the latent trait gets smaller but the mean of the item threshold

parameters remains the same.

In all settings of this simulation study a binary covariate (again sampled from a

binomial distribution with equal class probabilities) was used to specify reference and

focal groups.

Results of Simulation Study III. The results of Simulation Study III are reported in Table

9. Overall, the power is notably lower than in the previous simulation studies, because

now only one or two threshold parameters (as opposed to all threshold parameters) of

one item were shifted. This is a very tough setting, but still the results show that all

four methods are sensitive to DSF, even if it affects only a single parameter. In con-

trast to other existing DIF detection procedures for polytomous items, such as the

polytomous SIBTEST procedure (Chang et al., 1996), this is also the case when the

DSF effects are balanced. (We did not include any of these other procedures in the

simulation study, because they are itemwise and not directly comparable to the global

procedures compared here.)

The power of the TREE methods is comparable or only slightly lower than the

power of the corresponding LR tests. Because of the comparable power of the two

types of methods, we only distinguish between methods based on the RSM and meth-

ods based on the PCM in the following.

Please note again that the overall power in this simulation study is lower than in

the previous studies because less parameters differed between the groups. Of course,

in a simulation study the power could be increased by increasing the effect size or the
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number of affected parameters. However, even the small effects simulated here for

comparison with the previous studies are well suited for showing the general pattern

of how the power depends on both the DSF pattern and the underlying model:

Most important, it should be noted that in contrast to the results of Simulation

Studies I and II, it now becomes obvious that methods based on the RSM are not

always more powerful than methods based on the PCM. For example, for the

balanced DSF pattern, the results in Table 9 show that the power of the PCM meth-

ods is more than four times the power of the RSM methods. As explained in the fol-

lowing, these effects can be attributed to the different parametrization of the two

models.

In the PCM, where each transition between two categories is modeled by an indi-

vidual item threshold parameter djk , DSF in a single response category can—

independently of its sign—be captured directly by an individual model parameter. In

the RSM, however, there is no individual parameter for each transition, but one over-

all location parameter for each item and a set of threshold parameters tk that are

assumed to be the same for all items. Therefore, shifts in one or more threshold para-

meters of a single item cannot directly be captured in the RSM.

In summary, the results of Simulation Study III show that, in the presence of DSF,

methods based on the PCM can be substantially more powerful than methods based

on the RSM.

Application: The Freiburg Mindfulness Inventory

The Freiburg Mindfulness Inventory (FMI, Walach, Buchheld, Buttenmüller,

Kleinknecht, & Schmidt, 2006) is a self-report questionnaire to measure mindfulness,

‘‘ . . . a concept originally derived from Buddhist psychology’’ (Walach et al., 2006,

p. 1543). In the following, we focus on the subscale ‘‘presence’’ of a short version of

Table 9. Results of Simulation Study III: Power of the Four Methods for a Selection of DSF
Patterns.

Power

DSF pattern

Method

LRT-RSM TREE-RSM LRT-PCM TREE-PCM

Single-level 0.143 0.130 0.199 0.191
Convergent 0.261 0.256 0.257 0.254
Divergent 0.083 0.085 0.258 0.230
Balanced 0.102 0.091 0.443 0.421

Note. DSF = differential step functioning; LRT-PCM = likelihood ratio test-partial credit model; LRT-RSM

= likelihood ratio test-rating scale model.
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the FMI. Each of the five items has six response categories (1 = completely disagree

to 6 = completely agree) and is reported in Table 10.

To investigate potential violations of measurement invariance in the subscale

‘‘presence,’’ Sauer et al. (2013) analyzed the responses of 1,059 subjects. The fol-

lowing four covariates have been used to define reference and focal groups: age

(with the median as cutpoint), gender, mode of data collection (online/offline), and

previous experience with mindfulness meditation (yes/no). Table 11 reports the sum-

mary statistics for these covariates based on a slightly reduced data set (n = 1,032,

where subjects below the age of 16 years, and those who scored either in the lowest

or in the highest category in every single item were removed) that will be used in the

following analysis.

According to the results reported by Sauer et al. (2013) for the global LR test,

the null hypothesis of measurement invariance has to be rejected for the covariates

previous experience with mindfulness meditation (x2(8) = 78:71) and mode of data

collection (with Item 5 excluded due to a null category: (x2(7) = 19:71, p = :006),

which is marginally significant when correcting for multiple testing as in Sauer

et al., 2013), but not for the covariates age (x2(8) = 11:59, p = :171) and gender

Table 11. Summary Statistics of the Four Considered Covariates.

Covariate Summary statistics

Gender Female: 694 Male: 338
Experience Yes: 420 No: 612
Mode Online: 952 Offline: 80

x min x 0:25 x med �x x0:75 x max

Age 16 26 33 35.10 44 77

Note. For the categorical variables gender, experience, and mode the frequency distribution is displayed,

while for the numeric variable age the minimum xmin, the first quartile x0:25, the median xmed, the mean �x,

the third quartile x0:75, and the maximum xmax are listed.

Table 10. Items of the Subscale ‘‘Presence’’ of a Short Version of the Freiburg Mindfulness
Inventory (Walach et al., 2006).

Item Label

1 I am open to the experience of the present moment.
2 I sense my body, whether eating, cooking, cleaning, or talking.
3 When I notice an absence of mind, I gently return to the experience of the

here and now.
4 I pay attention to what’s behind my actions.
5 I feel connected to my experience in the here and now.
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(x2(8) = 12:89, p = :116). Besides slightly different numerical results, the conclusions

for the LR test would remain the same in the slightly reduced data set used here.

However, as it is common in DIF analysis, Sauer et al. (2013) only compared

groups defined by a single covariate at a time. This leaves noninvariances between

groups resulting from interactions of two or more covariates unidentified. Also, for

numeric covariates such as age, noninvariance groups may result from cutpoints

other than the median that was used for creating the reference and focal groups by

Sauer et al. (2013). To overcome these drawbacks and examine whether there are

groups resulting from interactions of covariates or nontrivial cutpoints, the slightly

reduced data set is reanalyzed by means of model-based recursive partitioning, where

all four covariates can be presented to the method at the same time and without pre-

vious discretization. Since, based on a variety of statistical and content based criteria,

Sauer et al. (2013) have chosen the RSM rather than the PCM for their analysis, we

also use the rating scale tree method for the reanalysis. The resulting rating scale tree

is reported in Figure 7.

As a very first result, we see that there is more than one terminal node in Figure 7

so that the global null hypothesis of measurement invariance with respect to the four

available covariates has to be rejected. Similar to the results of Sauer et al. (2013),

the rating scale tree identified the covariate previous experience with mindfulness

meditation to be most strongly associated with violations of measurement invariance.

The covariate mode of data collection, which was marginally significant in Sauer et

al. (2013), is not selected by the rating scale tree—and for a good reason: When each

of the two variables experience and mode of data collection are considered individu-

ally, both are associated with violations of measurement invariance, but the associa-

tion with experience is stronger, as already observed by Sauer et al. (2013). What goes

Figure 7. Resulting rating scale tree for the subscale ‘‘presence’’ of a short version of the
Freiburg Mindfulness Inventory after providing the four covariates age, gender, experience,
and mode of data collection.
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unnoticed when treating each variable individually, however, is that there is also a

strong association between the two covariates themselves (the percentage of subjects

having previous experience with mindfulness meditation is higher among those ques-

tioned offline than among those questioned online). Therefore, once experience has

been selected for splitting in the rating scale tree, the mode of data collection does not

provide enough additional information to be selected for further splitting.

Interestingly, however, in contrast to the results of Sauer et al. (2013), where age

showed no significant violation, in the rating scale tree, we find that age is in fact sig-

nificantly associated with violations of measurement invariance when considered in

an interaction with the covariate experience and at a nontrivial cutpoint of 45, which

is notably higher than the previously used median.

This more complex group pattern resulting from an interaction of two covariates

could only have been detected with the LR test if the interaction was explicitly pro-

vided in the specification of the test—together with the correct (or a nearly correct)

cutpoint. In practice, this will hardly ever be possible, leaving violations of measure-

ment invariance in numeric covariates with nonmedian splits and more complex

group structures unnoticed, like in this example.

The region plots in the terminal panels of the rating scale tree illustrated in Figure

7 can be used as a first descriptive evidence concerning specific items or categories

affected by DIF. For example, it can be seen that over all items the region of the sec-

ond highest Category 5, shaded in the second lightest gray, is much wider for subjects

with previous experience with mindfulness meditation (Node 5) than it is for subjects

without previous experience with mindfulness meditation (Nodes 3 and 4), especially

those above 45 years (Node 4). The characterization of the noninvariant groups can

thus help content experts to generate hypotheses about the underlying sources of the

observed DSF, for example, that subjects with previous experience in mindfulness

meditation can distinguish more subtly between the highest response categories than

subjects without any previous experience in mindfulness mediation.

Note that for the region plots we currently use a constraint where the sum of all item

parameters is set to zero within each node. This constraint highlights differences in the

profile of item difficulties over all items. Alternatively, one or more anchor items could

be selected to align the scales across nodes. While this is easily implemented from a tech-

nical point of view, the selection of anchor items itself is by no means trivial. It is usually

performed by a content expert or by means of a heuristic anchor selection approach (cf.

e.g., Kopf et al., 2015). However, all these strategies have certain drawbacks, including

the lack of a straightforward generalization to multiple groups. Therefore, this issue is

beyond the scope of this article and will be explored in future research.

Discussion and Outlook

We have proposed a framework for detecting noninvariant groups of persons in tests with

polytomous items, which is based on a model-based recursive partitioning approach.
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As was shown in a series of simulation studies and several examples, this frame-

work is equally powerful as the established LR test in simple settings with known ref-

erence and focal groups but can be substantially more powerful and more informative

in settings where the true group structure is not known a priori, as will often be the

case in practice.

With this framework, noninvariant groups of subjects are detected in a data-driven

way, but remain directly interpretable with respect to their covariate values. In partic-

ular, for numeric covariates it is not necessary to specify a cutpoint a priori as the

cutpoint associated with the strongest parameter differences is detected automati-

cally. Similarly, the specific combination of levels of a categorical covariate, which

determine reference and focal groups, do not have to be prespecified but are detected

based on the empirical data. Moreover, by means of a sequence of binary splits

model-based recursive partitioning methods can capture any number of categories

and approximate any functional shape in a data-driven way. This makes them more

flexible than previous approaches and offers a methodological advantage especially

for the detection of violations of measurement invariance that should not go unno-

ticed because a wrong group structure or functional form was assumed in the statisti-

cal test.

As has been pointed out throughout the article, the framework in its current form

is not an itemwise but a global procedure that does not flag individual items or score

levels but focuses on the identification of noninvariant groups. In future research, we

will further enhance the means for interpretation by investigating different anchoring

approaches for the graphical displays as well as the possibility of post hoc tests for

individual items.

Of course, like any covariate-based approach, the model-based recursive partition-

ing framework is only able to detect noninvariant groups when the relevant covari-

ates are observable and available for the analysis. Moreover, as with all observational

data, a covariate used for splitting cannot simply be interpreted as the causal source

of the violation, because the observed splitting variable may only serve as a proxy

for the unobserved (and potentially unobservable) true cause.

To keep this first publication of the extension to polytomous models as compact as

possible while still covering all fundamental statistical properties, the simulation stud-

ies presented here have been limited to a small range of settings highlighting the par-

ticular features of the proposed framework. However, as already pointed out in the

simulation results, there are several additional aspects that should be investigated in

further research, such as the effect of different sample sizes (especially on the meth-

ods based on the PCM that require many more parameters than those based on the

RSM) and the effects of different proportions of DIF items and different DIF effect

sizes.

In particular, our simulations have been limited to eight items to be able to use a

set of parameter values for polytomous items that had already been used in several

previous simulation studies. However, the model-based recursive partitioning frame-

work is of course not limited to this low number of items. Future research should
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therefore include scenarios with an increased number of items, where the sample size

is varied while the percentage of DIF/DSF items is kept constant, to see how the

methods perform in these situations.

Another interesting aspect, which would be worth further investigation, is that no

general recommendation can be made as to whether the model-based recursive parti-

tioning method based on the RSM or based on the PCM should be preferred. Our

results not only indicate that the higher number of parameters in the PCM reduces

the power in many simple DIF settings but also strongly increases the power in cer-

tain DSF settings that are entirely missed by the RSM. Moreover, our extensions of

the findings of Bolt (2002) imply that in the presence of true ability differences using

an underparameterized model can lead to Type I error inflation, while using an over-

parameterized model is ‘‘safe’’. Therefore, for now our cautious recommendation

would be to perform model-based recursive partitioning trying both models and then

compare the results, as long as no theoretical considerations strongly call for one or

the other model.

Finally, note that the methods presented here and in Strobl et al. (2015) are based

on Rasch models, which can be estimated by means of conditional maximum likeli-

hood estimation. Future research will investigate the possibility to extend the model-

based recursive partitioning approach to a greater class of IRT models.

Computational Details

Our results were obtained using the R system for statistical computing (R Core Team,

2016), Version 3.2.2, and the add-on packages psychotools (Zeileis et al., 2015a),

Version 0.4-0, and psychotree (Zeileis et al., 2015b), Version 0.15-0. R itself and all

packages are freely available at http://CRAN.R-project.org/.

In addition to the functionality presented here, the psychotree package also con-

tains functions for fitting Rasch trees for binary item response data (Strobl et al.,

2015) and Bradley-Terry trees for paired comparison data (Strobl et al., 2011).

Appendix A

Individual Score Contributions

In the following, the individual score contributions of the RSM and the PCM are

derived. For both models, the objective function used for parameter estimation is the

conditional log-likelihood. The individual contributions to the conditional log-

likelihood can be easily computed as log Lc(b, tjri) (cf. Equation 3) and log LcðdjriÞ
(cf. Equation 4), yielding for the RSM

C(xi, b, t) = �
Xm

j = 1

(xij � bj +
Xxij

k = 0

tk)� log gri
(b, t) ð5Þ

and for the PCM
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C(xi, d) = �
Xm

j = 1

Xxij

k = 0

djk � log gri
(d) ð6Þ

The individual contributions to the score function are derived from Equation 5 and

Equation 6. For the RSM, the contribution of the ith subject to the jth item location

parameter is given by

c(xi, b, t)j =
∂C(xi, b, t)

∂bj

= � xij �
1

gri
(b, t)

�
∂gri

(b, t)

∂bj

ð7Þ

and the contribution of the ith subject to the kth threshold parameter is given by

c(xi, b, t)k =
∂C(xi, b, tÞ

∂tk

= � nk �
1

gri
(b, t)

�
∂gri

(b, t)

∂tk

ð8Þ

with nk as the number of times subject i has chosen category k or higher. Similarly

for the PCM, the contribution of the ith subject for the kth threshold parameter of the

jth item is given by

c(xi, d)jk =
∂C(xi, d)

∂djk

= � I½xij�k�(xij)�
1

gri
(d)
�
∂gri

(d)

∂bjk

ð9Þ

with I½xij�k� as an indicator function returning one if subject i has chosen category k or

higher on item j and zero otherwise.

The derivatives of the elementary symmetric functions gri
are again elementary

symmetric functions with certain terms omitted (cf., e.g., Fischer & Ponocny, 1995).

In our implementation of the rating scale and partial credit trees, the summation algo-

rithm is used (by default) for computing these derivatives (cf. Fischer & Ponocny,

1995).

Appendix B

Preparatory Study on Model Misspecification

As parametric procedures, both the TREE methods and the LR tests that are investi-

gated in the main article assume that the data-generating process follows a specific

IRT model. This assumption is sometimes mentioned as a disadvantage of this class

of procedures (see, e.g., Potenza & Dorans, 1995), but, to our knowledge, so far only

Bolt (2002) has systematically examined the consequences of violations of this

assumption (i.e., model misspecification or model misfit, as it is termed in Bolt,

2002). Although Bolt (2002) used only 100 replications per setting, a Type I error

inflation was found for an itemwise LR test under model misspecification—however,

only when the model misspecification co-occurred with mean differences in the per-

son parameter distributions. Thus, the results of Bolt (2002) indicate that the earlier
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postulated robustness of the itemwise LR test to ability differences (Ankenmann,

Witt, & Dunbar, 1999) seems to be valid only when there is no additional model

misspecification.

The preparatory simulation study presented here examines whether the results of

Bolt (2002) extend to the global LR tests and TREE methods employed here.

Design of the Preparatory Simulation Study

Ability mean difference: In settings with no ability mean difference, the person

parameters of both reference and focal group were drawn from the baseline

N (m, 1) distribution (with m defined like in the simulation studies in the main

article). In settings with an ability mean difference, ability differences of

D 2 f�0:5, � 0:25, 0:25, 0:5g have been simulated. For these settings, the per-

son parameters of the reference group were drawn from a normal distribution

N (m� D
2

, 1), whereas the person parameters of the focal group were drawn

from a normal distribution N(m� D
2

, 1).

Data generating model: The data were generated, as explained in detail in the

main article, based on different IRT models: the RSM, the PCM, or the GRM

(in order of increasing generality). When the data-generating model is different

from the model used for the analysis (e.g., when the TREE-RSM method is

applied to data generated with the PCM or GRM), this corresponds to a setting

with model misspecification. When the data-generating model is equal to the

model used for the analysis (e.g., when the TREE-RSM method is applied to

data generated with the RSM), this corresponds to a setting without model

misspecification.

In all settings of this simulation study a binary covariate (again sampled from a

binomial distribution with equal class probabilities) was used to specify reference

and focal groups. No item parameter differences have been simulated because the

emphasis of this study is on the Type I error.

Results of the Preparatory Simulation Study

Figure 8 shows the Type I error rates of the four methods (columns) conditional on

ability mean differences between reference and focal groups (x axis) and the data gen-

erating IRT model (rows). The results indicate, as one would expect, that no Type I

error inflation occurs in settings without model misspecification, where the analysis

model is equal to the actual data-generating model. Interestingly, this is still the case

in some settings with model misspecification, as long as the analysis model contains

the actual data-generating model as a special case, for example, when TREE-PCM

and LRT-PCM are applied to RSM data.

In settings with model misspecification, however, where the analysis model does

not contain the actual data-generating model as a special case, the Type I error is
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inflated when the model misspecification co-occurs with mean differences in the per-

son parameter distributions. This Type I error inflation is more pronounced with

increasing level of model misspecification and ability mean differences (regardless

of the direction of the ability mean differences).

In summary, this preparatory study shows that the results of Bolt (2002) extend to

the global LR tests and TREE methods investigated here and restrict earlier claims of

the robustness of LR tests to ability differences (Ankenmann et al., 1999) to settings

where no additional violations of the model assumptions are present.

With respect to Simulation Study III in the main article, where a model misspecifi-

cation but no mean differences in the person parameter distribution are simulated, the

results of this preparatory study show that no Type I error inflation is to be expected.

Therefore, the power of the four methods under various DSF patterns can safely be

compared.
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Figure 8. Results of preparatory simulation study: Type I error of the four methods
(columns) conditional on ability mean differences between reference and focal groups (x axis)
and the data-generating item response theory model (rows). Settings with model
misspecification are marked by the capital letter ‘‘M.’’ The dashed line indicates the nominal
significance level of a = .05.
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