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Abstract: The transmission characteristics of the printed circuit board (PCB) ensure signal integrity
and support the entire circuit system, with impedance matching being critical in the design of high-
speed PCB circuits. Because the factors affecting impedance are closely related to the PCB production
process, circuit designers and manufacturers must work together to adjust the target impedance
to maintain signal integrity. Five machine learning models, including decision tree (DT), random
forest (RF), extreme gradient boosting (XGBoost), categorical boosting (CatBoost), and light gradient
boosting machine (LightGBM), were used to forecast target impedance values. Furthermore, the
Optuna algorithm is used to determine forecasting model hyperparameters. This study applied
tree-based machine learning techniques with Optuna to predict impedance. The results revealed that
five tree-based machine learning models with Optuna can generate satisfying forecasting accuracy in
terms of three measurements, including mean absolute percentage error (MAPE), root mean square
error (RMSE), and coefficient of determination (R2). Meanwhile, the LightGBM model with Optuna
outperformed the other models. In addition, by using Optuna to tune the parameters of machine
learning models, the accuracy of impedance matching can be increased. Thus, the results of this study
suggest that the tree-based machine learning techniques with Optuna are a viable and promising
alternative for predicting impedance values for circuit analysis.

Keywords: integrated circuit; packaging and testing; machine learning; Optuna

1. Introduction

An integrated circuit (IC) comprises electronic circuits and components connected
to each other via planar conductors that are electrically arranged on a planar silicon
semiconductor substrate. Interconnections constitute the signal communication between
the dies on a printed circuit board (PCB). Because signal integrity in high-speed circuit
design is critical to electronic products, signal integrity issues have been essential for both
high-speed circuit designers and PCB manufacturers. As a result, signal integrity has been
extensively investigated in various high-speed and high-frequency applications [1–4]. Due
to the close relationship between impedance and wiring patterns, impedance matching is
one of the critical factors in high-speed PCB circuit design.

Impedance is the combination of capacitance and inductance in a high-frequency
circuit. The controlled impedance in a printed circuit board ensures high signal integrity.
The impedance Z is represented in Equation (1).

Z = R + j (XL-XC) (1)

where R is the resistance, j is the imaginary number, XL is the inductive reactance, and XC
is the capacitive reactance. There are various signal transmissions in the wires on the circuit
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board. Preferably, the signal can be smoothly transmitted with minimal energy loss from the
power supply to the receiving end. The receiving end then completely absorbs the energy
without any reflection. However, the target impedance values slightly differ from the
simulated values. The result of this difference causes impedance mismatch, overestimated
reflections and losses, and poor signal integrity. Factors including line width, line spacing,
dielectric thickness, the dielectric constant of the substrate, wire thickness, and surface
roughness influence impedance. Incorrect single-ended or differential impedance causes
signal reflection within the track when performing PCB layout. Thus, the loss of signal
quality, lower operating frequency, and unwanted electromagnetic interference occur [5,6].
Therefore, controlling the circuit impedance within certain ranges when designing the PCB
is critical in stabilizing PCB functions.

In recent years, emerging machine learning models and powerful data analysis tech-
niques have been applied to various circuit design and analysis problems. Table 1 sum-
marizes recent applications of machine learning approaches in circuit design and analysis.
Zhang et al. [7] developed a deep neural network (DNN) to predict the impedance of a new
board configuration. Their study revealed that well-trained DNNs performed 10,000 times
faster than full-wave simulation methods. On the other hand, Juang et al. [8] employed
genetic algorithms to decouple capacitor problems in a PCB power distribution network by
selecting and placing capacitors to achieve the target impedance. Through the restriction
of capacitors’ numbers, the designed approach can converge well and efficiently. The
results indicated that computational effort increases as more calculations were performed,
although more iterations could lead to a better solution.

Table 1. Recent applications of machine learning approaches in circuit design and analysis.

Literature Years Applications Methods

Zhang et al. [7] 2022 Impedance prediction DNN
Juang et al. [8] 2022 Decoupling capacitor Genetic Algorithms

Xu et al. [9] 2021 Decoupling placement optimization Genetic Algorithms
Park et al. [10] 2020 Decoupling capacitor Q-Learning

Swaminathan et al. [11] 2020 Signal and power integrity FFNN, RNN, CNN
Cecchetti et al. [12] 2020 Decoupling capacitor GA-ANN

Schierholz et al. [13] 2020 Predicting target impedance violations ANN
Zhang et al. [14] 2019 Decoupling capacitor DRL, DNN
Park et al. [15] 2019 Signal and power integrity DNN

Givaki et al. [16] 2019 Impedance estimation Random Forest
Paulis et al. [17] 2019 Decoupling placement optimization Genetic Algorithms

Using decoupling capacitors, Xu et al. [9] presented a genetic algorithm-based method
to optimize power delivery networks. The proposed method can also optimize jitter and
power delivery networks (PDNs) impedance. According to the simulation and analysis
results, the designed optimization method could reduce jitter and provide an optimal
solution for the number of decoupling capacitors. Meanwhile, Park et al. [10] proposed
an optimized decoupling capacitance design method based on a Q-learning algorithm for
silicon interposer-based 2.5-D/3-D ICs. When testing power distribution networks, the
presented approach was used to confirm target impedance values. The validation procedure
was confirmed by comparing full-search simulations with the best result. The computation
time of the proposed model was significantly less than that of the full-search simulation.

Swaminathan et al. [11] used machine learning techniques to solve signal and power
integrity issues in package design. According to the finding of their study, using machine
learning techniques logically can eliminate errors in the design process and thus, reduce
design cycle time. Meanwhile, Cecchetti et al. [12] proposed an iterative optimization for
the placement of decoupling capacitors in PDNs based on genetic algorithms (GA) and
artificial neural networks (ANN). The study revealed that the designed GA-ANN model
effectively produced results consistent with those obtained from the simulator generating a
longer computation time.
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Schierholz et al. [13] also used an ANN to predict target impedance violations in a large
design space. The results of their study revealed that prediction accuracy in the design space
for PDN impedance was very satisfactory. On the other hand, Zhang et al. [14] applied
the deep reinforcement learning (DRL) approach and DNN to optimize the allocation of
decoupling capacitors on priority positions. According to the results of their study, the
proposed hybrid method could provide the minimum number of decoupling capacitors to
satisfy the target impedance on a printed circuit board test.

Park et al. [15] created a DNN with regression and classification functions to conduct
forecasting and classifying tasks for peak time-domain reflectometry impedance using
silicon via void defects. Their study revealed that by partially tuning weights, the proposed
models could provide accurate results. To estimate the impedance of power networks,
Givaki et al. [16] proposed a random-forest model. The proposed model used the evolu-
tionary multi-objective NSGA-II algorithm to adjust the random-forest model to estimate
the resistance and inductive reactance accurately. In addition, Paulis et al. [17] employed
genetic algorithms to optimize decoupling capacitors for PDN design at the PCB level
to obtain a frequency spectrum at various locations. A close relationship between the
measured results and the simulated input impedance revealed the effectiveness of the
proposed method when validated on the board.

The characteristics of PCBs varies with different suppliers in the PCB circuit design
and manufacturing process. The PCB foundry can precisely control the impedance charac-
teristics when producing a PCB, while the signal transmission speed can be tested after
the PCB board is manufactured. In this study, five tree-based machine learning models
with the Optuna optimization algorithm were used to forecast the target impedance values.
Optuna was used to determine the hyperparameters of machine learning models. The
rest of this study is organized as follows. Section 2 depicts the PCB-based substrate and
circuit transfer characteristics. Section 3 introduces the machine learning models and the
Optuna optimization algorithm, while Sections 4 and 5 describe the numerical results and
conclusion, respectively.

2. IC-PCB Circuit Signal Transmission and Substrate Structure

Impedance matching is a common working state in PCB circuits, reflecting the power
transfer relationship between the input and the output circuits. PCB or substrate design is
responsible for the characteristic impedance discontinuities of interconnections for signal
integrity. Maximum power transfer, on the other hand, is achieved when the circuit
impedance is matched. Signal integrity and power loss are influenced by the impedance
gaps between the IC package and the PCB system. Reflections can cause unexpected noises
in systems [18].

Figure 1 shows the circuit signal transmission on the substrate. As depicted in Figure 1,
the impedance gaps have a significant impact on signal integrity and power loss. The
internal impedance of the signal transmitter should ideally be the same as the target
impedance of the transmission line at the source to reduce reflections when sending signals.
Meanwhile, to communicate the signal between the chip and the circuit board, the circuit
inside the IC carrier board connects the chip and the external circuit board together. Lines
and drawings, dielectric layers, holes, and solder resist ink make up the substrate.

Figure 2 depicts a multilayer PCB stack-up. When using a time-domain reflectometer
to measure impedance signals, probes are used for the outer signal line and GND pin. The
measurement includes the metal and dielectric layers in the inner layer of the PCB stack-up.
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Figure 2. Multilayer PCB stack-up.

Since the circuit performance of the PCB board provided must be able to ensure
the signal is not reflected during the transmission process, which keeps the signal intact
and reduces the transmission loss, this plays a crucial role in the substrate material of
impedance [19,20].

3. Tree-Based Machine Learning Architecture to Predict Impedance Value

Figure 3 illustrates the proposed architecture for impedance value prediction. As
shown in Figure 3, the architecture was divided into three stages: data preprocessing,
training stage, and testing stage. SPIL (Siliconware Precision Industries Co., Ltd., Taichung,
Taiwan) provided the raw impedance data used in this study. Each dataset was pre-
processed and divided into 80% training data and 20% testing data. Training data was
employed to build models with tree-based machine-learning (ML) methods during the
training stage. Five models, including decision tree (DT), random forest (RF), extreme
gradient boosting (XGBoost), categorical boosting (CatBoost), and light gradient boosting
machine (LightGBM) were used in this study. In addition, the Optuna framework was used
to determine model hyperparameters. Finally, testing data was used to predict the finalized
model, and the forecasting performances were evaluated.

3.1. Data Preprocessing

Table 2 presents the PCB products’ raw data, including product types and variables of
impedance. The PCB products’ raw data were categorized into different datasets based
on the following attributes: signal layers and patterns. Seven attributes were used as
independent variables in this study. These attributes include trace width, gap, space, solder
mask, L1 thickness, base, and dielectric thickness. According to the manufacturing process,
the data of products were classified into three categories represented by GSSG, SS, and S
for category A, B, and C, respectively. The signal layer has different layers based on PCB
layer structures. Table 3 displays the datasets for product subcategories based on the signal
layers and patterns.
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Table 2. The corresponding attributes according to patterns’ categories.

Product
Categories Patterns

Attributes (Variables)

X1 X2 X3 X4 X5 X6 X7

Trace Width
(um)

Gap
(um)

Space
(um)

Solder Mask
(um)

L1 Thickness
(um)

Base
(um)

DielectricThickness
(um)

A GSSG X X X X X X X
B SS X X X X X X
C S X X X X X
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Table 3. The datasets for product subcategories based on the signal layers and patterns.

Product Subcategories Signal Layers Patterns Instances

A1 Base GSSG 146
A2 L1 GSSG 146
A3 Base GSSG 343
A4 L1 GSSG 342
A5 Base GSSG 114
A6 L1 GSSG 113

B1 Base SS 115
B2 L1 SS 115
B3 Base SS 229
B4 L1 SS 228

C1 Base S 122
C2 L1 S 122

3.2. Tree-Based Machine Learning

Tree-based machine learning models are defined as supervised machine learning
algorithms employed for solving problems of classification and regression. In the tree-
dividing procedure, the training data was divided into subsets, where every split increases
the complexity of models to conduct the task well [21–25].

In addition to the basic decision tree (DT) and the random forest (RF), the extreme
gradient boosting (XGBoost), light gradient-boosting machine (LightGBM), and the cate-
gorical boosting (CatBoost) are popular and powerful methods with outstanding perfor-
mance in many fields. DT and RF are basic tree-based machine learning, while XGBoost,
CatBoost, and LightGBM are advanced models of gradient-boosting decision trees. Tree-
based machine-learning models have been used in many fields, such as economics and fi-
nance [26,27], politics [28], business and insurance [29,30], biology and environment [31,32],
and medicine and healthcare [33,34]. However, the applications of tree-based machine-
learning models in forecasting impedance values for circuit analysis have not been widely
investigated. Thus, this study used Optuna to determine hyperparameters for tree-based
machine learning models, applied to impedance values for the PCB industry.

The first tree-based model used in this study is the decision tree. As one of the basic
methods for dealing with regression and classification problems [35], the decision tree
conducts regression and classification tasks by variables with continuous and discrete
values, respectively [36]. This study used decision trees for regression problems. Table 4
indicates the hyperparameters and search ranges of the decision tree model used in this
study [37–39].

Table 4. Hyperparameters of the decision tree model tuned in this study [37–39].

Hyperparameters Implications Types Search Ranges

splitter The strategy used for choosing the division. Categorical numbers ‘best’, ‘random’
max_depth The maximum depth of the tree. Integers 2, 24

min_samples_split The minimum number of samples required
to split an internal node. Integers 2, 9

max_features The number of features to consider when
looking for the best split Categorical numbers ‘sqrt’, ‘auto’, ‘log2’

max_leaf_nodes Grow a tree with max_leaf_nodes in
best-first fashion. Integers 10, 1000

The second technique employed in this study is the random forest. Developed by
Breiman [40], the random forecast is composed of multiple decision trees and performs
random feature selection of each tree, then averages output values of all individual trees to
obtain the model’s output [41]. Table 5 depicts the hyperparameters and searching ranges
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used in the random forecast method. As shown in Table 5, hyperparameters contain the
number of trees in the forest (n_estimators), the max number of levels in each decision
tree (max_depth), and the number of data points placed in a node before the node is split
(min_samples_split) [37–39,42].

Table 5. Hyperparameters of the random forest model tuned in this study [37–39,42].

Hyperparameters Implications Types Search Ranges

n_estimators The number of trees in the forest. Integers 50, 1000
max_depth The maximum depth of the tree. Integers 2, 24

min_samples_split The minimum number of data points
in a node before the node is split. Integers 2, 9

XGBoost [43] approach is the third tree-based machine learning model employed in
this study. The XGBoost combines two characteristics, bagging and boosting, for ensem-
ble learning. The bagging trains models in parallel and generates trees by independent
sampling. The advantage of bagging policy is to increase the stability and accuracy of
models. The boosting generates trees sequentially, and each tree is related to each other.
The generation of each tree in the boosting procedure can improve the poor learning of the
previous tree [44,45]. Table 6 presents the hyperparameters and the search ranges of the
XGBoost model in this study [46,47].

Table 6. The main hyperparameters of the XGBoost model tuned in this study [46,47].

Hyper-Parameter Implication Types Search Ranges

lambda L2 regularization term on weights. Real numbers 0.00001, 10
alpha L1 regularization term on weights. Real numbers 0.00001, 10

colsample_bytree The subsample ratio of columns when
constructing each tree. Real numbers 0.2, 0.6

subsample The subsample ratio of the training instances. Real numbers 0.4, 0.8
learning_rate The learning rate. Real numbers 0.0001, 0.2
n_estimators The number of trees. Integers 50, 10,000
max_depth The maximum depth of a tree. Integers 2, 12

min_child_weight The minimum sum of instance weight (hessian)
needed in a child. Integers 1, 300

Sequentially, the CatBoost [48], which is one of the gradient-boosting algorithms based
on decision trees, was introduced in this study. By using an ensemble learning strategy,
the CatBoost approach takes advantage of the combination of weaker regression models to
form a robust regression model. Table 7 illustrates hyperparameters and the search ranges
of the CatBoost model in this study [47,49–51].

Table 7. Hyperparameters of the CatBoost model tuned in this study [47,49–51].

Hyper-Parameter Implication Types Search Ranges

iterations The maximum number of trees. Integers 50, 10,000
depth The maximum depth of the tree. Integers 2, 12

learning_rate The learning rate. Real numbers 0.0001, 0.2
l2_leaf_reg Coefficient at the L2 regularization term of the cost function. Real numbers 0.00001, 10

bagging_temperature Defines the settings of the Bayesian bootstrap. Real numbers 0.01, 10
min_child_samples
(min_data_in_leaf) The minimum number of training samples in a leaf. Integers 5, 100

Lastly, this study employed the LightGBM to forecast the impedance values for circuit
analysis. The LightGBM is a lightweight algorithm based on the gradient-boosting algo-
rithm proposed by Ke et al. [52]. LightGBM approach uses a novel, gradient-based, and
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one-sided sampling technique to filter data instances and generate segmentation values. In
addition, exclusive feature bundling is conducted to reduce the number of features. Thus,
the LightGBM results in an efficient training procedure. Table 8 shows hyperparameters
and the search ranges of the LightGBM model in this study [26,53–56].

Table 8. Hyperparameters of the LightGBM model tuned in this study [26,53–56].

Hyperparameters Implications Types Search Ranges

n_estimators The number of trees. Integers 50, 10,000
learning_rate The learning rate. Real numbers 0.0001, 0.2
num_leaves The number of leaves per tree. Integers 2, 2048
max_depth The maximum learning depth. Integers 2, 12

min_data_in_leaf The minimal number of data in one leaf. Prevent overfitting. Integers 1, 100
lambda_l1 L1 regularization. Prevent overfitting. Real numbers 0.00001, 10
lambda_l2 L2 regularization. Prevent overfitting. Real numbers 0.00001, 10

min_gain_to_split The minimal error reduction to conduct the further split. Real numbers 0, 15
bagging_fraction The ratio of the selected data to the total data. Real numbers 0.3, 1.0

bagging_freq Frequency of re-sampling the data when bagging_fraction is
smaller than 1.0. Integers 1, 7

feature_fraction The proportion of the selected feature to the total number of features. Real numbers 0.3, 1.0

extra_trees Uses randomized trees. Categorical
numbers ‘True’, ‘False’

Finally, the LightGBM was employed in this study to forecast the impedance values
for circuit analysis. The LightGBM is a lightweight algorithm based on gradient boosting
proposed by Ke et al., [52]. LightGBM approach uses a novel gradient-based one-sided
sampling technique to filter data instances and generate segmentation values. In addition,
the exclusive feature bundling is conducted to reduce the number of features. Thus, the
LightGBM results in an efficient training procedure. Table 8 depicts hyperparameters and
the searching ranges of the LightGBM model in this study [26,53–56].

3.3. Optuna for Selecting Hyperparameters of Tree-Based Machine Learning Models

Determining hyperparameters for tree-based machine learning models significantly
influences the forecasting performance [57,58].

Optuna [59] is an emerging tool with three advantages for model selection or hy-
perparameters determination. The first advantage Optuna provides is the define-by-run
style API. The second advantage is an efficient pruning and sampling mechanism. The
third advantage is that it is easy to set up. The concept of define-by-run style API comes
from a deep-learning framework. It enables users to decide the hyperparameter search
space dynamically. Meanwhile, two efficient sampling and pruning mechanism policies
are efficient searching and efficient performance estimation, both of which request the
cost-effective optimization method. On the other hand, the most commonly used sampling
methods are relational sampling and independent sampling, represented by covariance
matrix adaptation evolution strategy (CMA-ES) and (tree-structured Parzen estimator)
TPE, respectively. Specifically, Optuna allows customized sampling procedures. In terms
of the pruning mechanism, two phases were performed. First, the intermediate objective
values were periodically monitored. Second, the trail is terminated when the predefined
condition is not met. Optuna’s last design feature is associated with its ease of setup, which
allows it to be easily configured for lightweight experiments to heavy-weight distributed
computations under the versatile architecture [60,61].

Figure 4 depicts the essential steps in determining hyperparameters for machine
learning models in Optuna. The first step is to enter the hyperparameters of machine
learning models. In this study, five tree-based machine learning models, each having a
different set of hyperparameters, were used. The second step is determining the search
ranges of hyperparameters and types, including integers, real numbers, and categorical
numbers. The third step is to set the objective function for Optuna, as provided by the
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machine learning models. Then, optimization directions are determined. Minimizing
forecasting errors serves as the direction and the objective function of this study. Finally,
the number of trials of Optuna is set. In this research, the sampler, direction, and n_trials
are set to TPE sampler, minimum, and 100, respectively.
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4. Numerical Results

This study demonstrated five tree-based ML methods: DT, FR, XGBoost, CatBoost,
and LightGBM. To predict the impedance value, this study optimized each model’s hyper-
parameters using Optuna. Three evaluation metrics were used to evaluate the experimental
results of this study: mean absolute percentage error (MAPE), root mean square error
(RMSE), and coefficient of determination (R2). As shown in Equations (2)–(4).

MAPE(%) =
100
n

n

∑
i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣ (2)

RMSE =

√
Σn

i=1
(
Yi − Ŷi

)2

n
(3)

R2 = 1 −
Σn

i=1
(
Yi − Ŷi

)2

Σn
i=1
(
Yi − Y

)2 (4)

where n is the number of forecasting instance, Yi is the ith actual impedance value, Ŷi is the
ith forecasting impedance value, and Y is the mean value of actual impedance value.

Tables 9 and 10 depict the hyperparameters determined by Optuna. Figures 5 and 6
present the importance of the LightGBM models’ hyperparameters for different products,
indicating that the hyperparameter of the “min_data_in_leafe” is the most important in
most products. Table 11 illustrates the prediction results of the tree-based machine learning
models. Overall, the average MAPE and RMSE of impedance-predicting results are low.
LightGBM has the best performance in all datasets, followed by XGBoost and CatBoost,
while DT and RF performances are slightly inferior. In addition, five tree-based machine
learning models with Optuna can obtain MAPE values less than 10 and can be treated
as accurate forecasting models [62]. R2 is the measurement of the independent variables’
abilities to interpret dependent variables. When the R2 value is close to 1, the explanatory
abilities of independent variables are at higher levels [63–65]. Among all models, the most
explanatory is LightGBM, followed by XGBoost and CatBoost, and finally DT and RF.
Figure 7 provides the actual and predicted values of impedance for the five tree-based
machine learning models used in this study. Thus, the proposed tree-based machine
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learning models are useful and can be duplicated in forecasting impedances accurately
during the design process of PCB. Therefore, the PCB design time can be reduced effectively.

Table 9. The hyperparameters for category A models provided by Optuna.

Methods Hyperparameters A1 A2 A3 A4 A5 A6

DT splitter random random random random random random
max_depth 5 19 3 3 11 15

min_samples_split 8 3 8 3 9 5
max_features sqrt log2 log2 log2 sqrt sqrt

max_leaf_nodes 730 886 604 359 279 778
FrozenTrial # 41 31 85 45 77 21

FR n_estimators 50 273 140 184 328 60
max_depth 2 2 2 2 2 2

min_samples_split 5 4 2 3 9 9
FrozenTrial # 76 53 13 60 93 12

XGBoost lambda 0.00013 9.99880 7.39058 0.03166 0.33494 0.00003
alpha 0.17368 0.11708 0.00006 4.42219 0.31300 1.30132

colsample_bytree 0.53136 0.43740 0.47339 0.50856 0.59988 0.31599
subsample 0.72083 0.68340 0.58809 0.71827 0.50646 0.72486

learning_rate 0.02817 0.02235 0.16934 0.03755 0.00503 0.00407
n_estimators 3502 8701 3107 1555 3314 7162
max_depth 3 4 2 10 3 4

min_child_weight 3 1 1 5 1 1
FrozenTrial # 27 80 96 14 87 52

CatBoost iterations 1361 1428 4808 7459 5246 9659
depth 2 11 4 10 4 7

learning_rate 0.16536 0.02557 0.14240 0.00447 0.01723 0.01481
l2_leaf_reg 0.00031 0.00052 0.00003 0.00037 3.60489 0.00001

bagging_temperature 0.01262 3.30881 0.06255 1.54283 3.77145 0.06189
min_child_samples 48 25 29 45 49 49

FrozenTrial # 94 14 72 5 82 57

LightGBM n_estimators 6775 7866 4876 8457 7635 1355
learning_rate 0.12735 0.19625 0.17452 0.13543 0.16941 0.18596
num_leaves 649 1631 1599 517 19 1150
max_depth 12 8 10 6 7 4

min_data_in_leaf 6 10 1 6 3 3
lambda_l1 0.65465 0.40568 0.10117 4.44552 0.01356 0.30749
lambda_l2 0.02067 7.10369 0.00002 3.64057 0.00007 0.00032

min_gain_to_split 0.62324 6.27989 8.02722 0.01769 0.51251 3.25957
bagging_fraction 0.71382 0.66880 0.55024 0.78785 0.73125 0.84466

bagging_freq 5 1 3 7 3 2
feature_fraction 0.97166 0.36366 0.84806 0.81182 0.79440 0.57880

extra_trees TRUE FALSE TRUE FALSE TRUE FALSE
FrozenTrial # 41 82 71 30 82 92

#: The consecutive number of trial for each Study of Optuna
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Table 10. The hyperparameters for category B and C models provided by Optuna.

Methods Hyperparameters B1 B2 B3 B4 C5 C6

DT splitter random best Best random random best
max_depth 17 8 14 3 2 2

min_samples_split 3 2 9 6 7 3
max_features sqrt log2 log2 sqrt sqrt log2

max_leaf_nodes 371 522 280 228 894 41
FrozenTrial # 19 40 96 78 10 70

FR n_estimators 107 115 273 410 609 66
max_depth 2 2 2 2 2 2

min_samples_split 5 9 5 2 8 6
FrozenTrial # 45 11 99 98 85 15

XGBoost lambda 0.10002 0.02107 0.35943 0.00057 0.00014 3.33129
alpha 0.00025 0.02653 0.01639 5.60999 0.48286 0.01335

colsample_bytree 0.57253 0.53535 0.35838 0.23654 0.53890 0.53090
subsample 0.58380 0.72630 0.40557 0.79891 0.40926 0.69241

learning_rate 0.02778 0.02027 0.16094 0.02471 0.00655 0.01433
n_estimators 2002 2416 2905 9578 5672 2965
max_depth 12 3 2 10 5 7

min_child_weight 1 1 1 2 3 8
FrozenTrial # 78 99 78 48 6 91

CatBoost iterations 5168 8064 5747 3031 2759 7897
depth 11 4 4 11 6 8

learning_rate 0.01978 0.02600 0.12381 0.02291 0.00251 0.06970
l2_leaf_reg 0.00001 0.18489 0.00003 0.07952 0.00251 0.00017

bagging_temperature 1.11136 0.13162 0.62528 0.22679 0.23521 1.79410
min_child_samples 77 74 49 81 89 65

FrozenTrial # 90 87 91 23 17 92

LightGBM n_estimators 4130 2450 8692 8417 5671 3523
learning_rate 0.12182 0.17747 0.17526 0.19914 0.16131 0.18101
num_leaves 670 924 1757 153 207 1683
max_depth 12 5 9 10 3 3

min_data_in_leaf 1 1 12 3 9 2
lambda_l1 0.00268 0.00543 0.02561 0.13634 0.00013 0.20529
lambda_l2 0.01191 0.23902 0.11103 0.02720 0.00183 0.00008

min_gain_to_split 4.40312 1.28234 0.03857 4.66666 5.22525 0.41965
bagging_fraction 0.40501 0.95348 0.84419 0.91639 0.64485 0.41063

bagging_freq 7 2 1 6 1 5
feature_fraction 0.77680 0.49448 0.89466 0.61959 0.92896 0.90923

extra_trees FALSE FALSE FALSE TRUE FALSE TRUE
FrozenTrial # 24 29 61 19 56 99

#: The consecutive number of trial for each Study of Optuna
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Table 11. The RMSE and R2 results of the tree-based ML model prediction.

Dataset
DT RF XGB CatBoost LightGBM

Average
with Optuna

MAPE

A1 5.36% 4.38% 3.19% 2.77% 2.74% 3.68%
A2 5.42% 5.17% 3.32% 3.63% 3.12% 4.13%
A3 4.64% 4.80% 3.25% 3.64% 3.25% 3.92%
A4 6.89% 6.45% 3.85% 4.15% 3.46% 4.96%
A5 5.36% 5.36% 2.59% 3.10% 2.20% 3.72%
A6 6.25% 5.27% 1.81% 1.77% 1.38% 3.29%
B1 5.38% 4.11% 2.59% 2.16% 1.99% 3.25%
B2 3.27% 4.48% 2.18% 2.37% 1.99% 2.86%
B3 6.04% 5.30% 3.58% 3.33% 2.99% 4.25%
B4 5.31% 5.87% 4.88% 3.72% 2.67% 4.49%
C1 3.54% 3.38% 2.31% 1.86% 1.69% 2.56%
C2 5.40% 5.41% 3.99% 3.49% 2.67% 4.19%

Average 5.24% 5.00% 3.13% 3.00% 2.51% 3.78%

RMSE

A1 6.12 4.79 3.64 3.19 3.17 4.18
A2 6.44 5.73 3.53 4.20 3.31 4.64
A3 6.34 5.73 3.67 4.23 3.55 4.71
A4 8.05 7.27 4.39 4.60 4.09 5.68
A5 6.94 6.99 3.59 4.35 3.20 5.02
A6 7.58 6.89 3.86 2.23 1.45 4.40
B1 5.88 4.65 2.94 2.40 2.36 3.65
B2 3.84 4.86 2.67 2.66 2.21 3.25
B3 7.40 7.00 4.31 4.10 3.84 5.33
B4 6.05 6.56 5.39 4.22 3.28 5.10
C1 2.53 2.32 1.46 1.16 1.11 1.72
C2 3.36 3.13 2.39 2.13 1.90 2.58

Average 5.88 5.49 3.49 3.29 2.79 4.19

R2

A1 −0.12 0.32 0.60 0.70 0.70 0.44
A2 −0.39 −0.10 0.58 0.41 0.63 0.23
A3 0.46 0.56 0.82 0.76 0.83 0.69
A4 0.17 0.33 0.75 0.73 0.79 0.55
A5 0.48 0.48 0.86 0.80 0.89 0.70
A6 0.37 0.48 0.84 0.95 0.98 0.72
B1 −0.12 0.30 0.72 0.81 0.82 0.51
B2 0.49 0.19 0.75 0.76 0.83 0.60
B3 0.24 0.32 0.74 0.77 0.80 0.57
B4 0.25 0.11 0.40 0.63 0.78 0.44
C1 0.12 0.26 0.71 0.81 0.83 0.55
C2 −0.28 −0.11 0.35 0.49 0.59 0.21

Average 0.14 0.26 0.68 0.72 0.79 0.52
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Figure 7. The point-to-point plots of actual and predicted values of impedance for five machine
learning models (product A1–A6, B1–B4, C1–C2).

5. Conclusions

This study used five tree-based machine-learning techniques with Optuna to predict
impedance due to the differences between the circuit simulation and the actual measure-
ment in the production process of PCB wiring impedance. The forecasting outcomes
revealed that tree-based machine learning models with Optuna are feasible and accurate
methods for predicting target impedance values. The light gradient-boosting machine with
Optuna performed the best in three forecasting measurements. Thus, the proposed tree-
based machine learning using the Optuna model is useful when defining target impedances
during design, simulation, and manufacturing, as it improves the impedance prediction for
PCB designers and manufacturers. For the current practical manufacturing process, manu-
facturers can use the existing impedance data and perform accurate impedance prediction
through the method proposed in this research to shorten the PCB design and process
time. Future studies may employ more impedance value forecasting cases to examine the
robustness of the designed machine learning techniques in predicting the target impedance.
The other potential direction for future work is applying other forecasting techniques to
obtain more accurate results.
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