
Tree-based Overlay Networks for Scalable Applications

Dorian C. Arnold, Gary D. Pack, and Barton P. Miller

Computer Sciences Department

University of Wisconsin

1210 Dayton Street

Madison, WI, U.S.A. 53706-1685

Email: {darnold, pack, bart}@cs.wisc.edu

Abstract

The increasing availability of high-performance com-
puting systems with thousands, tens of thousands, and
even hundreds of thousands of computational nodes is
driving the demand for programming models and in-
frastructures that allow effective use of such large-scale
environments. Tree-based Overlay Networks (TBŌNs)
have proven to provide such a model for distributed
tools like performance profilers, parallel debuggers, sys-
tem monitors and system administration tools.

We demonstrate that the extensibility and flexibil-
ity of the TBŌN distributed computing model, along
with its performance characteristics, make it surpris-
ingly general, particularly for applications outside the
tool domain. We describe many interesting applica-
tions and commonly-used algorithms for which TBŌNs
are well-suited and provide a new (non-tool) case study,
a distributed implementation of the mean-shift algo-
rithm commonly used in computer vision to delineate
arbitrarily shaped clusters in complex, multi-modal fea-
ture spaces.

1. Introduction

Today, there exist many high-performance comput-
ing systems – MPPs, and computational clusters and
constellations – with thousands, or even tens or hun-
dreds of thousands, of interconnected nodes [1]. The
trend toward extremely large computing environments
is expected to continue, making it imperative that we
study efficient ways for tools and applications to run
effectively in such environments.

The scalability challenge comes in three forms: dis-
semination of control information, data collection, and
data analysis or computation. As the number of nodes

in the system increases, both the computational and
communication demands on the system increase – typ-
ically in a linear fashion. Without explicit attention,
these increased demands cause tools to scale poorly.

Tree-based overlay networks (TBŌNs) have proven
to provide a powerful parallel programming model that
addresses scalability and efficiency in many tools [4,
11, 21–23, 25, 26]. A TBŌN (described more fully in
Section 2.1) is a hierarchical organization of processes
that use network transport protocols, like TCP, to
implement data multicast, gather and reduction ser-
vices. Applications explicitly insert application-level
code into the TBŌN’s communication processes using
filters, which may execute data reduction operations
on in-flight messages. Essentially, TBŌNs provide an
effective platform for data communication since tree-
based data communication scales logarithmically with
the number of processes in the network. However by al-
lowing computations to be distributed across the tree-
structure, TBŌNs are also well-suited for scalable data
aggregation or reduction as information propagates to-
ward the root of the tree. Again, in tree-based net-
works, data reduction overheads vary logarithmically
with respect to the total number of processes.

The TBŌN model of distributed computing is sur-
prisingly flexible and can be generalized to support a
wide range of usages beyond basic operations, like min,
max, count, and average. Examples of more complex
tree-based computations include distributed clock skew
detection, time-aligned data aggregation, graph merg-
ing algorithms, and creating equivalence classes and
data histograms [23, 24].

The features that make TBŌNs effective for a wide
variety of distributed tools and applications:
• extensible data reductions and synchronizations,
• high-throughput and low-latency dataflow,
• customizable topologies, and
• a flexible data communication model.

1-4244-0054-6/06/$20.00 ©2006 IEEE

Such generalization helps developers create scalable
and efficient systems that easily can be extended in
ways not envisioned during the original design.

The goal of this study is to demonstrate the broader
applicability of TBŌNs outside the tool domains for
which they have typically been used. We show that
large classes of useful applications and common algo-
rithms, particularly those that reduce to an equivalence
relation computation, can be made scalable through
straightforward TBŌN integration. We present a new,
non-tool case study of TBŌN scalability – a distributed
version of the mean shift algorithm [12] commonly
used to delineate arbitrarily shaped clusters in com-
plex multi-modal feature spaces. Our results show that
distributing the algorithm improves the scalability and
run-time over the single node version, as expected, and
that multi-level TBŌNs provide improved scalability
compared to flat, one-to-many process organizations.

In Section 2, we describe the TBŌN computational
model, as well as MRNet (a prototype TBŌN), and dis-
cuss the various applications of TBŌNs. In particular,
we give many examples of how TBŌNs are currently
used and the types of algorithms and applications for
which TBŌNs are well-suited. We then detail the ap-
plication, environment and evaluation of our case study
in Section 3. We end with a discussion of implications
for future research in Section 4.

2. Tree-based Overlay Networks

This section provides a more detailed discussion of
TBŌNs. We define the TBŌN model and describe MR-
Net, a TBŌN-based multicast, reduction network. We
then discuss the many existing and future applications
of TBŌNs for high-performance computing.

2.1 TBŌN Computational Model

In the TBŌN model, as shown in Figure 1, appli-
cation processes are connected by a tree of internal or
communication processes. We use the term application
to describe the system that is directly leveraging the
TBŌN infrastructure, be it a tool (as is most common)
or an actual end-application. The application process
at the root of the tree is the front-end process; those at
the leaves are the back-end processes. Collectively, the
front-end and back-ends are called end-points; the tree
of processes, connected via FIFO channels, serve as
conduits through which application-level packets flow
to and from end-points.

The strength of the TBŌN model comes from
the ability to place and control the execution of

application-level logic throughout the TBŌN infras-
tructure. This feature, provided by the data filter ab-
straction, is used to perform data aggregation and re-
duction operations on in-flight application-level pack-
ets. A filter can be any function that inputs a set of
packets and outputs a single packet1. Persistent filter
state, used to carry side-effects from one filter execution
to the next, increases the power of the filter abstrac-
tion. Given the flexible nature of filters, in addition
to obvious data aggregation operations, like min, max,
count, and average, filters can be used to perform quite
complex data aggregations and even to enforce data
synchronization policies, as discussed in this section.

The TBŌN model does not support direct back-end
to back-end communication. However, similar support
could be easily achieved, albeit in a sub-optimal man-
ner, by using the internal process-tree to route back-
end to back-end messages. Part of the strength of the
TBŌN model is the simplicity of its communication
structure. A compelling number of important compu-
tations fit this model, and we have been able to leverage
it to provide highly efficient reliability mechanisms [2].

2.2. MRNet: A TBŌN Prototype

MRNet [23] is a TBŌN-based multicast/reduction.
Using a MRNet tree network, the application front-
end and back-ends communicate using virtual channels
called streams. Applications specify filters to synchro-
nize and transform data flowing on these stream. To-
ward the goal of generality, MRNet’s key features are:

• Extensible reduction and synchronization:
In MRNet, transformation filters are the key
to supporting scalable distributed computation.
MRNet has built-in transformation filters for com-
mon aggregations including avg, sum, min, max and
concat. Additionally, MRNet allows developers to
extend the filter set with application-specific fil-
ters. These new filters may be loaded on-demand
into instantiated networks; an interface similar to
dlopen is used to dynamically specify and load the
filters into the running communication processes.

MRNet uses synchronization filters to enforce the
simultaneous delivery of packets regardless of the
time they actually arrive at a communication pro-
cess. MRNet has three built-in synchronization
filters: wait for all delivers packets in groups
based on packet receipt from all downstream chil-
dren, time out delivers packets received within a

1While the general TBŌN model does not constrain the num-

ber of output packets that a filter may produce, in practice we

have not found the need for outputting multiple packets.

Figure 1. A tree-based overlay network. Application-level packets flow upstream from back-ends to

front-end via communication processes; stateful filters synchronize and transform packets along the way.

specified window, and null delivers packets imme-
diately upon receipt.

• Flexible topologies:
MRNet allows a tool to specify the organization of
its communication process-tree. The topology can
be a tree organization of any shape or size includ-
ing balanced (k − ary) and skewed (k − nomial)
trees. Once the overall process-tree organization is
specified, a tool can use MRNet streams to specify
sub-trees: by using streams to connect a subset of
back-ends, the tool can select different portions of
the topology for different communication needs.

MRNet also supports a more dynamic topology
model in which the entire tree does not have to be
statically specified – back-end processes may join
after the internal tree has been instantiated. We
are extending MRNet to support even more dy-
namic topologies where communication and back-
end processes can show up or leave at any time
(perhaps as a response to failures, recoveries, or
load balancing) and the network properly recon-
figures and re-routes traffic without any data loss.

• High-performance communication:
High-performance means controlling both space
and time usage. MRNet is optimized to sup-
port high-throughput data transmissions. It uses
counted packet references to place a single packet
object into multiple outgoing packet buffers and
performs the requisite garbage collection when the
packet is no longer referenced. MRNet also uses
zero-copy data paths whenever possible to reduce
messaging overhead.

• Flexible communication model:
MRNet supports data communication across mul-
tiple, concurrent data streams that may overlap
in end-point membership. This concurrency can
reduce packet delays and provide a convenient
mechanism for tools to communicate in different
ways, perhaps using different data aggregations,
amongst different or even the same end-points.

MRNet does not support filter chaining where a se-
quence of filters are applied at each communication
process. A single “super filter” that propagates the
packet flow to a sequence of filters could seamlessly
mimic this functionality. Also, currently streams prop-
agate data in a single direction upstream, toward the
front-end, or downstream, toward the back-ends. We
plan to extend MRNet so that a filter can propagate
information along a stream in either direction.

MRNet was first evaluated by integrating it into
Paradyn, a distributed performance profiling tool orga-
nized into a central manager that controls, collects, and
analyzes performance data from remote daemons [23].
MRNet filters were used to implement an efficient tree-
based clock-skew detection algorithm and equivalence
class computations to suppress redundant information
communicated by the daemons. With 512 daemons,
these filters improved the tools startup time from over
1 minute to under 20 seconds (3.4 speedup). For data
aggregation of a moderate flow (performance data of
32 functions), the front-end in Paradyn’s original one-
to-many architecture could not process data at the rate
it was being produced by more than 32 daemons. Us-
ing MRNet, the front-end easily processed the loads of-

fered by 512 daemons (the highest node count we could
use). Similar results for thousand node runs have been
achieved for other filters, like a sub-graph folding al-
gorithm (SGFA) for combining sub-graphs of similar
qualitative structure into a composite sub-graph [24].

2.3. TBŌN Applications

It is well-understood that the tree abstraction is
powerful for performance and scalability. To reinforce
this idea, we now describe several other tools and tool
infrastructures that use TBŌNs and discuss future ap-
plication areas to which we believe the TBŌN model
is well-suited.

Middleware Infrastructures. Like MRNet, Yg-
drasil [3] and Lilith [11] are tree-based communica-
tion infrastructures for scalable tools. Ygdrasil, de-
rived from the communication infrastructure used in
the Ladebug parallel debugger [4], uses a tree of aggre-
gator nodes to apply user-specified, Java-based plug-
ins to in-flight data. Ygdrasil uses a synchronous
request/response communication model, where data
flows upward in response to downward control or re-
quest messages. Lilith provides a platform for dis-
tributing user code, generally system administrative
tasks, and launching these tasks across heterogeneous
systems. Lilith organizes these task processes into a
tree; task output is propagated to the root of the tree
and can be modified en-route by a single user-specified
filter. Like MRNet, Ygdrasil and Lilith provide mech-
anisms for extensible data reductions, though neither
Ygdrasil nor Lilith support extensible data synchro-
nization operations. Lilith and Ygdrasil support bal-
anced tree topologies and are implemented in Java to
leverage Java’s natural ability to load dynamically.

TAG [21] is a tree-based, aggregation infrastructure
for sensor networks; TAG provides a database-like SQL
interface that allows users to express simple, declara-
tive queries that execute in a distributed manner on the
nodes of the sensor network. Similar to MRNet, TAG
supports multiple simultaneous aggregation operations
and supports streams of aggregated data in response
to an aggregation request. TAG uses ad-hoc routing to
automatically organize its sensors into a tree.

Distributed System Tools. While the previous
infrastructures were designed to be general-purpose
TBŌNs, several tools for cluster and Grid systems
use application-specific TBŌNs, for example, the dis-
tributed system monitors, Ganglia [25] and Super-
mon [26]. Ganglia uses a multi-level hierarchy in which
the level furthest from the root, is used to represent a

cluster of nodes and the higher levels represent federa-
tions of clusters. Within a Ganglia cluster, monitoring
data is replicated across all nodes; upon request, a sin-
gle replica propagates monitoring data for the entire
cluster. In Supermon, monitoring servers can also act
as clients allowing the system to be configured into hi-
erarchies of servers. These servers can execute data
concentrators, implemented using functional symbolic
expressions from Lisp, on monitored data.

Distributed Applications. In many application
domains, from areas like image processing to bio-
informatics, scientists encounter the challenge of per-
forming analyses on large (tera and peta scale)
datasets. While the TBŌN model has proven its utility
in distributed software and system tool environments,
we believe there are large classes of software applica-
tions and algorithms from the scientific domains that
can use this model for efficient large scale operations
at such scale.

At large scales, the TBŌN computational model be-
fits any algorithm with the following properties:

1. the algorithm’s computational complexity is at
least O(n), where n is the size of the input,

2. the algorithm’s output is lesser in size than its to-
tal inputs, and

3. the algorithm’s output is in the same form as the
inputs, for example, if the inputs are sets of ele-
ments, the output should be a set of elements.

These properties describe general data reduction algo-
rithms. The remainder of this section will show that
many common algorithms used in scientific applica-
tions fit this category.

Data mining or information extraction, the process
of distilling specific facts from large quantities of data,
is an important element of many real world applica-
tions. Application areas include Internet information
retrieval [17, 29], bio-information [16], intrusion detec-
tion and threat analysis [5], geographical information
systems [13], business intelligence [18, 19], and orga-
nizing digital audio collections [27]. Typically, the de-
sired information describes relationships amongst the
elements in the datasets or frequencies and other statis-
tics of classes of elements. Data clustering is the pri-
mary technique used for this information extraction.

Clustering algorithms are generally based on one of
two strategies, partitioning or agglomeration. Parti-
tioning algorithms classify a given data set into k dis-
joint clusters, with k fixed a priori. K-means [14, 20],
the most common partitioning algorithm, defines and
iteratively refines k centroids, one for each cluster, asso-
ciating each data point with its nearest centroid based

Figure 2. A diagram showing the mapping of data clustering algorithms to a TBŌN equivalence class

filter computation.

on distance (similarity) measures. In agglomerative
clustering [15], a data set with N elements is initially
partitioned into N clusters each containing a single el-
ement. Larger clusters are formed by iteratively merg-
ing nearest-neighbor clusters. In clustering algorithms,
(pre-built or learning) data models or statistical anal-
ysis are used to group related elements and distinguish
unrelated ones. These general algorithms match our
definition of a data reduction: the computational over-
head increases with the number of elements to classify,
and the result of the algorithm is a smaller summary
representation of the inputs. The mapping of these
algorithms to a TBŌN filter computation is shown in
Figure 2. This figure shows that algorithms of this na-
ture reduce to a equivalence class filter computation,
where the inputs are elements to classify (or summa-
rize), the computation is the application of data model
or statistics to classify the data into the classes they
represent, and the output is the classified data (or sum-
mary of the classified data).

The application of TBŌNs for scalable scientific
data analyses appears compelling, and we expect the
TBŌN model to be as effective in application domains
as it has proven to be in tool domains. As further
evidence, the next section presents a case study that
demonstrates the use and benefit of TBŌN infrastruc-
tures for a commonly-used, general-purpose data clus-
tering algorithm.

3. A New (Non-tool) Case Study

We use the MRNet prototype to develop a scal-
able, TBŌN-based version of mean-shift [12], a pow-
erful clustering technique that can delineate arbitrar-
ily shaped clusters in complex, multi-modal feature

spaces. We then compare the performance of this dis-
tributed computation to the single-node version.

Mean-shift is an iterative procedure that shifts the
center of a search window in the direction of greatest
increase in the density of the data set being explored.
It continues to shift the window until the window is
centered on a region of maximum density. The algo-
rithm is non-parametric in that it does not require a
priori knowledge of the number of clusters in the data,
as in the case of k-means clustering.

Mean-shift is becoming increasingly popular in com-
puter vision applications, for example, color image
segmentation [8], face tracking [6], image transforma-
tion [9], and more general cluster analysis and global
optimization problems [7]. The drawback of mean-shift
is that the computation becomes prohibitively expen-
sive as the size and complexity (dimensionality) of the
data space increases [7].

In this case study, the input data may be considered
as image data. We investigate the use of mean-shift
to find peaks, which can then be used to segment the
input image into layers, for example, foreground and
background, or to extract other information. Similar
computations could be used for the other application
areas mentioned above.

3.1. Implementation

We have implemented the mean-shift algorithm for
two dimensional data; the core of the algorithm is given
in Figure 3. The mean-shift kernel operates on a win-
dow of data centered on a given data point, estimated
to be a centroid (center of density). As shown in the al-
gorithm, the points in this window are used to move the
current centroid toward areas of higher density, using
a mean-shift density estimator. On each iteration, the

mean-shift density estimator calculates a vector that
will move the current centroid toward higher density
areas. For a given window of data, the algorithms stops
when successive iterations do not yield a new centroid
(or a maximum iteration threshold has been met).

1. do

2. for all points in window around current centroid

3. Calculate euclidean distance from current centroid

4. Use distances to calculate mean-shift vector

toward higher density estimate

5. end for

6. while mean-shift vector is non-zero

Figure 3. The Mean-shift Algorithm.

The kernel estimator calculates the mean-shift vec-
tor over this region using a shape function to weight
the data. We choose a Gaussian shape function, which
gives greater weight to points nearer to the center; this
effectively smooths the data giving improved perfor-
mance when dealing with noisy data. Other options
for shape functions would weight each data point uni-
formly, quadratically, or triangularly.

In our implementation, there are two parameters
that must be specified or estimated. The first is a
threshold that sets the minimum data density at which
a mean shift search will begin. Low density areas are
poor candidates for modes and the mean shift search
will likely make little progress in these areas. The sec-
ond parameter estimates the bandwidth of the data or,
roughly speaking, the variability of the data. In many
cases this is determined experimentally. We choose
a fixed bandwidth of 50 which seems to work well
with our data. For a discussion of a general approach
to determining bandwidth adaptively, see Comaniciu,
Ramesh and Meer’s paper [10].

The single node (non-distributed) version of the al-
gorithm works as follows. We scan across the data
and calculate the density of the data using a fixed win-
dow. The regions where the density is above our chosen
threshold are used as the starting points for the mean
shift search. The mean shift algorithm runs until it
converges on a local maximum that we keep as a peak.

For our experiments, we used a distributed algo-
rithm where each leaf node gets a part of the data set.
Each node applies the mean shift procedure then sends
the resulting data set and the list of peaks to the next
higher node in the network. Each parent node merges
the data sets of it’s children and then applies the mean
shift procedure to the new data set using the peaks
determined by child nodes as the starting points.

The data at the leaf nodes is synthetically generated.

The data about each cluster center is generated using a
random Gaussian distribution. The cluster centers are
slightly shifted in each leaf node as they might be in
feature tracking in video processing or when processing
images with non-uniform illumination.

3.2. Evaluation

To evaluate the performance impact of the TBŌN
computational model, we performed experiments to
compare the running times of the implementation of
mean-shift, discussed above. Our methodology is to
increase the scale of the input data size and evaluate
how well (or poorly) the algorithm performs when exe-
cuted using a single node, 1-deep (shallow), and 2-deep
(deep) trees, with varying numbers of leaves.

As data sizes increase, naturally we expect the work-
load to become prohibitively expensive for a single
node. The shallow trees represent the simple scaling
solution that directly distributes or farms out the com-
putation. Unfortunately, this solution does not con-
sider the cost of data aggregation at the central point
and becomes prohibitively expensive as the fan-out of
the front-end node increases. Using TBŌNs for deep
trees allows the workload to be distributed in a fash-
ion that can limit the fan-out of the nodes and thus
improve data consolidation. Clearly, deep trees come
with the cost of increased node usage; however, this
penalty is moderate. For example, with a fan-out of
16, 16 (6.25% more) internal nodes are needed to con-
nect 256 back-ends, or 272 (6.6%) for 4096 back-ends.

The experiments were performed on a cluster of 2.8
– 3.2 GHz Pentium 4 workstations, each with two giga-
bytes of RAM and inter-connected by a Gigabit Eth-
ernet network. Each experiment used a fully-balanced
tree, and we grouped experiments by the scale of the
input data size. For every experiment, each back-end
generates input data of the same size and distribution;
that is, the input size scales with the number of back-
ends, ranging from 16 to 324. Essentially, as we scale
up the problem, we analyze increasingly larger images.
If the images were being generated by an array of cam-
eras, for example, a larger scale might mean a larger
array [28]. The measured processing time starts with
the broadcast of a control message message from the
front-end that instructs the back-ends to initiate the
mean-shift algorithm and ends when the results of the
mean-shift have been calculated and are available at
the front-end process.

Each experiment was run two to four times, and the
average measured processing times are plotted in Fig-
ure 4. This figure shows that the distributed versions
of the algorithm improves the scalability and perfor-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

32425612864483216

T
im

e
(s

ec
o
n
d
s)

Input Data Set Scale Factor

single
flat

deep

Figure 4. Mean-shift Processing Times: The algorithm was implemented as a TBŌN filter. For the

single-node case, the X axis is the scaling factor of the input data set. For the 1-deep and 2-deep trees,

the X axis is both the scale factor for the input data set and the number of back-end processes.

mance of the single-node, and that deep trees provide
significant performance and scalability improvements
over shallow trees at larger scales. As expected, the
runtime of the single-node version of mean-shift algo-
rithm increases linearly with the input data size. As
the workload scales, the run-times of the shallow tree
versions increase at a much lower rate, until the fan-
out of the shallow tree becomes prohibitively large and
data consolidation at the front-end becomes a bottle-
neck – somewhere between a fan-out of 64 and 128.
However, the performance of the deep trees remain rel-
atively constant for all scales of input data size. Be-
yond 64 leaves, we do observe a small linear increase
in execution times. We have determined that beyond
64 leaves, the run-time is directly proportional to the
fan-out of the tree. An open question is whether even
deeper trees with limited fan-outs would yield a con-
stant execution time as the scale increases.

4. Summary

In this paper, we posit that tree-based overlay net-
works (TBŌNs) provide a powerful and flexible plat-
form for scalable control, data collection, and data
analysis for applications as well as tools. We pre-
sented many examples of TBŌNs being used in tools
for simple aggregation operations as well as complex
operations like clock-skew detection, time-aligned data
synchronization, sub-graph folding for scalable data
presentation, and creating data histograms. We then

showed how the TBŌN computational model can be
applied to many types of applications and algorithms
used in scientific data analyses and used the MRNet
prototype to show the scalability of a TBŌN-based dis-
tributed data clustering algorithm.

Our experiments with MRNet are only the start of
our work on more general uses of TBŌNs. We believe
that many other computing tasks can be supported by
these networks for applications in areas like data min-
ing, bio-information, image processing, and geographic
information systems. As future work we are looking at
using TBŌNs as a general tool that can support other
clustering algorithms, or data models such as decision
and regression trees that can be built by passing data
both directions in the tree. This bidirectional commu-
nication allows model cross-validation or refinement via
operations performed directly on the models.

5. Acknowledgments

We are grateful to Sean Murphy and Miron Livny of
the Condor Project at the University of Wisconsin who
helped tremendously in procuring and setting up our
experimental environment, sponsored by the National
Science Foundation under Grant EIA-0320708.

References

[1] Top 500 supercomputer sites. http://www.top500.org
(last visited January 2006).

[2] D. C. Arnold and B. P. Miller. Zero-cost reliability for
tree-based overlay networks. Technical report, Univer-
sity of Wisconsin – Madison, December 2005.

[3] S. M. Balle, J. Bishop, D. LaFrance-Linden, and
H. Rifkin. Ygdrasil: Aggregator network toolkit for
the grid, June 2004. Presented in a minisymposium at
Workshop on State-of-the-art in Scientific Computing.

[4] S. M. Balle, B. R. Brett, C.-P. Chen, and D. LaFrance-
Linden. A new approach to parallel debugger architec-
ture. In Applied Parallel Computing. Advanced Scien-
tific Computing: 6th International Conference, PARA
2002, Espoo, Finland, June 2002. Published as Lec-
ture Notes in Computer Science 2367, J. Fagerholm
et al (Eds), Springer, Heidelberg, Germany, August
2002, pp. 139-149.

[5] D. Barbara, editor. Special Section on Data Mining
for Intrusion Detection and Threat Analysis, volume
30(4) of ACM SIGMOD Record, pages 4–64. ACM
Press, New York, NY, USA, December 2001.

[6] G. Bradski. Real time face and object tracking as a
component of a perceptual user interface. In IEEE
Workshop on Applications of Computer Vision, pages
214–219, Princeton, NJ, USA, 1998.

[7] Y. Cheng. Mean shift, mode seeking, and clustering.
IEEE Transactions on Pattern Analaysis and Machine
Intelligence, 17(8):790–799, 1995.

[8] D. Comaniciu and P. Meer. Robust analysis of feature
spaces: Color image segmentation. In IEEE Com-
puter Vision and Pattern Recognition, pages 750–755,
Puerto Rico, 1997.

[9] D. Comaniciu and P. Meer. Mean shift analysis and
applications. In IEEE Computer Vision (ICCV ’99),
pages 1197–1203, Kerkyra, Greece, 1999.

[10] D. Comaniciu, V. Ramesh, and P. Meer. The variable
bandwidth mean shift and Data-Driven scale selection.
In 8th International Conference on Computer Vision,
volume 1, pages 438–445, Vancouver, BC, Canada,
July 2001.

[11] D. A. Evensky, A. C. Gentile, L. J. Camp, and R. C.
Armstrong. Lilith: Scalable execution of user code
for distributed computing. In 6th IEEE International
Symposium on High Performance Distributed Comput-
ing (HPDC 97), pages 306–314, Portland, OR, USA,
August 1997.

[12] K. Fukunaga and L. Hostetler. The estimation of the
gradient of a density function, with applications in
pattern recognition. IEEE Transactions on Informa-
tion Theory, 21:32–40, 1975.

[13] R. H. Guting. An introduction to spatial database
systems. The VLDB Journal, 3(4):357–399, 1994.

[14] J. A. Hartigan and M. A. Wong. A k-means clustering
algorithm. Applied Statistics, 28:100–108, 1979.

[15] S. C. Johnson. Hierarchical clustering schemes. Psy-
chometrika, 2:241–254, 1967.

[16] C. Kirbas and F. Quek. A review of vessel extraction
techniques and algorithms. ACM Computing Surveys,
36(2):81–121, 2004.

[17] M. Kobayashi and K. Takeda. Information retrieval
on the web. ACM Computing Surveys, 32(2):144–173,
2000.

[18] R. Kohavi and F. Provost. Applications of data min-
ing to electronic commerce. Data Mining Knowledge
Discovery, 5(1-2):5–10, 2001.

[19] R. Kohavi, N. J. Rothleder, and E. Simoudis. Emerg-
ing trends in business analytics. Communications of
the ACM, 45(8):45–48, 2002.

[20] J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. In Fifth Berke-
ley Symposium on Mathematical Statistics and Prob-
ability, volume 1, pages 281–297, Berkeley, CA, USA,
1967. University of California Press.

[21] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tag: a tiny aggregation service for ad-
hoc sensor networks. In 5th Symposium on Operating
Systems Design and Implementation (OSDI), Boston,
MA, USA, December 2002.

[22] J.-P. Navarro, R. Evard, D. Nurmi, and N. Desai. Scal-
able cluster administration: Chiba city i approach and
lessons learned. In IEEE International Conference on
Cluster Computing (CLUSTER 2002), pages 215–221,
Chicago, IL, USA, September 2002.

[23] P. C. Roth, D. C. Arnold, and B. P. Miller. Mrnet: A
software-based multicast/reduction network for scal-
able tools. In SC 2003, Phoenix, AZ, USA, November
2003.

[24] P. C. Roth and B. P. Miller. The distributed per-
formance consultant and the sub-graph folding algo-
rithm: On-line automated performance diagnosis on
thousands of processes. Submitted for publication.

[25] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E.
Culler. Wide area cluster monitoring with ganglia. In
IEEE International Conference on Cluster Comput-
ing (CLUSTER 2003), pages 289–298, Hong Kong,
September 2003.

[26] M. J. Sottile and R. G. Minnich. Supermon: A high-
speed cluster monitoring system. In IEEE Interna-
tional Conference on Cluster Computing (CLUSTER
2002), pages 39–46, Chicago, IL, USA, September
2002.

[27] W.-H. Tsai and H.-M. Wang. On the extraction of
vocal-related information to facilitate the management
of popular music collections. In 5th ACM/IEEE-CS
Joint Conference on Digital Libraries (JCDL ’05),
pages 197–206, New York, NY, USA, 2005. ACM
Press.

[28] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. An-
tunez, A. Barth, A. Adams, M. Horowitz, and
M. Levoy. High performance imaging using large
camera arrays. ACM Transactions on Graphics,
24(3):765–776, 2005.

[29] L. Xiao, D. Wissmann, M. Brown, and S. Jablon-
ski. Information extraction from the web: System and
techniques. Applied Intelligence, 21(2):195–224, 2004.

