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TREE-BASED SPACE EFFICIENT FORMATS FOR STORING THE STRUCTURE OF
SPARSE MATRICES ∗
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Abstract.

Sparse storage formats describe a way how sparse matrices are stored in a computer memory. Extensive research has been
conducted about these formats in the context of performance optimization of the sparse matrix-vector multiplication algorithms,
but memory efficient formats for storing sparse matrices are still under development, since the commonly used storage formats (like
COO or CSR) are not sufficient. In this paper, we propose and evaluate new storage formats for sparse matrices that minimize the
space complexity of information about matrix structure. The first one is based on arithmetic coding and the second one is based on
binary tree format. We compare the space complexity of common storage formats and our new formats and prove that the latter
are considerably more space efficient.
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1. Introduction. The paper investigates memory-efficient storage formats for very large sparse matrices
(LSMs). By LSMs, we mean matrices that due to their sizes must be stored and processed by massively parallel
computer systems (MPCSs) with distributed memory architecture consisting of tens or hundreds of thousands
of processor cores.

Within our previous work [9, 12, 11, 8, 7], we have addressed weaknesses of previously developed solutions
for space-efficient formats for storing of large sparse matrices. The space complexity of the representation of
sparse matrices depends strongly on the used matrix storage format. A matrix of order n is considered to be
sparse if it contains much less nonzero elements than n2. Some alternative definitions of sparse matrix can
be found in [22]. In practice, a matrix is considered sparse if the ratio of nonzero elements drops bellow some
threshold. Our research addresses computations with LSMs satisfying at least one of the following conditions:

1. The LSM is used repeatedly and the computation of its elements is slow and it takes more time than
its later reading from a file system.

2. Construction of a LSM is memory-intensive. It needs significant amount of memory for auxiliary data
structures, typically of the same order of magnitude as the amount of memory required for storing the
LSM itself.

3. A solver requires the LSM in another format than is produced by a matrix generator and the conversion
between these formats cannot be performed effectively on-the-fly.

4. Computational tasks with LSMs need check-pointing and recovery from failures of the MPCSs. We
assume that a distributed-memory parallel computation with a LSM needs longer time. To avoid
recomputations in case of a system failure, we need to save a state of these long-run processes to allow
fast recovery. This is especially important nowadays (and will be more in the future) when MPCSs
consist of tens or hundreds of thousands of processor cores.

If at least one of these conditions is met, we might need to store LSMs into a file system. And since the file
system access is of orders of magnitude slower compared to the memory access, we want to store matrices in a
way that minimizes their memory requirements.

In this paper, we focus only on the compression of the information describing the structure of LSMs (i.e., the
locations of nonzero elements). The values of the nonzero elements are unchanged, because their compression
depends strongly on the application. For some application areas, the values of nonzero elements are implicit
and only the information about the structure of a LSM is stored (for example, incident matrices of unweighed
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graphs). Alternatively, we can interleave computations with reading of nonzero elements. For example, we can
divide the process of a sparse matrix factorization into these steps:

1. read the matrix structure,
2. do in parallel: perform the symbolic factorization and read the values of nonzero elements of the matrix,
3. perform the numeric factorization.

This paper is an extended version of our previous results [9]. We present updated versions of the algorithms
and derivation of lower and upper bounds of space and computational complexity. We also provide more detailed
analysis of the computational, space, and communication complexities of parallel implementation of conversion
to the new MBT format.

1.1. Terminology and notation. We consider a LSM A of order n. The number of its nonzero elements
is denoted by N , the average number of nonzero elements per rows is N/n and it is denoted by avg per row .

• We assume that 1≪ N ≪M = n2.
• The pattern of nonzero elements in A is unknown or random.
• Indexes of all vectors and matrices start from zero.
• The number of nonzero elements in submatrix B of matrix A is denoted by nnz (B).
• Let P be the number of processors. The matrix A is partitioned among P processors p1, . . . , pP of a
given massive parallel computer system (MPCS).
• The MPCS uses some variant of parallel I/O that allows to read/write a separate file for each process
independently. Parallel I/O is a bottleneck of typical MPCS. Therefore we require that the new format
should be space-efficient, in order to keep resulting file sizes as low as possible.
• We assume that nonzero elements are stored using a distributed version of a common sparse storage
format (SSF). This initial distribution we called an input mapping.

This work is inspired by some real applications, for example ab initio calculations of medium-mass atomic nuclei
(for future details see [1, 2].

1.2. Representing indexes in binary codes. Let us have an array of ξ elements indexed from 0 to
ξ − 1. The minimum number of bits of an unsigned indexing data type is

SMIN(ξ) =
⌈

log2 ξ
⌉

.

The value SMIN is the minimum number of bits, but it is usually padded to whole bytes (SBYTE bits)

SBYTE(ξ) = 8 ·
⌈

SMIN(ξ)/8
⌉

,

or it is padded to the nearest power of 2 bytes (SPOW bits)

SPOW(ξ) = 2η, where η =
⌈

log2 S
MIN(ξ)

⌉

.

When we describe a matrix storage format, we use simply S(ξ) instead of SMIN(ξ).

2. State-of-the-art.

2.1. The Coordinate (COO) Format. The coordinate (COO) format is the simplest SSF (see [19, 3]).
The matrix A is represented by three linear arrays values , xpos , and ypos (see Fig. 2.1 (b)). The array
values [1 , . . . ,N ] stores the nonzero values of A, arrays xpos [1 , . . . ,N ] and ypos [1 , . . . ,N ] contain column and
row indexes, respectively, of these nonzero values. The space complexity of the structure of matrix A (the size
of the array values is not counted) of this format is

SCOO(n,N) = 2 ·N · S(n). (2.1)
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(a) An example of the sparse matrix (b) Representation of this matrix in the COO format

Fig. 2.1. An example of representation of sparse matrix in the COO format

2.2. The Compressed Sparse Row (CSR) format. The most common SSF is the compressed sparse
row (CSR) format (see [19, 3] for details). The matrix A stored in the CSR format is represented by three linear
arrays values , addr , and ci (see Fig. 2.2 (b)). The array values [1 , . . . ,N ] stores the nonzero elements of A, the
array addr [1 , . . . , n + 1 ] contains indexes of initial nonzero elements of rows of A; if row i does not contain any
nonzero element, then addr [i ] = addr [i + 1 ]. It is obvious that addr [1 ] = 1 and addr [n + 1 ] = N . The array
ci [1 , . . . ,N ] contains column indexes of nonzero elements of A. Hence, the first nonzero element of the row j is
stored at index addr [j ] in array values. The space complexity of the structure of matrix A (array values is not
counted) in this format is

SCSR(n,N) = N · S(n) + n · S(N). (2.2)

(a) An example of the sparse matrix (b) Representation of this matrix in the CSR format

Fig. 2.2. An example of representation of sparse matrix in the CSR format

2.3. Register blocking formats. Widely-used SSFs are easy to understand, however, sparse operations
(like matrix-vector or matrix-matrix multiplication) using these formats are slow (mainly due to indirect ad-
dressing). Sparse matrices often contain dense submatrices (blocks), so various blocking SSFs were designed to
accelerate matrix operations. Compared to the CSR format, the aim of these formats (like SPARSITY [6] or [16]
or CARB [20, 10]) is to allow a better use of registers and more efficient computations. But these specialized
SSFs have usually large transformation overhead and consume approximately the same amount of memory as
the CSR format.

2.4. Minimal quadtree (MQT) format. The Quadtree (QT) is a tree data structure in which all inner
nodes have exactly four child nodes. Since our aim is to minimize the space complexity of QT-based formats,
in [7] we proposed a new QT format called minimal quadtree (MQT) format. Instead of pointers, each node of
the MQT contains only 4 flags (i.e., 4 bits only) indicating whether given subquadtrees are nonempty.
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2.5. Other state-of-art SSFs. There are several other SSFs specialized for given areas (e.g., compression
of text, picture or video). They can be used for compression of sparse matrices, but none of them satisfies all
these four requirements:

1. non-lossy compression,
2. possibility of massively parallel execution,
3. space efficiency (high compression rate),
4. high speed compression/decompression.

Only few research results have been published about SSFs in the context of minimization of the required
memory, which is the optimization criterion for a file I/O of LSMs. Some recent research of hierarchical blocking
SSFs, though primarily aimed at optimization of matrix-vector multiplication, also addresses optimization of
memory requirements [13, 14, 15]. We have published several papers about space-efficient SSFs suitable for
storing sparse matrices [8, 11, 7].

Fig. 3.1. Visualization of the binary tree from the Example in Sect. 3.2.1.

3. Our new space-efficient formats.

3.1. The arithmetical-coding-based (ACB) format. Matrix A can be represented by a bit vector B
of size M in which N bits are set to 1 and M −N bits are set to 0. The probability p0 that a given bit in B is
equal to 0 is M−N

M . In the arithmetical coding (see [21]), we can encode this information using − log2 p0 bits.

The probability p1 that a given bit in B is equal to 1 is N
M . In the arithmetical coding, we can encode this

information using − log2 p1 bits. Since we assume a random distribution of nonzero elements, the vector B is
considered to be an order-0 source (each bit is selected independently on other bits). The total number of bits
to encode vector B is equal to the value of binary entropy of vector B. This value is

S(B) = −M · (p0 log2 p0 + p1 log2 p1)

Since this expression is hard to compare with other formats, the approximation of the binary entropy of vector
B follows:

SACB(n,N) = −M · (M −N

M
log2

M −N

M
+

N

M
log2

N

M
)

= −(M −N) log2
M −N

M
−N log2

N

M
= −(M −N) log2(M −N) +M log2 M −N log2 N.

Since we assume that N ≪ M , we can use the following approximation for very small x: ln(1 + x) ≈ x. This
implies that ln(M −N) ≈ lnM −N/M . The final approximation of the space complexity of the ACB format
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is then:

SACB(n,N) ≈ N

ln 2
+N log2 M −

N2

M · ln 2 −N log2 N

≈ N ·
(

1

ln 2
+ log2 M − log2 N

)

≈ N ·
(

1

ln 2
+ 2 · log2 n− log2 N

)

.

The same space complexity (based on other assumptions) was derived in [8], but it serves only for comparison
and no practical algorithm to achieve this space complexity was given. As far as we know, the ACB format has
not been described in literature.

The idea of transforming of the matrix A’s structure to the ACB format is simple: create n × n bitmap
(with N 1’s) from matrix A’s structure. Then, compress this bitmap as a bitstream using the arithmetical
coding. The representation of matrix A’s structure in the ACB format is given by the compressed bitstream.

A comparison to common SSFs is done in Sect. 5.2. A drawback of the ACB format is its computational
complexity. Since each bit of vector B is encoded in time Θ(1), the complete vector B (representation of sparse
matrix A) is encoded in time Θ(n2). This is too much for sparse matrices with a constant number of nonzero
elements per row (i.e., N ∈ Θ(n)).

3.2. The minimal binary tree (MBT) format. The full binary tree (FBT) is a widely used data
structure in which all inner nodes have exactly two child nodes. Binary trees especially those used for binary
space partitioning can also be used for storing sparse matrices. The idea of binary space partitioning is not
new, but as far as we know, the use of these formats for efficiently storing sparse matrices was not described in
literature. In standard implementations, every node in a FBT is represented by a structure standard_BT_struct
consisting of the following items:

• two pointers (left , right) to child nodes,
• (only for leaves) the value of a nonzero element.

If a FBT is used as a basis for SSF, it describes a partition of the sparse matrix into submatrices and each
node in the FBT represents a submatrix. Equally as in k-d trees, see [18], the decomposition is performed in
alternating directions: first horizontally, then vertically, and so on. In other words, nodes in an odd height
represent a partition of the submatrix into two halves along the the x-axis (left/right), nodes in an even height
represent a partition of the submatrix into two halves along the y-axis (upper/lower). From the viewpoint of
space efficiency, a drawback of the standard FBT representation is the overhead caused by pointers left , right .
It causes that the standard FBT-based SSF may have worse space complexity than the CSR format.

To eliminate this drawback, we propose a new k-d-tree-based SSF. Each tree node represents again a
submatrix, but we modify the standard representation of the FBT and we call this data structure the minimal
binary tree (MBT) format. The idea is very similar to that in the MQT format.

• All nodes of a MBT are stored in one array (or stream). Since the size of the input matrix is given, we
can compute locations of all child nodes, we can omit pointers left , right .
• All nodes of a MBT contain only two flags (it means only two bits). Each of them is set to 1 if the
corresponding half of the submatrix (left/right or upper/lower) contains at least one nonzero element,
otherwise it is set to 0.

A comparison of the MBT format with other SSFs is done in Sect. 5.3. Let us describe algorithm 2 that
generates an output bitstream representing the matrix in the MBT format from the standard CSR format.

3.2.1. An example of a transformation to the MBT format. Let us give an example of a construction
of matrix representation in the MBT format implemented as a bitstream S. The corresponding binary tree is
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(a) Original sparse matrix A.

1 0

1 0

1 0

1 0

1 1

1 1 1 1

(b) The MBT representation of
matrix A.

Fig. 3.2. The MBT with the minimal number of nodes.

h1

h2

1 1

.............................

1 0

1 1 1 1

.............................

Fig. 3.3. MBT with the minimal number of nodes (the number of leaves is N/2).

shown in Fig. 3.1.

S = MBT(A) = MBT









0 0 0 1
0 0 1 0
1 0 0 0
0 0 0 1









=

= ”11” +MBT

(

0 0 0 1
0 0 1 0

)

+

+MBT

(

1 0 0 0
0 0 0 1

)

=

= ”11” + ”01” + ”11” +MBT

(

0 1
1 0

)

+

+MBT

(

1 0
0 0

)

+MBT

(

0 0
0 1

)

=

= ”11” + ”01” + ”11” + ”11” + ”10” + ”01”+

+MBT(”01”) +MBT(”10”) +MBT(”10”) +MBT(”01”) =

= ”11” + ”01” + ”11” + ”11” + ”10”+

+ ”01” + ”10” + ”10” + ”01”
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So, if matrix A is stored in the MBT format, 20 bits are needed for representing its structure.
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(a) Original sparse matrix A.
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(b) The MBT representation of
matrix A.

Fig. 3.4. The MBT with the maximal number of nodes.

h1

h2

1 1

.............................

1 0 1 0

1 0 1 0

.............................

Fig. 3.5. MBT with the maximal number of nodes (the number of leaves is N/2).

3.2.2. Space complexity. Let us assume a very small example of a sparse matrix with n = 8 and N = 4.
For common storage formats, the space complexity is given by Eq. (2.1) or (2.2), so SCOO(n,N) = 24[bits] and
SCSR(n,N) = 28[bits]. For the MQT, the exact size of the output bitstream S (it means the size of the MBT
format) cannot be derived from these global parameters, because it depends on the exact locations of nonzero
elements. It ranges from 14 to 38 bits (see Figs. 3.2 and 3.4). The derivation of the lower and upper bounds
on the size of the MBT format in a general case is the following.

Lower bound. We consider the best case: the MBT with the minimal number of nodes, i.e., the number
of leaves is equal to N/2 (see Fig. 3.3). It is obviously a generalized idea from Fig. 3.2. This matrix with 4
nonzero elements is represented by 7 MBT nodes = 14 bits. Output bitstream is ”10 10 10 10 11 11 11”.

• The height of the MBT on Fig. 3.2 is h = h1 + h2 = 2 log2 n − 1, where h2 = log2 N − 1 and
h1 = 2 log2 n− log2 N .
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• All nodes with height < h1 (in upper h1 levels) contain exactly one 1 (they have one child node). The
number of nodes in these levels is h1,

h1 = log2(n
2/N).

• All nodes with height ≥ h1 (in lower h2 levels) are full of 1’s (they have two child nodes). The number
of nodes in these levels is equal to (this part is a full binary tree)

2 log2 n−1
∑

i=h1+1

2i−(h1+1) = N − 1.

So, the minimal size of the MBT format is

2 ·
(

N − 1 + log2(n
2/N)

)

.

Upper bound. We consider the worst case: the quadtree with the maximal number of nodes, i.e., the number
of leaves is equal to N/2 (see Fig. 3.5). Again, it is a generalized idea from Fig. 3.4. This matrix with 4 nonzero
elements is represented by 19 MBT nodes = 38 bits.
The output bitstream is ”11 11 11 10 10 01 01 10 01 10 01 10 10 01 01 10 01 10 01”.

• The height of this tree is h = h1 + h2 = 2 log2 n− 1, where h1 = log2 N − 1.
• All nodes with height< h1 (in upper h1 levels) are full of 1’s (they have two child nodes), h1 = log2 N−1.
The number of nodes in these levels is approximately

h1−1
∑

i=0

2i = N − 1.

• All nodes with height ≥ h1 (in lower h2 levels) contain exactly one 1 (they have one child node). The
number of nodes in these levels is

N · h2 = N · (2 log2 n− log2 N) = N · log2(n2/N).

So, the maximal size of the MBT format is

≈ 2 ·N
(

1 + log2(n
2/N)

)

.

3.2.3. Time complexity of the transformation algorithm. Time complexity of the transforma-
tion algorithm 2 is relatively high, because for each node in the MBT, it uses algorithm 1 with complexity
O(log2 n · (y2− y1 + 1)). Fortunately, the average complexity is much lower (it depends on the value of the
parameter avg per row , distribution of nonzero elements, etc.).

We consider the worst case (similar ideas as for derivation of the space complexity in Sect. 3.2.2): the
MBT with the maximal number of nodes, the number of leaves is equal to N (see Fig. 3.5). We assume that
the time complexity of procedure AppendToBitstream is Θ(1). Procedure INES(A,x1,y1,x2,y2) is called for
every node in the MBT in the output stream S two times.

• For nodes with height = h1: The number of these nodes is N , the expression (y2 − y1 + 1) is equal
to 1 + n/

√
N . Time complexity of the transformation for all nodes with this depth is Th1 = N · (1 +

n/
√
N) · log2 avg per row .

• For nodes with height = h1− 1: The number of nodes is N/2 and the expression (y2− y1+ 1) is equal
to 1 + 2n/

√
N . So, the total time complexity of the transformation for all nodes with depth ≤ h1 (in

upper h1 levels) is Tupper ≈
∑h1

i=0 Th1/2
(i−h1) = Θ(N · (1 + n/

√
N) · log2 avg per row ).

• For nodes with height > h1: The time complexity of the transformation for all these nodes (for the

lower h2 levels) is Tlower ≈
∑h

i=h1+1 Th1/2
(i−h1) = Θ(N(1 + n/

√
N) · log2 avg per row).

So, the total time complexity of the transformation is

Θ(N(1 + n/
√
N) · log2 avg per row).

A very usual case is N = Θ(n), it means matrices with constant number of nonzero elements per row. For this
case the time complexity is Θ(n3/2).
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Algorithm 1 Procedure to test if the given submatrix is nonempty

1: procedure INES(A,x1,y1,x2,y2)
Input: A = an input submatrix in the CSR format
Input: x1,y1,x2,y2 = coordinates of the submatrix
Output: logical value indicating whether the given submatrix is nonempty
2: for y ← y1, y2 do
3: low ← A.addr[y]; high← A.addr[y + 1]
4: i← binary search(in array A.ci)
5: ⊲ within indexes from 〈low . . . high〉
6: ⊲ to find a minimal i such that A.ci[i] ≥ x1
7: if C.ci[i] ≤ x2 then
8: return true
9: end if

10: end for
11: return false
12: end procedure

3.3. Compression of minimal formats. The MBT and MQT formats have minimal space complexity
only if we assume fixed number of bits for each node (2 bits for MBT and 4 bits for MQT). We can relax this
assumption to achieve more space efficient formats.

Lemma 3.1. Every node in the MBT (or in MQT) format (except for the root node for the zero matrix A)
has got at least one bit equal to 1. The proof of Lemma 3.1 for the MBT format can be done by contradiction:
if both bits in a MBT node X are zero, then this submatrix does not contain any nonzero element, so in the
parent’s node of X the corresponding bit is set to 0 and node X is not included in the output stream and this
is a contradiction with the initial assumption.
Similar proof can be done for the MQT format. Q.E.D.

Since we assume only nonempty matrices, the only allowed values in every MBT node are: 01, 10, and 11
(value 00 is not possible as a result of Lemma 3.1). So, if the first bit is 0, then the second bit must 1. This
redundant information can be excluded from the output stream. We call this case the hidden one. Based on this
idea, we propose a new format, called compressed binary tree (CBT). There are two approaches to transform a
LSM to the CBT format:

1. Transform the input matrix to the MBT format (it creates output stream S) and then remove from S
all hidden ones (all 4-tuples are read and transformed values according to Table 3.1 are written.

2. Modify Algorithm 2 to Algorithm 3 that directly create the CBT format.

Similarly in the MQT format, the value 0000 is not possible as a result of Lemma 3.1, so if the first three bits
are 0, then the fourth bit must 1. Again, this redundant information can be excluded from the output stream,
which allows us to construct another new compressed quadtree (CQT) format. It is obvious that the probability
of hidden one is higher in the MBT format than in the MQT format. In the Table 3.1 is the comparison
of code-words in MQT, CQT, MBT, and CBT formats. If we assume the same probabilities for all possible
code-words, then the average size of code-word is 4 bits in MQT format, 3.93 bits for CQT format, 5.2 bits for
MBT format, and 4.47 bits for CBT format. A comparison of these formats with real matrices is done in Sect.
5.3. A transformation algorithm from the CBT format is described by Algorithm 4. This algorithm transforms
the input bitstream from the CBT format into the CSR format.
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Algorithm 2 Transformation algorithm to the MBT format

1: procedure Tr2MBT(A)
Input: A = the matrix for the transformation in CSR format
Output: S = the bitstream representing the input matrix in the MBT format
2: current← ()
3: enqueue {1, 1, A.n,A.n, 0} into current
4: while current is not empty do
5: dequeue {x1, y1, x2, y2, h} from current
6: ⊲ x1,y1,x2,y2 = coordinates of submatrix
7: ⊲ h = current BFS level, divide rows (h is odd) or columns
8: if h is even then
9: mx← x2; my ← (y1 + y2)/2

10: lx← x1; ly ← (y1 + y2)/2 + 1
11: else
12: mx← (x1 + x2)/2; my ← y2
13: lx← (x1 + x2)/2 + 1; ly ← y1
14: end if
15: l1← INES(A, x1, y1,mx,my)
16: l2← INES(A, lx, ly, x2, y2)
17: AppendToBitstream(S, l1)
18: AppendToBitstream(S, l2)
19: if l1 = true then
20: enqueue {x1, y1,mx,my, h+ 1} into current
21: end if
22: if l2 = true then
23: enqueue {lx, ly, x2, y2, h+ 1} into current
24: end if
25: end while
26: return S
27: end procedure

3.3.1. An example of a transformation to the CBT format. For an example, we used the same
matrix as in the example in Sect. 3.2.1. Hidden ones are denoted by bold numbers.

S = CBT(A) = CBT









0 0 0 1
0 0 1 0
1 0 0 0
0 0 0 1









=

= ”11” + CBT

(

0 0 0 1
0 0 1 0

)

+

+CBT

(

1 0 0 0
0 0 0 1

)

=

= ”11” + ”0” + ”11” + CBT

(

0 1
1 0

)

+

+CBT

(

1 0
0 0

)

+CBT

(

0 0
0 1

)

=

= ”11” + ”0” + ”11” + ”11” + ”10” + ”0”+

+ CBT(”01”) + CBT(”10”) + CBT(”10”) + CBT(”01”) =

= ”11” + ”0” + ”11” + ”11” + ”10”+

+ ”0” + ”0” + ”10” + ”10” + ”0”
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Algorithm 3 Transformation algorithm to the CBT format

1: procedure Tr2CBT(A)
Input: A = the matrix for the transformation in CSR format
Output: S = the bitstream representing the input matrix in the CBT format
2: current← ()
3: enqueue {1, 1, A.n,A.n, 0} into current
4: while current is not empty do
5: dequeue {x1, y1, x2, y2, h} from current
6: ⊲ x1,y1,x2,y2 = coordinates of submatrix
7: ⊲ h = current BFS level, divide rows (h is odd) or columns
8: if h is even then
9: mx← x2; my ← (y1 + y2)/2

10: lx← x1; ly ← (y1 + y2)/2 + 1
11: else
12: mx← (x1 + x2)/2; my ← y2
13: lx← (x1 + x2)/2 + 1; ly ← y1
14: end if
15: l2← false
16: l1← INES(A, x1, y1,mx,my)
17: AppendToBitstream(S, l1)
18: if l1 = true then
19: l2← INES(A, lx, ly, x2, y2)
20: AppendToBitstream(S, l2)
21: end if
22: if l1 = true then
23: enqueue {x1, y1,mx,my, h+ 1} into current
24: end if
25: if l2 = true then
26: enqueue {lx, ly, x2, y2, h+ 1} into current
27: end if
28: end while
29: return S
30: end procedure

For storing matrix A in the CBT format only 16 bits are needed (instead of 20 bits in the MBT format).
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MQT CQT MBT CBT
0000 N/A 00 N/A
0001 000 01 01 0 0

0010 0010 01 10 0 10
0011 0011 01 11 0 11
0100 0100 10 01 10 0

0101 0101 11 01 01 11 0 0

0110 0110 11 01 10 11 0 10
0111 0111 11 01 11 11 0 11
1000 1000 10 10 10 10
1001 1001 11 10 01 11 10 0

1010 1010 11 10 10 11 10 10
1011 1011 11 10 11 11 10 11
1100 1100 10 11 10 11
1101 1101 11 11 01 11 11 0

1110 1110 11 11 10 11 11 10
1111 1111 11 11 11 11 11 11

Table 3.1
Transformation table between the MQT, CQT, MBT, and CBT formats. Hidden ones are marked by bold numbers.
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Algorithm 4 Transformation from the CBT format to the CSR format

1: procedure Tr2CSR(S)
Input: S = the input bitstream of the input matrix in the CBT format
Output: A = the output matrix in the CSR format
2: A← new empty matrix
3: enqueue {1, 1, A.n,A.n, 0} into current
4: while current is not empty do
5: dequeue {x1, y1, x2, y2, h} from current
6: ⊲ x1,y1,x2,y2 = coordinates of submatrix
7: ⊲ h = current BFS level, divide rows (h is odd) or columns
8: if x1 = x2 & y1 = y2 then
9: X ← new nonzero element (x1, y1)

10: add X to A
11: else
12: if h is even then
13: mx← x2; my ← (y1 + y2)/2
14: lx← x1; ly ← (y1 + y2)/2 + 1
15: else
16: mx← (x1 + x2)/2; my ← y2
17: lx← (x1 + x2)/2 + 1; ly ← y1
18: end if
19: l1← ReadOneBit(S)
20: if l1 = false then
21: l2← true ⊲ hidden one
22: else
23: l2← ReadOneBit(S)
24: end if
25: if l1 = true then
26: enqueue {x1, y1,mx,my, h+ 1} into current
27: end if
28: if l2 = true then
29: enqueue {lx, ly, x2, y2, h+ 1} into current
30: end if
31: end if
32: end while
33: return A
34: end procedure
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4. Parallel execeution of transformation algorithm.

4.1. Main idea of parallelization. The proposed formats are generic, i.e., they may be applied to sparse
matrices of any structure. When processing LSMs on a massively parallel computer system, every processor has
its own part of a matrix, which itself can be treated as a stand-alone matrix of a smaller size. Every processor
can apply one of the proposed formats to its own matrix independently. Hence, the proposed formats can be
utilized on massively parallel computer systems the very same way as in sequential computations. This approach
to parallelization is straightforward for the ACB format, but for SSFs based on trees the parallelization is more
complicated.

Fig. 4.1. The main idea of parallelization of MBT or CBT transformation.

Fig. 4.2. The main idea of parallelization of MQT or CQT transformation.

4.2. Parallel transformation of formats based on trees. Consider the MBT format. The proposed
Algorithm 2 for transformation is sequential. Let us now describe its master-slave parallelization. We assume
two possible mappings how the matrix A is distributed among processors:

• using general mapping.
• using row-wise 1D block mapping (see [17]). Matrix A is divided into P row blocks of variable size
(recall P is the number of processors in a MPCS. This mapping uses array start row. In this array,
the value start row[i] is the starting row for the row block assigned to processor pi.

The only difference is that for general mapping we must use a general (unoptimized) procedure ParINES
(see Algorithm 5) and for the row-wise 1D block mapping we can use a optimized procedure ParINES2 (see
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Algorithm 6).
1. In the first step (Algorithm 8 and codelines 1-10 in Algorithm 7), only processor p1 (similarly to

Algorithm 2) expands nonempty nodes of a binary tree by BFS until the number of nodes (denoted by
C) is greater or equal to k · P , where k is the chosen constant (see Figs. 4.1 and 4.2, and Algorithm
7). The proper value of parameter k is the trade-off between better work-load balancing (higher values
of k) and smaller sequential part of transformation (lower values of k).
This binary tree defines partitioning of the matrix among processors. This tree (more exactly intervals
of coordinates of nodes) is stored into array B and also stored in the MBT format in a special master
file.

2. Initial communication (codeline 11 in Algorithm 7): Processor p1 sends to all other processor blocks of
array B using one-to-all-scatter operation. The block for pi starts at index 1 + (i− 1)⌈C/P ⌉ and ends
at min(i⌈C/P ⌉, C). Each block contains intervals of coordinates of submatrices that are assigned to
the given processor (see Algorithm 6).

3. Redistribution of nonzero elements (codeline 12 in Algorithm 7): nonzero elements of the matrix A are
redistributed between processors according to the resulting partitioning (array B).

4. Local transformation (codelines 13-20 in Algorithm 7): Every processor transforms assigned submatrices
to the required MBT format independently and stores them into a separate file.

Algorithm 5 Distributed procedure to test if the given submatrix is nonempty

1: procedure ParINES(A,x1,y1,x2,y2)
Input: A = the input matrix in the distributed CSR format
Input: x1,y1,x2,y2 = coordinates of submatrix
Output: logical value indicating whether the given submatrix is nonempty
2: one-to-all broadcast {x1, y1, x2, y2}
3: output = false
4: for j ← y1, y2 do
5: for i← A.Addr[j], A.Addr[j + 1]− 1 do
6: if (x1 ≥ A.Ci[i] ≤ x2) then
7: output = true
8: break
9: end if

10: end for
11: end for
12: send predicate output to parallel reduction
13: po← parallel reduction of output using logical OR
14: return po
15: end procedure

Matrix n N avg per row
circuitM5 5.56 · 106 5.95 · 107 1.93 · 10−6

nlpkkt120 3.54 · 106 5.02 · 107 4.01 · 10−6

ldoor 9.52 · 105 2.37 · 107 2.60 · 10−5

TSOPF RS b2383 3.81 · 104 1.62 · 107 1.10 · 10−2

mouse gene 4.51 · 104 1.45 · 107 7.10 · 10−3

t2em 9.25 · 105 4.59 · 106 5.36 · 10−6

bmw7st 1 1.41 · 105 3.74 · 106 1.88 · 10−4

amazon0312 4.01 · 105 3.20 · 106 2.00 · 10−6

thread 2.97 · 104 2.25 · 106 2.55 · 10−3

gupta2 6.21 · 104 2.16 · 106 5.60 · 10−4

c-29 5.03 · 103 2.44 · 104 9.64 · 10−4

Table 4.1
Characteristics of the testing matrices.
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Algorithm 6 Distributed procedure to test if the given submatrix is nonempty

1: procedure ParINES2(A,x1,y1,x2,y2)
Input: A = the input matrix in the distributed CSR format
Input: x1,y1,x2,y2 = coordinates of submatrix
Output: logical value indicating whether the given submatrix is nonempty
2: construct G′

3: multicast {x1, y1, x2, y2} in G′

4: i← index of the current processor
5: si← start row[i]
6: si1← start row[i + 1]
7: if (si > y2) OR (si1 ≤ y1) then
8: output = false
9: else

10: for y ← max(y1, si),min(y2, si1− 1) do
11: low← A.addr[y]; high← A.addr[y + 1]
12: i← binary search(in array A.ci)
13: ⊲ within indexes from 〈low . . . high〉
14: ⊲ to find a minimal i such that A.ci[i] ≥ x1
15: if C.ci[i] ≤ x2 then
16: output = true
17: break
18: end if
19: end for
20: output = false
21: end if
22: send predicate output to parallel reduction
23: po← parallel reduction of output using logical OR in G′

24: return po
25: end procedure

5. Results of space efficient formats.

5.1. Testing matrices. We have used 11 testing matrices from various application domains from the
University of Florida Sparse Matrix Collection [5]. Table 4.1 shows the characteristics of the testing matrices.
For quantification of the reduction in data-representation size produced by a data format, we have used ratio
of space complexities. For comparison of the results, we have used these common formats:

• the COO format,
• the CSR format,
• the text-based Matrix Market format [4],
• the zipped Matrix Market format (we have used the PKZIP program with the option for maximal
compression).

For our purposes, we have excluded all temporary informations from the source Matrix Market files (like
comments and values of nonzero values).

5.2. Comparison of space complexities of common and ACB SSFs. Table 5.1 illustrates the fact
that the space complexity of storing the structure of these sparse matrices using common storage formats (COO
and CSR) are significantly greater than in the ACB format (independently on the padding). We can conclude
that the common SSFs (COO, CSR) are not suitable for our purposes.

5.3. Results for the tree-based formats. The ACB format is space optimal, but only if the distribution
of nonzero elements is random (i.e., without any locality in the matrix). Due to this fact, we use this format as
the reference format. Table 5.2 compares the ratios of the matrix space complexities in the MBT format w.r.t.
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Algorithm 7 Parallel transformation algorithm to the MBT format

1: procedure ParTr2MBT(A)
Input: A = the input matrix in the distributed CSR format
Output: S = the local bitstream of the resulting MBT format
2: i← index of the current processor
3: if i = 1 then ⊲ master section
4: S ← ()
5: enqueue {A, 1, 1, A.n,A.n, 0} into current
6: while |current | < k · P do
7: current ← ExpandLevel(S, current)
8: end while
9: store S in master file

10: convert current to array B
11: end if
12: barrier
13: one-to-all scatter of B
14: all-to-all scatter of matrix structure
15: S ← ()
16: C ← |current |
17: for j ← 1 + (i− 1)⌈C/P ⌉,min(i⌈C/P ⌉, C) do
18: {x1, y1, x2, y2, h} ← B[j]
19: D ← A[y1 . . . y2][x1 . . . x2]
20: Tr2MBT(D, x1, y1, x2, y2, h)
21: end for
22: store S in separate file dedicated to pi
23: return
24: end procedure

Matrix COO COO CSR CSR
SMIN SPOW SMIN SPOW

circuitM5 2.25 3.13 1.24 1.71
nlpkkt120 2.27 3.30 1.23 1.77
ldoor 2.40 3.84 1.26 2.00

TSOPF RS b2383 4.04 4.04 2.03 2.03
mouse gene 3.73 3.73 1.87 1.88

t2em 2.11 3.38 1.30 2.03
bmw7st 1 2.61 4.63 1.36 2.40

amazon0312 2.23 3.75 1.28 2.11
thread 2.98 3.18 1.52 1.63
gupta2 2.61 2.61 1.36 1.38
c-29 2.27 2.79 1.40 1.68

Table 5.1
The ratio of the space complexities of matrices in the COO or CSR formats using different paddings and in the ACB format.

other storage schemes. CR stands for compression rate. CR1 denotes the ratio of the MBT to the (CSR, SPOW)
format space complexities. CR2 denotes the ratio of the MBT to the ACB format space complexities. CR3
denotes the ratio of the MBT format space complexity to space complexity of the text based Matrix Market
format. CR4 denotes the ratio of the MBT format space complexities to the zipped Matrix Market format space
complexity.

Table 5.3 shows ratios of space complexities of the four tree-based formats studied in this paper to the ACB
format. From this table, we can observe that the CBT format:

• has usually smaller space complexity than the ACB format. There was only one exception among the
11 testing matrices: (mouse gene).
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Algorithm 8 Master section of parallel transformation algorithm to the MBT format

1: procedure ExpandLevel(S, current)
2: create empty queue new
3: while current is nonempty do
4: dequeue {x1, y1, x2, y2, h} from current
5: if h is even then
6: mx← x2; my ← (y1 + y2)/2
7: lx← x1; ly ← (y1 + y2)/2 + 1
8: else
9: mx← (x1 + x2)/2; my ← y2

10: lx← (x1 + x2)/2 + 1; ly ← y1
11: end if
12: l1← ParINES(A, x1, y1,mx,my)
13: l2← ParINES(A, lx, ly, x2, y2)
14: AppendToBitstream(S, l1)
15: AppendToBitstream(S, l2)
16: if l1 = true then
17: enqueue {A, x1, y1,mx,my, h+ 1} into next
18: end if
19: if l2 = true then
20: enqueue {A, lx, ly, x2, y2, h+ 1} into next
21: end if
22: end while
23: return next
24: end procedure

Matrix CR1 [%] CR2 [%] CR3 [%] CR4 [%]
circuitM5 16.5 28.3 4.9 28.8
nlpkkt120 12.8 22.6 3.5 25.6

ldoor 8 16.1 2.4 15.3
TSOPF RS b2383 15.6 31.5 2.7 14.0
mouse gene 73.0 137.0 12.8 53.9

t2em 16.3 33.0 5.7 26.2
bmw7st 1 8.5 20.3 2.8 15.7

amazon0312 53.1 112.1 18.1 67.7
thread 16.4 26.8 3.0 14.4
gupta2 28.7 39.7 5.3 23.3
c-29 31.7 53.4 8.6 27.2

Table 5.2
Comparison of the space complexity of the MBT format with that of other storage schemes.

• has similar space complexity as the MQT or CQT formats.

We can conclude that the CBT format is very space efficient.

5.4. Results for parallelization of the tree-based formats. The most time-consuming part of master
section of ParTr2MBT procedure (parallel implementation of conversion to the MBT format) is the blocking
call of ParINES (or ParINES2) procedure. To achieve good scalability of this code, the overhead of these
calls should be small in comparison to the global parameters (n and N), because these parameters influence the
time complexity of parallel section (local transformation) of ParTr2MBT procedure (see Sect. 3.2.3).

Table 5.4 shows the number of calls of ParINES in comparison to global parameters. From this table, we
can observe that these numbers of calls are relatively close to the parameter kP , so the parallel conversion to
the MBT format is reasonable (and the value of parameter k is suitable) if kP ≪ n.
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Matrix MBT [%] CBT [%] MQT [%] CQT [%]
circuitM5 27,4 24,4 26,6 26,5
nlpkkt120 26,1 23,5 19,8 19,8

ldoor 22,5 21,2 14,4 14,3
TSOPF RS b2383 36,1 35,9 33,6 33,5
mouse gene 130,8 111,0 130,4 128,0

t2em 36,6 31,7 29,9 29,4
bmw7st 1 26,3 25,0 20,3 20,3

amazon0312 110,8 89,1 107,1 103,1
thread 37,3 35,3 23,8 23,8
gupta2 48,0 42,3 36,3 36,0
c-29 55,7 48,8 51,3 50,9

Table 5.3
Comparison of the space complexity of the tree-based SSFs with that of the ACB format.

Matrix n N #calls (kP = 101) #calls (kP = 102) #calls (kP = 103)
circuitM5 5.56 · 106 5.95 · 107 20 278 4248
nlpkkt120 3.54 · 106 5.02 · 107 26 452 3852

ldoor 9.52 · 105 2.37 · 107 26 240 2204
TSOPF RS b2383 3.81 · 104 1.62 · 107 20 378 3210
mouse gene 4.51 · 104 1.45 · 107 22 220 2060

t2em 9.25 · 105 4.59 · 106 26 426 4906
bmw7st 1 1.41 · 105 3.74 · 106 22 232 3368

amazon0312 4.01 · 105 3.20 · 106 18 200 2072
thread 2.97 · 104 2.25 · 106 26 260 3486
gupta2 6.21 · 104 2.16 · 106 28 380 3888
c-29 5.03 · 103 2.44 · 104 26 348 3900

Table 5.4
The efficiency of parallel algorithm (the number of calls of ParINES).

6. Conclusions. This paper deals with the design of four new SSFs called arithmetical coding based
format, minimal binary tree format, compressed binary tree format, and compressed quadtree format. These
formats have been designed in order to minimize the space complexity. We performed experiments with these
formats and compared them with other common SSFs (COO or CSR) and other schemes used for LSMs in a
file. These experiments proved that our new formats can significantly reduce the amount of data needed for
storing LSMs. We have also presented a parallel algorithm for transformation of a LSM in the CSR format to
one of these newly proposed formats.
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[20] P. Tvrd́ık and I. Šimeček, A new diagonal blocking format and model of cache behavior for sparse matrices, in Proceedings of
the 6th International Conference on Parallel Processing and Applied Mathematics, vol. 12 of PPAM’05, Poznan, Poland,
2005, Springer-Verlag, pp. 164–171.

[21] I. H. Witten, R. M. Neal, and J. G. Cleary, Arithmetic coding for data compression, Commun. ACM, 30 (1987), pp. 520–
540.

[22] M. Tuma, Overview of direct methods, I. Winter School of SEMINAR ON NUMERICAL ANALYSIS, January 2004, Ostrava,
Czech Republic.

Edited by: Teodor Florin Fortiş
Received: Mar 3, 2014
Accepted: Apr 4, 2014


