
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 05, 2022

Tree Coding of Bilevel Images

Martins, Bo; Forchhammer, Søren

Published in:
I E E E Transactions on Image Processing

Link to article, DOI:
10.1109/83.663496

Publication date:
1998

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Martins, B., & Forchhammer, S. (1998). Tree Coding of Bilevel Images. I E E E Transactions on Image
Processing, 7(4), 517-528. https://doi.org/10.1109/83.663496

https://doi.org/10.1109/83.663496
https://orbit.dtu.dk/en/publications/019a5c11-4881-4db2-b3ba-31109c99f723
https://doi.org/10.1109/83.663496


IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 4, APRIL 1998 517

Tree Coding of Bilevel Images
Bo Martins and Søren Forchhammer

Abstract—Presently, sequential tree coders are the best general
purpose bilevel image coders and the best coders of halftoned
images. The current ISO standard, Joint Bilevel Image Experts
Group (JBIG), is a good example. A sequential tree coder encodes
the data by feeding estimates of conditional probabilities to an
arithmetic coder. The conditional probabilities are estimated
from co-occurrence statistics of past pixels, the statistics are
stored in a tree. By organizing code length calculations properly,
a vast number of possible models (trees) reflecting different pixel
orderings can be investigated within reasonable time prior to
generating the code. A number of general-purpose coders are
constructed according to this principle. Rissanen’s one-pass algo-
rithm, context, is presented in two modified versions. The baseline
is proven to be a universal coder. The faster version, which
is one order of magnitude slower than JBIG, obtains excellent
and highly robust compression performance. A multipass free
tree coding scheme produces superior compression results for all
test images. A multipass free template coding scheme produces
significantly better results than JBIG for difficult images such
as halftones. By utilizing randomized subsampling in the tem-
plate selection, the speed becomes acceptable for practical image
coding.

Index Terms—Bilevel images, context, halftone, image com-
pression, JBIG.

I. INTRODUCTION

BILEVEL image compression is useful in transmission
and archival applications. Facsimile transmission is still a

very important application because information is presented to
the receiver in the layout the sender chooses without the sender
having to support a broad range of receiver platforms. For the
same reason, distribution by computer nets of documents of
mixed text and halftones as bitmaps may also increase in the
future. High resolution text (400–600 dpi) and high-quality
halftones may be transmitted without increased bandwidth
provided more advanced algorithms than the present ones
are put into use. Especially, if instead of being scanned, the
documents are computer generated.

In this paper, we construct algorithms for compression of
primarily bilevel image material. The new algorithms may
also, with simple modifications, be used as stand-alone coders
of continuous-tone images with few (2–5) b/pixel and as gen-
eral purpose entropy/universal coders. We consider methods
based on sequential prediction of conditional probabilities that
are coded using arithmetic coding [1]. Two very important
examples of coders that use finite context modeling are JBIG
[2] and thecontext algorithm[3]–[6]. Where baseline JBIG

Manuscript received July 4, 1996; revised February 20, 1997. The associate
editor coordinating the review of this manuscript and approving it for
publication was Dr. Robert Forchheimer.

The authors are with the Department of Telecommunications, Technical
University of Denmark, DK-2800 Lyngby, Denmark (e-mail: bm@tele.dtu.dk;
sf@tele.dtu.dk).

Publisher Item Identifier S 1057-7149(98)02459-2.

operates with a specific model class defined by a ten-pixel
template (its default appearance is depicted in Fig. 1), the
context algorithm can be used as a variable-size template
algorithm. The past used for conditioning may be organized
in a tree. Important aspects of tree coders are the choice and
ordering of past prediction pixels and how many to use, i.e.,
the depth of each prediction. For one of the new algorithms,
the best compression on standard test images is the sole aim.
We construct a number of algorithms which are much less
complex, but still achieve considerably better compression
results than JBIG. Two of the new algorithms are modified
versions of the context algorithm. They are tailored for bilevel
image compression rather than universal coding and trade
some generality of the context algorithm for advantages in
terms of speed, compression performance, and memory usage.
The baseline version of the two is universal for a class of finite
context (finitely generated) stationary ergodic sources.

In Section II, we present a method for fast calculation
of code length useful for evaluating different models. The
context algorithm is treated in Section III. The new versions
are presented. A fast subsampling based method for choosing
and ordering context pixels is presented in Section IV. Aiming
at the highest compression, a generalization of template coding
to free tree coding is presented in Section V. Results are
presented in Section VI.

II. FINITE CONTEXT CODING

We consider tree coding of a bilevel image,, where the
pixels are coded sequentially in raster scan order. In this paper,

denotes the th pixel relative to raster scan order. The
unknown symbol at time, , is also denoted. Stochastic
variables are written in capitals, e.g., and . We adopt the
usual shorthand for strings and apply it to any ordered set of
symbols, thus, , is denoted . We use to denote
a conditional probability and to denote the corresponding
estimate. The arguments specify the conditional probability in
question.

In bilevel image coding the probability of the next symbol
is conditioned on its context. The context may be the value

of a number of pixels in a fixed spatial relationship to. The
selection of this set is a key problem. Based on the results
for finitely generated one-dimensional (1-D) sources [3], the
problem is frequently divided into an ordering of the pixels,
thereby defining a context string,, and a selection of a prefix
of this string as the coding context. Symbol probabilities of
different contexts as well as symbols generated in a given
context are usually treated as being independent. Thus, the
model becomes a collection of independent Bernoulli sources,
often arranged in a tree structure. By the assumptions of
independence, it becomes a simple matter to assign conditional

1057–7149/98$10.00 1998 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 14:06:43 UTC from IEEE Xplore.  Restrictions apply. 



518 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 4, APRIL 1998

Fig. 1. Default orderings of the past with maximum depth,l = 31. The ten first pixels of smallest 2-norm constitute the 3-line JBIG template with
default positioning of the adaptive pixel.

probabilities to a new event: Having determined the coding
context, the counts of that context alone form the basis of the
probability estimate of being zero. If zeroes and ones
were generated in context,, we use the (sequential) estimator:

(1)

In principle, this is the JBIG [2] estimator. The value ofis
optimized to 0.45 in [2] for a large number of bilevel images.

minimizes the stochastic complexity relative to the
class of all prior distributions [7]. The estimator is optimal [8]
if the events generated in contextare independent and if the
prior probability of initially is beta distributed with the
nuisance parameters .

A. Fast Bernoulli Code Length Calculation

In coding schemes where we investigate different tree mod-
els, we often wish to calculate the accumulated code length
of the events directly from the node counts. Let
denote the code length of a binary string with zeroes and

ones coded sequentially according to (1), as follows:

for and

for and

for xor

(2)

To make a fast calculation of we use a table,
, to look up the value for small counts:

. (The constant is 100 in our applica-
tions.) For larger values of and/or , we use Stirling’s
formula to approximate the value as shown in (3), at the
bottom of the page, where and

are constants. is a table for
. The logarithms are base 2. denotes the gamma

function.

III. CONTEXT ALGORITHM REVISITED

The context algorithm, first introduced in [3] and later
refined in [4]–[6], provides the means to select between a
number of context models for the data,. For bilevel images,
the context string is defined by a time-invariant ordering of
pixels and the coding context is picked as a time-varying
prefix of the context string. Pixel ordering is deferred to
Section IV. Organizing the reversed context strings, i.e., the
suffixes, in a tree, the context algorithm specifies the context
to be used at each time instance in two (interlaced) stages. The
first stage grows the tree. The second selects the context.

Node of the context tree stores the counts ,
. The count denotes the number of times that

took on value in context . Having selected the coding
context, say , the current pixel is encoded with arithmetic
coding using as the conditional probability for .
The probability estimate is computed from the counts in the
context tree using (1). The context denotes the zero-order
context.

The context algorithm has been presented in slightly differ-
ent variations. Below the context selection rules are reviewed.
We formulate them for a binary alphabet.

Traversing the tree path, , formed by the first bits in
, the context algorithm selects the coding node forby a

series of father-son code length comparisons. The algorithm

if and

if and

if and

if and

(3)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 14:06:43 UTC from IEEE Xplore.  Restrictions apply. 



MARTINS AND FORCHHAMMER: TREE CODING OF BILEVEL IMAGES 519

stops the first time a father is better than his sons. In [4] and
[5] the direction of traversal is from root to leaf. In [3] and [6],
the direction is toward the root in the sense that the deepest
node is chosen.

In [4]–[6], the basis of the father-son comparison is an
efficiency difference—an accumulation of the difference in
code length at the father node and the son of the
instances occurring at the son. For the instance the
contribution is

(4)

In [5] and [6], the efficiency difference may be stored in
the son node . In [4], the efficiency difference of the father
compared with each son were added (and could reasonably
be stored in the father node ). This way the father
is compared to both sons at once. When deciding whether
to prefer or as the coding node for the current,
yet unknown, symbol, the sign of the efficiency difference
determines the matter (positivemeans that the sons are better
than the father). Thus, the coding model is found by the
predictive minimum description length principle (PMDL).

We may view the above context selection principle of [4]
in a way that is only based on the counts , thereby
avoiding the need for storing efficiency differences in the tree.
Furthermore, it paves the way to a generalization of father-son
to ancestor-descendant comparison.

Let the current full path in the context tree be denoted
and the corresponding maximal size context be denoted.
The tree is traversed root to leaf (the depthof the son node is
initially one). Using code lengths (2), the efficiency difference
of the father and the two sons leads to the rule that if

(5)

then, for the events that were recorded in the context tree, the
sons did not do better than their father, and we terminate the
context selection declaring the coding context to be

. If (5) proved false, we disregard as the coding
context, increment , and repeat the evaluation of (5). If
the recursion did not terminate before depth, we define

.
We should mention that the choice of growth rule for the

context tree has a small effect on the value of the efficiency
difference, as the sons are not built at the same time as the
father node. As long as we make sure that both father and sons
in some sense account for the same events, the precise details
are not important. The growth rule that we shall employ for
the context tree is described in Section III-B.

An interesting experimental observation described in [5]
and [6] is that compression results on grey-scale images are
greatly improved if the efficiency difference is initialized by
a positive amount, , so that there is a bias toward using the
sons. Furthermore, in [6] the efficiency difference is clamped
to a maximum absolute value.

A. A Baseline Full Path Algorithm Context (FPAC-B)

The above algorithm compares father and son on the context
path. We generalize this comparison to the case where an
ancestor node is compared to a descendant. Our bid for a
modified version of the context algorithm tailored for bilevel
image coding is a -step algorithm to perform the selection
of one of the nodes in the path. We compute the coding context
as the PMDL-optimal context in longer and longer subpaths
of , naming the PMDL-optimal contexts ,
where . Define initially as , i.e.,
the root. Initially, let and compute the code length
difference between symbols generated in the ancestor context

on one side and, on the other side, symbols being
generated in the descendant contextand the complement
to context with respect to , i.e., context strings for
which but not is a prefix. If

(6)

we declare , as the descendant and its comple-
ment with respect to the ancestor did not do better than the
ancestor for the events that were recorded in the context tree.
If (6) proved false, we declare . In any event we
increment and repeat the evaluation of (6). After steps
we have the desired context, . We use the fast calculation
of (3) to compute the Bernoulli code lengths.

As in [6], we choose to bound by some maximal value,
. This for one thing has the effect that we need not worry

about the additional context selection requirements in [3] that
has the effect of excluding nodes of unreliable statistics. The
context tree may be grown as in [3], [5], or [6], but we use
growth by copy and attenuate(see Section III-B).

The motivation behind the new context selection is the
observation that the conditional probability in an ancestor
node is the weighted sum of the conditional probabilities in
a subtree of descendants, and although at a given time the
difference between the empirical distributions, , in
an ancestor and a descendant may be quite significant, it is
possible that none of the father-son pairs along the path have
a significantly different empirical distribution.

The modified context algorithm based on (6) we refer to as
the full-path context algorithm (FPAC). The baseline version
(FPAC-B) is given above. A faster version is presented next.

B. A Fast Full Path Algorithm Context (FPAC-F)

FPAC may be improved in speed (and compression perfor-
mance) by introducing four different refinements:

1) occasional checking for the best context;
2) typical prediction as in JBIG;
3) renormalizations of counts (introducing local adaptiv-

ity);
4) tree growth by copy and attenuate (see below).

All the refinements serve to increase the speed. We can hope
for a compression improvement over FPAC-B due to the local
adaptivity. The typical prediction may also yield improvement
for some data.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 14:06:43 UTC from IEEE Xplore.  Restrictions apply. 



520 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 4, APRIL 1998

1) Occasional Checking. If the source is stationary all
probabilities inferred by the node counts converge as

approaches infinity. Therefore, in a particular leaf
context, , for larger than some threshold, FPAC-
B always comes out with the same PMDL-optimal node

. For this reason, we can skip the search for
most of the time using the formerly found PMDL-
optimal node as the coding node for path .
All that is required is that we at each leaf node in the
tree store a pointer to that node on its path that was
found PMDL-optimal at the last evaluation. A suitable
scheme of when to do the search also needs to be
defined. Checking occurs when the leaf counts exceed a
(dynamic) threshold, , and when a pair of sons
is appended to the tree.

2) Typical Prediction (optional). To increase encoding and
decoding speed of, e.g., scanned text we adopt the (base-
line) typical prediction of JBIG [2]. Typical prediction
applies to an entire image line. The definition of a typical
line is a line that replicates the former line. In our
codec the event,line m is typical/nontypicalis modeled
as a first order Markov process in, using the usual
predictor with equal to 0.45.

3) Renormalizations. Real life data are rarely stationary
[2], [9], [10], and algorithms are modified accordingly.
We implement local adaptivity by scaling the recorded
frequency counts. The procedure consists of occasionally
subtracting leaf events from some leaf and all its ances-
tors. For the sake of simplicity, this renormalization step
is combined with the procedure of occasional checking
for the best context. A parameter controls how often
to do the full-path search.

FPAC-F does the following for each pixel (on a
nontypical line).

Climb the tree to the leaf,
Use for the coding node, , the node pointed
to by the leaf,
If

if the tree should not grow
Perform the full path search of (6).
Save in the leaf, , a pointer to .

for

for and

elseappend sons to by the growth procedure.
Update the context tree. (7)

A path does not grow if or if we have reached
the maximal number of nodes, , in the context
tree (i.e., reached the statistics memory limit). We do
not delete nodes. The restrictions on the growth of the
tree combined with scaling have a side effect of local
adaptivity which is sometimes useful. By (7), the counts
in the tree grow as instead of (see [8]).

4) Copy and Attenuate (optional). Generating a new pair of
context tree leaves costs time and memory. Therefore,

as in [6] we parameterize the growth rule of the context
tree so that a node bears sons when equals
some threshold . Instead of initializing the counts
of the new-born sons by zero, we exploit the assumed
dependence between the father node and the sons by
initializing the sons with the expected counts as follows:

(8)

Disregarding the truncation, the initializations corre-
spond to a prior Beta distribution

for the zero-probabilities in context
.

1) Universal Coding: In the previous sections, the context
algorithm was modified specifically so as to obtain better
compression of bilevel images. The theoretical impact of the
modifications with respect to universality for binary sources is
investigated here. In the theorem below, we prove that FPAC-B
is a universal code for an important subclass of tree sources.

We consider a tree source over the alphabet with
given branch labelings where for given, the (unknown)
conditional probabilities of each sizepath satisfy:

for (9)

where the numbers, , denote unknown con-
stants. Thus, the smallest unique subset,, of the contexts

describes a complete subtree.
Furthermore, we require the ergodic theorem to hold true

in each node, , such that with probability 1 the maximum
likelihood estimate of , formed by the frequency counts
in that node, divided by the true conditional probability,

, goes to 1 as approaches infinity.
In the following theorem, we shall assume sufficient mem-

ory.
Theorem 1: Let be an infinite string generated by a binary

tree source with restriction on the maximal depth as defined
by (9) and satisfying ergodicity of the nodes. Using FPAC-B,
for almost all samples

as (10)

and the code length

as (11)

The proof of Theorem 1 is given in the Appendix.
The requirement about multiple ergodicity is (probably)

more restrictive than merely requiring the source to be ergodic,
but we propose Theorem 1 to hold true also in the latter case.

The maximum depth,, imposed on context paths makes
the algorithm less general and the proof easier than, e.g., for
the context algorithm in [3]. In practice, memory is limited
and some fixed limit reasonable. Following the theorem, a
given node allowance, , will bound to .
In practice it is better to pick a largerand slowly use up the
memory as the context tree grows.

FPAC-B or FPAC-F are not immediately applicable for the
encoding of a multialphabet source, but they can be used if

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 14:06:43 UTC from IEEE Xplore.  Restrictions apply. 



MARTINS AND FORCHHAMMER: TREE CODING OF BILEVEL IMAGES 521

the multialphabet problem is binarized. Compression may be
achieved by forming a separate context tree for each bit in the
binary decomposition. In encoding theth most significant
bit in the binary decomposition of theth sample, the context
bits would be among the more significant decomposition
bits at time and all the decomposition bits at earlier times.
If for a given binary decomposition of a multialphabet source,
the components of the decomposed source obey the condition
of (9) and are coded using FPAC-B, then the per symbol code
length approaches the entropy of the source asapproaches
infinity. Modifications of the context algorithm for grey-scale
images was presented in [6].

IV. FREE TEMPLATE CODING

Template coding may be perceived as a simplification of
codes like the context algorithm. Template coding is more
practical because template decoding is faster and much simpler
than variable-depth decoding. The compression and encoding
speed varies greatly with the effort put into finding the
template. It is, therefore, of practical interest to find fast
schemes for producing very good templates. The baseline
JBIG is a ten-pixel template coder with one free template
pixel. The free pixel is essential for efficient compression of
periodic halftones. Additional free template pixels may capture
the halftone period even better and increase compression. In
free template coding, the entire template is freed. The identity
of the free template is communicated to the decoder prior to
coding the data. For a template of size, we have to transmit

and the coordinates of the template pixels. We shall not
consider this negligible cost in the following.

Template coding with multiple free pixels has been reported
in [11] and [12]. Multiple encodings using different templates
or simulated encodings using approximations to code length
(e.g., conditional entropy) as a selection criterion were used
to construct the final template. Both references reported sig-
nificant improvements in code length compared to coding
with a fixed template. In the following section, we present an
algorithm for constructing a free template which is based on
simulated encodings using precise code lengths as the selection
criterion.

A. Greedy Construction of the Free Template

We grow the template by a greedy approach. Once a
template pixel is selected, it stays in the template. Theth
context bit, , may be chosen among the pixels of the search
area of Fig. 2. The candidates are
denoted .

The code length that would result from picking as
given the already chosen template pixels may be

calculated as follows:

(12)

Based on (12), the best pixel (or no pixel) is picked.

Fig. 2. Search area for context pixels. Definition of absolute and relative
coordinates.U has relative coordinates(j1; j2) = (0; 0) and absolute
coordinates(m1; m2).

B. Complexity Reduction

To evaluate (12) for all the candidates we only need a
single pass of the data, updating a table of dimensions
as we go along. In computing (12) we use the fast calculation
(3).

Because the memory requirement is exponential inwe
choose the number of candidates,, to be inversely propor-
tional to for larger than some value . When decreasing
the set of candidate pixels, we throw away those pixels that
have the largest 1-norm distance to(see Fig. 1).

The time for building a th order template is denoted.
We have

(13)

where and are constants with respect to image size
and . The term comes from calculating the

context entry of the statistics table. The term comes
from updating the counters for each
candidate in the search area.

1) Subsampling:The time, , for growing the template
can be reduced if we base the choice of theth context
pixel on a smaller number of pixels, , than the total
number, . One way to implement this is to cut out what
is supposedly a representative part of the image and use that
to grow the template. This procedure is extremely sensitive
to instationarities. As a new idea we choose to pick the
pixels by subsampling. We jump from pixel to pixel but encode
them (i.e., emulate coding of them) in their correct context.
A general description of subsampling in two dimensions is
given in [13, ch. 2]. In subsampling, points on the input lattice

are associated with points on a subsampling lattice
. We modify hexagonal subsampling as described in

[13] introducing a subsampling factor . Furthermore, we
introduce (pseudo)random offsets so that the
points on the input lattice do not appear in a regular grid, which
may interfere with the periodic grid of a halftoned image. Our
scaled, randomized hexagonal subsampling takes the form

(14)

There are as many pixels in the input lattice as in the
subsampling lattice. The offsets are determined
by a simple random generator picking one of the points
associated with each sampling center.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 14:06:43 UTC from IEEE Xplore.  Restrictions apply. 



522 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 4, APRIL 1998

Fig. 3. Free tree for test image c04a200 (b = 4000 b). The cost of coding the data is 493 328 b. The cost of coding the structure of the tree is 25 b. To code
the 12 split pixels, which are stored in the internal nodes of the tree, we use12�11 b. The code string for the tree structure is 1 111 000 100 111 100 010 100 100.

TABLE I
A SUBSAMPLING SCHEME, ks(k) = bk0

k
k=1 sf (k)c.

SUBSAMPLING TAKES PLACE FOR ks(k) > 0

The subsampling factor should be chosen so that
is just large enough to allow us to pick a good template
pixel. In particular, should be chosen so that the growth of
the template is not terminated prematurely. For both reasons,
we need to decrement with the template size, . The
subsampling scheme should reflect the expected form of

, a function that goes rapidly to 0 for
growing . For large , we attempt to keep the variance of the
estimate of independent of . For a specific node,

, and its one son, , the maximum likelihood estimates,
and , are asymptotically normal. If

we shall need twice the number of events at depth
because we treat nodes and as independent.

Hence, for large we use . For
smaller , i.e., larger , we can relax
the equal-variance requirement. By some experimentation we
choose the subsampling scheme of Table I. The constant,

, of the subsampling scheme is picked experimentally as
. The max function ensures

that a coding scheme where we select only few context pixels
will not be dramatically slowed down by the template selection
procedure.

C. Hybrid Coding

Template coding may be perceived as coding with the leaves
of a perfectly balanced tree. If the number of template pixels

is large, most leaves will contain insufficient statistics for
sharp prediction. To improve compression an algorithm like
FPAC-B or FPAC-F may be used to determine the coding
depth. With variable depth coding, it becomes less critical to
find all the template pixels by greedy searches.

We construct a hybrid coder where the ordering of pixels is
determined in three steps.

1) Let the first pixels be chosen by default (1-norm).
2) Let the next context pixels be found in

searches.
3) Let the last pixels be chosen by default.

The search procedure for the pixels is identical to the
search procedure by which we grow a free template. With the
hybrid coder, we first communicate the pixel ordering and then
run FPAC-B or FPAC-F. 1-norm distance is used as default
ordering throughout the paper. In a few places comparison
with 2-norm (Fig. 1) is presented.

The variable depth of hybrid coding will usually improve
compression also when all the pixels are picked by searching.
This is because the resulting template is a compromise between
unnecessary initialization cost in some parts of the corre-
sponding balanced tree and forfeited opportunities to reduce
conditional entropy in other parts of the tree.

V. FREE TREE CODING

Aiming at the best compression, we use a coding method
that is more strongly adapted to the data than coding with a
free template or the context algorithm. The context ofis
still defined by the color of a number of context pixels in a
fixed spatial relationship to , but now the th context pixel
depends on the values of the first context pixels, .
The organization of the context is stored in the nodes of a
context tree, which also contain frequency counts that grow
during coding. We call the pixel , whose value defines
in the particular path , the split pixel of node . The
coding depth of the free tree does not change as in the context
algorithm. We always code with a leaf. The free tree is found
on the encoding side and transmitted to the decoder before
transmitting the data. An (unrealistically small) example of a
free tree is given in Fig. 3. The coordinates (, ) of the split
pixels are relative to the position of (Fig. 2).

Free tree coding has been used by Nohre [14] for coding
grey-scale images. The multialphabet problem was binarized
as outlined in Section III-B1 and the individual binary deci-
sions coded with a free tree. Nohre also gave an algorithm for
constructing a free tree for bilevel coding.

A. Construction of the Free Tree—Greedy Build-Up

The problem in free tree coding is how to construct the tree.
In the bilevel case, Nohre used a very small number (24) of
candidates for split pixels, . The small number enabled him
to construct a balanced tree of depth and rearrange the tree
following the concept that an optimal tree cannot consist of

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 14:06:43 UTC from IEEE Xplore.  Restrictions apply. 



MARTINS AND FORCHHAMMER: TREE CODING OF BILEVEL IMAGES 523

nonoptimal subtrees. This procedure does not take into account
the cost of transmitting the tree. For most bilevel images,
should be large ( ), as pixels of good predictability may
lie far from . We choose a large and consequently, due
to complexity, limit ourselves to a series of greedy searches
when constructing the tree. Because of the large number of
potential split pixels, the cost of coding the tree is potentially
large and we must incorporate the tree cost in the procedure
by which we grow the tree.

Assume that the free tree is defined as far as to the th
context bit in some path of the tree. We wish to select the best
context pixel, , given the specific context . Pixel may
be chosen among the candidates in the area depicted in Fig. 2.
The code length that would result from picking a particular
candidate pixel as may be calculated as follows:

(15)

The notation means that we only consider the events
for which the size context equals the specific context

. Equation (15) gives us the means to compare different
candidates for in context . Again, we pick the best
pixel (or no pixel), but this time in each node of the tree.

A split pixel should only be defined if by doing so the
incremental tree cost is smaller than the reduction in the
code length of the data given the larger tree. The free tree is
unbalanced, so besides the need to code the identity of the split
pixels, we need to code the tree structure itself. For the latter
job, we adopt the procedure of [14]. We create a binary string

to describe the anonymous tree structure whereequals
zero if node no. is a leaf. The nodes of the tree are visited
one by one, depth first, starting at the left branches. Consider
the example of Fig. 3—the nodes are visited as follows (left
branch is zero and right branch is one): root 0 00
000 0000 0001 001 01 010 011 1
10 100 1000 10 000 100 001 1001 101
1010 1011 10 110 10 111 11 110 111.

If the number of leaves in the tree is denoted by , then
the total number of nodes is and the number of internal
nodes is . Using 1 b for each node, we codewith
bits or approximately 2 bits per internal node. The identity of
a split pixel may be indexed with bits.
A suitable prefix code [8] realizes this cost. For ,
the prefix code codes a split pixel with b. The total
cost of changing a leaf into an internal node (appending sons
to it) is, therefore, approximately bits.

By using the growth rule that
must be larger than the incremental tree coding cost, b, in
order to grow the tree adding, the tree will not be too large.
As the cost of expanding the tree may surely be smaller than

b, the tree might be too small. A bit of experimentation,
simulating (optimistically) reduced tree coding costs does not
affect the code length of the data much, so what may be gained
by a more clever tree coding scheme is basically a reduction
of the tree coding costs, which constitute only about 8% of
the total code length.

In this paper, we parameterize the growth decision using
an incremental tree cost (defaulting to bits). The
parameterization allows a trade-off between compression and
tree construction time. Most of the compression is usually
obtained with the first few branches of the big coding tree.
The example of Fig. 3 illustrates this point: a free tree with
as few as 13 leaves can compress test image by a
factor of 8.32.

Above, we considered free tree coding as a two-step pro-
cedure where we transmit the tree first and the data next.
Empirical results in [8] show that a free tree may be con-
structed truly predictively in such a way that the compression
performance on large and difficult images will be better than
what can be obtained with FPAC-B and FPAC-F. The good
results do not extend to all images, because initially the one-
pass free tree is too small to give sharp prediction.

VI. COMPRESSION ANDCOMPLEXITY RESULTS

The test images used in this paper are mainly the Stockholm
(JBIG) test set [15] and the (ambiguous) CCITT test set [16]
supplemented by a80c [17], a halftone test image for the
graphic arts in Scandinavia. The Stockholm images are marked
by initial letter s and the CCITT images by initial letterc.
The images contain scanned text, line art, and halftones. The
troublesome halftones are the mixture image s06a400, the error
diffusion s09a400, and the clustered dot periodic halftone a80c.
The main groups are text and line drawings (TL) and halftones
(H). Text and line art are further divided in computer generated
(C) and scanned (S). The latter being split into little or medium
amount of printing (l) and dense printing (d). The halftoned
images are marked whether they are periodic (P) or not, and
whether they are dither (D) or not. We make these distinctions
because the compression and the comparisons differ by the
nature of the material.

A. Compression Results

We distinguish between truly predictive algorithms with
default pixel ordering (fast one-pass algorithms, Table II) and
multipass algorithms where the pixel ordering is established
fully or in part prior to coding the data (Table III). It is
a drawback for the multipass algorithms that they require
enough memory to buffer the entire image and introduce a
delay. The JBIG recommendation [2] suggests how to position
the adaptive template pixel on the fly, based on a simple
correlation between and each candidate pixel,, over the
first 2000 pixels of an image stripe (a horizontal slice of the
image). By the sparse and uneven choice of representative
pixels and by disregarding the influence of the nine fixed
template pixels in the selection of, there is a risk of picking
a nonoptimal adaptive pixel. JBIG compression results for
the test images (except a80c) are given in [18]. Considerably
better compression results are obtained if we use the free
template algorithm to determine the position of the adaptive
template pixel given the nine fixed template pixels of the
three-line template. The improvement is 20% on halftones,
10% overall compared to [18]. JBIG with this optimized pixel
selection is our reference for the new multipass algorithms.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 14:06:43 UTC from IEEE Xplore.  Restrictions apply. 



524 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 4, APRIL 1998

TABLE II
ONE-PASS CODING COMPARISON OF JBIG AND

FPAC-F. TYPICAL PREDICTION IS USED FOR BOTH

Relative improvements in this paper are given as the increase
in compression factor. The compression factor is defined as
uncompressed data size divided by code length.

The arithmetic coder of JBIG is a QM-coder, for all other
results the arithmetic coder is the one described in [8] and [1].
With the latter coder the difference between the calculated
code length and the file count is approximately 100 b for
most images, a negligible amount. The images are zero-padded
when being coded. For all algorithms, the parameters applied
are all specified in the respective table and figure texts.

1) One-Pass Compression Results:FPAC-F (Section III-
B) gives slightly ( %) better results on the test images than
FPAC-B (Section III-A). Both algorithms outperform default
template JBIG for all images. Table II gives a comparison of
fixed template JBIG and FPAC-F. Overall, FPAC-F provides
a 41% higher compression factor than JBIG. The gain comes
primarily from a better compression of the halftones (51%
totally), whereas the improvement is 13% on text and line art.

The default ordering of pixels was chosen to be 1-norm
rather than 2-norm due to the performance on periodic,
dithered halftones (172% better than JBIG) and on text.
Assuming a halftone period of 5 or 6 and ordering by

Fig. 4. Template for test image s04a400 found by the free template al-
gorithm. Initial search area:(h; w) = (16; 16), limitation of search area
(1-norm) fork > ksh = 12. Memory usage is 16 MB.

2-norm, the periodicity will not be captured for any reasonable
value of the maximal context tree depth,(see Fig. 1).

A test was conducted to evaluate the context selection based
on ancestor-descendant comparison as in FPAC against basing
the selection on comparison of the father and its two sons as
in the context algorithm [4]. For this purpose, FPAC-B was
compared with a coder that is identical to FPAC-B in every
respect except that it uses the father-son context selection
rule of (5). With this father-son selection rule [4], the tree is
climbed root-to-leaf and the coding node is the first father that
is better than his son. This is a hesitant climb rule. To improve
it, we also imitate the initialization of [5], [6] by adding
bits to the right-hand side of (5) to bias the result to disfavor
the father model. Fig. 5 shows the result on the test set as a
function of . If exceeds the maximal model cost difference,

, between the father model and the sons model,
nothing is left of the PMDL idea—the coder will choose the
leaf as the coding context. Because FPAC-B uses bounds on
the context tree, a leaf coder can perform quite well as long as
the bounding parameters are neither very small nor very large.
On the test images, FPAC-B gives the best results. Using a
reasonable choice of bias ( ), the father-son selection
outperforms JBIG, whereas the unbiased father-son context
selection [4] here performs worse than JBIG. As seen in Fig. 5,
even with the best choice of the father-son algorithm is not
better than a much less complex coder where a leaf is preferred
deterministically ( ). Without bounds on the tree size
as in the actual context algorithm, leaf coding would not give
good results and the biasshould be chosen differently. Other
versions of the context algorithm may give better results than
the father-son results reported here.

In Fig. 5, FPAC-B is 6% better than the leaf coder, and
is 14% better on text and line art. For small values ofand

, FPAC-B performance drops somewhat and the leaf coder
performance drops only slightly due to improved coding on
text and line art, so that FPAC-B is only 2% better overall.
Another (faster) low-complexity coder of interest is an-pixel
template coder. Fig. 6 displays the results. With , the
memory usage is still moderate and the template coder is
considerably better than JBIG.

2) Multipass Compression Results:
The free tree algorithm (Section V) produces excellent

compression results (Table III) for all image types, 46%

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 14:06:43 UTC from IEEE Xplore.  Restrictions apply. 



MARTINS AND FORCHHAMMER: TREE CODING OF BILEVEL IMAGES 525

TABLE III
MULTIPASS RESULTS. FREE TEMPLATE AND HYBRID CODING: LIMITATION OF SEARCH AREA (1-NORM) FOR k > ksh. HYBRID CODING: DEFAULT

ORDERING: 1-NORM. ts DENOTES THEPART OF THE CODING TIME, tc, THAT WAS USED TO PICK THE k � r FREE TEMPLATE PIXELS, WHERE

k � kmax. FPAC-F WAS RUN WITH l = 24, (k1 = 10, Tca = 0). JBIG: FREE TEMPLATE SELECTION OF THE ADAPTIVE TEMPLATE (NOT

INCLUDED IN THE TIMINGS). TYPICAL PREDICTION IS APPLIED EXCEPT FOR THEFREE TREE (h = w = 16 FOR ALL RESULTS)

Fig. 5. Comparison between FPAC-B (nonfilled square) and “FPAC-B”
using a context selection rule similar to that of the context algorithm [4] with
biasQ (circle). Default pixel ordering (1-norm). Parameters for both coders
arel = 31, NSt = 349525, Tca = 0. The pure PMDL context selection [4]
corresponds toQ = 0. BiasQ = 1 corresponds to a leaf coder. The filled
square displays the FPAC-B total withl = 24, NSt = 87381, Tca = 0.

better than optimized JBIG totally (and 100% better than
default JBIG). Again, most is gained on halftones (55%). The
compression results for the halftones are, to our knowledge,
better than anything in the literature. For stochastic halftones,
the context tree should be large but not necessarily very

Fig. 6. Overall compression results withl-pixel template coding with 1-norm
ranking. Typical prediction is on. A simple form of JBIG local adaptivity is
applied.

flexible. Our otherwise second best algorithm—the hybrid
algorithm (Section IV-C) where the free template search
determines the pixel ordering up to some order—seems to
be a better choice for these images. Our sample in the test
set, s09a400, is coded best with the hybrid algorithm where
the default pixel ordering is by 2-norm (the natural choice for
stochastic images). With the parameter setting ,

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 14:06:43 UTC from IEEE Xplore.  Restrictions apply. 



526 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 4, APRIL 1998

, , , , and no subsampling,
the code length becomes 65 968 bytes—the best result on
this image. Finding only few context pixels by searching, the
encoding complexity of the hybrid algorithm is reduced very
much. With maximum 4 adaptive pixels and a template size
of 16, the loss in compression by this partly free template
algorithm compared to the hybrid algorithm is 7% overall (6%
if we apply a simple form of JBIG adaptivity to the template
coder).

If the full template is found by searching (Fig. 4), we may
code with leaves (i.e., use template coding) at almost no
cost in compression performance. This is free template coding
(Section IV). Decoding memory is saved by this choice and
decoding speed is increased.

The free template algorithm and the hybrid algorithm of
moderate complexity (Table III) are approximately 25% better
than optimized JBIG overall. In particular, the halftones are
coded better. All the multipass algorithms perform better on
periodic, clustered dot halftones as used in the graphic arts if
we use an increased search area, say, . With
the larger search area the free tree compresses a80c to 311 469
bytes. The results on the text images show that the margin to
JBIG is highly increased with computer-generated material.
To investigate the performance of our algorithms on computer
generated halftones, we created a number of high-resolution
clustered dot halftones of the Lena image with the threshold
halftoning algorithm described in [17]. The hybrid algorithm
with , , , , compressed
these images 80% better than optimized JBIG. The free tree
with , , compressed them 144% better
than optimized JBIG.

We have focused on halftones, where the most seems to
be gained. Another reason is that the more specialized soft
pattern matching (SPM) techniques [19] as a preprocessing
offers improved compression for text. SPM plays the role of
enabling context pixels to be placed around that same spot in
a matching letter as covers in the current letter.

B. Complexity

Timing results for the algorithms of moderate complexity
are given in Tables II and III. denotes the time for compress-
ing an image. The timing results are obtained with algorithms
implemented in C (using the UNIX timex command) on an
HP 9000, series 755 computer. With default pixel ordering
FPAC-F is approximately 12 times slower than JBIG in the
given software implementations. The hybrid algorithm with
maximum 4 adaptive pixels is 16 times slower than default
template JBIG in our implementations. The throughput of this
algorithm on the chosen platform is 100 kpixels/s. Speed can
be improved by replacing FPAC-F by template coding. With
maximum 4 adaptive pixels and a template size of 16 the
algorithm is four times slower than default template JBIG
(in the implementations we have). For FPAC, the maximal
context tree depth,, significantly influences compression time,
because the tree must be climbed for most if not all pixels. In
our implementation of FPAC-B and FPAC-F, each context tree
node holds six integers of 4 bytes each, so that

corresponds to a memory requirement of 2 megabytes. The
memory requirement may easily be lowered with the same
number of nodes but at some cost in compression time. Small
values of and were chosen in Tables II and III.

VII. CONCLUSION

We have considered a number of general purpose schemes
of predictive coding for bilevel image compression.

Two modified versions of the context algorithm, FPAC-
B and FPAC-F, have been presented. FPAC-B was proven
universal on the important class of tree sources (defined by the
chosen pixel ordering) for which the maximal depth of the tree
is not larger than a predefined value,. Both algorithms give
good results and robust performance on the test images. FPAC-
F is much faster than other versions of the context algorithm.
With default pixel ordering the compression factor of FPAC-F
is 41% better than JBIG over a large test set. The largest gain
is for dithered periodic halftones (172% better than JBIG).

Choosing a good ordering of the context pixels has great
influence on compression, especially for periodic images.
The context pixel selection may be performed using greedy
selection and multipass coding. Our best multipass algorithm
(the free tree algorithm) choosing the ordering most minutely,
compresses periodic halftones 78% better than FPAC-F with
default pixel ordering (42% overall). Free tree coding produces
superior compression results for all types of images (except,
perhaps, stochastic halftones), but the encoding is too slow
for other purposes than bench marking. Free template coding
gives substantial improvements over optimized JBIG for pure
halftones and mixture images and moderate improvements
for images of dense printing. For the optimized JBIG, the
JBIG adaptive template was chosen with the free template
algorithm, thereby improving the performance on periodic
halftones substantially. Basing the greedy template selection
on image pixels in a randomized, hexagonal grid and gradually
decreasing the search area for the template pixels, the template
selection becomes feasible for software implementation on a
general purpose computer. Free template decoding speed is of
the same order of magnitude as JBIG decoding speed. Using
the free template algorithm to (partly) define an ordering of
pixels and letting FPAC-F determine the coding depth, the
compression performance is increased a little at the cost of
complexity and of increased decoding and encoding time.
Stochastic halftoned images were coded best by this technique
(hybrid coding). By using fewer minutely determined template
pixels in the ordering, the algorithm becomes an attractive
compromise of compression performance and complexity. The
compression factor is totally 25% better than that of optimized
JBIG. In the given software implementations, the hybrid
algorithm is one order of magnitude slower on the encoding
side than default template JBIG. By replacing FPAC-F by
template coding, speed is greatly improved at a moderate loss
in compression performance.

Both one-pass and multipass algorithms perform compara-
tively better with high-quality images. For computer generated
images (compared to scanned images), the percentual gain over
JBIG is doubled or tripled.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 14:06:43 UTC from IEEE Xplore.  Restrictions apply. 



MARTINS AND FORCHHAMMER: TREE CODING OF BILEVEL IMAGES 527

APPENDIX

Proof of Theorem:The proof of Theorem 1 is quite anal-
ogous to the proof in [3]—it falls in two parts: In Part 1,
we prove that for with probability , the context
(where is a positive integer) will be preferred to by FPAC-
B if , which means that we will choose a
coding node which at least has depth . As we have limited
depth, this accounts for FPAC-B being a universal coder. In
Part 2, we prove that for with probability the context

(where is a positive integer) will not be used as the
coding node. This together with Part 1 proves the remainder
of the theorem.

To prove the theorem, we need a lemma to state that the
effect of choosing a particular value ofin a Bernoulli model
of almost any binary string has an effect on its code length,
which is of magnitude for its length approaching infinity.
For , we will with probability have
[see (3)] as long as all conditional probabilities, , are
greater than zero. To include degenerate sources in the proof
is trivial but will decrease its legibility. The code length

will thus be approximated by where

(16)

where . By the Taylor expan-
sion, , we get the following lemma.

Lemma A.1:

(17)

(18)

where and denotes the binary entropy
function .

Define the shorthand . To ease notation fur-
ther, define a stochastic variable,, such that

and denotes the compli-
ment of with respect to . Let refer to .
In this notation, is a shorthand of
the middle code length in (6). Let refer to , and let

, as follows.
Part 1:

(19)

(20)

with prob. 1 for (21)

In the last equation, we used the ergodic property, assumed
valid for all contexts. The expression is a function that
goes to zero as approaches infinity. The constant

is nonpositive and zero only when for all
values of and . Hence, with probability for

.
Part 2: Define and

and . For we have

(22)

(23)

(24)

Defining we get
and

. By
the Taylor expansion, , we get

(25)

As the maximal depth of the tree is bounded by a constant,,
and as the node counts in the tree are bounded from below
by a function that is proportional to we can repeat the
remaining steps of the proof in [3] with the result
with probability for .

The use of copy and attenuate initialization of counters only
offsets the counters by a constant and does not change the
proof.

REFERENCES

[1] J. Rissanen,Stochastic Complexity in Statistical Inquiry.Singapore:
World Scientific, 1989.

[2] JBIG, “Progressive bi-level image compression,”ISO/IEC Int. Standard
11544, 1993.

[3] J. Rissanen, “A universal data compression system,”IEEE Trans.
Inform. Theory,vol. IT-29, pp. 656–664, Sept. 1983.

[4] , “Complexity of strings in the class of Markov sources,”IEEE
Trans. Inform. Theory,vol. IT-32, pp. 526–532, July 1986.

[5] , “Noise separation and MDL modeling of chaotic processes,” in
From Statistical Physics to Statistical Inference and Back,P. Grassberger
and J.-P. Nadal, Eds. Boston, MA: Kluwer, 1994.

[6] J. Rissanen, M. Weinberger, and R. Arps, “Applications of universal
context modeling to lossless compression of grey-scale images,”IEEE
Trans. Image Processing,vol. 5, pp. 575–586, Apr. 1996.

[7] J. Rissanen, “Fisher information and stochastic complexity,”IEEE
Trans. Inform. Theory,vol. 42, pp. 40–47, Jan. 1996.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 14:06:43 UTC from IEEE Xplore.  Restrictions apply. 



528 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 4, APRIL 1998

[8] B. Martins, “Lossless compression of digital images,” Ph.D. dissertation,
Tech. Univ. Denmark, Lyngby, Feb. 1996.

[9] P. G. Howard, “The design and analysis of efficient lossless data
compression systems,” Ph.D. dissertation, Dept. Comput. Sci., Brown
Univ., Providence, RI, June 1993.

[10] R. N. Williams, Adaptive Data Compression.Boston, MA: Kluwer,
1991.

[11] S. Forchhammer and U. Skands, “Adaptive compression of bi-level
halftone images using the JBIG arithmetic coder,” Tech. Rep. TR IT-
135, Tech. Univ. Denmark, Lyngby, Feb. 1993.

[12] R. B. Arps, T. D. Friedman, and R. C. Pasco, “Optimizing models for
data compression using the MDL principle and stochastic complexity,”
in Proc. 1990 Picture Coding Symp.,Cambridge, MA, Mar. 1990,
Session 5.6.

[13] J. W. Woods,Subband Image Coding.Boston, MA: Kluwer, 1991.
[14] R. Nohre, “Some topics in descriptive complexity,” Ph.D. dissertation,

Linköping Studies Sci. Technol., Linköping Univ., Link̈oping, Sweden,
1993.

[15] R. B. Arps and T. K. Truong, “Comparison of international standards for
lossless image compression,”Proc. IEEE, vol. 82, pp. 889–899, June
1994.

[16] R. Hunter and A. H. Robinson, “International digital facsimile standard,”
Proc. IEEE,vol. 68, pp. 854–867, July 1980.

[17] S. Forchhammer and K. S. Jensen, “Data compression of scanned
halftone images,”IEEE Trans. Commun.,vol. 42, pp. 1881–1893,
Feb./Apr. 1994.

[18] W. B. Pennebaker and J. L. Mitchell,JPEG Still Image Data Compres-
sion Standard. New York: Van Nostrand Reinhold, 1993.

[19] P. G. Howard, “Lossless and lossy compression of text images by soft
pattern matching,” inProc. Data Compression Conf.,1996, pp. 210–219.

Bo Martins was born in 1966 in Copenhagen, Den-
mark. He received the M.S. and Ph.D. degrees in
electrical engineering from the Technical University
of Denmark (DTU) in 1990 and 1996, respectively.

He is currently an Assistant Professor at the
Department of Telecommunication at DTU. His
interests include data compression, halftoning, and
recognition. He is currently involved in the stan-
dardization of JBIG-2, an emerging international
standard for compression of bilevel images.

Søren Forchhammerwas born in 1959 in Copen-
hagen, Denmark. He received the M.S. degree in
engineering and the Ph.D. degree from the Technical
University of Denmark (DTU), Lyngby, in 1984 and
1988, respectively.

Currently, he is an Associate Professor at the
Department of Telecommunication, DTU, where he
has been employed since 1988. His main interests
include data compression, image communications,
and source coding.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 01,2010 at 14:06:43 UTC from IEEE Xplore.  Restrictions apply. 


