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Tree Coding of Bilevel Images

Bo Martins and Sgren Forchhammer

Abstract—Presently, sequential tree coders are the best general operates with a specific model class defined by a ten-pixel
purpose bilevel image coders and the best coders of halftonedtemplate (its default appearance is depicted in Fig. 1), the
images. The current ISO standard, Joint Bilevel Image Experts context algorithm can be used as a variable-size template
Group (JBIG), is a good example. A sequential tree coder encodes - . .
the data by feeding estimates of conditional probabilities to an f”‘lgor'thm' The past used for conditioning may be orga}nlzed
arithmetic coder. The conditional probabilities are estimated in @ tree. Important aspects of tree coders are the choice and
from co-occurrence statistics of past pixels, the statistics are ordering of past prediction pixels and how many to use, i.e.,
stored in a tree. By organizing code length calculations properly, the depth of each prediction. For one of the new algorithms,
a vast number of possible models (trees) reflecting different pixel the best compression on standard test images is the sole aim.

orderings can be investigated within reasonable time prior to Wi truct b f algorithms which are much less
generating the code. A number of general-purpose coders are € construct a number or aigor whi u

constructed according to this principle. Rissanen’s one-pass algo- COmplex, but still achieve considerably better compression
rithm, context is presented in two modified versions. The baseline results than JBIG. Two of the new algorithms are modified

is proven to be a universal coder. The faster version, which versions of the context algorithm. They are tailored for bilevel
is one order of magnitude slower than JBIG, obtains excellent image compression rather than universal coding and trade

and highly robust compression performance. A multipass free lity of th text algorithm f d t .
tree coding scheme produces superior compression results for all S0Me generality or the context algorithm for advantages In

test images. A multipass free template coding scheme producesterms of speed, compression performance, and memory usage.
significantly better results than JBIG for difficult images such The baseline version of the two is universal for a class of finite
as halftones. By utilizing randomized subsampling in the tem- context (finitely generated) stationary ergodic sources.
E:)%tﬁ]selectlon, the speed becomes acceptable for practical image |, gection Il, we present a method for fast calculation
g of code length useful for evaluating different models. The
Index Terms—Bilevel images, context, halftone, image com- context algorithm is treated in Section Ill. The new versions
pression, JBIG. are presented. A fast subsampling based method for choosing
and ordering context pixels is presented in Section 1V. Aiming
|. INTRODUCTION at the highest compression, a generalization of template coding
. L . .. to free tree coding is presented in Section V. Results are
ILEVEL image compression is useful in transmission . .
: L - .. . presented in Section VI.
and archival applications. Facsimile transmission is still'a
very important application because information is presented to
the receiver in the layout the sender chooses without the sender II.
having to support a broad range of receiver platforms. For theWe consider tree coding of a bilevel image,, where the
same reason, distribution by computer nets of documentspifels are coded sequentially in raster scan order. In this paper,
mixed text and halftones as bitmaps may also increase in thedenotes thetth pixel relative to raster scan order. The
future. High resolution text (400-600 dpi) and high-qualitynknown symbol at time, 1, is also denoted.. Stochastic
halftones may be transmitted without increased bandwidtariables are written in capitals, e.§/,and C. We adopt the
provided more advanced algorithms than the present onesial shorthand for strings and apply it to any ordered set of
are put into use. Especially, if instead of being scanned, tegmbols, thusg; - - - ¢, is denoted*. We usep(+|-) to denote
documents are computer generated. a conditional probability and(-|-) to denote the corresponding
In this paper, we construct algorithms for compression ektimate. The arguments specify the conditional probability in
primarily bilevel image material. The new algorithms mayuestion.
also, with simple modifications, be used as stand-alone coder$n bilevel image coding the probability of the next symbol
of continuous-tone images with few (2-5) b/pixel and as geb* is conditioned on its context. The context may be the value
eral purpose entropy/universal coders. We consider methadsa number of pixels in a fixed spatial relationshiplfo The
based on sequential prediction of conditional probabilities theglection of this set is a key problem. Based on the results
are coded using arithmetic coding [1]. Two very importarfor finitely generated one-dimensional (1-D) sources [3], the
examples of coders that use finite context modeling are JBfftoblem is frequently divided into an ordering of the pixels,
[2] and thecontext algorithm[3]-[6]. Where baseline JBIG thereby defining a context string,, and a selection of a prefix
_ _ _ of this string as the coding context. Symbol probabilities of
Manuscript received July 4, 1996; revised February 20, 1997. The assoca}ﬁerent contexts as well as symbols generated in a given
editor coordinating the review of this manuscript and approving it fo
publication was Dr. Robert Forchheimer. context are usually treated as being independent. Thus, the
The Quthors are with the Department of Telecommu_nications, Technigdlodel becomes a collection of independent Bernoulli sources,
University of Denmark, DK-2800 Lyngby, Denmark (e-mail: bm@tele.dtu.dk; . .
sf@tele.dtu.dk). often arranged in a tree structure. By the assumptions of
Publisher Item Identifier S 1057-7149(98)02459-2. independence, it becomes a simple matter to assign conditional
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Fig. 1. Default orderings of the past with maximum depth= 31. The ten first pixels of smallest 2-norm constitute the 3-line JBIG template with
default positioning of the adaptive pixel.

probabilities to a new event: Having determined the codinp make a fast calculation of(ng, n1|6) we use a table,
context, the counts of that context alone form the basis of ttig(ng, n1), to look up the value for small countsy, <

probability estimate ot/ being zero. Ifng zeroes angi; ones N A n; < N. (The constantV is 100 in our applica-
were generated in context, we use the (sequential) estimatortions.) For larger values of, and/orn;, we use Stirling’s

. no+86 formula to approximate the value as shown in (3), at the
p(0]¢) = no + 1y +26° bottom of the page, wherg = —log[v/27(26)/T?(6)] and
In principle, this is the JBIG [2] estimator. The value dfs 2 = —log[I'(26)/I'(8)] are constantsIi(n) is a table for

optimized to 0.45 in [2] for a large number of bilevel imaged. (" 0/¢)- The logarithms are base P(-) denotes the gamma

§ = 0.5 minimizes the stochastic complexity relative to th&nction.
class of all prior distributions [7]. The estimator is optimal [8]

if the events generated in contexare independent and if the
prior probability of U = 0 initially is beta distributed with the

nuisance parametety = 6; = 6.

A. Fast Bernoulli Code Length Calculation

The context algorithm, first introduced in [3] and later
refined in [4]-[6], provides the means to select between a
number of context models for the dagd,. For bilevel images,
the context string:! is defined by a time-invariant ordering of

CONTEXT ALGORITHM REVISITED

In coding schemes where we investigate different tree mogixels and the coding context is picked as a time-varying
els, we often wish to calculate the accumulated code lengitefix of the context string. Pixel ordering is deferred to
of the events directly from the node counts. Kétg, n1|6)

denote the code length of a binary string with zeroes and

ny ones coded sequentially according to (1), as follows:
K(TL(), 7’Ll|(5) =

107

—log

ng—l n1—1

H (6+3) H (6+3)

=0 =0
ng-l—nl—l

I e+

=0

ng-l—nl—l

I e+

§=0

7

for ng =0 andn; =0

for ng Z0 andn; #0

for ng # 0 xor ny 2 0.

(2)

Section IV. Organizing the reversed context strings, i.e., the
suffixes, in a tree, the context algorithm specifies the context
to be used at each time instance in two (interlaced) stages. The
first stage grows the tree. The second selects the context.

Node ¢ of the context tree stores the countg., v =
{0, 1}. The countn,,|. denotes the number of times thét
took on valuew in context c. Having selected the coding
context, say*, the current pixel/ is encoded with arithmetic
coding usings(0|c*) as the conditional probability fa/ = 0.

The probability estimate is computed from the counts in the
context tree using (1). The context denotes the zero-order
context.

The context algorithm has been presented in slightly differ-
ent variations. Below the context selection rules are reviewed.
We formulate them for a binary alphabet.

Traversing the tree pattf?, formed by the|P| first bits in
ct, the context algorithm selects the coding node foby a
series of father-son code length comparisons. The algorithm

L(ng, n1|6) =~

-log

L Ta(no, n1)

(—(no+6—3) log(ng+6) — (n1 +6—3)
-log(ny 4+ 6) + (no +n1 +26 — 3)
(no+mn1 +26)+&
Ti(n1) + (no 46— %) log
+(n1 + 6)[log(no + n1 +26) — 1] + &
Ti(no) + (nl 46— %) log
+(no + 6)[log(no + n1 +26) — 1] + &

if ng>Nandny > N

no+ng +26

no+9o (3)

if ng>Nandny < N

no+ng +26

TL1+6 .
if ng< Nandny >N

if ng<Nandny <N
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stops the first time a father is better than his sons. In [4] aid A Baseline Full Path Algorithm Context (FPAC-B)

[5] the direction of traversal is from root to leaf. In [3] and [6], The above algorithm compares father and son on the context
the direction is toward the root in the sense that the deepsa{h_ We generalize this comparison to the case where an
node is chosen. _ . ancestor node is compared to a descendant. Our bid for a
In [4]-{6], the basis of the father-son comparison is aggified version of the context algorithm tailored for bilevel
efficiency difference—an accumulation of the difference Ifnage coding is 4P|-step algorithm to perform the selection
code length at the father node™ and the sonc® of the ot one of the nodes in the path. We compute the coding context
instances occurring at the sort. For the instanceu the 55 the PMDL-optimal context in longer and longer subpaths
contribution is of P, naming the PMDL-optimal contextd*, ¢*, - -, ¢/”l*,
wherec* € {°, ¢t, -+, ¢'}. Define initially ¢** asc, i.e.,
AL = —log p(u|c®™Y) + log p(ulc®). (4) the root. Initially, lets = 1 and compute the code length
difference between symbols generated in the ancestor context
<*~1* on one side and, on the other side, symbols being

In [5] and [56]’ the efficiem_:y_ differe_nce may be stored irE;enerated in the descendant contektand the complement
the son node”. In [4], the efficiency difference of the fatherto contextc® with respect ta:*=D* i.e., context strings for

compared with each son were added (and could reasongPly .., .s—=D+ byt note is a prefix. If
be stored in the father node*—!). This way the father

is compared to both sons at once. When deciding wheth@(n()l(:s’ n1jes
to prefer ¢! or ¢* as the coding node for the current,

yet unknown, symbol, the sign of the efficiency difference
determines the mattepgsitivemeans that the sons are bettef o qocjarass — (=% as the descendant and its comple-

than_ the fat.hgr). Thus, the_ coding mo‘?'e'_ is found by tk}‘ﬁent with respect to the ancestor did not do better than the
predictive minimum description length principle (PMDL). 4 cestor for the events that were recorded in the context tree.
We may view the above context selection principle of [4 (6) proved false, we declare’* = ¢*. In any event we

in a way that is only based on the counig., thereby ncrements and repeat the evaluation of (6). AfteP| steps
avoiding the need for storing efficiency differences in the treg.. 1ave the desired context”*. We use the fast calculation
Furthermore, it paves the way to a generalization of father—sgp (3) to compute the Berno’ulli code lengths

to ancestor-descendant comparison.

6) + g(n0|c(5—1>* = Nojesy Ny|els—1)+ — Nes 6)

8) (6)

> U(Ngjet=1)e 5 Ty jeto=1ye

) As in [6], we choose to bountP| by some maximal value,
Let the current full path in the context tree be denofed ; s for one thing has the effect that we need not worry
and the corresponding maximal size context be dendtéd 0t the additional context selection requirements in [3] that

The tree is trave_rsed root to leaf (the depibl '_[h_e son n_ode is has the effect of excluding nodes of unreliable statistics. The
initially one). Using code lengths (2), the efficiency dlf“ferencgomext tree may be grown as in [3], [5], or [6], but we use
of the father and the two sons leads to the rule that if growth by copy and attenuatésee Section I11-B).

The motivation behind the new context selection is the
8) + £(ng|cs—1 — Nojes s Nijes—1 — Nyfes|O) observation that the conditional probabiljiy|. in an ancestor
> U(ngjes—t, Nyjera1]6) (5) node is the weighted sum of the conditional pro_bab|I|t_|es in
a subtree of descendants, and although at a given time the
difference between the empirical distributions,./n., in
then, for the events that were recorded in the context tree, #}¢ ancestor and a descendant may be quite significant, it is
sons did not do better than their father, and we terminate thgssible that none of the father-son pairs along the path have
context selection declaring the coding context tocddé* = g significantly different empirical distribution.
c*~L.If (5) proved false, we disregard~! as the coding  The modified context algorithm based on (6) we refer to as
context, increments, and repeat the evaluation of (5). Ifthe full-path context algorithm (FPAC). The baseline version

tf|11§| recurlslifl)n did not terminate before depth, we define (FPAC-B) is given above. A faster version is presented next.
i = el

K(nmcs, 7’Ll|cs

We should mention that the choice of growth rule f.or. th8 A Fast Full Path Algorithm Context (FPAC-F)
context tree has a small effect on the value of the efficiency i ) ]
difference, as the sons are not built at the same time as thé "AC may be improved in speed (and compression perfor-
father node. As long as we make sure that both father and s§H1ce) by introducing four different refinements:
in some sense account for the same events, the precise detaild occasional checking for the best context;
are not important. The growth rule that we shall employ for 2) typical prediction as in JBIG;
the context tree is described in Section III-B. 3) renormalizations of counts (introducing local adaptiv-
An interesting experimental observation described in [5] ity);
and [6] is that compression results on grey-scale images aré) tree growth by copy and attenuate (see below).
greatly improved if the efficiency difference is initialized by All the refinements serve to increase the speed. We can hope
a positive amount¢}, so that there is a bias toward using théor a compression improvement over FPAC-B due to the local
sons. Furthermore, in [6] the efficiency difference is clampeatiaptivity. The typical prediction may also yield improvement
to a maximum absolute value. for some data.
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Occasional Checkinglf the source is stationary all as in [6] we parameterize the growth rule of the context
probabilities inferred by the node counts converge as tree so that a node*—! bears sons when_ .- equals
t approaches infinity. Therefore, in a particular leaf some thresholdl.,. Instead of initializing the counts

context, ¢/’l, for ¢ larger than some threshold, FPAC- of the new-born sons by zero, we exploit the assumed
B always comes out with the same PMDL-optimal node dependence between the father node and the sons by
¢!”1*. For this reason, we can skip the search ddit* initializing the sons with the expected counts as follows:
most of the time using the formerly found PMDL- N L

optimal nodec!”!* as the coding node for path”!. Nijet=10 = |5 nijer—1 + 3|

All that is required is that we at each leaf node in the Mijek-11 2 Mijek—1 — Mijek—10- (8)

tree store a pointer to that node on its path that was
found PMDL-optimal at the last evaluation. A suitable Disregarding the truncation, the initializations corre-
scheme of when to do the search also needs to be spond to a prior Beta distributiofBe(ngjci-1, +

defined. Checking occurs when the leaf counts exceed a &, nqjs-1, + 6)] for the zero-probabilities in context

(dynamic) thresholdD(c!”!), and when a pair of sons cra.
is appended to the tree. 1) Universal Coding: In the previous sections, the context
Typical Prediction (optional) To increase encoding andalgorithm was modified specifically so as to obtain better

decoding speed of, e.g., scanned text we adopt the (basémpression of bilevel images. The theoretical impact of the

line) typical prediction of JBIG [2]. Typical prediction modifications with respect to universality for binary sources is

applies to an entire image line. The definition of a typicahvestigated here. In the theorem below, we prove that FPAC-B

line is a line that replicates the former line. In oufs a universal code for an important subclass of tree sources.

codec the eventine m is typical/nontypicals modeled  We consider a tree source over the alphafigtl} with

as a first order Markov process #, using the usual given branch labelings where for gively the (unknown)

predictor withé equal to 0.45. conditional probabilities of each siZepath ¢ satisfy:

RenormalizationsReal life data are rarely stationary oy Kt .

[2], [9], [10], and algorithms are modified accordingly. pule”) = plule™) for k= k(<) ©)

We implement local adaptivity by scaling the recordeghere the 2! numbers, k(c!) < I, denote unknown con-

frequency counts. The procedure consists of occasionaliants. Thus, the smallest unique subgetof the contexts

subtracting leaf events from some leaf and all its ancegc-k(ol)’ . ck(ll)} describes a complete subtree.

tors. For the sake of simplicity, this renormalization step g thermore, we require the ergodic theorem to hold true

is combined with the procedure of occasional checking each nodey, such that with probability 1 the maximum

for the best context. A paramety controls how often iejihood estimate of(x|c), formed by the frequency counts

to do the full-path search. _ in that node, divided by the true conditional probability,
FPAC-F does the following for each pixel (on 3(ulc), goes to 1 asg approaches infinity.

nontypical line). In the following theorem, we shall assume sufficient mem-

Climb the tree to the leaf;!”’! ory.
Use for the coding nodel”!*, the node pointed Theorem 1: Let z be an infinite string generated by a binary
to by the leaf ¢! tree source with restriction on the maximal depth as defined
If nojeier +nyjerer = D(cTh by (9) and satisfying ergodicity of the nodes. Using FPAC-B,
if the tree should not grow for almost all samples:
Perform the full path search of (6). N
Save in the Ieafcﬁ)”', a pointer téc'g”*. Pl (#) € C] — 1 ast — o (10)
D(Pl) == D) + &y and the code length
fori=0,1 1
N; 2 10.50;,/01] -7 log p(a*) — H(UIC) ast — oo. (11)
for i =0,1andk =0, -, |P| . . )
Nijer = nyjer — Ni The proof of Theorem 1 is given in the Appendix.

Update the context tree. (1)

4)

The requirement about multiple ergodicity is (probably)
more restrictive than merely requiring the source to be ergodic,
but we propose Theorem 1 to hold true also in the latter case.
A path does not grow ifP| = [ or if we have reached The maximum depth], imposed on context paths makes
the maximal number of nodedys,, in the context the algorithm less general and the proof easier than, e.g., for
tree (i.e., reached the statistics memory limit). We dithe context algorithm in [3]. In practice, memory is limited
not delete nodes. The restrictions on the growth of thend some fixed limit reasonable. Following the theorem, a
tree combined with scaling have a side effect of locajiven node allowancelNg,, will bound ! to | log Ngs:| — 1.
adaptivity which is sometimes useful. By (7), the countlh practice it is better to pick a largérand slowly use up the
in the tree grow as/t instead oft (see [8]). memory as the context tree grows.

Copy and Attenuate (optionalsenerating a new pair of FPAC-B or FPAC-F are not immediately applicable for the
context tree leaves costs time and memory. Therefoencoding of a multialphabet source, but they can be used if

elseappend sons tel”’! by the growth procedure.
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the multialphabet problem is binarized. Compression may be ma

achieved by forming a separate context tree for each bit in the —_—

binary decomposition. In encoding theth most significant 25'“’“ N

bit in the binary decomposition of thgh sample, the context @ A

bits would be among the:— 1 more significant decomposition m '] E """"""""""
bits at timet¢ and all the decomposition bits at earlier times. 7

If for a given binary decomposition of a multialphabet source,
the components of the decomposed source obey the condiffign 2. Sear;h area for context pixels.lDevﬁnition of absolute and relative
of (9) and are coded using FPAC-B, then the per symbol co%:g:gﬁ;‘%lfiizrf'at've coordinateji. j2) = (0, 0) and absolute
length approaches the entropy of the source approaches '
infinity. Modifications of the context algorithm for grey-scale . )
images was presented in [6]. B. Complexity Reduction
To evaluate (12) for all thév, candidates we only need a
single pass of the data, updating a table of dimensiéms. v,
IV. FREE TEMPLATE CODING as we go along. In computing (12) we use the fast calculation

Template coding may be perceived as a simplification &@

codes like the context algorithm. Template coding is morﬁgBecause the memory requirement is exponentiak iwe

practical because template decoding is faster and much simfﬂ pose tf;€e humber of candidateé,, to be inversely propor-
than variable-depth decoding. The compression and encod éwal t02* for k_larger t_han some valug,;,. When decre_asmg
speed varies greatly with the effort put into finding th set of candidate plxels_, we throw away those pixels that
template. It is, therefore, of practical interest to find fa ave thg largest 1_—n<.)rm distance fo(see F'g'.l)'
schemes for producing very good templates. The baselin The time for building akth order template is denoted.
JBIG is a ten-pixel template coder with one free templa e have
pixel. The free pixel is essential for efficient compression of k
periodic halftones. Additional free template pixels may capture ts = Z T(NoFy + K2 - q) (13)
the halftone period even better and increase compression. In =1
free template coding, the entire template is freed. The identitshere K; and K> are constants with respect to image size
of the free template is communicated to the decoder prior 16 and N,. The term K, - ¢ comes from calculating the
coding the data. For a template of sizewe have to transmit context entryc? of the statistics table. The terf, K; comes
k and the coordinates of the template pixels. We shall nfsom updating the counte(8ig|.o, ngjc1; 71jc0; 71jc1) fOr €ach
consider this negligible cost in the following. candidate in the search area.
Template coding with multiple free pixels has been reported1) Subsampling:The time, ¢;, for growing the template
in [11] and [12]. Multiple encodings using different templatesan be reduced if we base the choice of #té context
or simulated encodings using approximations to code lengitxel on a smaller number of pixelsi(k), than the total
(e.g., conditional entropy) as a selection criterion were usadmber,7. One way to implement this is to cut out what
to construct the final template. Both references reported sig-supposedly a representative part of the image and use that
nificant improvements in code length compared to coding grow the template. This procedure is extremely sensitive
with a fixed template. In the following section, we present ao instationarities. As a new idea we choose to pickstlie)
algorithm for constructing a free template which is based guixels by subsampling. We jump from pixel to pixel but encode
simulated encodings using precise code lengths as the selectiem (i.e., emulate coding of them) in their correct context.
criterion. A general description of subsampling in two dimensions is
given in [13, ch. 2]. In subsampling, points on the input lattice
(mq, mo) are associated with points on a subsampling lattice
(u1, uz). We modify hexagonal subsampling as described in
We grow the template by a greedy approach. Once[£g] introducing a subsampling factdr,. Furthermore, we
template pixel is selected, it stays in the template. kt® introduce (pseudo)random offsetam;, Am,) so that the
context bit,C’y,, may be chosen among the pixels of the seargfpints on the input lattice do not appear in a regular grid, which
area of Fig. 2. TheV, = h - (2w + 1) + w candidates are pay interfere with the periodic grid of a halftoned image. Our

denoted4; - -+ Ay, scaled, randomized hexagonal subsampling takes the form
The code length that would result from picking; as I
rkJ +{Am1(“1’ “2)}
4

A. Greedy Construction of the Free Template

Cy given the already chosen template pix€l$—! may be {ml} k. {2 1} [ul} 4
s o

calculated as follows: mo 0 2 Ama(ug, ug)
L (14)
L") =" > Ungici-1a;, nijei-1a,16)- (12)  There are4 - k2 as many pixels in the input lattice as in the
ck=1 a;=0 subsampling lattice. The offsef&\m,, Am) are determined
by a simple random generator picking one of the:? points

Based on (12), the best pixel (or no pixel) is picked. associated with each sampling center.
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Fig. 3. Free tree for test image c04a200 4000 b). The cost of coding the data is 493 328 b. The cost of coding the structure of the tree is 25 b. To code
the 12 split pixels, which are stored in the internal nodes of the tree, wk2usé b. The code string for the tree structure is 1111 000100111 100 010 100 100.

TABLE | . The search procedure for thie- » pixels is identical to the
A SUBSAMPLING SCHEME, ks(k) = ko [[;— s¢(F)]. search procedure by which we grow a free template. With the
SUBSAMPLING TAKES PLACE FOR ks (k) > 0 . . . . .
hybrid coder, we first communicate the pixel ordering and then
kqry2)314) 5 | 6 1 7 18 | 9 |>10 run FPAC-B or FPAC-F. 1-norm distance is used as default

sp |1 1|1 [1]2°% [29% [ 295 [ 0.80 | 0.75 | 20F

ordering throughout the paper. In a few places comparison
with 2-norm (Fig. 1) is presented.

The subsampling factok; should be chosen so tha{k) The variable depth of hybrid coding will usually improve
is just large enough to allow us to pick a good templatompression also when all the pixels are picked by searching.
pixel. In particular,k, should be chosen so that the growth oThis is because the resulting template is a compromise between
the template is not terminated prematurely. For both reasonsnecessary initialization cost in some parts of the corre-
we need to decrement, with the template sizek. The sponding balanced tree and forfeited opportunities to reduce
subsampling scheme should reflect the expected form afnditional entropy in other parts of the tree.
H(U|C*=1)— H(U|C*), a function that goes rapidly to 0 for
growing k. For largek, we attempt to keep the variance of the
estimate ofH (U|C*) independent of. For a specific node,
¢*=1, and its one song*, the maximum likelihood estimates, Aiming at the best compression, we use a coding method
p(u|c—1) andp(u|c¥), are asymptotically normal. I§(C;, = that is more strongly adapted to the data than coding with a
0|c*~1) = § we shall need twice the number of events at depfhee template or the context algorithm. The contextlofis
k because we treat node$—10 and ¢*—11 as independent. still defined by the color of a number of context pixels in a
Hence, for largek we use k,(k)/ks(k — 1) = /2. For fixed spatial relationship t&’, but now theith context pixel
smallerk, i.e., largerH (U|C*~1) — H(U|C*), we can relax depends on the values of the- 1 first context pixelsc—*.
the equal-variance requirement. By some experimentation wee organization of the context is stored in the nodes of a
choose the subsampling scheme of Table |. The constarantext tree, which also contain frequency counts that grow
ko, of the subsampling scheme is picked experimentally dsring coding. We call the pixel’;, whose value defines;
ko = max(|VT -2718 + %L 5). The max function ensuresin the particular pathe—1, the split pixel of node:~!. The
that a coding scheme where we select only few context pixelgding depth of the free tree does not change as in the context
will not be dramatically slowed down by the template selecticdlgorithm. We always code with a leaf. The free tree is found

V. FREE TREE CODING

procedure. on the encoding side and transmitted to the decoder before
transmitting the data. An (unrealistically small) example of a
C. Hybrid Coding free tree is given in Fig. 3. The coordinatgs, (j2) of the split

, . . . ixels are relative to the position éf (Fig. 2).
Template coding may be perceived as coding with the Iea\,%gi:ree ree coding has bpeen used b(y ?\loh)re [14] for coding

of a perfectly balanced tree. If the number of template pixels _ X L
k is large, most leaves will contain insufficient statistics fogrey-sc_ale w_nages._The mu|t|a|phabet_ prpplem was bmanz_ed
sharp prediction. To improve compression an algorithm 1S outlined in _Sect|on 11I-B1 and the individual blnary. deci-
FPAC-B or FPAC-F may be used to determine the codin%?ns coded with a free tree. Nohre alsq gave an algorithm for
depth. With variable depth coding, it becomes less critical hstructing a free tree for bilevel coding.
find all the template pixels by greedy searches.
We construct a hybrid coder where the ordering of pixels & Construction of the Free Tree—Greedy Build-Up
determined in three steps. The problem in free tree coding is how to construct the tree.
1) Let the firstr pixels be chosen by default (1-norm). In the bilevel case, Nohre used a very small number (24) of
2) Let the nextk — r context pixels be found irk — » candidates for split pixelsy,. The small number enabled him
searches. to construct a balanced tree of depth and rearrange the tree
3) Let the lastl — & pixels be chosen by default. following the concept that an optimal tree cannot consist of
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nonoptimal subtrees. This procedure does not take into accounin this paper, we parameterize the growth decision using
the cost of transmitting the tree. For most bilevel imaggg, an incremental tree codt (defaulting to2;5 + 3 bits). The
should be large~103), as pixels of good predictability may parameterization allows a trade-off between compression and
lie far from U. We choose a larg&/, and consequently, duetree construction time. Most of the compression is usually
to complexity, limit ourselves to a series of greedy searchebtained with the first few branches of the big coding tree.
when constructing the tree. Because of the large numberTdfe example of Fig. 3 illustrates this point: a free tree with
potential split pixels, the cost of coding the tree is potentiallgs few as 13 leaves can compress test image200 by a
large and we must incorporate the tree cost in the procedfaetor of 8.32.
by which we grow the tree. Above, we considered free tree coding as a two-step pro-

Assume that the free tree is defined as far as tqihel)th cedure where we transmit the tree first and the data next.
context bit in some path of the tree. We wish to select the bé&amnpirical results in [8] show that a free tree may be con-
context pixel,C;, given the specific context—1. PixelC; may structed truly predictively in such a way that the compression
be chosen among the candidates in the area depicted in Figo&formance on large and difficult images will be better than
The code length that would result from picking a particulavhat can be obtained with FPAC-B and FPAC-F. The good
candidate pixeld asC; may be calculated as follows: results do not extend to all images, because initially the one-

pass free tree is too small to give sharp prediction.
1
L{z|c™", 4) = Z £(nojci=1a; Mfei-1al0).  (15) VI. COMPRESSION ANDCOMPLEXITY RESULTS

a=0

The test images used in this paper are mainly the Stockholm
tgJBIG) test set [15] and the (ambiguous) CCITT test set [16]
tsupplemented by a80c [17], a halftone test image for the
%c[aphic arts in Scandinavia. The Stockholm images are marked
eby initial letter s and the CCITT images by initial lettes.

The notationz|c'—! means that we only consider the even
U for which the size; — 1 context equals the specific contex
¢'~1. Equation (15) gives us the means to compare differ.

candidates forC; in contextc¢i—t. Again, we pick the best . } .
i : o The images contain scanned text, line art, and halftones. The
pixel (or no pixel), but this time in each node of the tree. ; .
L . . : troublesome halftones are the mixture image s06a400, the error
A split pixel should only be defined if by doing so the . . S
. . - . _diffusion s09a400, and the clustered dot periodic halftone a80c.
incremental tree cost is smaller than the reduction in t

code length of the data given the larger tree. The free treegéE main groups are text and line drawings (TL) and halftones
:

unbalanced, so besides the need to code the identity of the split Textand line art are further d“{'ded N qomputer genergted
. . and scanned (S). The latter being split into little or medium
pixels, we need to code the tree structure itself. For the lat - S
; . -amount of printing () and dense printing (d). The halftoned
job, we adopt the procedure of [14]. We create a binary strin N
. images are marked whether they are periodic (P) or not, and
y to describe the anonymous tree structure whgreequals

) . ._.._whether they are dither (D) or not. We make these distinctions
zero if node nok is a leaf. The nodes of the tree are visite . . .
. . .g)ecause the compression and the comparisons differ by the
one by one, depth first, starting at the left branches. Consider :
the example of Fig. 3—the nodes are visited as follows (Ie?tature of the material.
branch is zero and right branch is one): reet0 — 00 — )
000 — 0000 — 0001 — 001 — 01 — 010 — 011 — 1 — A. Compression Results
10 — 100 — 1000— 10000— 100001— 1001 — 101 — We distinguish between truly predictive algorithms with
1010— 1011 — 10110— 10111— 11 — 110 — 111. default pixel ordering (fast one-pass algorithms, Table 1) and
If the number of leaves in the tree is denoted:by 1, then multipass algorithms where the pixel ordering is established
the total number of nodes &+ 1 and the number of internal fully or in part prior to coding the data (Table Ill). It is
nodes isz. Using 1 b for each node, we codewith 2z +1 a drawback for the multipass algorithms that they require
bits or approximately 2 bits per internal node. The identity afhough memory to buffer the entire image and introduce a
a split pixel may be indexed wittvg [|w + k(2w + 1)[] bits. delay. The JBIG recommendation [2] suggests how to position
A suitable prefix code [8] realizes this cost. Hor= w = 27, the adaptive template pixel on the fly, based on a simple
the prefix code codes a split pixel with 25 + 1 b. The total correlation betweei/ and each candidate pixell, over the
cost of changing a leaf into an internal node (appending sdirst 2000 pixels of an image stripe (a horizontal slice of the
to it) is, therefore, approximatele 25 + 3 bits. image). By the sparse and uneven choice of representative
By using the growth rule thaL(z|ci—!) — L(z|c'~!, A) pixels and by disregarding the influence of the nine fixed
must be larger than the incremental tree coding @jst3 b, in  template pixels in the selection &, there is a risk of picking
order to grow the tree adding, the tree will not be too large. a nonoptimal adaptive pixel. JBIG compression results for
As the cost of expanding the tree may surely be smaller there test images (except a80c) are given in [18]. Considerably
2j+3 b, the tree might be too small. A bit of experimentatiorhetter compression results are obtained if we use the free
simulating (optimistically) reduced tree coding costs does ni@mplate algorithm to determine the position of the adaptive
affect the code length of the data much, so what may be gairtechplate pixel given the nine fixed template pixels of the
by a more clever tree coding scheme is basically a reductitimee-line template. The improvement is 20% on halftones,
of the tree coding costs, which constitute only about 8% a0% overall compared to [18]. JBIG with this optimized pixel
the total code length. selection is our reference for the new multipass algorithms.
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TABLE I 0] [6
ONE-PAss CobING CoMPARISON OF JBIG AND
FPAC-F. TrpicaL PReDICTION IS USED FOR BOTH
JBIG FPAC-F 7
Ordering default, default,
3-line template 1-norm
Coding Fixed, Adaptive, L 8 ! 3
depth image (Ng, = 87381,) —
independent =24, (ki =10)
(T, = 10) 3 D
17
Image Rows | Cols bytes | t. (s) bytes | t. (s) Glahg
s08a400 | 3040 | 3072 6198 | 58 4952 | 51.7 B Gl
102400 | 5856 | 4096 | 13785 | 14.8 | 10504 | 127.5 5 2jolisliz[u
S TL,C 19983 | 206 | 15456 | 179.2 _ _
012400 352 1 3072 13360 538 12012 14.9 Fig. 4. Template for test image s04a400 found by the free template al-
022400 4352 | 3072 15553 6.6 14488 54'3 gorithm. Initial search areak, w) = (16, 16), limitation of search area
o - ° ' ’ (1-norm) fork > k., = 12. Memory usage is 16 MB.
s05a400 | 4352 | 3072 | 34576 | 84| 29384 | 809
s07ad00 | 4352 | 3072 | 24132 | 88| 21556 | 853 S
012200 | 2376 | 1728 | 14809 | 2.1 | 13996 | 23.1 2-norm, the periodicity will not be captured for any reasonable
€02a200 | 2376 | 1728 8714 | 2.9 7780 | 29.1 value of the maximal context tree depth(see Fig. 1).
¢03a200 | 2376 | 1728 | 22107 | 3.0 1994551 36.5 A test was conducted to evaluate the context selection based
Eggiﬁgg gg;g };ig igggf 3; ﬁ?go 2?3 on ancestor-descendant comparison as in FPAC against basing
072200 | 2376 | 1728 | 36477 | 32| 51544 | 53.3 the selection on comparison of the father and its two sons as
c08a200 | 2376 | 1728 | 14373 | 3.0 | 12948 | 315 in the context algorithm [4]. For this purpose, FPAC-B was
> TLS) _ 243270 | 49.8 | 218460 | 509.1 compared with a coder that is identical to FPAC-B in every
s03ad00 | 4352 3072 146774 | 114 | 128072 141.6 respect except that it uses the father-son context selection
042200 | 2376 | 1728 | 54523 | 3.0 | 48364 | 47.5 i ; . .
STLS,d 201207 | 144 T 176436 | 1801 rule of (5). With this father-son selection rule [4], the tree is
> TL 464550 | 64.2 | 410352 | 698.2 climbed root-to-leaf and the coding node is the first father that
s04a400 | 2048 | 3072 | 130213 | 5.7 | 63088 | 67.0 is better than his son. This is a hesitant climb rule. To improve
3 = 24 =4 =4 . . . o ey . . .
s04b400 | 2048 | 3072 | 158817 | 58| 56452 693 it, we also imitate the initialization of [5], [6] by adding
s04c400 | 2048 | 3072 | 129965 | 5.1 | 39264 | 634 : . . . .
«04d400 | 2048 | 3072 | 120432 | 56| 39652 | 620 bits to the right-hand side of (5) to bias the result to disfavor
STHP,D 539447 | 22.2 | 198456 | 261.7 the father model. Fig. 5 shows the result on the test set as a
a80c 6144 | 4864 | 695987 | 27.2 | 610944 | 3189 function of Q). If ¢ exceeds the maximal model cost difference,
%6}1{4’00 P B 1;2234 ‘1“1’-‘; f?g‘;gg ‘1’8(1)3 ~1 log T, between the father model and the sons model,
S00oa00 | 1024 | To21 Pl 12| ozaee | a0 nothing is left of the PMDL idea—the coder will choose the
SH 1565993 | 62.3 | 1034396 | 771.3 leaf as the coding context. Because FPAC-B uses bounds on
S TL+H 2030543 | 126.5 | 1444748 | 1469.5 the context tree, a leaf coder can perform quite well as long as

the bounding parameters are neither very small nor very large.
On the test images, FPAC-B gives the best results. Using a
Relative improvements in this paper are given as the increaeasonable choice of biag)(= 5), the father-son selection
in compression factor. The compression factor is defined @stperforms JBIG, whereas the unbiased father-son context
uncompressed data size divided by code length. selection [4] here performs worse than JBIG. As seen in Fig. 5,

The arithmetic coder of JBIG is a QM-coder, for all othegven with the best choice @ the father-son algorithm is not
results the arithmetic coder is the one described in [8] and [bletter than a much less complex coder where a leaf is preferred
With the latter coder the difference between the calculateiédterministically ¢ = oo). Without bounds on the tree size
code length and the file count is approximately 100 b fafs in the actual context algorithm, leaf coding would not give
most images, a negligible amount. The images are zero-padgdedd results and the bigs should be chosen differently. Other
when being coded. For all algorithms, the parameters appligersions of the context algorithm may give better results than
are all specified in the respective table and figure texts. the father-son results reported here.

1) One-Pass Compression Resul8PAC-F (Section IlI- In Fig. 5, FPAC-B is 6% better than the leaf coder, and
B) gives slightly ¢~2%) better results on the test images thais 14% better on text and line art. For small valued @ind
FPAC-B (Section 1lI-A). Both algorithms outperform defaultNVg,, FPAC-B performance drops somewhat and the leaf coder
template JBIG for all images. Table Il gives a comparison @lerformance drops only slightly due to improved coding on
fixed template JBIG and FPAC-F. Overall, FPAC-F provideext and line art, so that FPAC-B is only 2% better overall.
a 41% higher compression factor than JBIG. The gain com&aother (faster) low-complexity coder of interest is lapixel
primarily from a better compression of the halftones (51%mplate coder. Fig. 6 displays the results. Witk 16, the
totally), whereas the improvement is 13% on text and line arhemory usage is still moderate and the template coder is

The default ordering of pixels was chosen to be 1-norponsiderably better than JBIG.
rather than 2-norm due to the performance on periodic,2) Multipass Compression Results:
dithered halftones (172% better than JBIG) and on text. The free tree algorithm (Section V) produces excellent
Assuming a halftone period of 5 or 6 and ordering bgompression results (Table Ill) for all image types, 46%
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TABLE 11l

MuLTiPass REsuLTs FREe TEMPLATE AND HYBRID CODING: LIMITATION OF SEARCH AREA (1-NORM) FOR k > kgj,. HYBRID CODING: DEFAULT
ORDERING. 1-NORM. t; DENOTES THE PART OF THE CODING TIME, t., THAT WAs USeD To Pick THE k — r FREE TEMPLATE PIXELS, WHERE
k < kmax. FPAC-F WAs RuN witH [ = 24, (k; = 10, T = 0). JBIG: FREE TEMPLATE SELECTION OF THE ADAPTIVE TEMPLATE (NOT

INCLUDED IN THE TIMINGS). TYPICAL PREDICTION |s APPLIED EXCEPT FOR THEFREE TREE (h = w = 16 FOR ALL RESULTY)

JBIG Free template 4+ hybrid coding Free tree
Ordering r =9 fixed r = 0, max. 20 adaptive r = 2, max. 4 adaptive b=11)
1 adaptive ksp = 12 (~ 16 Mbytes) ksn = 6 (~ & Mbytes)
Subsampling No No Yes No
Coding Fixed, Fixed, Adaptive, Adaptive, Leaf
depth image image FPAC-F FPAC-F
independent dependent | (Ng, = 171072) (Ng: = 87381)
Image bytes | t. (s) bytes bytes bytes | 1. (s) | ts ($) bytes
5082400 6206 5.9 4808 4704 5000 67.5 | 133 3807
$10a400 14018 | 14.7 10728 9716 10032 | 1484 | 13.0 8198
S TL,C 20224 | 20.6 15536 14420 15032 | 2159 | 26.3 12005
s01a400 13731 5.8 11936 11384 12084 53.5 6.0 10287
s02a400 15485 6.6 14388 13928 14332 68.8 | 12.2 12718
$05a400 34256 8.5 29308 28352 29596 | 105.2 | 18.6 26976
s07a400 23086 8.8 21572 20948 21556 | 1129 | 20.1 19180
¢01a200 15022 2.1 14568 13888 13844 36.1 5.6 12326
¢02a200 8696 3.0 7608 7372 7796 38.0 6.5 6875
c03a200 22207 3.1 20364 19804 20028 53.7 | 10.3 17659
c05a200 26187 3.1 23816 22956 23532 56.2 | 10.6 20468
¢06a200 12618 2.9 11284 10932 11176 48.1 9.6 10025
c07a200 56168 3.2 53144 51900 51777 62.8 | 10.6 48065
¢08a200 14539 3.0 13076 12604 12920 49.5 | 10.3 11471
> TL,S, 241995 | 50.1 221064 214068 | 218641 | 684.8 | 120.4 196050
5032400 146782 11.5 131292 126832 128240 171.3 28.4 117018
c04a200 55120 2.9 47204 44828 46848 60.9 9.8 37019
> TL,S,d 201902 | 14.4 178496 171660 | 175088 | 232.2 | 38.2 154037
>-TL 464121 | 64.5 415096 400148 | 408761 | 1132.9 | 184.9 362092
$04a400 58150 5.4 41216 41152 43160 94.7 | 21.7 38773
s04b400 56588 5.4 37856 37672 37464 | 101.2 | 221 34581
$04c400 52545 4.8 35112 34920 34740 90.6 | 21.8 32306
$04d400 48082 5.3 34644 34480 34928 91.0 | 214 33141
> HP.D 215365 | 20.9 148828 148224 | 150292 | 3775 | 87.0 138801
a80c 519718 | 27.1 382088 374776 | 402120 | 335.6 | 25.9 316205
>"HP 735083 | 48.0 530916 523000 | 552412 | 713.1 | 112.9 455006
s06a400 212934 | 11.5 154504 151552 | 154596 | 181.0 } 27.1 131852
5092400 73086 1.2 69156 67352 72480 39.1 3.9 68010
SH 1021103 | 60.7 754576 741904 | 779488 | 933.2 | 143.9 654868
> TL+H 1485224 | 125.2 1169672 1142052 | 1188249 | 2066.1 | 328.8 1016960
Mbytes Mbytes
25 2.0 \\
2.0 - ey
15+ oo
1.5 n
. J 1.0 e
105 5 10 1E6 Q (bits) 10 15 20 l
Fig. 5. Comparison between FPAC-B (nonfilled square) and HFPAC_BEig. 6. Overall compression results witipixel template coding with 1-norm

using a context selection rule similar to that of the context algorithm [4] witf"King- Typical prediction is on. A simple form of JBIG local adaptivity is

bias @ (circle). Default pixel ordering (1-norm). Parameters for both codet%pp"ed'
arel = 31, Ng; = 349525, T, = 0. The pure PMDL context selection [4]
corresponds t@) = 0. Bias ) = oo corresponds to a leaf coder. The filled

square displays the FPAC-B total with= 24, Ng, = 87381, T.q = 0.

flexible. Our otherwise second best algorithm—the hybrid

algorithm (Section IV-C) where the free template search
better than optimized JBIG totally (and 100% better tha#etermines the pixel ordering up to some oréerseems to
default JBIG). Again, most is gained on halftones (55%). THee a better choice for these images. Our sample in the test
compression results for the halftones are, to our knowledget, s09a400, is coded best with the hybrid algorithm where
better than anything in the literature. For stochastic halftongbe default pixel ordering is by 2-norm (the natural choice for
the context tree should be large but not necessarily vestochastic images). With the parameter settivig — 87 381,
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r =0, kmax = 20, T, = 0, k1 = 2, and no subsampling, corresponds to a memory requirement of 2 megabytes. The
the code length becomes 65968 bytes—the best result memory requirement may easily be lowered with the same
this image. Finding only few context pixels by searching, theumber of nodes but at some cost in compression time. Small
encoding complexity of the hybrid algorithm is reduced veryalues ofl and Ns; were chosen in Tables Il and IIl.

much. With maximum 4 adaptive pixels and a template size

of 16, the loss in compression by this partly free template

algorithm compared to the hybrid algorithm is 7% overall (6% VII. CONCLUSION

if we apply a simple form of JBIG adaptivity to the template \We have considered a number of general purpose schemes
coder). of predictive coding for bilevel image compression.

If the full template is found by searching (Fig. 4), we may Two modified versions of the context algorithm, FPAC-
code with leaves (i.e., use template coding) at almost @ and FPAC-F, have been presented. FPAC-B was proven
cost in compression performance. This is free template codiggiversal on the important class of tree sources (defined by the
(Section IV). Decoding memory is saved by this choice anthosen pixel ordering) for which the maximal depth of the tree
decoding speed is increased. is not larger than a predefined valdeBoth algorithms give

The free template algorithm and the hybrid algorithm qfood results and robust performance on the test images. FPAC-
moderate complexity (Table [1l) are approximately 25% bettgr js much faster than other versions of the context algorithm.
than optimized JBIG overall. In particular, the halftones angjith default pixel ordering the compression factor of FPAC-F
coded better. All the multipass algorithms perform better g§ 41% better than JBIG over a large test set. The largest gain
periodic, clustered dot halftones as used in the graphic artsdffor dithered periodic halftones (172% better than JBIG).
we use an increased search area, fayw) = (32, 32). With  Choosing a good ordering of the context pixels has great
the larger search area the free tree compresses a80c to 311idfience on compression, especially for periodic images.
bytes. The results on the text images show that the margin'me context pixe| selection may be performed using greedy
JBIG is highly increased with computer-generated materiglelection and multipass coding. Our best multipass algorithm
To investigate the performance of our algorithms on computghe free tree algorithm) choosing the ordering most minutely,
generated halftones, we created a number of high-resoluti@dmpresses periodic halftones 78% better than FPAC-F with
clustered dot halftones of the Lena image with the threshadéfault pixel ordering (42% overall). Free tree coding produces
halftoning algorithm described in [17]. The hybrid algorithmsuperior compression results for all types of images (except,
With 7 = 2, kiax—7 = 4,1 = 24, h = 32, w = 32 compressed perhaps, stochastic halftones), but the encoding is too slow
these images 80% better than optimized JBIG. The free tfeg other purposes than bench marking. Free template coding
with h = 32, w = 32, b = 13 compressed them 144% bettegives substantial improvements over optimized JBIG for pure
than optimized JBIG. halftones and mixture images and moderate improvements

We have focused on halftones, where the most seemsfdp images of dense printing. For the optimized JBIG, the
be gained. Another reason is that the more specialized sg#iG adaptive template was chosen with the free template
pattern matching (SPM) techniques [19] as a preprocessigigorithm, thereby improving the performance on periodic
offers improved compression for text. SPM plays the role @falftones substantially. Basing the greedy template selection
enabling context pixels to be placed around that same spobifiimage pixels in a randomized, hexagonal grid and gradually
a matching letter a#/ covers in the current letter. decreasing the search area for the template pixels, the template
selection becomes feasible for software implementation on a
general purpose computer. Free template decoding speed is of
the same order of magnitude as JBIG decoding speed. Using

Timing results for the algorithms of moderate complexityhe free template algorithm to (partly) define an ordering of
are given in Tables Il and II£. denotes the time for compress—ixels and letting FPAC-F determine the coding depth, the
ing an image. The timing results are obtained with algorithntompression performance is increased a little at the cost of
implemented in C (using the UNIX timex command) on asomplexity and of increased decoding and encoding time.
HP 9000, series 755 computer. With default pixel orderin8tochastic halftoned images were coded best by this technique
FPAC-F is approximately 12 times slower than JBIG in thénybrid coding). By using fewer minutely determined template
given software implementations. The hybrid algorithm witipixels in the ordering, the algorithm becomes an attractive
maximum 4 adaptive pixels is 16 times slower than defaudbmpromise of compression performance and complexity. The
template JBIG in our implementations. The throughput of thisompression factor is totally 25% better than that of optimized
algorithm on the chosen platform is 100 kpixels/s. Speed caBIG. In the given software implementations, the hybrid
be improved by replacing FPAC-F by template coding. Withlgorithm is one order of magnitude slower on the encoding
maximum 4 adaptive pixels and a template size of 16 tlside than default template JBIG. By replacing FPAC-F by
algorithm is four times slower than default template JBIGmplate coding, speed is greatly improved at a moderate loss
(in the implementations we have). For FPAC, the maximél compression performance.
context tree deptHt, significantly influences compression time, Both one-pass and multipass algorithms perform compara-
because the tree must be climbed for most if not all pixels. tively better with high-quality images. For computer generated
our implementation of FPAC-B and FPAC-F, each context trémages (compared to scanned images), the percentual gain over
node holds six integers of 4 bytes each, so thigt = 87381 JBIG is doubled or tripled.

B. Complexity
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APPENDIX In the last equation, we used the ergodic property, assumed

Proof of Theorem:The proof of Theorem 1 is quite anal- valid for all contexts. The expressias,. is a function that
ogous to the proof in [3}—it falls in two parts: In Part 1,90€S 0 zero as. approaches infinity. The constapf}” =
we prove that fort — oo with probability 1, the contexich+s Ol H (Ule, Y = 0) +p(Y" = L|o)H(Ule, ¥’ = 1) — H(U]c)
(wheres is a positive integer) will be preferred t& by FPAC- IS nonpositive and zero only whes{u|cy) = p(ulc) for all
B if p(u|c+*) # p(u|c*), which means that we will choose gvalues ofw andy. Hence,AL < 0 with probability 1 for
coding node which at least has deptfa’). As we have limited t— oo o .
depth, this accounts for FPAC-B being a universal coder. |nPart 2: Definep(y|c) = ney/ne andplulcy) = nujey/ney
Part 2, we prove that far— oo with probability 1 the context andp(ulc) = nuje/n.. Fors > k(c') we have

ck(H+s (wheres is a positive integer) will not be used as the

coding node. This together with Part 1 proves the remainder AL = Hnojeo, mjeold) + Hnojers m1jea]?)

of the theorem. — £(noje, n1je]6) (22)
To prove the theorem, we need a lemma to state that the —0 0|0 Y = 1
effect of choosing a particular value &fin a Bernoulli model =ne|p(Y =0lc)H), e +0(Y =1e)
of almost any binary string has an effect on its code length, noje1 noje 1
which is of magnitude)(1) for its length approaching infinity. -Hy, <n—> - H, <—>} B log 7co
Fort — oo, we will with probability 1 haveng > NAn; > N . ot ¢
[see (3)] as long as all conditional probabilitieg|c), are + = log ne — % log n. + O(1) (23)
greater than zero. To include degenerate sources in the proof 2 B(uley)
is trivial but will decrease its legibility. The code length =—ne. Z Byle) Z Bluley) log ulcy
#(no, n1|6) will thus be approximated by(ng, n;|§) where y=0,1 u=0,1 B(ule)
o 1 Ne
Bno, n1]6) = (no +ny +28 — 1) log(no +ny + 26) +3 log { < o)} +Oo(1). (24)
— (no+ 6 — 1) log(ng + 6)
—(n+6—3)log(ni +6)+&  (16) Defining 6(¢, c, y) 2 HU = 0c) — p(U = Oley) we get
[H(U = 0le) /(U = 0]c)] = - [0(t, ¢, y)/p(U = 0|c)] and
where &, = —log [v2rT(26)/T%(8)]. By the Taylor expan- [5(U = 1jey)/p(U = 1]¢)] = 1 + [6 (¢ /ol = 1) By
sion,In(1 + x) = z + O(«?), we get the following lemma. the Taylor expansmri (1+2)= 53:2 + O(z*), we get
Lemma A.1: 12
AL =—-n, 1yl
U(ng, n1]6) =ng log — +n1 log — + log n y;l Pyle ) 5
non A{IB(0e) ™+ (Lle) 6% (¢, ¢, y) + O8° (2, ¢, y)]}
+& - (6——)10g . 1+0< ) (17) . oo
+ 5 log [nco <1 - = )} + O(1). (25)

=nH, (—0) + 3 log n + O(1) (18)
" As the maximal depth of the tree is bounded by a constant,
wheren = ng + n; and H,(q) denotes the binary entropyand as the node counts in the tree are bounded from below

function —g log ¢ — (1 — ¢) log (1 — ¢). by a function that is proportional t¢ we can repeat the
Define the shorthangd = <(*~*. To ease notation fur- remaining steps of the proof in [3] with the resultZ. > 0
ther, define a stochastic variabl¥, such thatc*~1*y = with probability 1 for ¢ — oc.

5=D*0 = ¢ and c(*=V*y = (~D*] denotes the compli- The use of copy and attenuate initialization of counters only
ment of ¢® with respect toct*—1)*, Let n... refer ton,.. Offsets the counters by a constant and does not change the
In this notation,n;c; = 7;|cs-1« — Nges IS @ shorthand of proof.
the middle code length in (6). Let.. refer ton.,, and let
Ne = Neo + Ne1, as follows. REFERENCES
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