

International Journal of Foundations of Computer Science Vol. 1 No. 4 (1990), 425-447
 World Scientific Publishing Company

 TREE COMPRESSION AND OPTIMIZATION WITH APPLICATIONS

Dedicated to the memory of Markku Tamminen (1945-1989)

JYRKI KATAJAINEN
Department of Computer Science, University of Turku,

Lemminkäisenk. 14, SF-20520 Turku, Finland

and

ERKKI MÄKINEN
Department of Computer Science, University of Tampere

P.O. Box 607, SF-33101 Tampere, Finland

Received 20 October 1989
Revised 1 March 1990

Different methods for compressing trees are surveyed and developed. Tree compression can be
seen as a trade-off problem between time and space in which we can choose different strategies
depending on whether we prefer better compression results or more efficient operations in the
compressed structure. Of special interest is the case where space can be saved while preserving
the functionality of the operations; this is called data optimization. The general compression
scheme employed here consists of separate linearization of the tree structure and the data stored
in the tree. Also some applications of the tree compression methods are explored. These
include the syntax-directed compression of program files, the compression of pixel trees, trie
compaction and dictionaries maintained as implicit data structures.

Keywords: data optimization, linearization of tree structure, linearization of data, syntax-
directed compression, pixel tree, trie, implicit dictionary.

1. Introduction

Data compression is a standard operation for which there are well-known utilities,

e.g. compact and compress in UNIXa. Traditionally, input consists of a stream of
tokens which can be bits, characters or words of fixed or varying length.
Concatenation of consecutive tokens is the structure in the input. However, the data to
be compressed is often stored within a structure of some special form, e.g. list, tree,

a UNIX is trademark of AT&T Bell Laboratories.

graph, etc. The plain data is usually worthless or at least of little value outside its
context. Thus, besides the data itself, we must also store and compress if possible the
structure in which the data is stored. In this paper we suppose that the data structure to
be compressed and then manipulated is a tree. For a general survey of data
compression the reader is referred to the recent work by Lelewer and Hirschberg [1].

Trees are widely used structures for maintaining data. They are also used as
auxiliary data structures when compressing data (see e.g. [2,3]). Often it is also
necessary to reduce the space needed for storing a tree itself. In this paper different
tree compression methods are surveyed and developed. Trees are regarded both as the
object and medium of data compression. We mainly concentrate on binary trees but
also make some remarks on k-ary trees; these (ordered, rooted) trees cover most cases
of practical importance.

Let us now formulate the tree compression problem abstractly. Given a tree, the
task is to map it as compactly as possible to memory, which is seen as a string of bits,
a set of memory locations (words), or a set of memory blocks (pages). The range of
the mapping depends on the application in question. In traditional tree compression
the only operations performed are encoding of a tree to a bit string and decoding the
bit string back to a tree.

The benifits gained through data compression of large-to-very-large trees are
obvious since compression reduces storage and data transfer requirements. On the
other hand, there are some severe disadvantages of tree compression. Above all,
compression makes all the normal tree operations (children, parent, search, delete,
insert, etc.) more expensive. In most compression methods there is no other way to
perform these operations other than to decode the compressed tree, carry out the
operation, and encode the tree again!

In the tree optimization problem, a term adopted from the work of Jacobson [4],
the task is to maintain the functionality of a tree in the compressed form. That is, we
want to perform some tree operations as efficiently as done in the uncompressed case
(where an operation is a simple matter of pointer manipulation). We are mainly
concerned with applications where the trees are manipulated in the internal memory of
a computer. So, the mappings are to bit strings or memory words only. For
applications concerning external memories, see for example [5,6].

The compression and optimization of trees is usually performed in two phases: the
compression of the structure (linearization of the tree structure) and the compression
of the data stored in it (linearization of data). Our general policy is to handle the data
and the structure separately. This enables us to compress the plain data by using any
of the known methods and independently find an efficient coding method for the tree
structure irrespective of the form and contents of the data items stored in the nodes.
We shall not consider normal data compression methods but assume that the reader is
familiar with e.g. arithmetic coding [7] and Huffman coding [2]; for a recent textbook
on data compression, see [8]. We want to emphasize that the separation of the data
from the structure will not always give an optimal compression result (see the
applications in sections 6.1 and 8.2) and may not even be possible in some cases.

Appropriate linearization methods for binary trees are presented in chapters 2 and
3. We shall see that only about 2n bits are needed for the structure of any tree on n
nodes; this result is asymptotically optimal. In chapter 4 we attempt to find the
information theoretic optimum. The idea is to represent the structure of a tree by a
single natural number (called the rank of the tree) from the interval 1,…, Bn, where
Bn stands for to nth Catalan number giving the number of different binary trees on n
nodes. Chapter 5 deals with the encoding of k-ary trees.

Typical application areas of the tree compression methods include the
representation of graphics as pixel trees [9-12] and program files as syntax trees
[13,14]. Both applications are of practical importance, and the tree methods support
excellent compression results. These applications are examined in greater detail in
chapter 6.

Chapter 7 contains a sketch of the basic ideas presented in [4] showing that tree
traversal is possible in asymptotically optimal space.

One can separate the concepts of concrete and abstract optimization. In concrete
optimization the data structure to be compressed is given while in abstract
optimization only the desired operations are defined. As data optimization
applications we study trie compaction [15-17] and the design of implicit data
structures [18,19] in chapter 8. Trie compaction is an example of concrete
optimization where the purpose of the data optimization is to implement the search
operation within the same time bound as for the uncompressed trie. The trie
compaction problem contains several NP-complete sub-problems. We consider
heuristics for solving one of them. On the other hand, the construction of an implicit
dictionary is an example of abstract optimization. Given only a constant amount of
extra space, the goal is to perform the operations search, insert, and deletion as
efficiently as possible.

The paper closes with some concluding remarks in chapter 9.

2. Encoding with Fixed Length Codewords

Several encoding methods for binary trees are presented in the literature; see [20]

for a treatment of general tree types and [21] for a survey on binary trees. When
forming a one-to-one correspondence between binary trees and integers, these
methods use different kinds of number sequences as intermediate representations. The
present chapter and the next are devoted to encoding methods whose intermediate
phases have reasonable space requirements. We also suggest that these intermediate
phases can be used as compressed representations for tree structures. In fact, there are
several methods for forming a one-to-one correspondence between trees and integers
which are not presented in this paper because they employ space intensive
intermediate representations, e.g. permutations (see [21]).

We start by introducing an encoding method presented by Zaks [22]. Consider
the tree in figure 1a. Label all the nodes by 1 and all the missing subtrees by 0 as in
figure 1b. We obtain the codeword, called Zaks' sequence, by reading the labels in

preorder. (Visit first the root, then recursively traverse the left subtree in preorder, and
then the right subtree in preorder.) Hence, Zaks' sequence related to the tree in figure
1a is 111100100100111001000.

u

u

u

uu

u
u

u u

u

6

10
4

2

31 7 9

8
5

1

1 1

0
1

1 1 1 1

0 0 0 0 0 000

0 0

 Fig. 1a. A binary tree. Fib. 1b. The numbering of nodes and

 leaves related to Zaks' sequences.

We have the following characterization for feasible Zaks' sequences. A bit string is

a Zaks' sequence if and only if the following three conditions hold
 i) the string begins with 1,
 ii) the number of 0's is one greater than the number of 1's,
 iii) no proper prefix of the string has the property 2).

The length of a Zaks' sequence is 2n + 1 for a tree with n nodes [22].
The children pattern sequence is a codeword closely related to Zaks' sequence. In

the children pattern method we label the nodes of a binary tree by 00, 01, 10 or 11
depending on whether the node has no children, only the right child, only the left child
or two children, respectively. The codeword is obtained by reading the labels in
preorder as in the Zaks' method. The children pattern sequence of the tree in figure 1a
is 11111100000010110000. Generally, the codeword obtained for a binary tree on n
nodes has length 2n.

Yet another method for representing a binary tree with 2n bits is to use balanced
parentheses. A pair of parentheses corresponds to the root and the children are
recursively represented in the same way inside the parentheses.

To decode a tree structure from a given Zaks', children pattern, or balanced
paranthesis sequence is a relatively straightforward task and for this reason we
exclude it from our treatment.

In the above methods we traverse the trees in preorder. Lee et al. [23] have used
level-by-level order, i.e. first the root, then the children of the root from left to right,
then their children from left to right, and so on. The length of these level-to-level
sequences naturally equals the length of the codewords obtained by the the methods
described above. Lee et al. [23] have found the codewords so obtained useful for
some special purposes. Moreover, in chapter 7 we shall see that the level-by-level
sequence allows tree traversal in compressed trees.

We end this chapter by considering three types of binary trees which form a
hierarchy of the number of bits needed to represent their structure by using encodings
like Zaks' sequence.

A binary tree is said to be regular if each node has either two children or no
children at all. Consider now the children pattern sequence of a regular binary tree.
We do not need labels 01 and 10. Thus, we may label a node having two children with
label 1 and a node having no children with label 0. It follows that the children pattern
sequence of a regular binary tree has only n bits. It is in fact easy to prove that there
are exactly as many regular binary trees on 2n + 1 nodes as there are arbitrary binary
trees on n nodes. Hence, the space requirement of n bits is asymptotically optimal (cf.
chapter 4).

The (almost) complete tree structure is an example of an even more drastic
instance of the above phenomenon. A binary tree is said to be complete if all the
internal nodes have two children and all the paths from leaves to the root are of equal
length. In such a tree the number of nodes is of the form 2n - 1. A binary tree is almost
complete if it can be made complete by inserting leaves to the right-hand side end of
the bottom level. The only thing needed to describe the shape of the tree is the number
of nodes! Hence, log n bits are needed when representing the shape of an almost
complete tree on n nodes. This property is extensively used in implicit data structures
(cf. section 8.2).

One criteria for comparing different methods is how easy it is to detect from the
encoded string whether or not there are any regularities in the tree. In Zaks' sequence
the code information related to a node is in different parts of the string, while in the
children pattern method the two bits describing a node are always together. Suppose
we are compressing a regular tree without knowing its degree of regularity. By using
the children pattern method together with arithmetic coding we obtain a compression
result much better than 2 bits per node provided that the compression model reads the
string as a sequence 2-bit integers. Even better compression gain is obtained when the
children patterns are output in the level-by-level order and the tree to be compressed
is almost complete. The resulting string has a long sequence of 1's followed by
another sequence of 0's.

3. Encoding with Varying Length Codewords

In this chapter we introduce two encoding methods based on rotations. (For the

various ways of using rotations in maintaining data structures, see e.g. [24].) These
methods assign an integer to each node of the tree in question and the codeword is
obtained by traversing the tree in symmetric order (traverse first the left subtree in
symmetric order, then visit the root, and then traverse the right subtree in symmetric
order). The number of bits needed in the resulting codeword varies because the size of
the integers assigned to the nodes depends on the shape of the tree. Sometimes less
than 2n bits are needed for representing a given tree's shape.

A rotation is an operation which transforms one tree into another as follows. If
node u is the left child of v then a right rotation makes v the new right child of u, the
old right child of u (if any) becomes the new left child of v, and the old parent of v (if
any) becomes the new parent of u. A left rotation transforms the tree obtained back to
the original one (see figure 2).

A

B C

u

v

A B

C

 left rotation

right rotation

u

 Fig. 2. Right and left rotations.

The rotation based coding methods fix some tree shape and then count the

rotations needed for transforming a given tree into the fixed tree by using some
standard order of rotations. A natural choice for the fixed tree shape is the
degenerated tree consisting of left children only. Such a tree is called a left list.

In Zerling's [25] method we make left rotations with respect to the edge joining the
current root and its right child until the greatest node in symmetric order is on the
root. The code item xn-1 related to the greatest node un-1 is the number of rotations
done. Naturally, it is possible that un-1 = 0. The same procedure is then repeated in
the left subtree of the tree so far obtained; i.e. the root node is discounted and left
rotations are done with respect to the edge joining the new root and its right child.
This continues until the code item x1 is set to have value 0 or 1, depending on whether
we must rotate when there are two nodes left. The codeword representing a tree on n
nodes has n - 1 code items. Zerling's method gives the codeword (1,0,1,0,1,1,0,2,1)
for the tree in figure 1a.

In order to uniquely decode the tree structure we naturally have to know how many
bits are needed for representing each code item. The sum of the code items of a tree
on n nodes always lies between 0 and n-1 [25]. In a codeword (x1,x2,…,xn-1) define

Now, the maximum value Mp for the code item xp,

p

> 1, is Mp = p - Tp-1. The code

item x1 is 0 or 1. Hence, by setting T0 = 0 we have defined Mp for all p = 1,..., n - 1.
By using the values Mp we can calculate the number of bits needed for representing
each code item.

As an example, consider binary trees on 10 nodes. In this case all codewords
contain 9 code items. If the codeword to be stored is (1,1,1,1,1,1,1,1,1) we have
Mp = 1, p = 1,..., 9. Thus, it suffices to reserve one bit per node. An opposite case

.11 for,
1

1

,..., n- i xT
i

j
ji ==∑

−

=

appears if the codeword is (0,0,0,0,0,0,0,0). We have Mp = p, p = 1,..., 9, and we have
to reserve one bit for x1, two bits for x2 and x3, three bits for x4,..., x7, and four bits
for x8 and x9. Totally, we need 25 bits. In general, we may need as many as

bits. Hence, it is advantageous to have xi as close Mi as possible.

A unique code system is also obtained when rotations are done on the edges
joining the next node to be "lifted up" (the greatest node in symmetric order in the
current tree) and its parent. The code item xn-1 for the greatest node un-1 has the same
value as in Zerling's method. When making rotations on the root of the tree Zerling's
method transforms some smaller node to the left arm (i.e. the path from the root
following the left child pointers), while the latter method does not change the distance
of the smaller nodes from the left arm. As a consequence, this method has the property
that for each node ui, the distance from the left arm equals the code item xi, when the
distance d(ui) from the left arm is defined by

 d(ui) =




0, if ui is on the left arm,
d(p(ui)), if ui is a left child,

d(p(ui)) + 1, if ui is a right child,

where p(ui) stands for the parent of ui [26].
This method gives the codeword (0,1,0,1,0,1,1,2,1) for the tree of figure 1a.
A feasible codeword (x1,x2,...,xn-1) always has x1 = 0 or x1 = 1 and xi is in

[0, xi-1 + 1], for i = 2,..., n - 1 [26]. Hence, the bits needed for the code item xi depend
on the value of xi-1. The minimum number of bits is for the codeword (0,0,...,0) and
maximum number for the codeword (1, 2,…, n - 2, n - 1). Note that this gives the
same upper bound for the number of bits needed as Zerling's method.

Although rotation based encoding methods generally consume more space than
Zaks' sequences there are also special cases in which they out perform Zaks' sequence
as we have seen in the above examples.

4. Seeking after the Information Theoretic Optimum

In the two previous chapters we have presented different ways for representing tree

structures as number sequences. In this chapter we discuss the possibility of
representing tree structures as single integers.

Each of the methods presented in chapters 2 and 3 has a corresponding ranking
algorithm which returns a unique integer from the interval 1,…, Bn related to the tree
in question. The number of binary trees on n nodes is

 ∑
−

=

1

1

log
n

i

i

We now need log2Bn bits for representing any binary tree on n nodes. Since Bn is

less than 22n, we save some space compared to the bit sequence methods. Clearly, it
is impossible to differ Bn trees by using less bits than it is needed for the first Bn
integers. Hence, this method reaches the information theoretic optimum with respect
to the number of bits needed.

The ranking algorithms of the different encoding methods are basically similar and
we present here only one example. We start with the Zaks' sequence
111100100100111001000 of the tree in figure 1a. The z-sequence of a Zaks' sequence
contains the bit positions set to 1. In our example, we have z = 1, 2, 3, 4, 7, 10, 13, 14,
15, 18. The z-sequence is repeatedly reduced by omitting the largest i such that zi = i
and subtracting 2 from all the z-values which lie to the right of the omitted one until
the z-value to be omitted is the largest in the sequence. Hence, in our example the z-
sequence is first reduced to the form z = 1, 2, 3, 5, 8, 11, 12, 13, 16, since 4 is the
omitted value. If the z-sequence has length n and the omitted item is in the pth index,
we add an,p to the sum index(z). In our example, the first term in the sum is a10,4. The
an,p-values are obtained as follows (0≤p≤n-1)

 an,n-1 = 1, for all n,
 an,0 = (2n)!/n!(n+1)!, for all n,
 an,p = an,p+1 + an-1,p-1, otherwise.
When index(z) is calculated, the rank r(T) of the tree is obtained as

r(T) = Bn - index(z) + 1.
We have index(11110010010011100100) = a10,4 + a9,3 + a8,3 + a7,2 + a6,2 + a5,1

+ a4,3 + a3,2 + 1 = 1638 + 1001 + 275 + 165 + 48 + 28 + 1 + 1 + 1 = 3158. The rank
of the tree in figure 1a is r(T) = Bn - index(z) + 1 = 16796 - 3158 + 1 = 13637. Hence,
instead of the 20 bits of the Zaks' sequence, we now need only log213637 = 14 bits.

In order to decode the integer back to the tree, we naturally need an unranking
algorithm which returns the Zaks' sequence related to the integer in question [22].

5. Encoding of Multiway Trees

In the preceding chapters we have considered the encoding of binary trees only.

This chapter shows how these binary tree encodings can be used when encoding k-ary
trees. We use the phrase multiway tree for ordered k-ary trees having an arbitrary
degree k.

2.3.4.4.].section [27,
n

2n
1

1









+
=

n
B

a

b
c

d

e f g h

i j
 Fig. 3a. A multiway tree.

From a given multiway tree we can construct the corresponding child-sibling

binary tree representation as follows [28]. Let x be a node in the multiway tree with t
children (from left to right) x1, x2,..., xt. In the corresponding binary tree the node
containing x has only two pointers. The left pointer accesses the first child x1, and the
right pointer accesses x's first sibling, if any. Similarly, the left pointer of x1 accesses
its first child, and the right pointer of x1 accesses x2. The child-sibling binary tree
representation of the multiway tree of figure 3a is shown in figure 3b. It is clear that
this transformation preserves the uniqueness of tree shapes. Furthermore, the binary
representation of a given multiway tree and its decoding back into a multiway tree can
be produced in linear time. It follows that the shape of a multiway tree can be
represented as efficiently as the structure of a binary tree on the same number of
nodes.

a

b

c

d

e

i f

g

h

j
 Fig. 3b. The child-sibling binary tree representation of the
 multiway tree in figure 3a.

Another way of achieving this is the arity method: mark each node by its arity and

read the labels in some fixed order. If these arities are encoded by fixed length
codewords the total number of bits needed for a tree on n nodes is nlog2 d, where d
is the greatest arity in the tree. A more efficient way of doing this, called the unary
degree method, is described in [4,20]. In this method we encode each arity d by the
string 1d0 (d 1-bits followed by a 0-bit). Hence, instead of fixed length codewords we

use varying length ones. This reduces the total number of bits down to 2n - 1 because
for each node one 1-bit and one 0-bit is needed, except for the root which cannot be a
child of any other node.

A multiway tree having degree k is regular if each node has either k children or no
children. We can easily prove that the number of bits needed for representing the
structure of a regular multiway tree on n nodes is 2n/k, which is also asymptotically
optimal. As in the case of regular binary trees, we can gain further savings by making
use of the regularities in the k-ary tree encoding. This is possible if we use a
compression method which adapts to the patterns appearing in the tree structure.

6. Data Compression Applications

This chapter introduces two common tree compression applications, syntax-

directed compression of program files and the compression of pixel trees.

6.1 Syntax-Directed Compression of Program Files

In syntax-directed compression of program files trees are used as an intermediate

step in the compression process: a linear structure is first transform to a tree and then
back to a linear form again. The basic idea of syntax-directed compression is first to
construct a parse tree for a source program, to label the nodes of the tree with small
integers, and then to encode a linearized form of the tree as compactly as possible.
Another way to say this is that the compressed form represents a Szilard language of
the grammar generating the source text (for recent advances of the theory of Szilard
languages, see [29]). This idea is an old one introduced as early as the beginning of
seventies by several researchers (see [30,31]). Recently, many compression system
implementations have been published (see for example [13,14,32-34]) and two Ph.D.
theses, [35,36], have been written on the subject.

The best results obtained by using syntax-directed compression are reported by
Cameron [13]. He has achieved an overall compaction of better than 85% on average.
(Observe that his encoder uses some context-sensitive modelling techniques as well.)
This clearly out performs the results of the UNIX utility compact, implementing
adaptive Huffman encoding, which achieves a 55% saving on average.

The decomposition of a syntax-directed compression system is similar to that of a
compiler (see [37]). First, the source text is scanned from left to right and grouped
into tokens. Tokens are sequences of characters which have a collective meaning, that
is, syntactic terminals (keywords, operators, punctuation symbols) and user terminals
(constants, identifiers). Second, the token list is parsed and simultaneously a parse tree
is constructed. More precisely, the order is determined in which the productions have
to be applied in order to regenerate the token list with the grammar in question. Third,
the symbol table (gathered during the scanning phase) and the parse tree are bit-
encoded.

Most systems assume that the input is always syntactically correct. This
assumption is not restrictive because syntactically incorrect programs are rarely stored
or transmitted. Moreover, if the program is produced by a syntax-directed editor, it
cannot be incorrect. In addition, there should exist character-level subroutines for
compressing comments in the input program.

To illustrate the compression process, let us consider a small example. We assume
that the user terminals in our hypothetic programming language are IDENTIFIERs
and INTEGERs. An identifier must begin with a letter which is followed by some (if
any) letters or digits. An integer is a sequence of digits. Further, we assume that the
programs to be compressed are generated by the following grammar. When describing
the grammar, we use the following conventions. A non-terminal symbol is written
with lower-case letters, a syntactic terminal of the language is delimited by apostrophe
marks ('), and a user terminal is written with upper-case letters. The start symbol of
the grammar is the non-terminal program.

 P1: program → heading ';' statements '.'
 P2: heading → 'PROC' IDENTIFIER '(' identifiers ')'
 P3: identifiers → IDENTIFIER ';' identifiers
 P4: identifiers → IDENTIFIER
 P5: statements → statement ';' statements
 P6: statements → statement
 P7: statement → IDENTIFIER ':=' expression
 P8: statement → 'IF' expression 'THEN' statement 'ELSE' statement
 P9: statement → 'WHILE' expression 'DO' statement
 P10: statement → 'RETURN' IDENTIFIER
 P11: statement → '(' statements ')'
 P12: expression → factor operand factor
 P13: expression → factor
 P14: factor → IDENTIFIER
 P15: factor → INTEGER
 P16: operand → '='
 P17: operand → '>'
 P18: operand → '+'
 P19: operand → '-'

In figure 4(a-c) we show how a program (computing the sum of the first n natural
numbers) is encoded. The compressed form of the source program is a concatenation
of the symbol table and the parse tree. The tree is linearized by outputting the nodes in
preorder.

 PROC sum(n);
 result:= n;
 WHILE n>1 DO
 (n:= n-1; result:= result+n);
 RETURN result.

 Figure 4a. A program to be compressed.

Symbol table: i1: 1, i2: n, i3: result, i4: sum

Parse tree
p1 p2 i4 p4 i2 p5 p7 i3 p13 p14 i2 p5 p9 p12 p14 i2 p17 p15 i1 p11 p5 p7 i2
p12 p14 i2 p19 p15 i1 p6 p7 i3 p12 p14 i3 p18 p14 i2 p5 p6 p10 i3

Figure 4b. The compressed form of the program in figure 4a.

14

1i

14p

14

7

p1

p2 p5

p4 p p5

p15

i 4

i 2 i 3

i 2

p13

p

p5

p6

p10

i 3

p9

p11

p5

p6

p7

p12

p15
p17

i 2

i 2

i 2i 3

p7

p14
p12

p14
p18

p
p19

p12

i 2 i 1

i 2

 Figure 4c. The parse tree corresponding to the program in figure 4a.

The symbol table can be further compressed by using any traditional text-

compression method. To bit-encode the parse tree one can use fixed-length codes.
Each user terminal can be encoded by log2 t bits, where t is the number of different
user terminals. One of the simplest methods encodes the production label of a rule,
whose left-hand side non-terminal occurs on the left-hand side of r rules by log2 r
bits that will uniquely specify the production which has been used in the substitution
of the non-terminal. Note that if a non-terminal has only one derivation no code is
needed. For example, in our example grammar the non-terminal statement has 5

derivations, i.e. three bits are then enough to encode the production rules. For more
sophisticated variable-length coding schemes, the reader is referred to [13,32,34].

The decoding of the parse tree is basically a simple task achieved by the
replacement of production labels. Moreover, the structure of the parse tree need not be
stored separately since the arity of each production label is directly recovered from the
grammar. The arity method is used here implicitly, not explicitly.

6.2 Binary Pixel Trees

Suppose a picture (or an image) consists of an array of 2n × 2n pixels. Each pixel

has a code (i.e. a colour) related to it. The problem is to store the picture efficiently.
A good alternative to simple sequential storage is to use pixel trees which try to divide
the picture into uniform areas, where adjacent pixels have the same colour, and to
hierarchically organize these areas [9,10,12,38]. Pixel trees may be 4-ary or even 8-
ary, but we restrict ourselves to binary pixel trees only.

The root of a binary pixel tree represents the whole picture. If all the pixels have
the same colour we can assign the colour code to the root and the representation of the
picture is complete. Otherwise, we divide the picture into two sub-pictures of equal
size. The sub-pictures are represented by the two children of the root. Again, if in
either of the sub-pictures all the pixels have the same colour we can assign the
corresponding code to the node. This process is recursively repeated until all the sub-
pictures consist of pixels of same colour. This recursive definition has the
characteristic feature that a node in the tree always has two children or no children at
all. Hence, all binary pixel trees are regular and their structure can be represented by
using only one bit per node.

Figure 5a shows a simple picture and figure 5b the corresponding binary pixel tree.
In this example we suppose that the picture is black-and-white, i.e. there are only two
possible colours: black (code 0) and white (code 1).

 Fig. 5a. A black-and-white picture where the subpictures are divided by

 turns along the x- and y-axes.

1

0 1 1 0 0

0

1

 Fib. 5b. The binary pixel tree corresponding the picture in figure 5a.

According to our general scheme the binary pixel tree in figure 5b is represented

by two bit sequences. The first sequence represents the structure of the tree. Using 1
for the nodes with two children and 0 for the nodes with no children we obtain the
sequence 101110010011000. The data of the tree is yielded by collecting the leaves in
preorder producing the sequence 11001010. (A careful reader might have noticed that
the resulting bit string is longer than the one obtained by simply reading the codes row
by row. This shows that the compression of a picture via a pixel tree is not necessarily
optimal. Indeed, the point of our treatment is to compress the tree which describes the
picture rather than the picture itself.)

There are some application-dependent possibilities to further compress the data
sequence. The size of the pixel array gives the maximal height to the pixel tree.
Hence, by considering the depth of a node we can decide whether a given leaf is on
the lowest possible level and thus representing a single pixel. On the other hand, we
know that in a binary pixel tree a leaf does not have the same colour as its sibling [12].
We can represent the leaves appearing on the lowest possible level as a sequence of
their own. This allows us to encode the possible pairs 01 and 10 of adjacent codes by
a single bit each [12]. The tree in figure 5b has three pairs of leaves on the lowest
level. We can encode these bit pairs in three bits producing a total number of five bits
for the data sequence.

Kawaguchi and Endo [10] define a context-free grammar which generates feasible
codewords of a binary pixel tree. The codewords represent both the structure of the
tree and the data. In this respect their encoding method is less flexible than those
following our general scheme.

Gargantini [39] has started the study of "linear quadtrees". In linear quadtrees
pointers are eliminated by storing pixels (black only) by using an encoding which
reflects the successive quadrant subdivisions. The encoding makes it possible to
perform some basic quadtree operations, including the one of finding adjacent nodes,
in logarithmic time. Hence, contrary to other applications discussed in this section,
linear quadtrees are an example of data optimization. Linear quadtrees and other
similar methods are surveyed in [40].

The use of arithmetic coding in pixel tree compression is studied by Langdon and
Rissanen [11]. For the compression of 4-ary pixel trees, see e.g. [40-42] and the
references therein.

7. Encodings Allowing Traversal Operations

In our treatment so far we have tried to reduce the number of bits needed in

representing trees without paying attention to the accessibility of the resulting
structure. It is clear that most of the methods discussed in previous chapters are
unsuitable for applications where compressed trees are frequently accessed. An ideal
compression method would simultaneous achieve minimization of bit usage while
allowing efficient traversal in the compressed tree. By traversal we mean the ability to
move from a node to its parent and children. Despite their practical importance,
compressed trees allowing efficient traversal are mostly overlooked in the literature,
Guy Jacobson's thesis [4] being an outstanding exception. In this chapter we survey
some of his ideas.

A straightforward method for saving space and allowing efficient traversal in
binary trees is to "thread" the tree so that isomorphic subtrees are stored only once.
Note that this method is applicable only when we are interested in the structure of the
tree and not in the data possibly stored in the nodes. There exists a linear time and
space algorithm for finding all isomorphic subtrees of a given tree [43]. If trees are
chosen at random under a uniform distribution the compression factor gained when
merging subtrees grows slowly without bound. The growth rate is O(log n) [4].

Jacobson [4] also gives different kinds of bit string representations allowing
efficient access. The basic form of these recursive representations is shown in figure
6. The header block contains information about the sizes of the left and right subtrees.
When knowing the sizes of the subtrees we can continue the traversal at an
appropriate position in the string. To make this step possible we insist that all n-node
trees always occupies exactly the same number of bits in the string. The encodings of
the subtrees recursively have their own header blocks. The empty tree is represented
by the empty string.

 header left subtree right subtree

 Fig. 6. A recursive string representation of a binary tree.

The basic form shown in figure 6 can be improved by storing the smaller subtree

first and having only its size in the header block. In this version we need an additional
bit to indicate whether or not the left subtree is the smaller one. Natural numbers
standing for the sizes of the subtrees must be encoded by prefix codes (called
universal codes in [8]). The sum of the sizes can be represented in amortized constant
space for each node of the tree to be compressed. More effort and more bits per node

are needed if we want to traverse a tree upwards (from a child to its parent); for details
see [4].

Traversal is also possible in a method based on the level-by-level representation
mentioned in chapter 2. Recall that the level-to-level sequence is obtained by first
labeling the nodes and the missing subtrees by 1's and 0's, respectively, and then
reading the labels in the level-by-level order, i.e. first the root, then the children of the
root from left to right, and so on. In this sequence the left and right children of the
node corresponding to the mth 1-bit are in the positions indicated by the 2mth and
2m+1st 1-bits. In order to allow fast access to the position of the ith 1-bit, and hence to
make the tree traversal more efficient, Jacobson [4] uses directories inspired by the
work of Elias [44]. We omit the details concerning the use of the directories, however
the results show that it is possible to construct a structure which uses 2n+ο(n) space
and in which a tree traversal requires O(log n) bit-accesses, or O(1) time if O(log n)
consecutive bits can be manipulated at unit cost.

8. Data Optimization Applications

This chapter discusses two tree compression applications where data optimization

is possible. In tries we can perform efficient searches in the compressed structure and
in implicit dictionaries we perform operations insert, delete, and search in optimum
space.

8.1 Trie Compression

A trie is a data structure for representing sets of character strings. The characters

are also called attributes. Suppose the strings are over an alphabet of k elements.
Then a trie is a k-ary tree where each path from the root to a node on level i
corresponds to the set of keys in the represented set that start with the same sequence
of characters. Each trie node must contain an array with k elements in order to identify
the (possibly) k off-spring of the node. To search for a string A = a1a2...an in a trie we
follow the following procedure: In the root examine the array element corresponding
to the character a1. It can be (1) null, (2) a pointer to an auxiliary table containing the
strings currently represented by the trie, or (3) a pointer to another node in the trie.
Case (1) implies that the string searched is not present in the structure. Case (2) leads
to a comparison of A against a string in the trie. A mismatch implies that A is not
present. Finally, case (3) means that there is more than one string in the trie starting
with a1. In this case we must continue our search from the node pointed to and repeat
the above procedure with the character a2. This procedure terminates at the latest
when the last character an in the string is handled. For further details concerning tries,
see any standard text on data structures and algorithms, e.g. [24,45].

The main disadvantage of tries is their high space requirement. A straightforward
method for saving space is to replace the arrays in the nodes by linked lists which
contain an element for each child of the node in question. As a consequence, time

spent in selecting the appropriate child of a node is no longer constant: in the worst
case we have to examine the entire list whose length is bounded by k. The search time
can be reduced by storing the nodes of each list in a binary tree.

Another solution for the trade-off between time and space in tries is given by
Ramesh et al. [46]. In their solution the trie does not directly specify individual keys
but a set of keys in which an additional binary search is performed. Hence, the
purpose of the trie is to reduce the set of possible keys making binary searches more
efficient. The size of the sets bounds the time needed for binary searching. One of the
problems studied by Ramesh et al. [46] is to minimize the number of sets needed
when the maximal size of the sets is given. Another problem is to minimize the worst-
case binary search time under the restriction that the number of sets does not exceed a
given bound. Both of these problems can be solved in polynomial time, and hence
their work gives an alternative for implementing tries.

Compact representations for tries in the connection with predictive text
compression are discussed by Teuhola and Raita [47] (see also [48]). In their
application tries include all the substrings of length at most k (k is a constant) that
exist in a text and, moreover, it is not important to support efficient access in the
compressed trie. These properties can be utilized in order to further compress the trie.

In the case that the fast retrieval time of the array implementation should not be
sacrificed and the tries to be compressed are static, a traditional space saving method
is to find the optimal order for testing the attributes. Instead of proceeding from left to
right we can proceed in the opposite direction or in fact any order we wish. The
number of nodes, and thus the space needed for the trie, depends on the order in which
we test the attributes. The problem of finding the optimal order is studied by Comer
and Sethi [16] and elaborated further by Comer [49-51].

One can also consider the given set of node arrays as a sparse matrix to be
compressed. Several heuristics for this situation can be found from [15] (see also [52-
53]). In what follows we describe the method of Tarjan and Yao [17]. A data structure
based on these ideas is presented also in [54].

Sparse matrices can be compressed into one-dimensional arrays such that several
positions of the original matrix are represented by a single position in the resulting
array provided that at most one of the original positions in question has a non-null
content. If the non-null elements are conveniently distributed a simple heuristic is
quaranteed to perform well. For presenting this result we need some notation. Let A
be a matrix with m non-null elements and let m(t), t ≥ 0, denote the total number of
non-null elements in the rows of A which contain t + 1 or more non-null elements.
The matrix A is said to have the harmonic decay property if m(t) ≤ m/(t + 1). If A has
the harmonic decay property, at least half of its non-null elements must be in rows
with only a single non-null element. Moreover, no row can have more than n non-
null elements.

The following heuristic (often called Ziegler's first-fit method) gives a good
compression result for matrices having the harmonic decay property:

i) Sort the rows in non-increasing order according to the number of non-null
elements in each row.

ii) Using the order of rows fixed in step 1 determine a minimal row displacement
rd(i) for each row i such there are no collisions with the previously placed rows.

Each row displacement r(i) now satisfies 0 ≤ rd(i) ≤ m [17,24].
An obvious disadvantage of the method is that not all sets of node arrays form a

matrix having the harmonic decay property. If we have a matrix not fulfilling this
property we must define a set of appropriate column displacements which increase the
number of rows but, at the same time, create extra null elements among the original
rows. Tarjan and Yao [17] provided a method for choosing the column displacements
such that the resulting matrix will contain O(n log log n) rows, where n is the number
of rows (node arrays or non-null elements in our application) in the matrix to be
compressed. When the resulting matrix fulfilling the harmonic decay property is
compressed by the first-fit method, a structure with space requirement O(n log log n)
is obtained. A further reduction to O(n) is still possible by observing that at most n of
the rows contain non-null elements and by packing several small numbers (indicating
the row displacements) into one storage location [17,24].

8.2 Implicit Dictionary

The design of implicit dictionaries is an example of data optimization where the

goal is to manipulate some data items in the first n locations of an array as efficiently
as possible without using more than a constant amount of extra space for pointers,
counters, etc. In this section we survey various ways of implementing an implicit
dictionary, i.e. a data structure supporting the operations insert, delete and search.

The implicit dictionary problem was first studied by Munro and Suwada [18].
They presented an implementation that guarantees O(log n) search time and
O(n1/2log n) insert/delete time or alternatively O(n1/3log n) for all operations. These
results were later improved by Frederickson [55] and Munro [19]. Frederickson was
able to reduce the update times to O(2 2/log n log3/2 n) while still maintaining the
O(log n) bound for searches. Munro's implicit dictionary supports any operation in
O(log2 n) time.

In the static case the problem can be easily solved by a sorted array. Searches are
then done in O(log n) time by a binary search although updates require linear time.
However, the static structure can be converted into a semi-dynamic structure
supporting efficient searches and insertions by using the general binary transform
proposed by Bentley and Saxe [56]. The idea is to maintain a set of sorted arrays
(segments) each whose size is a power of two. These are then stored sequentially
according to size such that the largest segment is leftmost in the array. The binary
representation of n determines the segment sizes as follows. If the ith bit of n is one,
we have a segment of size 2i in the structure. For example, when n = 29 = 111012 the
structure contains segments of size 16, 8, 4, and 1.

Binary searches are made in each of these segments. The first and last items within
a segment are readily computed from n. In addition, there will be at most log2 n
segments, and hence the overall search cost is O(log2 n).

A new element is inserted as a rightmost one-item segment. If its neighbouring
segment is also a one-item segment, these two are merged resulting in a two-item
segment. This process is repeated for the rightmost segment until no segment pairs of
equal size exist. The merge operation is performed by using some in-place merging
algorithm (see for example [57]). In the worst case a single insertion might take time
proportional to n. However, the cost of inserting N items is O(Nlog N). This is
because one item can take part in at most log2 N merges. Thus, insertions are
done in O(log n) amortized time. Munro and Poblete [58] have improved this data
structure such that O(log n) worst-case performance is guaranteed for insertions. The
crucial idea is not to complete merges at once but distribute the work for several
insertions.

Let us next consider how polylog performance is obtained for all dictionary
operations. Our discussion follows the solution given by Munro [19]. The heart of the
construction is a balanced search tree (for example an AVL-tree) which is
implemented for sorted segments of k items. The balanced search tree keeps segments
in sorted order. In order to facilitate updates for single items, an overflow area of size
less than k is to be maintained between any pair of nodes. Munro [19] has proposed a
way for handling the overflows so that O(k + log n) time is enough for any operation.
Moreover, this can be done such that only at most k of the segments are non-full.
Thus, the structure uses n + O(k2) storage locations.

How the above structure is converted to a fully implicit one? Basically, there are
three issues to be addressed. First, non-full segments are compacted and maintained at
the end of the array. Since a single update may involve shifting all the items in this
area, the insertion and deletion costs are increased by an additive factor O(k2).

Second, the children, balancing, and overflow information of a node is encoded in
the relative order of the data items. A sorted segment of k data items gives an extra
storage of k/2 bits: the order of an item pair a2i-1,a2i (i=1, 2,…, k/2) indicates,
say, a 0-bit if a2i-1 < a2i, and a 1-bit if a2i-1 > a2i. For example, the bit sequence
11101 is embedded into the sequence (1, 4, 5, 8, 11, 17, 20, 22, 29, 31) by rearranging
it to the form (4, 1, 8, 5, 17, 11, 20, 22, 31, 29). Observe, that in spite of the local
rearrangement, the data items are still easy to manipulate in sorted order. By choosing
k = c log2 n + d (for some suitable constants c and d), pointers and counters can be
encoded, and the time complexity of the dictionary operations is O(log2 n). Note that
the encoding trick is used in several other algorithms (see for example [58,59]).

Third, we must know n beforehand in order to be able to fix the proper value for
the parameter k. The growth and shrinkage of n is handled by maintaining

O(log log n) separate structures of sizes 22i (i = 1, 2,..., log log n) plus one more of
the appropriate size. The sizes are again recovered directly from n. Due to the double
exponential growth of the sizes, the cost of a search in each of these structures is

dominated by that of the largest. Insertions are made on the last structure, and a
deletion is accomplished by moving an item from the last structure into the one in
which the item to be deleted is found.

As a final comment on implicit dictionaries, we like to emphasize that the
encoding of the pointers and counters is possible only when the data items are distinct.
Note however that the method based on the binary transform works for any set of
items. It is still an open problem whether the complexity bound O(n1/2) for any
dictionary opreration [18] can be improved in the case that equal data items are
allowed.

9. Concluding Remarks

We have seen that 2n bits are enough for storing the structure of a binary tree on n

nodes. Even better results can be obtained if there are regularities in the structure. If
we know that a tree is regular we can encode its structure using only n bits. By using
encoding methods that physically keep the information related to a node together
(such as the children pattern sequence), in conjunction with an appropriate
compression method, we can go below 2 bits per node without knowing a priori the
degree of regularities in the structure. Jacobson [4] has shown that data optimization is
possible in binary trees: the neighbouring nodes are found in constant time even in the
storage space of 2n + o(n) bits.

Natural generalizations of tree compression and optimization have corresponding
considerations for graphs. Turan [60] has shown that a planar graph having n nodes
can be encoded by 12n bits. Data optimization in graphs is studied by Kannan et al.
[61] and Jacobson [4]. For dense general graphs we cannot really hope for better
solutions than adjacency lists [62].

We conclude this paper by listing some research problems. Dynamization is an
important feature in all our example applications; it can be considered as a special
case of data optimization where the operations of interest are insertion and deletion. It
would be profitable if we could efficiently perform these operations in compressed
structures. Aside from the applications mentioned in chapters 6 and 8, dynamization
would be useful in the compression of structured text databases (for a related work see
[63]).

Our formulation of the tree compression problem states that we should always map
a tree structure "as compactly as possible". In the case of tries we found that finding
the optimal solution can be NP-complete. Research remains to be done on
approximation algorithms related to trie compaction and similar applications.

An open problem of theoretical interest is the one of finding more efficient implicit
dictionaries. For instance, is it possible to perform the search operations in time
O(log n) while keeping the polylog complexity for the update operations? Another
question is to examine whether it is possible to construct an implicit dictionary in
which equal keys are allowed and the product of search time (ts) and update time (tu)
is less than linear, i.e. ts×tu < n.

Acknowledgements

We would like to thank Robert D. Cameron, Matti Jakobsson, Heikki Mannila,

Timo Raita, Markku Tamminen, Jukka Teuhola, and Richard Williams who read
earlier versions of this paper and supplied many helpful comments. This work was
supported by the Academy of Finland.

References

1. D.A. Lelewer and D.S. Hirschberg, “Data compression”, ACM Comput. Surv. 19
(1987) 261-296.

2. D.A. Huffmann, “A method for construction of minimum redundancy codes”,
Proc. of the IRE 40 (1952) 1098-1101.

3. D.W. Jones, “Application of splay trees to data compression”, Comm. ACM 31
(1988) 996-1007.

4. G. Jacobson, Succinct static data structures. Report CMU-CS-89-112, Computer
Science Department, Carnegie Mellon University.

5. R. Bayer and E. McCreight, “Organization and maintenance of large ordered
indexes”, Acta Inform. 1 (1972) 173-189.

6. R. Bayer and K. Unterauer, “Prefix B-trees”, ACM Trans. Database Syst. 2 (1977)
11-26.

7. I.H. Witten, R.M. Neal and J.G. Cleary, “Arithmetic coding for data
compression”, Commun. ACM 30 (1987) 520-540. (see also Commun. ACM 31
(1987) 1139-1145.)

8. J.A. Storer, Data Compression: Methods and Theory (Computer Science Press,
Rockville, 1988).

9. Y. Cohen, M.S. Landy, and M. Pavel, “Hierarchical coding of binary images”,
IEEE Trans. Pattern Anal. Mach. Intell. PAMI-7 (1985) 284-298.

10. E. Kawaguchi and T. Endo, “On a method of binary-picture representation and its
application to data compression”, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-
2 (1980) 27-35.

11. G.G. Langdon and J. Rissanen, “Compression of black-white images with
arithmetic coding”, IEEE Trans. Commun. COM-29 (1981) 858-867.

12. M. Tamminen, “Encoding pixel trees”, Comput. Vision Graph. Image Process. 28
(1984) 44-57.

13. R.D. Cameron, “Source encoding using syntactic information source models”,
IEEE Trans. Inform. Theory IT-34 (1988) 843-850.

14. J.Katajainen, M. Penttonen and J. Teuhola, “Syntax-directed compression of
programs”, Softw. Pract. Exper. 16 (1986) 269-276.

15. M. Al-Suwaiyel and E. Horowitz, “Algorithms for trie compaction”, ACM Trans.
Database Syst. 9 (1984),243-263.

16. D. Comer and R. Sethi, “Complexity of trie index construction”, J. ACM 24 (1977)
428-440.

17. R.E. Tarjan and A. C.-C. Yao, “Storing a sparse table”, Comm. ACM 22 (1979)
606-611.

18. J.I. Munro and H. Suwada, “Implicit data structures for fast search and update”, J.
Comput. Syst. Sci. 21 (1980) 236-250.

19. J.I Munro, “An implicit data structure supporting insertion, deletion, and search in
O(log2 n) time”, J. Comput. Syst. Sci. 33(1986) 66-74.

20. R.C. Read, “The coding of various kinds of unlabeled tree”, in Graph Theory and
Computing, ed. R.C. Read (Academic Press, New York, 1972) pp. 153-183.

21. E. Mäkinen, “A survey on binary tree coding”, to appear in: Comput. J.
22. S. Zaks, “Lexicographic generation of ordered trees”, Theoret. Comput. Sci. 10

(1980) 63-82.
23. C.C. Lee, D.T. Lee, D.T. and C.K. Wong, “Generating binary trees of bounded

height”, Acta Inf. 23 (1986) 529-544.
24. K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching,

(Springer, Berlin, 1984).
25. D. Zerling, “Generating binary trees using rotations”, J. ACM 32 (1985) 694-701.
26. E. Mäkinen, “Left distance binary tree representations”, BIT 27 (1987) 163-169.
27. D.E. Knuth, The Art of Computer Programming. Vol. I, Fundamental Algorithms

(Addison-Wesley, Reading, 1968).
28. J.T. Stasko and J.S. Vitter, “Pairing heaps: experiments and analysis”, Comm.

ACM 30 (1987) 234-249.
29. E. Mäkinen, On context-free derivations, Acta Universitatis Tamperensis A198,

University of Tampere, Finland.
30. S.A. Hutchins, “Data compression in context-free languages”, in Information

Processing 71, ed. C.V. Freiman (North-Holland, Amsterdam) pp. 104-109.
31. R.A. Thompson and T.L. Booth, “Encoding of probabilistic context-free

languages”, in Theory of Machines and Computations, eds. Z. Kohavi and A. Paz
(Academic Press, New York) pp. 169-186.

32. J.F. Contla, “Compact coding of syntactically correct source programs”, Softw.
Pract. Exper. 15 (1985) 625-636.

33. J. Katajainen, M. Penttonen, and J. Teuhola, “A Prolog prototype of a syntax-
directed compression system”, Report D31, Department of Computer Science,
University of Turku (1988).

34. R.G. Stone, “On the choice of grammar and parser for the compact analytical
encoding of programs”, Comput. J. 29 (1986) 307-314.

35. J.F. Contla, “Compact coding methods for syntax-tables and source programs”,
Ph.D. thesis, Reading University, 1981.

36. A.M.M. Al-Hussaini, “File compression using probabilistic grammars and LR
parsing”, Ph.D. thesis, Loughborough University, 1983.

37. A.V. Aho, R. Sethi and J.D. Ullman, Compilers - Principles, Techniques, and
Tools, (Addison-Wesley, Reading, 1986).

38. K. Knowlton, “Progressive transmission of grey scale and B/W pictures by simple,
efficient, and loseless encoding schemes”, in Proc. IEEE 68, pp. 885-896.

39. I. Gargantini, “An effective way to represent quadtrees”, Comm. ACM 25 (1982)
905-910.

40. H. Samet, “The quadtree and related hierarchical data structures”, ACM Comput.
Surv. 16 (1984) 187-260.

41. H. Samet, H. “Data structures for quadtree approximation and compression”,
Comm. ACM 28 (1985) 973-993.

42. C. Anedda and L. Felician, “P-compressed quadtrees for image storing”, Comput.
J. 31 (1988) 353-357.

43. E. Mäkinen, “A linear time and space algorithm for finding isomorphic subtrees of
a binary tree”, Report A-1990-5, Dept. of Computer Science, University of
Tampere.

44. P. Elias, “Efficient storage and retrieval by content and address of static files”, J.
ACM 21 (1974), 246-260.

45. G. Gonnet, Handbook of Algorithms and Data Structures (Addison-Wesley,
Reading, 1984).

46. R. Ramesh, A.J.G. Babu and J.P. Kincaid, Variable-depth trie index optimization:
theory and experimental results, ACM Trans. Database Syst. 14 (1989) 41-74.

47. J. Teuhola and T. Raita, Text compression using prediction, in Proc. ACM 1986
Conference on Research and Development in Information Retrieval, pp. 97-102.

48. T. Raita, “Topics in text compression”, Ph.D. Thesis, University of Turku, 1987.
49. D. Comer, “The difficulty of optimum index selection”, ACM Trans. Database

Syst. 3 (1978) 440-445.
50. D. Comer, “Heuristics for trie index minimization”, ACM Trans. Database Syst. 4

(1979) 383-395.
51. D. Comer, “Analysis of a heuristic for full trie minimization”, ACM Trans.

Database Syst. 6 (1981) 513-537.
52. J. Dill, “Optimal trie compaction is NP-complete”, Report 87-814, Dept. of

Computer Science, Cornell University.
53. J. Katajainen and E. Mäkinen, “A note on the complexity of trie compaction”,

EATCS Bulletin 41 (1990) 212-216.
54. A. Pastirik, “Searching on adaptive trie in practically constant time”, Computers

and Artificial Intelligence 4 (1985)109-114.
55. G.N. Frederickson, “Implicit data structures for the dictionary problem”, J. ACM

30 (1983) 80-94.
56. J.L. Bentley and J.B. Saxe, “Decomposable searching problems I. Static-to-

dynamic transformation”, J. Algorithms 1 (1980) 301-358.
57. J. Salowe and W. Steiger, “Simplified stable merging tasks”, J. Algorithms 8

(1987) 557-571.
58. J.I. Munro and P. Poblete, “Searchability in merging and implicit data structures”,

BIT 27 (1987) 324-329.

59. T. Lai and D. Wood, “Implicit selection”, in: Lecture Notes in Computer Science
318 (Springer-Verlag, Berlin, 1988), pp. 14-23.

60. G. Turan, “On the succinct representation of graphs”, Discrete Appl. Math. 8
(1984) 289-294.

61. S. Kannan, M. Naor and S. Rudich, “Implicit representations of graphs”, in: Proc.
of the 20th ACM Symposium on Theory of Computer Science 1988, pp. 334-343.

62. A. Itai and M. Rodeh, “Representation of graphs”, Acta Inform. 17 (1982) 215-
220.

63. G. Gonnet and F.W. Tompa, “Mind your grammar: A new approach to modelling
text”, in: Proc. of the 13th Int. Conf. on Very Large Data Bases (1987), pp. 339-
346.

