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Different methods for compressing trees are surveyed and developed. Tree compression can be 
seen as a trade-off problem between time and space in which we can choose different strategies 
depending on whether we prefer better compression results or more efficient operations in the 
compressed structure. Of special interest is the case where space can be saved while preserving 
the functionality of the operations; this is called data optimization. The general compression 
scheme employed here consists of separate linearization of the tree structure and the data stored 
in the tree. Also some applications of the tree compression methods are explored. These 
include the syntax-directed compression of program files, the compression of pixel trees, trie 
compaction and dictionaries maintained as implicit data structures. 
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1. Introduction 
 
Data compression is a standard operation for which there are well-known utilities, 

e.g. compact and compress in UNIXa. Traditionally, input consists of a stream of 
tokens which can be bits, characters or words of fixed or varying length. 
Concatenation of consecutive tokens is the structure in the input. However, the data to 
be compressed is often stored within a structure of some special form, e.g. list, tree, 
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graph, etc. The plain data is usually worthless or at least of little value outside its 
context. Thus, besides the data itself, we must also store and compress if possible the 
structure in which the data is stored. In this paper we suppose that the data structure to 
be compressed and then manipulated is a tree. For a general survey of data 
compression the reader is referred to the recent work by Lelewer and Hirschberg [1]. 

Trees are widely used structures for maintaining data. They are also used as 
auxiliary data structures when compressing data (see e.g. [2,3]). Often it is also 
necessary to reduce the space needed for storing a tree itself. In this paper different 
tree compression methods are surveyed and developed. Trees are regarded both as the 
object and medium of data compression. We mainly concentrate on binary trees but 
also make some remarks on k-ary trees; these (ordered, rooted) trees cover most cases 
of practical importance. 

Let us now formulate the tree compression problem abstractly. Given a tree, the 
task is to map it as compactly as possible to memory, which is seen as a string of bits, 
a set of memory locations (words), or a set of memory blocks (pages). The range of 
the mapping depends on the application in question. In traditional tree compression 
the only operations performed are encoding of a tree to a bit string and decoding the 
bit string back to a tree. 

The benifits gained through data compression of large-to-very-large trees are 
obvious since compression reduces storage and data transfer requirements. On the 
other hand, there are some severe disadvantages of tree compression. Above all, 
compression makes all the normal tree operations (children, parent, search, delete, 
insert, etc.) more expensive. In most compression methods there is no other way to 
perform these operations other than to decode the compressed tree, carry out the 
operation, and encode the tree again! 

In the tree optimization problem, a term adopted from the work of Jacobson [4], 
the task is to maintain the functionality of a tree in the compressed form. That is, we 
want to perform some tree operations as efficiently as done in the uncompressed case 
(where an operation is a simple matter of pointer manipulation). We are mainly 
concerned with applications where the trees are manipulated in the internal memory of 
a computer. So, the mappings are to bit strings or memory words only. For 
applications concerning external memories, see for example [5,6]. 

The compression and optimization of trees is usually performed in two phases: the 
compression of the structure (linearization of the tree structure) and the compression 
of the data stored in it (linearization of data). Our general policy is to handle the data 
and the structure separately. This enables us to compress the plain data by using any 
of the known methods and independently find an efficient coding method for the tree 
structure irrespective of the form and contents of the data items stored in the nodes. 
We shall not consider normal data compression methods but assume that the reader is 
familiar with e.g. arithmetic coding [7] and Huffman coding [2]; for a recent textbook 
on data compression, see [8]. We want to emphasize that the separation of the data 
from the structure will not always give an optimal compression result (see the 
applications in sections 6.1 and 8.2) and may not even be possible in some cases. 



                                                      

Appropriate linearization methods for binary trees are presented in chapters 2 and 
3. We shall see that only about 2n bits are needed for the structure of any tree on n 
nodes; this result is asymptotically optimal. In chapter 4 we attempt to find the 
information theoretic optimum. The idea is to represent the structure of a tree by a 
single natural number (called the rank of the tree) from the interval 1,…, Bn, where 
Bn stands for to nth Catalan number giving the number of different binary trees on n 
nodes. Chapter 5 deals with the encoding of k-ary trees. 

Typical application areas of the tree compression methods include the 
representation of graphics as pixel trees [9-12] and program files as syntax trees 
[13,14]. Both applications are of practical importance, and the tree methods support 
excellent compression results. These applications are examined in greater detail in 
chapter 6. 

Chapter 7 contains a sketch of the basic ideas presented in [4] showing that tree 
traversal is possible in asymptotically optimal space. 

One can separate the concepts of concrete and abstract optimization. In concrete 
optimization the data structure to be compressed is given while in abstract 
optimization only the desired operations are defined. As data optimization 
applications we study trie compaction [15-17] and the design of implicit data 
structures [18,19] in chapter 8. Trie compaction is an example of concrete 
optimization where the purpose of the data optimization is to implement the search 
operation within the same time bound as for the uncompressed trie. The trie 
compaction problem contains several NP-complete sub-problems. We consider 
heuristics for solving one of them. On the other hand, the construction of an implicit 
dictionary is an example of abstract optimization. Given only a constant amount of 
extra space, the goal is to perform the operations search, insert, and deletion as 
efficiently as possible.   

The paper closes with some concluding remarks in chapter 9. 
 

2. Encoding with Fixed Length Codewords 
 
Several encoding methods for binary trees are presented in the literature; see [20] 

for a treatment of general tree types and [21] for a survey on binary trees. When 
forming a one-to-one correspondence between binary trees and integers, these 
methods use different kinds of number sequences as intermediate representations. The 
present chapter and the next are devoted to encoding methods whose intermediate 
phases have reasonable space requirements. We also suggest that these intermediate 
phases can be used as compressed representations for tree structures. In fact, there are 
several methods for forming a one-to-one correspondence between trees and integers 
which are not presented in this paper because they employ space intensive 
intermediate representations, e.g. permutations (see [21]). 

We start by introducing an encoding method presented by Zaks [22].   Consider 
the tree in figure 1a. Label all the nodes by 1 and all the missing subtrees by 0 as in 
figure 1b. We obtain the codeword, called Zaks' sequence, by reading the labels in 



                                                      

preorder. (Visit first the root, then recursively traverse the left subtree in preorder, and 
then the right subtree in preorder.) Hence, Zaks' sequence related to the tree in figure 
1a is 111100100100111001000.  
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  Fig. 1a. A binary tree.             Fib. 1b. The numbering of nodes and   

     leaves related to Zaks' sequences. 
 
We have the following characterization for feasible Zaks' sequences. A bit string is 

a Zaks' sequence if and only if the following three conditions hold 
 i) the string begins with 1, 
 ii) the number of 0's is one greater than the number of 1's, 
 iii) no proper prefix of the string has the property 2). 

The length of a Zaks' sequence is 2n + 1 for a tree with n nodes [22]. 
The children pattern sequence is a codeword closely related to Zaks' sequence. In 

the children pattern method we label the nodes of a binary tree by 00, 01, 10 or 11 
depending on whether the node has no children, only the right child, only the left child 
or two children, respectively. The codeword is obtained by reading the labels in 
preorder as in the Zaks' method. The children pattern sequence of the tree in figure 1a 
is 11111100000010110000. Generally, the codeword obtained for a binary tree on n 
nodes has length 2n. 

Yet another method for representing a binary tree with 2n bits is to use balanced 
parentheses. A pair of parentheses corresponds to the root and the children are 
recursively represented in the same way inside the parentheses. 

To decode a tree structure from a given Zaks', children pattern, or balanced 
paranthesis sequence is a relatively straightforward task and for this reason we 
exclude it from our treatment. 

In the above methods we traverse the trees in preorder. Lee et al. [23] have used 
level-by-level order, i.e. first the root, then the children of the root from left to right, 
then their children from left to right, and so on. The length of these level-to-level 
sequences naturally equals the length of the codewords obtained by the the methods 
described above. Lee et al. [23] have found the codewords so obtained useful for 
some special purposes. Moreover, in chapter 7 we shall see that the level-by-level 
sequence allows tree traversal in compressed trees. 



                                                      

We end this chapter by considering three types of binary trees which form a 
hierarchy of the number of bits needed to represent their structure by using encodings 
like Zaks' sequence. 

A binary tree is said to be regular if each node has either two children or no 
children at all. Consider now the children pattern sequence of a regular binary tree. 
We do not need labels 01 and 10. Thus, we may label a node having two children with 
label 1 and a node having no children with label 0. It follows that the children pattern 
sequence of a regular binary tree has only n bits. It is in fact easy to prove that there 
are exactly as many regular binary trees on 2n + 1 nodes as there are arbitrary binary 
trees on n nodes. Hence, the space requirement of n bits is asymptotically optimal (cf. 
chapter 4). 

The (almost) complete tree structure is an example of an even more drastic 
instance of the above phenomenon. A binary tree is said to be complete if all the 
internal nodes have two children and all the paths from leaves to the root are of equal 
length. In such a tree the number of nodes is of the form 2n - 1. A binary tree is almost 
complete if it can be made complete by inserting leaves to the right-hand side end of 
the bottom level. The only thing needed to describe the shape of the tree is the number 
of nodes! Hence, log n bits are needed when representing the shape of an almost 
complete tree on n nodes. This property is extensively used in implicit data structures 
(cf. section 8.2). 

One criteria for comparing different methods is how easy it is to detect from the 
encoded string whether or not there are any regularities in the tree. In Zaks' sequence 
the code information related to a node is in different parts of the string, while in the 
children pattern method the two bits describing a node are always together. Suppose 
we are compressing a regular tree without knowing its degree of regularity. By using 
the children pattern method together with arithmetic coding we obtain a compression 
result much better than 2 bits per node provided that the compression model reads the 
string as a sequence 2-bit integers. Even better compression gain is obtained when the 
children patterns are output in the level-by-level order and the tree to be compressed 
is almost complete. The resulting string has a long sequence of 1's followed by 
another sequence of 0's.   

 
3. Encoding with Varying Length Codewords 

 
In this chapter we introduce two encoding methods based on rotations. (For the 

various ways of using rotations in maintaining data structures, see e.g. [24].) These 
methods assign an integer to each node of the tree in question and the codeword is 
obtained by traversing the tree in symmetric order (traverse first the left subtree in 
symmetric order, then visit the root, and then traverse the right subtree in symmetric 
order). The number of bits needed in the resulting codeword varies because the size of 
the integers assigned to the nodes depends on the shape of the tree. Sometimes less 
than 2n bits are needed for representing a given tree's shape.   



                                                      

A rotation is an operation which transforms one tree into another as follows. If 
node u is the left child of v then a right rotation makes v the new right child of u, the 
old right child of u (if any) becomes the new left child of v, and the old parent of v (if 
any) becomes the new parent of u. A left rotation transforms the tree obtained back to 
the original one (see figure 2). 
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   Fig. 2. Right and left rotations. 
 
The rotation based coding methods fix some tree shape and then count the 

rotations needed for transforming a given tree into the fixed tree by using some 
standard order of rotations. A natural choice for the fixed tree shape is the 
degenerated tree consisting of left children only. Such a tree is called a left list. 

In Zerling's [25] method we make left rotations with respect to the edge joining the 
current root and its right child until the greatest node in symmetric order is on the 
root. The code item xn-1 related to the greatest node un-1 is the number of rotations 
done. Naturally, it is possible that un-1 = 0. The same procedure is then repeated in 
the left subtree of the tree so far obtained; i.e. the root node is discounted and left 
rotations are done with respect to the edge joining the new root and its right child. 
This continues until the code item x1 is set to have value 0 or 1, depending on whether 
we must rotate when there are two nodes left. The codeword representing a tree on n 
nodes has n - 1 code items. Zerling's method gives the codeword (1,0,1,0,1,1,0,2,1) 
for the tree in figure 1a. 

In order to uniquely decode the tree structure we naturally have to know how many 
bits are needed for representing each code item. The sum of the code items of a tree 
on n nodes always lies between 0 and n-1 [25]. In a codeword (x1,x2,…,xn-1) define 
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item x1 is 0 or 1. Hence, by setting T0 = 0 we have defined Mp for all p = 1,..., n - 1. 
By using the values Mp we can calculate the number of bits needed for representing 
each code item.   

As an example, consider binary trees on 10 nodes. In this case all codewords 
contain 9 code items. If the codeword to be stored is   (1,1,1,1,1,1,1,1,1) we have     
Mp = 1, p = 1,..., 9. Thus, it suffices to reserve one bit per node. An opposite case 
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appears if the codeword is (0,0,0,0,0,0,0,0). We have Mp = p, p = 1,..., 9, and we have 
to reserve one bit for x1, two bits for x2 and x3, three bits for x4,..., x7, and four bits 
for x8 and x9. Totally, we need 25 bits. In general, we may need as many as

 
  

 
bits. Hence, it is advantageous to have xi as close Mi as possible. 

A unique code system is also obtained when rotations are done on the edges 
joining the next node to be "lifted up" (the greatest node in symmetric order in the 
current tree) and its parent. The code item xn-1 for the greatest node un-1 has the same 
value as in Zerling's method. When making rotations on the root of the tree Zerling's 
method transforms some smaller node to the left arm (i.e. the path from the root 
following the left child pointers), while the latter method does not change the distance 
of the smaller nodes from the left arm. As a consequence, this method has the property 
that for each node ui, the distance from the left arm equals the code item xi, when the 
distance d(ui) from the left arm is defined by 

             d(ui) =




0, if ui is on the left arm,       
d(p(ui)), if  ui  is a left child,    

d(p(ui)) + 1, if  ui  is a right child,
  

where  p(ui)  stands for the parent of  ui  [26].   
This method gives the codeword (0,1,0,1,0,1,1,2,1) for the tree of figure 1a.   
A feasible codeword (x1,x2,...,xn-1) always has x1 = 0 or x1 = 1 and xi is in    

[0, xi-1 + 1], for i = 2,..., n - 1 [26]. Hence, the bits needed for the code item xi depend 
on the value of xi-1. The minimum number of bits is for the codeword (0,0,...,0) and 
maximum number for the codeword (1, 2,…, n - 2, n - 1). Note that this gives the 
same upper bound for the number of bits needed as Zerling's method. 

Although rotation based encoding methods generally consume more space than 
Zaks' sequences there are also special cases in which they out perform Zaks' sequence 
as we have seen in the above examples. 

 
4. Seeking after the Information Theoretic Optimum 

 
In the two previous chapters we have presented different ways for representing tree 

structures as number sequences. In this chapter we discuss the possibility of 
representing tree structures as single integers. 

Each of the methods presented in chapters 2 and 3 has a corresponding ranking 
algorithm which returns a unique integer from the interval 1,…, Bn related to the tree 
in question. The number of binary trees on n nodes is  
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We now need log2Bn bits for representing any binary tree on n nodes. Since Bn is 

less than 22n, we save some space compared to the bit sequence methods. Clearly, it 
is impossible to differ Bn trees by using less bits than it is needed for the first Bn 
integers. Hence, this method reaches the information theoretic optimum with respect 
to the number of bits needed. 

The ranking algorithms of the different encoding methods are basically similar and 
we present here only one example. We start with the Zaks' sequence 
111100100100111001000 of the tree in figure 1a. The z-sequence of a Zaks' sequence 
contains the bit positions set to 1. In our example, we have z = 1, 2, 3, 4, 7, 10, 13, 14, 
15, 18. The z-sequence is repeatedly reduced by omitting the largest i such that zi = i 
and subtracting 2 from all the z-values which lie to the right of the omitted one until 
the z-value to be omitted is the largest in the sequence. Hence, in our example the z-
sequence is first reduced to the form z = 1, 2, 3, 5, 8, 11, 12, 13, 16, since 4 is the 
omitted value. If the z-sequence has length n and the omitted item is in the pth index, 
we add an,p to the sum index(z). In our example, the first term in the sum is a10,4. The 
an,p-values are obtained as follows (0≤p≤n-1) 

 an,n-1 = 1, for all n, 
 an,0 = (2n)!/n!(n+1)!, for all n, 
 an,p = an,p+1 + an-1,p-1, otherwise. 
When index(z) is calculated, the rank r(T) of the tree is obtained as   

r(T) = Bn - index(z) + 1. 
We have index(11110010010011100100) = a10,4 + a9,3 + a8,3 + a7,2 + a6,2 + a5,1 

+ a4,3 + a3,2 + 1 = 1638 + 1001 + 275 + 165 + 48 + 28 + 1 + 1 + 1 = 3158. The rank 
of the tree in figure 1a is r(T) = Bn - index(z) + 1 = 16796 - 3158 + 1 = 13637. Hence, 
instead of the 20 bits of the Zaks' sequence, we now need only log213637 = 14 bits. 

In order to decode the integer back to the tree, we naturally need an unranking 
algorithm which returns the Zaks' sequence related to the integer in question [22]. 

 
5. Encoding of Multiway Trees 

 
In the preceding chapters we have considered the encoding of binary trees only. 

This chapter shows how these binary tree encodings can be used when encoding k-ary 
trees. We use the phrase multiway tree for ordered k-ary trees having an arbitrary 
degree k.  
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  Fig. 3a. A multiway tree. 
 
From a given multiway tree we can construct the corresponding child-sibling 

binary tree representation as follows [28].   Let x be a node in the multiway tree with t 
children (from left to right) x1, x2,..., xt. In the corresponding binary tree the node 
containing x has only two pointers. The left pointer accesses the first child x1, and the 
right pointer accesses x's first sibling, if any. Similarly, the left pointer of x1 accesses 
its first child, and the right pointer of x1 accesses x2. The child-sibling binary tree 
representation of the multiway tree of figure 3a is shown in figure 3b. It is clear that 
this transformation preserves the uniqueness of tree shapes. Furthermore, the binary 
representation of a given multiway tree and its decoding back into a multiway tree can 
be produced in linear time. It follows that the shape of a multiway tree can be 
represented as efficiently as the structure of a binary tree on the same number of 
nodes.   
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  Fig. 3b. The child-sibling binary tree representation of the 
  multiway tree in figure 3a. 
 
Another way of achieving this is the arity method: mark each node by its arity and 

read the labels in some fixed order. If these arities are encoded by fixed length 
codewords the total number of bits needed for a tree on n nodes is nlog2 d, where d 
is the greatest arity in the tree. A more efficient way of doing this, called the unary 
degree method, is described in [4,20]. In this method we encode each arity d by the 
string 1d0 (d 1-bits followed by a 0-bit). Hence, instead of fixed length codewords we 



                                                      

use varying length ones. This reduces the total number of bits down to 2n - 1 because 
for each node one 1-bit and one 0-bit is needed, except for the root which cannot be a 
child of any other node. 

A multiway tree having degree k is regular if each node has either k children or no 
children. We can easily prove that the number of bits needed for representing the 
structure of a regular multiway tree on n nodes is 2n/k, which is also asymptotically 
optimal. As in the case of regular binary trees, we can gain further savings by making 
use of the regularities in the k-ary tree encoding. This is possible if we use a 
compression method which adapts to the patterns appearing in the tree structure. 

 
 
6. Data Compression Applications 

 
This chapter introduces two common tree compression applications, syntax-

directed compression of program files and the compression of pixel trees.   
 
6.1 Syntax-Directed Compression of Program Files 

 
In syntax-directed compression of program files trees are used as an intermediate 

step in the compression process: a linear structure is first transform to a tree and then 
back to a linear form again. The basic idea of syntax-directed compression is first to 
construct a parse tree for a source program, to label the nodes of the tree with small 
integers, and then to encode a linearized form of the tree as compactly as possible. 
Another way to say this is that the compressed form represents a Szilard language of 
the grammar generating the source text (for recent advances of the theory of Szilard 
languages, see [29]). This idea is an old one introduced as early as the beginning of 
seventies by several researchers (see [30,31]). Recently, many compression system 
implementations have been published (see for example [13,14,32-34]) and two Ph.D. 
theses, [35,36], have been written on the subject. 

The best results obtained by using syntax-directed compression are reported by 
Cameron [13]. He has achieved an overall compaction of better than 85% on average. 
(Observe that his encoder uses some context-sensitive modelling techniques as well.) 
This clearly out performs the results of the UNIX utility compact, implementing 
adaptive Huffman encoding, which achieves a 55% saving on average. 

The decomposition of a syntax-directed compression system is similar to that of a 
compiler (see [37]). First, the source text is scanned from left to right and grouped 
into tokens. Tokens are sequences of characters which have a collective meaning, that 
is, syntactic terminals (keywords, operators, punctuation symbols) and user terminals 
(constants, identifiers). Second, the token list is parsed and simultaneously a parse tree 
is constructed. More precisely, the order is determined in which the productions have 
to be applied in order to regenerate the token list with the grammar in question. Third, 
the symbol table (gathered during the scanning phase) and the parse tree are bit-
encoded. 



                                                      

Most systems assume that the input is always syntactically correct. This 
assumption is not restrictive because syntactically incorrect programs are rarely stored 
or transmitted. Moreover, if the program is produced by a syntax-directed editor, it 
cannot be incorrect. In addition, there should exist character-level subroutines for 
compressing comments in the input program. 

To illustrate the compression process, let us consider a small example. We assume 
that the user terminals in our hypothetic programming language are IDENTIFIERs 
and INTEGERs. An identifier must begin with a letter which is followed by some (if 
any) letters or digits. An integer is a sequence of digits. Further, we assume that the 
programs to be compressed are generated by the following grammar. When describing 
the grammar, we use the following conventions. A non-terminal symbol is written 
with lower-case letters, a syntactic terminal of the language is delimited by apostrophe 
marks ('), and a user terminal is written with upper-case letters. The start symbol of 
the grammar is the non-terminal program. 

 P1: program → heading ';' statements '.' 
 P2: heading → 'PROC' IDENTIFIER '(' identifiers ')' 
 P3: identifiers → IDENTIFIER ';' identifiers 
 P4: identifiers → IDENTIFIER 
 P5: statements → statement ';' statements 
 P6: statements → statement 
 P7: statement → IDENTIFIER ':=' expression 
 P8: statement  →  'IF' expression 'THEN' statement 'ELSE' statement 
 P9: statement  → 'WHILE' expression 'DO' statement 
 P10: statement → 'RETURN' IDENTIFIER 
 P11: statement → '(' statements ')' 
 P12: expression → factor operand factor 
 P13: expression → factor 
 P14: factor → IDENTIFIER 
 P15: factor → INTEGER 
 P16: operand → '=' 
 P17: operand → '>' 
 P18: operand → '+' 
 P19: operand →  '-' 
 
In figure 4(a-c) we show how a program (computing the sum of the first n natural 
numbers) is encoded. The compressed form of the source program is a concatenation 
of the symbol table and the parse tree. The tree is linearized by outputting the nodes in 
preorder. 



                                                      

 
  PROC sum(n); 
  result:= n; 
  WHILE n>1 DO 
         (n:= n-1; result:= result+n); 
  RETURN result. 
 
  Figure 4a. A program to be compressed. 
 
Symbol table: i1: 1, i2: n, i3: result, i4: sum 

Parse tree   
p1 p2 i4 p4 i2 p5 p7 i3 p13 p14 i2 p5 p9 p12 p14 i2 p17 p15 i1 p11 p5 p7 i2 
p12 p14 i2 p19 p15 i1 p6 p7 i3 p12 p14 i3 p18 p14 i2 p5 p6 p10 i3 

Figure 4b. The compressed form of the program in figure 4a. 
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  Figure 4c. The parse tree corresponding to the program in figure 4a. 
 
The symbol table can be further compressed by using any traditional text-

compression method. To bit-encode the parse tree one can use fixed-length codes. 
Each user terminal can be encoded by log2 t bits, where t is the number of different 
user terminals. One of the simplest methods encodes the production label of a rule, 
whose left-hand side non-terminal occurs on the left-hand side of r rules by log2 r 
bits that will uniquely specify the production which has been used in the substitution 
of the non-terminal. Note that if a non-terminal has only one derivation no code is 
needed. For example, in our example grammar the non-terminal statement has 5 



                                                      

derivations, i.e. three bits are then enough to encode the production rules. For more 
sophisticated variable-length coding schemes, the reader is referred to [13,32,34]. 

The decoding of the parse tree is basically a simple task achieved by the 
replacement of production labels. Moreover, the structure of the parse tree need not be 
stored separately since the arity of each production label is directly recovered from the 
grammar. The arity method is used here implicitly, not explicitly.  
 
 
6.2 Binary Pixel Trees 

 
Suppose a picture (or an image) consists of an array of 2n × 2n pixels. Each pixel 

has a code (i.e. a colour) related to it. The problem is to store the picture efficiently. 
A good alternative to simple sequential storage is to use pixel trees which try to divide 
the picture into uniform areas, where adjacent pixels have the same colour, and to 
hierarchically organize these areas [9,10,12,38]. Pixel trees may be 4-ary or even 8-
ary, but we restrict ourselves to binary pixel trees only. 

The root of a binary pixel tree represents the whole picture. If all the pixels have 
the same colour we can assign the colour code to the root and the representation of the 
picture is complete. Otherwise, we divide the picture into two sub-pictures of equal 
size. The sub-pictures are represented by the two children of the root. Again, if in 
either of the sub-pictures all the pixels have the same colour we can assign the 
corresponding code to the node. This process is recursively repeated until all the sub-
pictures consist of pixels of same colour. This recursive definition has the 
characteristic feature that a node in the tree always has two children or no children at 
all. Hence, all binary pixel trees are regular and their structure can be represented by 
using only one bit per node. 

Figure 5a shows a simple picture and figure 5b the corresponding binary pixel tree. 
In this example we suppose that the picture is black-and-white, i.e. there are only two 
possible colours: black (code 0) and white (code 1). 

 

     
     
  Fig. 5a. A black-and-white picture where the subpictures are divided by  

 turns along the x- and y-axes. 
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  Fib. 5b. The binary pixel tree corresponding the picture in figure 5a. 
 
According to our general scheme the binary pixel tree in figure 5b is represented 

by two bit sequences. The first sequence represents the structure of the tree. Using 1 
for the nodes with two children and 0 for the nodes with no children we obtain the 
sequence 101110010011000. The data of the tree is yielded by collecting the leaves in 
preorder producing the sequence 11001010. (A careful reader might have noticed that 
the resulting bit string is longer than the one obtained by simply reading the codes row 
by row. This shows that the compression of a picture via a pixel tree is not necessarily 
optimal. Indeed, the point of our treatment is to compress the tree which describes the 
picture rather than the picture itself.) 

There are some application-dependent possibilities to further compress the data 
sequence. The size of the pixel array gives the maximal height to the pixel tree. 
Hence, by considering the depth of a node we can decide whether a given leaf is on 
the lowest possible level and thus representing a single pixel. On the other hand, we 
know that in a binary pixel tree a leaf does not have the same colour as its sibling [12]. 
We can represent the leaves appearing on the lowest possible level as a sequence of 
their own. This allows us to encode the possible pairs 01 and 10 of adjacent codes by 
a single bit each [12]. The tree in figure 5b has three pairs of leaves on the lowest 
level. We can encode these bit pairs in three bits producing a total number of five bits 
for the data sequence. 

Kawaguchi and Endo [10] define a context-free grammar which generates feasible 
codewords of a binary pixel tree. The codewords represent both the structure of the 
tree and the data. In this respect their encoding method is less flexible than those 
following our general scheme. 

Gargantini [39] has started the study of "linear quadtrees". In linear quadtrees 
pointers are eliminated by storing pixels (black only) by using an encoding which 
reflects the successive quadrant subdivisions. The encoding makes it possible to 
perform some basic quadtree operations, including the one of finding adjacent nodes, 
in logarithmic time. Hence, contrary to other applications discussed in this section, 
linear quadtrees are an example of data optimization. Linear quadtrees and other 
similar methods are surveyed in [40]. 



                                                      

The use of arithmetic coding in pixel tree compression is studied by Langdon and 
Rissanen [11]. For the compression of 4-ary pixel trees, see e.g. [40-42] and the 
references therein. 

 
7. Encodings Allowing Traversal Operations 

 
In our treatment so far we have tried to reduce the number of bits needed in 

representing trees without paying attention to the accessibility of the resulting 
structure. It is clear that most of the methods discussed in previous chapters are 
unsuitable for applications where compressed trees are frequently accessed. An ideal 
compression method would simultaneous achieve minimization of bit usage while 
allowing efficient traversal in the compressed tree. By traversal we mean the ability to 
move from a node to its parent and children. Despite their practical importance, 
compressed trees allowing efficient traversal are mostly overlooked in the literature, 
Guy Jacobson's thesis [4] being an outstanding exception. In this chapter we survey 
some of his ideas. 

A straightforward method for saving space and allowing efficient traversal in 
binary trees is to "thread" the tree so that isomorphic subtrees are stored only once. 
Note that this method is applicable only when we are interested in the structure of the 
tree and not in the data possibly stored in the nodes. There exists a linear time and 
space algorithm for finding all isomorphic subtrees of a given tree [43]. If trees are 
chosen at random under a uniform distribution the compression factor gained when 
merging subtrees grows slowly without bound. The growth rate is O(log n) [4]. 

Jacobson [4] also gives different kinds of bit string representations allowing 
efficient access. The basic form of these recursive representations is shown in figure 
6. The header block contains information about the sizes of the left and right subtrees. 
When knowing the sizes of the subtrees we can continue the traversal at an 
appropriate position in the string. To make this step possible we insist that all n-node 
trees always occupies exactly the same number of bits in the string. The encodings of 
the subtrees recursively have their own header blocks. The empty tree is represented 
by the empty string. 

   

 header                  left subtree                 right subtree  
 
  Fig. 6. A recursive string representation of a binary tree. 
 
The basic form shown in figure 6 can be improved by storing the smaller subtree 

first and having only its size in the header block. In this version we need an additional 
bit to indicate whether or not the left subtree is the smaller one. Natural numbers 
standing for the sizes of the subtrees must be encoded by prefix codes (called 
universal codes in [8]). The sum of the sizes can be represented in amortized constant 
space for each node of the tree to be compressed. More effort and more bits per node 



                                                      

are needed if we want to traverse a tree upwards (from a child to its parent); for details 
see [4]. 

Traversal is also possible in a method based on the level-by-level representation 
mentioned in chapter 2. Recall that the level-to-level sequence is obtained by first 
labeling the nodes and the missing subtrees by 1's and 0's, respectively, and then 
reading the labels in the level-by-level order, i.e. first the root, then the children of the 
root from left to right, and so on. In this sequence the left and right children of the 
node corresponding to the mth 1-bit are in the positions indicated by the 2mth and 
2m+1st 1-bits. In order to allow fast access to the position of the ith 1-bit, and hence to 
make the tree traversal more efficient, Jacobson [4] uses directories inspired by the 
work of Elias [44]. We omit the details concerning the use of the directories, however 
the results show that it is possible to construct a structure which uses 2n+ο(n) space 
and in which a tree traversal requires O(log n) bit-accesses, or O(1) time if O(log n) 
consecutive bits can be manipulated at unit cost. 

 
8. Data Optimization Applications 

 
This chapter discusses two tree compression applications where data optimization 

is possible. In tries we can perform efficient searches in the compressed structure and 
in implicit dictionaries we perform operations insert, delete, and search in optimum 
space. 

 
8.1 Trie Compression 

 
A trie is a data structure for representing sets of character strings. The characters 

are also called attributes.   Suppose the strings are over an alphabet of k elements. 
Then a trie is a k-ary tree where each path from the root to a node on level i 
corresponds to the set of keys in the represented set that start with the same sequence 
of characters. Each trie node must contain an array with k elements in order to identify 
the (possibly) k off-spring of the node. To search for a string A = a1a2...an in a trie we 
follow the following procedure:   In the root examine the array element corresponding 
to the character a1. It can be (1) null, (2) a pointer to an auxiliary table containing the 
strings currently represented by the trie, or (3) a pointer to another node in the trie. 
Case (1) implies that the string searched is not present in the structure. Case (2) leads 
to a comparison of A against a string in the trie. A mismatch implies that A is not 
present. Finally, case (3) means that there is more than one string in the trie starting 
with a1. In this case we must continue our search from the node pointed to and repeat 
the above procedure with the character a2. This procedure terminates at the latest 
when the last character an in the string is handled. For further details concerning tries, 
see any standard text on data structures and algorithms, e.g. [24,45]. 

The main disadvantage of tries is their high space requirement. A straightforward 
method for saving space is to replace the arrays in the nodes by linked lists which 
contain an element for each child of the node in question. As a consequence, time 



                                                      

spent in selecting the appropriate child of a node is no longer constant: in the worst 
case we have to examine the entire list whose length is bounded by k. The search time 
can be reduced by storing the nodes of each list in a binary tree. 

Another solution for the trade-off between time and space in tries is given by 
Ramesh et al. [46]. In their solution the trie does not directly specify individual keys 
but a set of keys in which an additional binary search is performed. Hence, the 
purpose of the trie is to reduce the set of possible keys making binary searches more 
efficient. The size of the sets bounds the time needed for binary searching. One of the 
problems studied by Ramesh et al. [46] is to minimize the number of sets needed 
when the maximal size of the sets is given. Another problem is to minimize the worst-
case binary search time under the restriction that the number of sets does not exceed a 
given bound. Both of these problems can be solved in polynomial time, and hence 
their work gives an alternative for implementing tries. 

Compact representations for tries in the connection with predictive text 
compression are discussed by Teuhola and Raita [47] (see also [48]). In their 
application tries include all the substrings of length at most k (k is a constant) that 
exist in a text and, moreover, it is not important to support efficient access in the 
compressed trie. These properties can be utilized in order to further compress the trie.   

In the case that the fast retrieval time of the array implementation should not be 
sacrificed and the tries to be compressed are static, a traditional space saving method 
is to find the optimal order for testing the attributes. Instead of proceeding from left to 
right we can proceed in the opposite direction or in fact any order we wish. The 
number of nodes, and thus the space needed for the trie, depends on the order in which 
we test the attributes. The problem of finding the optimal order is studied by Comer 
and Sethi [16] and elaborated further by Comer [49-51]. 

One can also consider the given set of node arrays as a sparse matrix to be 
compressed. Several heuristics for this situation can be found from [15] (see also [52-
53]). In what follows we describe the method of Tarjan and Yao [17]. A data structure 
based on these ideas is presented also in [54]. 

Sparse matrices can be compressed into one-dimensional arrays such that several 
positions of the original matrix are represented by a single position in the resulting 
array provided that at most one of the original positions in question has a non-null 
content. If the non-null elements are conveniently distributed a simple heuristic is 
quaranteed to perform well. For presenting this result we need some notation. Let A 
be a matrix with m non-null elements and let m(t), t ≥ 0, denote the total number of 
non-null elements in the rows of A which contain t + 1 or more non-null elements. 
The matrix A is said to have the harmonic decay property if m(t) ≤ m/(t + 1). If A has 
the harmonic decay property, at least half of its non-null elements must be in rows 
with only a single non-null element. Moreover, no row can have more than n  non-
null elements. 

The following heuristic (often called Ziegler's first-fit method) gives a good 
compression result for matrices having the harmonic decay property: 



                                                      

i) Sort the rows in non-increasing order according to the number of non-null 
elements in each row. 

ii) Using the order of rows fixed in step 1 determine a minimal row displacement 
rd(i) for each row i such there are no collisions with the previously placed rows. 

Each row displacement r(i) now satisfies 0 ≤ rd(i) ≤ m [17,24].   
An obvious disadvantage of the method is that not all sets of node arrays form a 

matrix having the harmonic decay property. If we have a matrix not fulfilling this 
property we must define a set of appropriate column displacements which increase the 
number of rows but, at the same time, create extra null elements among the original 
rows. Tarjan and Yao [17] provided a method for choosing the column displacements 
such that the resulting matrix will contain O(n log log n) rows, where n is the number 
of rows (node arrays or non-null elements in our application) in the matrix to be 
compressed. When the resulting matrix fulfilling the harmonic decay property is 
compressed by the first-fit method, a structure with space requirement O(n log log n) 
is obtained. A further reduction to O(n) is still possible by observing that at most n of 
the rows contain non-null elements and by packing several small numbers (indicating 
the row displacements) into one storage location [17,24]. 

 
8.2 Implicit Dictionary 

 
The design of implicit dictionaries is an example of data optimization where the 

goal is to manipulate some data items in the first n locations of an array as efficiently 
as possible without using more than a constant amount of extra space for pointers, 
counters, etc. In this section we survey various ways of implementing an implicit 
dictionary, i.e. a data structure supporting the operations insert, delete and search. 

The implicit dictionary problem was first studied by Munro and Suwada [18]. 
They presented an implementation that guarantees O(log n) search time and  
O(n1/2log n) insert/delete time or alternatively O(n1/3log n) for all operations. These 
results were later improved by Frederickson [55] and Munro [19]. Frederickson was 
able to reduce the update times to O(2 2/log n  log3/2 n) while still maintaining the 
O(log n) bound for searches. Munro's implicit dictionary supports any operation in 
O(log2 n) time. 

In the static case the problem can be easily solved by a sorted array. Searches are 
then done in O(log n) time by a binary search although updates require linear time. 
However, the static structure can be converted into a semi-dynamic structure 
supporting efficient searches and insertions by using the general binary transform 
proposed by Bentley and Saxe [56]. The idea is to maintain a set of sorted arrays 
(segments) each whose size is a power of two. These are then stored sequentially 
according to size such that the largest segment is leftmost in the array. The binary 
representation of n determines the segment sizes as follows. If the ith bit of n is one, 
we have a segment of size 2i in the structure. For example, when n = 29 = 111012 the 
structure contains segments of size 16, 8, 4, and 1. 



                                                      

Binary searches are made in each of these segments. The first and last items within 
a segment are readily computed from n. In addition, there will be at most log2 n 
segments, and hence the overall search cost is O(log2 n).   

A new element is inserted as a rightmost one-item segment. If its neighbouring 
segment is also a one-item segment, these two are merged resulting in a two-item 
segment. This process is repeated for the rightmost segment until no segment pairs of 
equal size exist. The merge operation is performed by using some in-place merging 
algorithm (see for example [57]). In the worst case a single insertion might take time 
proportional to n. However, the cost of inserting N items is O(Nlog N). This is 
because one item can take part in at most   log2 N   merges. Thus, insertions are 
done in O(log n) amortized time. Munro and Poblete [58] have improved this data 
structure such that O(log n) worst-case performance is guaranteed for insertions. The 
crucial idea is not to complete merges at once but distribute the work for several 
insertions. 

Let us next consider how polylog performance is obtained for all dictionary 
operations. Our discussion follows the solution given by Munro [19]. The heart of the 
construction is a balanced search tree (for example an AVL-tree) which is 
implemented for sorted segments of k items. The balanced search tree keeps segments 
in sorted order. In order to facilitate updates for single items, an overflow area of size 
less than k is to be maintained between any pair of nodes.   Munro [19] has proposed a 
way for handling the overflows so that O(k + log n) time is enough for any operation. 
Moreover, this can be done such that only at most k of the segments are non-full. 
Thus, the structure uses n + O(k2) storage locations. 

How the above structure is converted to a fully implicit one? Basically, there are 
three issues to be addressed. First, non-full segments are compacted and maintained at 
the end of the array. Since a single update may involve shifting all the items in this 
area, the insertion and deletion costs are increased by an additive factor O(k2). 

Second, the children, balancing, and overflow information of a node is encoded in 
the relative order of the data items. A sorted segment of k data items gives an extra 
storage of k/2 bits: the order of an item pair a2i-1,a2i (i=1, 2,…, k/2 ) indicates, 
say, a 0-bit if a2i-1 < a2i, and a 1-bit if a2i-1 > a2i. For example, the bit sequence 
11101 is embedded into the sequence (1, 4, 5, 8, 11, 17, 20, 22, 29, 31) by rearranging 
it to the form (4, 1, 8, 5, 17, 11, 20, 22, 31, 29). Observe, that in spite of the local 
rearrangement, the data items are still easy to manipulate in sorted order. By choosing 
k = c log2 n + d (for some suitable constants c and d), pointers and counters can be 
encoded, and the time complexity of the dictionary operations is O(log2 n). Note that 
the encoding trick is used in several other algorithms (see for example [58,59]). 

Third, we must know n beforehand in order to be able to fix the proper value for 
the parameter k. The growth and shrinkage of n is handled by maintaining      

O(log log n) separate structures of sizes 22i (i = 1, 2,..., log log n ) plus one more of 
the appropriate size. The sizes are again recovered directly from n. Due to the double 
exponential growth of the sizes, the cost of a search in each of these structures is 



                                                      

dominated by that of the largest. Insertions are made on the last structure, and a 
deletion is accomplished by moving an item from the last structure into the one in 
which the item to be deleted is found. 

As a final comment on implicit dictionaries, we like to emphasize that the 
encoding of the pointers and counters is possible only when the data items are distinct. 
Note however that the method based on the binary transform works for any set of 
items. It is still an open problem whether the complexity bound O(n1/2) for any 
dictionary opreration [18] can be improved in the case that equal data items are 
allowed. 

 
9. Concluding Remarks 

 
We have seen that 2n bits are enough for storing the structure of a binary tree on n 

nodes. Even better results can be obtained if there are regularities in the structure. If 
we know that a tree is regular we can encode its structure using only n bits. By using 
encoding methods that physically keep the information related to a node together 
(such as the children pattern sequence), in conjunction with an appropriate 
compression method, we can go below 2 bits per node without knowing a priori the 
degree of regularities in the structure. Jacobson [4] has shown that data optimization is 
possible in binary trees: the neighbouring nodes are found in constant time even in the 
storage space of 2n + o(n) bits. 

Natural generalizations of tree compression and optimization have corresponding 
considerations for graphs. Turan [60] has shown that a planar graph having n nodes 
can be encoded by 12n bits. Data optimization in graphs is studied by Kannan et al. 
[61] and Jacobson [4]. For dense general graphs we cannot really hope for better 
solutions than adjacency lists [62]. 

We conclude this paper by listing some research problems. Dynamization is an 
important feature in all our example applications; it can be considered as a special 
case of data optimization where the operations of interest are insertion and deletion. It 
would be profitable if we could efficiently perform these operations in compressed 
structures. Aside from the applications mentioned in chapters 6 and 8, dynamization 
would be useful in the compression of structured text databases (for a related work see 
[63]). 

Our formulation of the tree compression problem states that we should always map 
a tree structure "as compactly as possible". In the case of tries we found that finding 
the optimal solution can be NP-complete. Research remains to be done on 
approximation algorithms related to trie compaction and similar applications. 

An open problem of theoretical interest is the one of finding more efficient implicit 
dictionaries. For instance, is it possible to perform the search operations in time 
O(log n) while keeping the polylog complexity for the update operations? Another 
question is to examine whether it is possible to construct an implicit dictionary in 
which equal keys are allowed and the product of search time (ts) and update time (tu) 
is less than linear, i.e. ts×tu < n. 
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