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Abstract

We introduce a new compression scheme for labeled trees based on top trees [3]. Our com-
pression scheme is the first to simultaneously take advantage of internal repeats in the tree (as
opposed to the classical DAG compression that only exploits rooted subtree repeats) while also
supporting fast navigational queries directly on the compressed representation. We show that
the new compression scheme achieves close to optimal worst-case compression, can compress
exponentially better than DAG compression, is never much worse than DAG compression, and
supports navigational queries in logarithmic time.

1 Introduction

A labeled tree T is a rooted, ordered tree, where each node has a label from an alphabet Σ.
Labeled trees appear in computer science as tries, dictionaries, parse trees, suffix trees, XML trees,
etc. In this paper, we study compression schemes for labeled trees that take advantage of repeated
substructures and support navigational queries, such as returning the label of a node v, the parent
of v, the depth of v, the size v’s subtrees, etc., directly on the compressed representation. We
consider the following two basic types of repeated substructures (see Figure 1). The first type is
used in DAG compression [7, 14] and the second in tree grammars [8, 9, 20,21,23].

Subtree repeat. A rooted subtree is a subgraph of T consisting of a node and all its descendants.
A subtree repeat is an identical (both in structure and in labels) occurrence of a rooted subtree
in T .

Tree pattern repeat. A tree pattern is any connected subgraph of T . A tree pattern repeat is an
identical (both in structure and in labels) occurrence of a tree pattern in T .

In this paper, we introduce a simple new compression scheme, called top tree compression, that
exploits tree pattern repeats. Compared to the existing techniques our compression scheme has the
following advantages: Let T be a tree of size n with nodes labeled from an alphabet of size σ. We
support navigational queries in Oplog nq time (a similar result is not known for tree grammars),
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Figure 1: A tree T with a subtree repeat T 1 (left), and a tree pattern repeat T 1 (right).

the compression ratio is in the worst case at least log0.19σ n (no such result is known for either
DAG compression or tree grammars), our scheme can compress exponentially better than DAG
compression, and the compression ratio is never worse than DAG compression by more than a log n
factor.

1.1 Previous Work

The previous work on tree compression can be described by three major approaches: using subtree
repeats, using tree pattern repeats, and using succinct data structures. Below we briefly discuss
these approaches and the existing tree compression schemes. Extensive practical work has recently
been done on all these tree compression schemes (see e.g., the recent survey of Sakr [28]).

DAG compression. Using subtree repeats, a node in the tree T that has a child with subtree
T 1 can instead point to any other occurrence of T 1. This way, it is possible to represent T as a
Directed Acyclic Graph (DAG). Over all possible DAGs that can represent T , the smallest one is
unique and can be computed in Opnq time [12]. Its size can be exponentially smaller than n. DAG
representation of trees are broadly used for identifying and sharing common subexpressions, e.g.,
in programming languages [25] and binary decision diagrams [24]. Compression based on DAGs
has also been studied more recently in [7, 14, 22] and a Lempel-Ziv analog of subtree repeats was
suggested in [1]. It is possible to support navigational queries [6] and path queries [7] directly on
the DAG representation in logarithmic time. The problem with subtree repeats is that we can miss
many internal repeats. Consider for example the case where T is a single path of n nodes with the
same label. Even though T is highly compressible (we can represent it by just storing the label and
the path length) it does not contain a single subtree repeat and its minimal DAG is of size n.

Tree grammars. Alternatively, tree grammars are capable of exploiting tree pattern repeats.
Tree grammars generalize grammars from deriving strings to deriving trees and were studied in [8,
9, 20, 21, 23]. Compared to DAG compression, a tree grammar can be exponentially smaller than
the minimal DAG [20]. Unfortunately, computing a minimal tree grammar is NP-Hard [10], and
all known tree grammar based compression schemes can only support navigational queries in time
proportional to the height of the grammar which can be Ωpnq.

Succinct data structures. A different approach to tree compression is succinct data structures
that compactly encode trees. Jacobson [17] was the first to observe that the naive pointer-based tree
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representation using Θpn log nq bits is wasteful. He showed that unlabeled trees can be represented
using 2n ` opnq bits and support various queries by inspection of Θplg nq bits in the bit probe
model. This space bound is asymptotically optimal with the information-theoretic lower bound.
Munro and Raman [26] showed how to achieve the same bound in the RAM model while using only
constant time for queries. Such representations are called succinct data structures, and have been
generalized to include a richer set of queries such as subtree-size queries [5, 26] and level-ancestor
queries [16]. For labeled trees, Ferragina et al. [13] gave a representation using 2n log σ `Opnq bits
that supports basic navigational operations, such as find the parent of node v, the i’th child of
v, and any child of v with label α. Ferragina et al. also introduced the notion of k’th order tree
entropy Hk in a restricted model. In this model, used by popular XML compressors [11, 18], the
label of a node is a function of the labels of all its ancestors. For such a tree T , Ferragina et al.
gave a representation requiring at most nHkpT q ` 2.01n ` opnq bits. Note that the above space
bounds do not guarantee a compact representation when the input contains many subtree repeats
or tree pattern repeats. In particular, the total space is never opnq bits.

1.2 Our Results.

We propose a new compression scheme for labeled trees, which we call top tree compression. To
the best of our knowledge, this is the first compression scheme for trees that (i) takes advantage of
tree pattern repeats (like tree grammars) but (ii) simultaneously supports navigational queries on
the compressed representation in logarithmic time (like DAG compression). In the worst case, we
show that (iii) the compression ratio of top tree compression is always at least log0.19σ n (compared
to the information-theoretic bound of logσ n). This is in contrast to both tree grammars and DAG
compression that have not yet been proven to have worst-case compression performance comparable
to the information-theoretic bound. Finally, we compare the performance of top tree compression
to DAG compression. We show that top tree compression (iv) can compress exponentially better
than DAG compression, and (v) is never worse than DAG compression by more than a log n factor.

The key idea in top tree compression is to transform the input tree T into another tree T
such that tree pattern repeats in T become subtree repeats in T . The transformation is based
on top trees [2–4] – a data structure originally designed for dynamic (uncompressed) trees. After
the transformation, we compress the new tree T using the classical DAG compression resulting in
the top DAG T D. The top DAG T D forms the basis for our compression scheme. We obtain our
bounds on compression (iii), (iv), and (v) by analyzing the size of T D , and we obtain efficient
navigational queries (ii) by augmenting T D with additional data structures.

To state our bounds, let nG denote the total size (vertices plus edges) of the graph G. We assume
a standard word RAM model of computation with logarithmic word size. All space complexities
refer to the number of words used by the data structure. We first show the following worst-case
compression bound achieved by the top DAG.

Theorem 1 Let T be any ordered tree with nodes labeled from an alphabet of size σ and let T D be
the corresponding top DAG. Then, nT D “ OpnT { log0.19σ nT q.

This worst-case performance of the top DAG should be compared to the information-theoretic
lower bound of ΩpnT { logσ nT q. This lower bound applies already for strings (so it clearly holds
for labeled trees). It is obtained by simply noticing that there are ΩpσnT q string of length nT
over an alphabet of size σ, implying a lower bound of ΩpnT log σq bits or ΩpnT { logσ nT q words.

3



Note that with standard DAG compression the worst-case bound is ΘpnT q since a single path is
incompressible using subtree repeats.

Secondly, we compare top DAG compression to standard DAG compression.

Theorem 2 Let T be any ordered tree and let D and T D be the corresponding DAG and top DAG,
respectively. For any tree T we have nT D “ Oplog nT q ¨ nD and there exist families of trees T such
that nD “ ΩpnT { log nT q ¨ nT D.

Thus, top DAG compression can be exponentially better than DAG compression (since it’s possible
that nD “ Oplog nT q) and it is always within a logarithmic factor of DAG compression. To the
best of our knowledge this is the first non-trivial bound shown for any tree compression scheme
compared to the DAG.

Finally, we show how to represent the top DAG T D in OpnT Dq space such that we can quickly
answer a wide range of queries about T without decompressing.

Theorem 3 Let T be an ordered tree with top DAG T D. There is an OpnT Dq space representation
of T that supports Access, Depth, Height, Size, Parent, Firstchild, NextSibling, LevelAncestor, and
NCA in Oplog nT q time. Furthermore, we can Decompress a subtree T 1 of T in time Oplog nT`|T

1|q.

The operations Access, Depth, Height, Size, Parent, Firstchild, and NextSibling all take a node v in
T as input1 and return its label, its depth, its height, the size of its subtree, its parent, its first
child, and its sibling to the right, respectively. The LevelAncestor returns an ancestor at a specified
distance from v, and NCA returns the nearest common ancestor to a given pair of nodes. Finally,
the Decompress operation decompresses and returns any rooted subtree.

2 Top Trees and Top DAGs

Top trees were introduced by Alstrup et al. [2–4] for maintaining an uncompressed, unordered, and
unlabeled tree under link and cut operations. We extend them to ordered and labeled trees, and
then introduce top DAGs for compression. Our construction is related to well-known algorithms
for top tree construction, but modified for our purposes. In particular, we need to carefully order
the steps of the construction to guarantee efficient compression, and we disallow some combination
of cluster merges to ensure fast navigation.

2.1 Clusters

Let v be a node in T with children v1, . . . , vk in left-to-right order. Define T pvq to be the subtree
induced by v and all proper descendants of v. Define F pvq to be the forest induced by all proper
descendants of v. For 1 ď s ď r ď k let T pv, vs, vrq be the tree pattern induced by the nodes
tvu Y T pvsq Y T pvs`1q Y ¨ ¨ ¨ Y T pvrq.

A cluster with top boundary node v is a tree pattern of the form T pv, vs, vrq, 1 ď s ď r ď k.
A cluster with top boundary node v and bottom boundary node u is a tree pattern of the form
T pv, vs, vrqzF puq, 1 ď s ď r ď k, where u is a node in T pvsq Y ¨ ¨ ¨ Y T pvrq. Clusters can therefore
have either one or two boundary nodes. For example, let ppvq denote the parent of v then a single
edge pv, ppvqq of T is a cluster where ppvq is the top boundary node. If v is a leaf then there is

1The nodes of T are uniquely identified by their preorder numbers. See Section 4.
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(a) (b)

(c) (e)(d)

Figure 2: Five ways of merging clusters. The ‚ nodes are boundary nodes that remain boundary
nodes in the merged cluster. The ˝ nodes are boundary nodes that become internal (non-boundary)
nodes in the merged cluster. Note that in the last four merges at least one of the merged clusters
has a top boundary node but no bottom boundary node.

no bottom boundary node, otherwise v is a bottom boundary node. Nodes that are not boundary
nodes are called internal nodes.

Two edge disjoint clusters A and B whose vertices overlap on a single boundary node can be
merged if their union C “ A Y B is also a cluster. There are five ways of merging clusters, as
illustrated by Fig. 2. Merges of type (a) and (b) can be done if the common boundary node is not
a boundary node of any other cluster except A and B. Merges of type (c),(d), and (e) can be done
only if at least one of A or B does not have a bottom boundary node. The original paper on top
trees [2–4] contains more ways to merge clusters, but allowing these would lead to a violation of our
definition of clusters as a tree pattern of the form T pv, vs, vrqzF puq, which we need for navigational
purposes.

2.2 Top Trees

A top tree T of T is a hierarchical decomposition of T into clusters. It is an ordered, rooted,
labeled, and binary tree defined as follows.

‚ The nodes of T correspond to clusters of T .

‚ The root of T corresponds to the cluster T itself.

‚ The leaves of T correspond to the edges of T . The label of each leaf is the pair of labels of
the endpoints of its corresponding edge pu, vq in T . The two labels are ordered so that the
label of the parent appears before the label of the child.

‚ Each internal node of T corresponds to the merged cluster of its two children. The label
of each internal node is the type of merge it represents (out of the five merging options).
The children are ordered so that the left child is the child cluster visited first in a preorder
traversal of T .
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2.3 Constructing the Top Tree

We now describe a greedy algorithm for constructing a top tree T of T that has height Oplog nT q.
The algorithm constructs the top tree T bottom-up in Oplog nT q iterations starting with the edges
of T as the leaves of T . During the construction, T is a forest, and we maintain an auxiliary rooted
ordered tree rT initialized as rT :“ T . The edges of rT will correspond to the nodes of T and to the
clusters of T . The internal nodes of rT will correspond to boundary nodes of clusters in T , and the
leaves of rT will correspond to a subset of the leaves of T .

In the beginning, these clusters represent actual edges pv, ppvqq of T . In this case, if v is not a
leaf in T then v is the bottom boundary node of the cluster and ppvq is the top boundary node. If
v is a leaf then there is no bottom boundary node.

In each one of the Oplog nT q iterations, a constant fraction of rT ’s edges (i.e., clusters of T ) are
merged. Each merge is performed on two overlapping edges pu, vq and pv, wq of rT using one of the
five types of merges from Fig. 2: If v is the parent of u and the only child of w then a merge of
type (a) or (b) contracts these edges in rT into the edge pu,wq. If v is the parent of both u and w,
and w or u are leaves, then a merge of type (c), (d), or (e) replaces these edges in rT with either the
edge pu, vq or pv, wq. In all cases, we create a new node in T whose two children are the clusters
corresponding to pu, vq and to pv, wq.

We prove below that a single iteration shrinks the tree rT (and the number of roots in T ) by a
constant factor. The process ends when rT is a single edge. Each iteration is performed as follows:

Step 1: Horizontal Merges. For each node v P rT with k ě 2 children v1, . . . , vk, for i “ 1 to
tk{2u, merge the edges pv, v2i´1q and pv, v2iq if v2i´1 or v2i is a leaf. If k is odd and vk is a leaf and
both vk´2 and vk´1 are non-leaves then also merge pv, vk´1q and pv, vkq.

Step 2: Vertical Merges. For each maximal path v1, . . . , vp of nodes in rT such that vi`1 is the
parent of vi and v2, . . . , vp´1 have a single child: If p is even merge the following pairs of edges
tpv1, v2q, pv2, v3qu, tpv3, v4q, pv4, v5qu, . . . , pvp´2, vp´1qu. If p is odd merge the following pairs of edges
tpv1, v2q, pv2, v3qu, tpv3, v4q, pv4, v5qu, . . . , pvp´3, vp´2qu, and if pvp´1, vpq was not merged in Step 1
then also merge tpvp´2, vp´1q, pvp´1, vpqu.

Lemma 1 A single iteration shrinks rT by a factor of c ě 8{7.

Proof. Suppose that in the beginning of the iteration the tree rT has n nodes. Any tree with n
nodes has at least pn ` 1q{2 nodes with less than 2 children. Consider the edges pvi, ppviqq of rT
where vi has one or no children. We show that at least half of these n{2 edges are merged in this
iteration. This will imply that n{4 edges of rT are replaced with n{8 edges and so the size of rT
shrinks to 7n{8. To prove it, we charge each edge pvi, ppviqq that is not merged to a unique edge
fpvi, ppviqq that is merged.

Case 1. Suppose that vi has no children (i.e., is a leaf). If vi has at least one sibling and
pvi, ppviqq is not merged it is because vi has no right sibling and its left sibling vi´1 has already
been merged (i.e., we have just merged pvi´2, ppvi´2qq and pvi´1, ppvi´1qq in Step 1 where ppviq “
ppvi´1q “ ppvi´2q). We also know that at least one of vi´1 and vi´2 must be a leaf. We set
fpvi, ppviqq “ pvi´1, ppvi´1qq if vi´1 is a leaf, otherwise we set fpvi, ppviqq “ pvi´2, ppvi´2qq.
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Case 2. Suppose that vi has no children (i.e., is a leaf) and no siblings (i.e., ppviq has only
one child). The only reason for not merging pvi, ppviqq with pppviq, ppppviqqq in Step 2 is because
pppviq, ppppviqqq was just merged in Step 1. In this case, we set fpvi, ppviqq “ pppviq, ppppviqqq. Notice
that we haven’t already charged pppviq, ppppviqq in Case 1 because ppviq is not a leaf.

Case 3. Suppose that vi has exactly one child cpviq and that pvi, ppviqq was not merged in
Step 1. The only reason for not merging pvi, ppviqq with pcpviq, viq in Step 2 is if cpviq has
only one child cpcpviqq and we just merged pcpviq, viq with pcpcpviqq, cpviqq. In this case, we set
fpvi, ppviqq “ pcpviq, viq. Notice that we haven’t already charged pcpviq, viq in Case 1 because cpviq
is not a leaf. We also haven’t charged pcpviq, viq in Case 2 because vi has only one child. l

Since each iteration can be done in linear time and shrinks rT by a factor ą 1 we obtain the following.

Corollary 1 Given a tree T , the greedy top tree construction creates a top tree of size OpnT q and
height Oplog nT q in OpnT q time.

The next lemma follows from the construction of the top tree and Lemma 1.

Lemma 2 For any node c in the top tree corresponding to a cluster C of T , the number of nodes
in the subtree T pcq is Op|C|q.

2.4 Top Dags

The top DAG of T , denoted T D, is the minimal DAG representation of the top tree T . It can be
computed in OpnT q time from T using the algorithm of [12]. The entire top DAG construction can
thus be done in OpnT q time.

3 Compression Analysis

3.1 Worst-case Bounds for Top Dag Compression

We now prove Theorem 1. Let T be an ordered tree with nT nodes labeled from an alphabet of
size σ, let T be its top tree and T D be its top DAG. We call two rooted subtrees of T identical if
they have the same structure and labels, otherwise they are called distinct. To show that the size
of T D is at most OpnT { log0.19σ nT q is suffices to show that T has only OpnT { log0.19σ nT q distinct
rooted subtrees.

Recall that each node in the top tree T corresponds to a cluster in T . A leaf of T corresponds
to a cluster of a single edge of T and is labeled by this edges endpoints (so there are Opσ2q possible
labels). An internal node is labeled by the type of merge that formed it (there are five merging
options so there are five possible labels).

The bottom-up construction of T starts with the leaves of T . By Lemma 1 each level in the
top tree reduces the number of clusters by a factor c “ 8{7, while at most doubling the size of the
current clusters (the size of a cluster is the number of nodes in the corresponding tree pattern).
After round i we are therefore left with at most OpnT {c

iq clusters, each of size at most 2i ` 1.
To bound the total number of distinct rooted subtrees, we partition the clusters into small clus-

ters and large clusters. The small clusters are those created in rounds 1 to j “ log2p0.5 log4σ2pnT qq “

7



Oplog2 logσ nT q and the large clusters are those created in the remaining rounds from j ` 1 to h.
The total number of large clusters is at most

h
ÿ

i“j`1

OpnT {c
iq “ OpnT {c

j`1q “ OpnT {log0.19σ nT q.

In particular, there are at most OpnT { log0.19σ nT q nodes of T that correspond to large clusters. So
clearly there are at most OpnT { log0.19σ nT q distinct subtrees rooted at these nodes.

Next, we bound the total number of distinct subtrees of T rooted at nodes corresponding to
small clusters. Each such subtree is of size at most most 2j ` 1 and is a binary tree whose nodes
have labels from an alphabet of size at most σ2 ` 5. The total number of distinct labeled binary
trees of size at most x is given by

x
ÿ

i“1

pσ2 ` 5qi ¨ Ci´1 “
x
ÿ

i“1

Oppσ2 ` 5qi ¨ 4iq “ O
`

p4σ2qx`1
˘

,

where Ci denotes the ith Catalan number. Since x “ 2j`1, this number is bounded byOpp4σ2q2
j`2q “

Opσ4
?
nT q “ Opn

3{4
T q. In the last equality we assumed that σ ă n

1{16
T . If σ ą n

1{16
T then the lemma

trivially holds because OpnT {plog0.19σ nT qq “ OpnT q. We get that the total number of distinct sub-
trees of T rooted at small clusters is therefore also OpnT { log0.19σ nT q. This completes the proof of
Theorem 1.

3.2 Comparison to Subtree Sharing

We now prove Theorem 2. To do so we first show two useful properties of top trees and top DAGs.
Let T be a tree with top tree T . For any internal node z in T , we say that the subtree T pzq is

represented by a set of clusters tC1, . . . , C`u from T if T pzq “ C1Y¨ ¨ ¨YC`. Here G “ X1Y¨ ¨ ¨YX`

denotes the graph with node set V pGq “ Yi“1,...,kV pXiq and edge set EpGq “ Yi“1,...,kEpXiq. Since
each edge in T is a cluster in T we can always trivially represent T pzq by at most |T pzq|´1 clusters.
We prove that there always exists a set of clusters, denoted Sz, of size Oplog nT q that represents
T pzq.

Let z be any internal node in T and let z1 be its leftmost child. Since z is internal we have that
z is the top boundary node of the leaf cluster Lz “ pz, z1q in T . Let U be the smallest cluster in T
containing all nodes of T pzq. We have that Lz is a descendant leaf of U in T . Consider the path
Pz in T from U to Lz. An off-path cluster of Pz is a cluster C that is not on Pz, but whose parent
cluster is on Pz. We define

Sz “ tC | C is off-path cluster of Pz and the tree pattern C is a subtree of T pzqu Y tLzu .

Since the length of Pz is Oplog nT q the number of clusters in Sz is Oplog nT q. We want to prove
that YCPSzC “ T pzq. By definition of Sz we have that all nodes in YCPSzC are in T pzq. For the
other direction, we first prove the following lemma. Let EpCq denote the set of edges in T of a
cluster C.

Lemma 3 Let C be an off-path cluster of Pz. Then either EpCq Ď EpT pzqq or EpCq XEpT pzqq “
H.

8



Proof. We will show that any cluster in T containing edges from both T pzq and T zT pzq contains
both pppzq, zq and pz, z1q, where z1 is the leftmost child of z and ppzq is the parent of z. Let C
be a cluster containing edges from both T pzq and T zT pzq. Consider the subtree T pCq and let C 1

be the smallest cluster in T pCq containing edges from both T pzq and T zT pzq. That is, C 1 is the
cluster found by descending down from C towards a child with both types of edges as long as such
a child exists. Then C 1 must be a merge of type (a) or (b), where the higher cluster A only contains
edges from T zT pzq and the bottom cluster, B, only contains edges from T pzq. Also, z is the top
boundary node of B and the bottom boundary node of A. Clearly, A contains the edge pppzq, zq,
since all clusters are connected tree patterns. A merge of type (a) or (b) is only possible when B
contains all children of its top boundary node. Thus B contains the edge pz, z1q. It follows that C 1

(and therefore C since it is an ancestor of C 1) contains both pppzq, zq and pz, z1q.
We have Lz “ pz, z1q and therefore all clusters in T containing pz, z1q lie on the path from Lz

to the root. The path Pz is a subpath of this path, and thus no off-path clusters of P can contain
pz, z1q. Therefore no off-path clusters of P can contain edges from both T pzq and T zT pzq. l

Any edge from T pzq (except pz, z1q) contained in a cluster on P must be contained in an off-path
cluster of P . Lemma 3 therefore implies that T pzq “ YCPSzC and the following corollary.

Corollary 2 Let T be a tree with top tree T . For any internal node z in T , the subtree T pzq can
be represented by a set of Oplog nT q clusters in T .

Next we prove that our bottom-up top tree construction guarantees that two identical subtrees
T pzq, T pz1q are represented by two identical sets of clusters Sz, Sz1 . Two sets of clusters are identical
(denoted Sz “ Sz1) if there is a 1-1 correspondence between the clusters in Sz and Sz1 , such that
two clusters mapped to each other are identical tree patterns in T (have the same structure and
labels).

Lemma 4 Let T be a tree with top tree T . Let T pzq and T pz1q be identical subtrees in T . Then,
Sz “ Sz1.

Proof.
Consider the tree rT at some iteration of the construction of the top tree. We will say that an

edge e in rT belongs to T pzq (resp. T pz1q) if the cluster corresponding to e only contains edges from
T pzq (resp. T pz1q) in the original tree. Let Lz be the cluster in rT containing the edge L “ pz, z1q,
where z1 is the leftmost child of z. Define Lz1 similarly.

We will say that a cluster C ‰ Lz is added to Sz in the iteration where its parent on Pz is
created, and we say that Lz is added to Sz right before the first round. Similarly for clusters in Sz.

We will show that new clusters only are added to Sz (resp. Sz1) if Lz (resp. Lz1) is merged with
an edge belonging to T pzq (resp. T pz1q), and that these merges are identical for the two subtrees
in each iteration.

Recall that U is the smallest cluster in T containing all nodes of T pzq and that P is the path
of clusters in T from U to L. By definition, all clusters on the path P contain L. This implies
that new off-path clusters are only constructed when Lz (resp. Lz1) is merged. Merges of identical
edges belonging to T pzq and T pz1q are the same in the two subtrees of rT , since we merge first
horizontally, and then vertically bottom-up. By the same argument if Lz is merged with an edge
belonging to T pzq then Lz1 is merged with the corresponding edge from T pz1q. For a merge with an
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edge belonging to T pzq (resp. T pz1q) and an edge not belonging to T pzq (resp. T pz1q), one of the
edges must be Lz (resp. Lz1). If Lz is merged in this iteration, but Lz1 is not, then Lz is merged
with an edge not belonging to T pzq (and vice versa). Thus, after the iteration all edges belonging
to T pzq in rT are identical to the edges belonging to T pz1q in rT .

New off-path clusters are only constructed when Lz (resp. Lz1) are merged. It only adds new
clusters to Sz (resp. Sz1) if it is a merge with an edge belonging to T pzq (resp. T pz1q). Since
these merges are identical for the two subtrees in each iteration, and Lz is merged with an edge be-
longing to T pzq iff Lz1 is merged with the corresponding edge belonging to T pz1q, we have Sz “ Sz1 .l

Theorem 4 For any tree T , nT D “ Oplog nT q ¨ nD.

Proof. Denote an edge in the DAG as shared if it is in a shared subtree of T . We denote the edges
in the DAG D that are shared as red edges, and the edges that are not shared as blue. Let rD and
bD be the number of red and blue edges in the DAG D, respectively.

A cluster in the top tree T is red if it only contains red edges from D, blue if it only contains
blue edges from D, and purple if it contains both. Since clusters are connected subtrees we have
the property that if cluster C is red (resp. blue), then all clusters in the subtree T pCq are red
(resp. blue). Let r, b, and p be the number of red, blue, and purple clusters in the top DAG T D,
respectively.

First we bound the number of red clusters in the top DAG T D. Consider a shared subtree
T pzq from the DAG compression. T pzq is represented by at most Oplog nT q clusters in T , and all
these contain only edges from T pzq. Thus all the clusters in Sz are red. It follows from Lemma 4
that all the clusters representing T pzq (and their subtrees in T ) are identical for all copies of T pzq.
Therefore each of these will appear only once in the top DAG T D.

The clusters representing T pzq are edge-disjoint connected subtrees of T pzq. It follows from
Lemma 2 that |T pCq| “ Op|C|q for each cluster in Sz. Therefore the total size of the subtrees of
the clusters representing T pzq in T is Op|T pzq|q. As argued above these are only represented once
in the top DAG T D. Thus the number of red clusters r “ OprDq.

To bound the number of blue clusters in the top DAG, we first note that the blue clusters
form rooted subtrees in the top tree. Let C be the root of such a blue subtree in T . Then C is a
connected component of blue edges in T . It follows from Lemma 2 that |T pCq| “ Op|C|q. Thus
the number of blue clusters b “ OpbDq.

It remains to bound the number p of purple clusters (clusters containing both shared and non
shared edges). The number of purple clusters in the top DAG T D is bounded by the number of
purple clusters in the top tree T . For any purple cluster we have that all its ancestors in T are
also purple. Consider the set P of purple clusters in T that have no purple descendants. Each of
the clusters in P have a blue leaf cluster in its subtree. These blue leaf clusters are all distinct, and
since the corresponding edges are not shared in the DAG D, we have |P | ď bD. Each cluster in P
is the endpoint of a purple path from the root (and the union of these paths contains all purple
clusters in T ). Since the height of T is Oplog nT q the number of nodes on each path is at most
Oplog nT q. It follows that the number of purple clusters in T (and thus also in T D) is at most
|P | ¨Oplog nT q “ OpbD log nT q.

The number of edges in the T D is thus b` r ` p “ OpbD ` rD ` bD log nT q “ OpnD log nT q. l
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Figure 3: A Top DAG T D and a DAG D(T ) of (a) a path and (b) a complete binary tree. All labels
are identical. On a path (and also a caterpillar and a star) the size of T D is Oplog nT q whereas the
size of D(T ) is OpnT q. On a complete binary tree (b) both T D and D(T ) are of size Oplog nT q.

Lemma 5 There exist trees T , such that nD “ ΩpnT { log nT q ¨ nT D.

Proof. Caterpillars and paths (where all nodes have identical labels) have nT D “ Oplog nT q,
whereas nD “ nT (see Figure 3). l

4 Supporting Navigational Queries

In this section we prove Theorem 3. Let T be a tree with top DAG T D. To uniquely identify nodes
of T we refer to them by their preorder numbers. For a node of T with preorder number x we want
to support the following queries.

Accesspxq: Return the label associated with node x.

Decompresspxq: Return the tree T pxq.

Parentpxq: Return the parent of node x.

Depthpxq: Return the depth of node x.

Heightpxq: Return the height of node x.

Sizepxq: Return the number of nodes in T pxq.

Firstchildpxq: Return the first child of x.

NextSiblingpxq: Return the sibling immediately to the right of x.

LevelAncestorpx, iq: Return the ancestor of x whose distance from x is i.

NCApx, yq: Return the nearest common ancestor of the nodes x and y.

11



4.1 The Data Structure

In order to enable the above queries, we augment the top DAG T D of T with some additional
information. Consider a cluster C in T D. Recall that if C is a leaf in T D then C is a single edge
in T and C stores the labels of this edge’s endpoints. Otherwise, C is a cluster of T obtained by
merging two clusters: the cluster A corresponding to C’s left child and the cluster B corresponding
to C’s right child. Consider a preorder traversal of C. Let `pBq denote the first node visited in this
traversal that is also a node in B. Let rpBq (resp. rpAq) denote the last node visited that is also a
node in B (resp. in A). We augment each cluster C with:

‚ The integers rpAq, `pBq, and rpBq.

‚ The type of merge that was applied to A and B to form C. If C is a leaf cluster then the
labels of its corresponding edge’s endpoints in T .

‚ The height and size of C (i.e., of the tree pattern C in T ).

‚ The distance from the top boundary node of C to the top boundary nodes of A and B.

Since we use constant space for each cluster of T D, the total space remains OpnT Dq.

Local preorder numbers All of our queries are based on traversals of the augmented top DAG
T D. During the traversal we identify nodes by computing preorder numbers local to the cluster
that we are currently visiting. Specifically, let u be a node in the cluster C. Define the local preorder
number of u, denoted uC , to be the position of u in a preorder traversal of C. The following lemma
states that in Op1q time we can compute uA and uB from uC and vise versa.

Lemma 6 Let c be an internal node of T D that corresponds to the cluster C of T obtained by
merging the cluster A (corresponding to c’s left child) and the cluster B (corresponding to c’s right
child). For any node u in C, given uC we can tell in constant time if u is in A (and obtain uA) in
B (and obtain uB) or in both. Similarly, if u is in A or in B we can obtain uC in constant time
from uA or uB.

Proof. If C is a merge of A and B of type (a) or (b) then

• uC “ 1 iff u is the top boundary node of A and C and uA “ 1.

• uC P r2, `pBq ´ 1s iff u is an internal node of A and uA ă lpBq. In this case uA “ uC .

• uC “ `pBq iff u is the shared boundary node of A and B, uA “ `pBq, and uB “ 1.

• uC P r`pBq ` 1, rpBqs iff u is an internal node in B. In this case uB “ uC ´ `pBq ` 1.

• uC P rrpBq ` 1, rpAqs iff u is an internal node in A and uA ą lpBq. In this case uA “

uC ´ rpBq ` `pBq.

Otherwise, if C is a merge of A and B of type (c), (d), or (e) then

• uC “ 1 iff u is the shared boundary node of A, B, and C and uA “ uB “ 1.

• uC P r2, rpAqs iff u is an internal node in A. In this case uA “ uC .

• uC P rrpAq ` 1, rpBqs iff u is an internal node in B. In this case uB “ uC ´ rpAq ` 1.
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4.2 Implementation of the procedures

We now show how to implement the queries using local preorder numbers in top-down and bottom-
up traversals of T D.

4.2.1 Access and Depth

The queries Accesspxq and Depthpxq ask for the label and depth of the node whose preorder number
in T is x. They are both performed by a single top-down search of T D starting from its root and
ending with the leaf cluster containing x. Since the depth of T D is Oplog nT q the total time is
Oplog nT q.

Access. At each cluster C on the top-down search we compute the local preorder number xC .
Initially, the root cluster corresponds to the entire T so we set xT “ x. Let C be a cluster on the
way. If C is a leaf cluster we return the label of the top boundary node if xC “ 1 and the label of
the single internal node if xC “ 2. If on the other hand C is an internal cluster with child clusters
A and B, we continue the search in the child cluster containing xC . We compute the new local
preorder number according to Lemma 6. If xC is the shared boundary node between A and B we
continue the search in either A or B.

Depth The only difference between Depthpxq and Accesspxq is that during the top-down search
we also sum the distances between the top boundary nodes of the visited clusters. Let d be this
distance. At the leaf cluster at the end of the search we return d if xC “ 1 and d ` 1 if xC “ 2.
Since the distances are stored the total time remains Oplog nT q.

4.2.2 Firstchild, Level Ancestor, Parent, and NCA

We answer these queries by a top-down search to find the local preorder number in a relevant
cluster C, and then a bottom-up search to compute the corresponding preorder number in T .

Firstchild We compute Firstchildpxq in two steps.

Step 1: Top-down Search. We do a top-down search to find the first cluster with top boundary
node x. We use local preorder numbers as in the algorithm for Access. Let C be a cluster in the
search. If xC “ 1 we stop the search. Otherwise we know that xC ą 1. If C is a leaf cluster we
stop and report that x does not have a first child since it is a leaf in T . If on the other hand C is an
internal cluster with child clusters A and B, we continue the search in the child cluster containing
xC . If xC is the shared boundary node between A and B we always continue the search in B. This
ensures that we continue to the cluster containing the children of x (recall that B is the deeper
cluster in merges of type (a) and (b)). Combined with the condition that we stop the search in the
first cluster C where x is the top boundary node (and therefore the last merge before we stop must
be of type (a) or (b)), this implies that all children of x are in C.

Step 2: Bottom-up Search. Let C be the cluster found in Step 1. Since all children of x are
in C, the node with local preorder number 2 in C is the first child of x. We do a bottom-up search
from C to the root cluster to compute the preorder number in T of the node with xC “ 2.
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Level Ancestor and Parent Notice that Parentpxq can be computed as LevelAncestorpx, 1q.
Since LevelAncestorpx, 0q “ x we focus on LevelAncestorpx, iq for i ě 1. This is done in three steps:

Step 1: Compute Depth. Compute the depth of LevelAncestorpx, iq as d “ Depthpxq ´ i.

Step 2: Top-down Search. We do a top-down search to find the cluster with top boundary
node y of depth d such that x is a descendant of y (we will show that such a cluster exists). During
the search we maintain the depth of the current top boundary node as in the algorithm for Depth.
At each cluster C in the search we also compute a local preorder number x1C to guide the search.
The idea is that x1C either corresponds to x or to an ancestor of x within C. Initially, for the root
cluster T we set x1T “ x. Let C be an internal cluster in the search with top boundary node v and
with children A and B. If the depth of v is d we stop the search. Otherwise, we proceed as follows.

1. If C is of type (a) or (b), x1C is in B, and the shared boundary node of A and B has depth
ą d, we continue the search in A and set x1A to be the bottom boundary of A.

2. In all other cases, we continue the search in the child cluster containing x1C , and compute the
new local preorder number for x1C .

Note that if the shared boundary node in case 1 has depth d we continue the search in B. Combined
with the assumption that i ą 0, it inductively follows that y becomes the top boundary node at
some cluster during the top-down search. Hence, at some cluster in the top-down search the depth
of the top boundary node is d.

Step 3: Bottom-up Search. Let C be the cluster whose top boundary node v has depth d
found in Step 2. We do a bottom-up search to compute the preorder number of v in T . Finally, we
report the result as y.

Nearest Common Ancestor. We compute NCApx, yq in the following steps. We assume w.l.o.g.
that x ‰ y in the following since NCApx, xq “ x.

Step 1: Top-down Search We do a top-down search to find the first cluster, whose top boundary
node is ncapx, yq (this cluster always exists since x ‰ y). At each cluster C in the search we compute
local preorder numbers x1C and y1C . The idea is that x1C and y1C are either x or y or ancestors of
x and y and their depth is at least the depth of ncapx, yq. Initially, for the root cluster T we set
x1T “ x and y1T “ y. Let C be a cluster visited during the search. If C is a leaf cluster we stop the
search. Otherwise, C is an internal cluster with children A and B. We proceed as follows.

1. If x1C and y1C are in the same child cluster, we continue the search in that cluster, and compute
new local preorder numbers for x1C and y1C .

2. If C is of type (a) or (b) and x1C and y1C are in different child clusters we continue the search
in A. We update the local preorder number of the node in B to be the bottom boundary of
A.

3. If C is of type (c), (d), or (e) and x1C and y1C are in different child clusters we stop the search.
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Step 2: Bottom-up Search Let C be the cluster computed in step 1. We do a bottom-up
search to compute the preorder number of the top boundary node of C in the entire tree T , and
return the result.

4.2.3 Decompress, Height, Size, and Next Sibling

To answer these queries, the key idea is to compute a small set of clusters representing T pxq. This
set will be a subset of the set Sx defined in Sec. 3.2 and will contain all the relevant information.

We need the following definitions. Let u be a node in T . We say that u is on the spine path in
a cluster C if u is the top boundary node in C, or u is on the path from the top boundary node in
C to the bottom boundary node in C. Since clusters are connected subtrees we immediately have
the following.

Lemma 7 Let C “ A Y B be a cluster with left child A and right child B. A node u in T is on
the spine path of C iff one of the following cases are true:

• C is of type pcq and u is on the spine path in A.

• C is of type pdq and u is on the spine path in B.

• C is of type paq and u is on the spine path in A or B.

• u is the top boundary node of C.

Let x be any internal node in T . As in Section 3.2, let L be the leftmost leaf cluster in T D
such that x is the top boundary node and let P be the path of clusters from the smallest cluster U
containing all nodes of T pxq to L. We also define M to be the highest cluster on P that has x as the
top boundary node, i.e., M is the highest cluster on P that only contains edges from T pxq. Recall
that Sx is the set of Oplog nT q off-path clusters of P that represent T pxq. We partition Sx into the
set pSx that contains all clusters in Sx that are descendants of M and the set qSx that contains the
remaining clusters. We characterize these sets as follows.

Lemma 8 Let B be an off-path cluster of P with parent C and sibling A. Then

1. B is in pSx iff B is a descendant of M .

2. B is in qSx iff C is a merge of type (a) or (b), B is the right child of C, and x is on the spine
path of A.

Proof. For the first property, first note that if B is in pSx it is by definition a descendant of M .
Conversely, if B is a descendant of M , we have that EpBq Ď EpMq Ď EpT pxqq. By definition of
pSx, we have that B is in pSx.

Next consider property 2. Suppose that B is in qSx. Then, by Lemma 3 and the definition of Sx
we have that EpBq Ď EpT pxqq. Furthermore, since C is a proper ancestor of M , C contains edges
from both T pxq and T zT pxq, and therefore A must also contain edges from both T and T zT pxq.

Assume for contradiction that C is of type (c), (d), or (e). Then, the top boundary node v of
C is also the top boundary node in A and B. Since x ‰ v by definition of M , we have by Lemma 3
that EpBq X EpT pxqq “ H and thus B cannot be in qSx.
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Hence, assume that C is of type (a) or (b). Assume for contradiction that B is the left child
of C. Since all clusters on P contain EpLq and C contains edges from both T pxq and T zT pxq, we
have that the top boundary node of B is a proper ancestor of x. Hence, B cannot be in qSx.

Finally, if B is of type (a) or (b) and is the right child of C, then EpBq Ď EpT pxqq iff the top
boundary node v of B is a descendant of x. But v is a descendant of x iff x is on the spine path of
A. Hence, B is in qSx iff x is on the spine path of A.

In the following we show how to efficiently compute qSx using the procedure FindRepresentatives.
We then use FindRepresentatives to implement the remaining procedures.

FindRepresentatives Procedure FindRepresentativespxq computes the set qSx and cluster M in
two steps.

Step 1: Top-down Search We do a top-down search to find the cluster M , i.e., the highest
cluster on P that has x as the top boundary node. If no such node exists, then x is a leaf node in
T .

Step 2: Bottom-up Search We do a bottom-up search from M and add clusters according to
Lemma 8 as follows. Initially, set S “ H. Let A be a cluster on the path with sibling B and parent
C.

1. If C is of type paq or pbq and A is the left child of C, add B to S.

2. If one of the following conditions are true, stop the traversal:

• C is of type pcq and A is the right child of C.

• C is of type pdq and A is the left child of C.

• C is of type peq or pbq.

Note that, as long as we continue the bottom-up search and consider clusters on the path, we have
that x is on the spine path of these clusters. This is because we continue the bottom-up search
according to the cases of Lemma 7. It follows from Lemma 8 that the clusters we add to S are
exactly the clusters in the set representing T pxq. The total time is Oplog nT q.

Decompress To compute Decompresspxq, we use FindRepresentativespxq to compute the sets of
cluster qSx and M . We construct T pxq from qSx (and M) and the path P computed during the
traversal of T D. First, we decompress all clusters in qSx (and M) by unfolding their subDAG and
constructing their corresponding subtree of T . We then combine these subtrees using the merge
information stored for each cluster in P .

In total we use Oplog nT q time for FindRepresentativespxq and computing the path P . The total
time to decompress a cluster T D by unfolding is linear in its size. Hence, the total time used is
Oplog nT ` |T pxq|q.

16



Height First we compute the set of clusters qSx and cluster M using FindRepresentativespxq. Define
the local height of a cluster to be the length of the path from the top boundary node to the bottom
boundary node if it is an internal cluster, and the height of the cluster if it is a leaf cluster. We
compute the height of T pxq as the sum of the local heights of all clusters in qSx plus the height of
M . This correctly computes the height since all clusters in qSx are merged with their siblings by
type (a) or (b). Since the height and the distance from top boundary node to bottom boundary
node for each cluster in T D is stored we use Oplog nT q time in total.

Size Similar to height. We sum the sizes of clusters in qSx and M and subtract |qSx| (to exclude
shared boundary nodes). This also uses Oplog nT q time.

Nextsibling We compute NextSiblingpxq directly from Sizepxq since NextSiblingpxq “ x`Sizepxq.

5 Conclusion and Open Problems

We have presented the new top tree compression scheme, and shown that it achieves close to optimal
worst-case compression, can compress exponentially better than DAG compression, is never much
worse than DAG compression, and supports navigational queries in logarithmic time. We conclude
with some open problems.

• Surprisingly, top tree compression is the first compression scheme for trees that achieves
any provable non-trivial compression guarantee compared to the classical DAG compression.
We wonder how other tree compression schemes compare to DAG compression and if it is
possible to construct a tree compression scheme that exploits tree pattern repeats and always
compresses better than a logarithmic factor of the DAG compression.

• Pattern matching in compressed strings is a well-studied and well-developed area with numer-
ous results, see e.g., the surveys [15,19,27]. Pattern matching in compressed trees (especially
within tree compression schemes that exploit tree pattern repeats) is a wide open area.

• We wonder if top tree compression is practical. In preliminary experiments we have compared
our top DAG compression with standard DAG compression on typical XML datasets that
were previously used in papers on DAG compression. The experiments match our theoret-
ical expectations, i.e., that most trees compress better with top tree compression, and only
balanced trees compress slightly better with standard DAG compression.
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