
Statistics and Computing 14: 143–166, 2004
C© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Tree consistency and bounds on the
performance of the max-product algorithm
and its generalizations

MARTIN WAINWRIGHT∗, TOMMI JAAKKOLA† and ALAN WILLSKY†

∗Electrical Engineering & Computer Science, UC Berkeley, Berkeley, CA
wainwrig@eecs.berkeley.edu
†Electrical Engineering & Computer Science, MIT, Cambridge, MA
tommi@ai.mit.edu; willsky@mit.edu

Received December 2002 and accepted November 2003

Finding the maximum a posteriori (MAP) assignment of a discrete-state distribution specified by a
graphical model requires solving an integer program. The max-product algorithm, also known as the
max-plus or min-sum algorithm, is an iterative method for (approximately) solving such a problem
on graphs with cycles. We provide a novel perspective on the algorithm, which is based on the idea of
reparameterizing the distribution in terms of so-called pseudo-max-marginals on nodes and edges of
the graph. This viewpoint provides conceptual insight into the max-product algorithm in application to
graphs with cycles. First, we prove the existence of max-product fixed points for positive distributions
on arbitrary graphs. Next, we show that the approximate max-marginals computed by max-product
are guaranteed to be consistent, in a suitable sense to be defined, over every tree of the graph. We
then turn to characterizing the nature of the approximation to the MAP assignment computed by max-
product. We generalize previous work by showing that for any graph, the max-product assignment
satisfies a particular optimality condition with respect to any subgraph containing at most one cycle
per connected component. We use this optimality condition to derive upper bounds on the difference
between the log probability of the true MAP assignment, and the log probability of a max-product
assignment. Finally, we consider extensions of the max-product algorithm that operate over higher-
order cliques, and show how our reparameterization analysis extends in a natural manner.

Keywords: MAP estimation, integer programming, max-product, min-sum, max-plus, graphical
models, max-marginals, inference, iterative decoding, Viterbi algorithm, dynamic programming

1. Introduction

Integer programming problems are important in a variety of
fields, including artificial intelligence and statistics (e.g., Pearl
1988, Dawid 1992, Cowell et al. 1999), statistical physics (e.g.,
Barahona 1982), error-correcting coding (e.g., Aji et al. 1998,
Gallager 1963), and statistical image processing (e.g., Besag
1986, Geman and Geman 1984). Such problems, which entail
optimizing a cost function over some subset of the integers,
can in many cases be formulated in terms of graphical models
(e.g., Cowell et al. 1999, Jordan 1999). In the formalism of such
models, the cost function to be maximized corresponds to a
distribution that factorizes as a product of terms over cliques of
the graph, and the associated optimization problem is to find the
maximum a posteriori (MAP) configuration.

The complexity of this MAP estimation problem turns out
to depend critically on the structure of the underlying graph.
On one hand, for a graph without cycles (i.e., a tree), the MAP
configuration can be computed efficiently by algorithms in which
nodes convey information to one another by passing messages.
Updates of this type are known under various names, including
belief revision (Pearl 1988), as well as the max-product or min-
sum algorithm (e.g., Aji and McEliece 2000). One way to view
max-product updates is as a parallel implementation of standard
dynamic programming updates (Bertsekas 1995); in this sense,
they represent a generalization of the Viterbi algorithm (Viterbi
1967, Forney 1973) from a chain-structured graph to an arbitrary
tree. On such tree-structured graphs, it is well-known that the
message-passing updates converge, and yield the correct MAP
assignment after a finite number of steps (e.g., Pearl 1988).

0960-3174 C© 2004 Kluwer Academic Publishers

144 Wainwright, Jaakkola and Willsky

Dawid (1992) described how to compute the MAP configu-
ration for more general graphs by first converting to a junction
tree representation, and then performing dynamic programming
in the junction tree. Nilsson (1998) analyzed this algorithm in
more detail, and showed how a partitioning scheme can be used
to compute the M most probable configurations. The complex-
ity of such exact methods scales exponentially in the size of the
largest clique in the junction tree, a quantity closely related to
the graph treewidth (see Bodlaender 1993). Unfortunately, for
many graphs with cycles, this treewidth becomes so large that
the junction tree approach is no longer feasible. This intractabil-
ity motivates the development and use of approximate methods
for computing MAP assignments on graphs with cycles.

The focus of this paper is a “loopy” version of the max-
product algorithm, in which the usual message-passing updates
are applied in parallel to a graph with cycles. This use of the
max-product algorithm for computing approximate MAP as-
signments on graphs with cycles has been the focus of con-
siderable research in recent years (e.g., Aji et al. 1998, Horn
1999, Forney et al. 2001a, b, Frey, Koetter and Vardy 2001,
Weiss 2000, Freeman and Weiss 2001). As a consequence of
the presence of cycles, the max-product updates are no longer
guaranteed to converge. Nonetheless, the loopy max-product al-
gorithm has been used with good results in various applications,
including decoding of graphical codes (e.g., Benedetto et al.
1996, Aji et al. 1998, Wiberg 1996) as well as computer vision
(e.g., Freeman and Pasztor 1999). Most previous analysis of the
max-product algorithm for graphs with cycles is based on an
idea that dates back to the work of Gallager (1963)—namely,
that of studying the computation tree associated with the paral-
lel message-passing updates. Given some node specified as the
root, the corresponding computation tree (at iteration n) repre-
sents the set of all possible paths (of length n) that end at this
root node; any such path corresponds to the propagation of in-
formation in a message from some initial node to the root. More
details on such computation trees can be found in (e.g., Gallager
1963, Wiberg 1966, Frey et al. 2001, Weiss 2000, Freeman and
Weiss 2001). A number of researchers have studied the max-
product algorithm in application to a single cycle (e.g., Weiss
2000, Horn 1999, Aji et al. 1998, Frey, Koetter and Vardy 2001;
Forney et al. 2001b), for which the computation tree is especially
simple—namely, a chain-structured graph. For a single cycle, the
message passing updates converge to either a stable fixed point,
or a periodic oscillation. When it converges to stable fixed point,
the max-product assignment is guaranteed to be exact, as long as
a certain uniqueness condition (to be specified) holds. Freeman
and Weiss (2001) analyzed the max-product assignment for posi-
tive compatibility functions on arbitrary graphs, and showed that
the cost of the max-product assignment cannot be improved by
changing any subset of the variables that form no more than a
single cycle in the underlying graph. In the context of graphs
defined by codes, Frey and Koetter (2000) showed that if max-
product messages are suitably attenuated as they are passed up
the computation tree, then the algorithm (if it converges) com-
putes the MAP assignment. For the special case of cycle codes,1

Wiberg (1996) gave sufficient conditions for max-product to fail
to converge to the transmitted codeword; see also Horn (1999)
for related results on cycle codes. For the ferromagnetic Ising
model,2 Fridman (2002) showed how to assess the correctness of
the max-product assignment in an a priori manner (i.e., before
even running the algorithm).

The analysis of this paper, in contrast to previous work using
computation trees, is based on a different perspective. Any distri-
bution defined by a graphical model is represented as a product
of so-called compatibility functions over cliques of the under-
lying graph. Since the factorization is not unique, it is tempting
to seek alternative representations that have desirable properties
for solving inference problems. In previous work (Wainwright,
Jaakkola and Willsky 2003), we have shown that the sum-product
or belief propagation algorithm for graphs with cycles can be
viewed as seeking a particular reparameterization of the distri-
bution. In this paper, we show that the conceptual framework of
reparameterization can be applied fruitfully to the max-product
algorithm on graphs with cycles as well.

More specifically, the complexity of the MAP estimation
problem stems from the specification of the overall distribu-
tion as a (normalized) product of compatibility functions on the
cliques of the graph. These functions couple together the opti-
mization of variables at all the nodes. However, the factoriza-
tion of the overall distribution is not unique, which suggests the
idea of finding a new factorization—that is, reparameterizing
the distribution—in terms of functions that reduce or remove
this coupling. For a distribution on a decomposable graph, a
variant of the junction tree theorem (Dawid 1992, Cowell et al.
1999) yields a factorization in terms of so-called max-marginals
on the maximal cliques and separator sets of the junction tree.
As we elucidate in Section 3 for trees, the message-passing of
the max-product algorithm can be understood as computing this
max-marginal factorization.

At one level, then, solving the MAP estimation problem on a
decomposable graph can be viewed as converting from the orig-
inal representation into a form that makes extracting the MAP
estimate computationally simple. Indeed, if each single-node
max-marginal has a unique maximum, then the overall MAP esti-
mate can be computed by performing decoupled maximizations
of the max-marginals at each node. As we discuss in Section 3,
the violation of this assumption is only a minor issue for tree-
structured distributions. In fact, since the max-product algorithm
also computes pairwise max-marginals, dynamic programming
methods can be applied to the tree in order to compute one of
the MAP estimates. (See also Dawid (1992) for description of a
similar sampling procedure for junction trees.) However, as we
illustrate by example in Section 4, when the uniqueness assump-
tion is violated for a graph with cycles, the max-marginals are
at best problematic, and at worst very misleading. Thus, a minor
contribution of our paper is to identify the importance of the
uniqueness assumption both for our analysis, and for the utility
of max-product in application to graphs with cycles.

The reparameterization perspective motivates the idea of con-
sidering a sequence of updates on trees embedded within a graph

Performance of the max-product algorithm and its generalizations 145

with cycles. Each such update consists of reparameterizing the
subset of factors defining the distribution that correspond to
(nodes and edges in) the tree, while leaving untouched the re-
maining factors. More specifically, the reparameterization for
the tree terms is specified by what we refer to as a set of pseudo-
max-marginals. The main results of this paper, which are pre-
sented in Section 4, are based on a detailed analysis of such se-
quences of reparameterization updates. In this section, we prove
that fixed points of such updates are equivalent to those of the
usual message-passing updates. This equivalence allows us to
analyze max-product in terms of reparameterization as opposed
to the usual message-passing updates. For a graph with cycles,
it is not obvious that fixed points of the max-product algorithm
necessarily exist. A number of researchers (e.g., Aji et al. 1998,
Weiss 2000) have shown the existence of fixed points for positive
compatibility functions on a single cycle graph. We generalize
this result by proving that max-product fixed points exist for
any positive distribution on an arbitrary graph with cycles. An
interesting implication is that any positive distribution can be
factorized in terms of a set of pseudo-max-marginals that are
consistent (in a sense that we make precise) on every spanning
tree of the graph. We also show in Section 4 that the uniqueness
of the single-node maximizers is critical if the pseudo-max-
marginals are to be of any value for MAP estimation. Further-
more, under the assumption of uniqueness, we prove that the
max-product assignment on a graph G with cycles is guaran-
teed to be “optimal” on any subgraph of G containing at most
one cycle, where “optimality” here refers to the inability to ob-
tain a better assignment for a modified cost function formed by
the product of terms corresponding to the subgraph. This the-
orem generalizes earlier results by Weiss (2000), and Freeman
and Weiss (2001) mentioned previously. Using this optimality
theorem, we then derive a set of computable upper bounds on the
difference between the log probability of the MAP assignment,
and the log probability of the max-product assignment on an ar-
bitrary graph with cycles, and we illustrate the consequences of
these bounds. In Section 5 and in analogy to recent generaliza-
tions of the sum-product algorithm (e.g., Yedidia, Freeman and
Weiss 2001), we consider generalizations of the max-product
algorithm that operate over higher order cliques. An attractive
feature of our reparameterization analysis is that it extends very
naturally to these generalizations.

2. Background

In this section, we first provide some basic background on graph
theory, giving only those concepts necessary for subsequent de-
velopments; we refer the reader to the books by Bollobás (1998)
and Berge (1976) for further background. We then discuss the
formalism of graphical models—in particular, Markov random
fields—as well as the associated MAP estimation problem. More
details about graphical models can be found in various sources
(e.g., Cowell et al. 1999, Lauritzen 1996, Jordan 1999).

Fig. 1. Illustration of a node-induced subgraph. (a) Original graph G.
(b) Subgraph H[S] induced by the subset of nodes S = {1, 2, 3, 5, 6, 8}

2.1. Graph-theoretic basics

An undirected graph G = (V, E) consists of a set of nodes or
vertices V = {1, . . . , N } that are joined by a set of edges E .
Throughout this paper, we focus on simple graphs, for which
multiple edges between the same pair of vertices as well as self-
loops (i.e., an edge from a node back to itself) are forbidden.
For each s ∈ V , let N (s) = {t ∈ V | (s, t) ∈ E} denote the set
of neighbors of s. A clique of the graph G is any subset of the
vertex set V for which each node is connected to every other.
A clique is maximal if it is not properly contained within any
other clique. Note that any single node is itself a clique, but not
a maximal clique unless it has no neighbors.

A subgraph H = (V (H), E(H)) of the graph G is a graph
formed by subsets V (H) and E(H) of the vertex and edge sets (V
and E respectively). A spanning subgraph is one that includes
every vertex of the graph (i.e., V (H) = V). In the sequel, it will
be important to consider node-induced subgraphs. In particular,
given a subset S ⊂ V , the corresponding node-induced subgraph
H [S] is formed by the vertex set V (S) = S and the edge set
E(S) = { (s, t) ∈ E | s, t ∈ S }. Figure 1 provides an illustration
of a node-induced subgraph. A path is a graph P consisting
of a set of vertices V (P) = {s0, s1, . . . , sk} and a collection of
distinct edges E(P) = {(s0, s1), . . . (sk−1, sk)}. We say that P is
a path from s0 to sk . A graph is connected if for each pair {s, t}
of distinct vertices, there is a path from s to t . A component of
a graph is a maximal connected subgraph.

Graphs without cycles play an important role in our analysis.
A tree T is a cycle-free graph consisting of a single connected
component; a spanning tree is an acyclic subgraph whose vertex
set is all of V . See Fig. 2 for an illustration of a spanning tree.
A leaf node of a tree is a vertex with a single neighbor; any

Fig. 2. (a) Graph G with cycles. (b) Embedded spanning tree that
reaches each vertex of G

146 Wainwright, Jaakkola and Willsky

Fig. 3. Illustration of graph separation. With all paths that pass through
subset B blocked, the two sets A and C are separated. Thus, B forms a
vertex cutset for the graph

tree with N ≥ 2 nodes is guaranteed to have at least two leaves
(Bollobás 1998).

2.2. Markov random fields and MAP estimation

Given an undirected graph G, we associate with each node s
in the vertex set a discrete random variable xs taking values in
the discrete space X = {0, . . . , m − 1}. The full vector x =
{ xs | s ∈ V } takes values in the Cartesian product space X N . Of
interest to us are random vectors x that respect a set of Markov
properties associated with the graph. In particular, let A, B, and
C be three disjoint subsets of the vertex set, and suppose that B
separates A from C (as illustrated in Fig. 3). We then require that
the collection of random variables in A (i.e., xA = {xs | s ∈ A})
is conditionally independent of those in C (i.e., xC), given the
variables xB . The random vector x is a Markov random field if
it respects all such properties associated with G.

Given a clique C of the graph G, a compatibility function is
a mapping ψC : X N → R

+ that depends only on the subvector
xC = {xs | s ∈ C}. The Hammersley-Clifford theorem (e.g.,
Brémaud 1991) guarantees that a random vector x with strictly
positive distribution p(x) is a Markov random field (MRF) with
respect to G if and only if the distribution factorizes as a product
of compatibility functions over cliques:

p(x) = 1

Z

∏
C∈C

ψC(xC). (1)

Here C is the set of all cliques of G, and Z = ∑
x

∏
C∈C ψC(xC)

is the partition function that normalizes the distribution.
As is standard in most treatments of the sum-product or max-

product algorithms (e.g., Pearl 1988, Weiss 2000), the bulk of
this paper treats pairwise Markov random fields, for which G
has only singleton and pairwise cliques. In Section 5, we show
how the ordinary max-product algorithm can be extended to
accommodate higher-order cliques, and how our analysis applies
to these generalizations as well. For a pairwise Markov random
field, the set of cliques is given by V ∪ E , so that we have a
compatibility function ψs for each node, and a function ψst for
each edge (s, t) ∈ E . In this case, Eq. (1) assumes the following
simpler form:

p(x) = 1

Z

∏
s∈V

ψs(xs)
∏

(s,t)∈E

ψst (xs, xt). (2)

The effect of including independent noisy observation ys of xs

at each node is to modify the singleton compatibility functions.
Since the addition of observations can be modeled by Eq. (2),
we suppress any explicit reference to measurements throughout
this paper.

The problem of maximum a posteriori (MAP) estimation cor-
responds to finding a configuration that is most likely under the
distribution p(x) defined in Eq. (1). In more formal terms, any
MAP configuration x̂MAP is defined by the relation

x̂MAP = arg max
x∈X N

p(x). (3)

Note that the MAP configuration need not be unique; that is,
there may be multiple configurations that attain the maximum
in Eq. (3). In this case, we refer to each one as a possible MAP
configuration.

Equivalently, we can formulate the MAP problem as finding
the configuration x ∈ X N that maximizes the function:

J (x; G) :=
∑
s∈V

log ψs(xs) +
∑

(s,t)∈E

log ψst (xs, xt). (4)

Note that any unconstrained integer programming problem in
which variables interact in a pairwise manner can be expressed
in the form of Eq. (4). Examples include the minimum s − t
cut and multiway-cut problems in combinatorial optimization
(e.g., Grötschel et al. 1993), image segmentation on a grid (e.g.,
Geman and Geman 1984), and calculating ground states in the
Ising model of statistical physics (e.g., Barahona 1982).

3. MAP estimation on trees

The focus of this section is the problem of MAP estimation
for tree-structured graphs, in which context we introduce max-
marginals and the max-product algorithm. This section is, in
part, continued background, but it also provides several impor-
tant observations that are critical for our main development in
Section 4. In Section 3.1, we review the factorization of any tree-
structured distribution in terms of its max-marginals, as guaran-
teed by the junction tree theorem (e.g., Cowell et al. 1999, Dawid
1992). We also show that the use of the max-marginals for MAP
estimation requires some care if the single-node maximizers fail
to be unique. In Section 3.2, we introduce the max-product al-
gorithm in the context of tree-structured distributions, and prove
that this algorithm exactly computes the reparameterization of
the overall distribution in terms of max-marginals. This inter-
pretation is key to our analysis in Section 4 of max-product
on graphs with cycles, in which case the quantities computed
by the max-product algorithm represent only approximations to
the true max-marginals.

3.1. Role of max-marginals

We begin by defining the max-marginals associated with any dis-
tribution p(x). For each xs ∈ X , the value of the max-marginal
µs(xs) associated with node s ∈ V is given by maximizing p(x)

Performance of the max-product algorithm and its generalizations 147

over the subset of configurations {x′ ∈ X N | x ′
s = xs}—viz.:

µs(xs) = κ max
{x′ |x ′

s=xs }
p(x′). (5)

Here κ denotes a positive but otherwise arbitrary normalization
constant; for example, it can be chosen so that maxx ′

s
µs(x ′

s) = 1.
We use this notation throughout the paper, where the value of κ

may differ from node to node, and from line to line.
Note that µs(xs) is proportional to the probability of the most

likely configuration x′ with x ′
s fixed to the value of xs . In an

analogous fashion, we can define pairwise max-marginals for
pairs of nodes (s, t) ∈ E :

µst (xs, xt) := κ max
{x′|(x ′

s ,x
′
t)=(xs ,xt)}

p(x′). (6)

Again, µst (xs, xt) is proportional to the probability of the most
likely configuration x′ ∈ X N subject to the constraint that x ′

s =
xs and x ′

t = xt .
The original representation of p(x) given in Eq. (2) is in terms

of compatibility functions on the nodes and edges of the graph.
One remarkable property of any tree-structured distribution is
that it can also be factorized in terms of its max-marginals:

Theorem 1 (Tree factorization). Any tree-structured distribu-
tion p(x) has the following alternative factorization in terms of
its max-marginals:

p(x) ∝
∏
s∈V

µs(xs)
∏

(s,t)∈E

µst (xs, xt)

µs(xs)µt (xt)
, (7)

where the max-marginals µ = {µs, µst } are defined in Eqs. (5)
and (6) respectively.

Equation (7) is a special case of the more general junction tree
representation (Cowell et al. 1999, Dawid 1992). In Section 3.2,
we provide, as a by-product of our presentation of the max-
product algorithm, a constructive proof of the factorization in
Theorem 1.

For the time being, suppose that we have computed the com-
plete set of max-marginals µ = {µs, µst }. We now consider the
problem of using the max-marginals to obtain an MAP config-
uration. If, for each node, the maximum of µs over x ′

s ∈ X is
attained at a unique value, then it can be seen that the MAP con-
figuration x̂MAP = {x̂s | s ∈ V } is unique, with elements given
by x̂ s = arg maxx ′

s∈X µs(x ′
s). Note the benefit of converting p(x)

to the alternative max-marginal representation: instead of glob-
ally optimizing the distribution in Eq. (2), a local optimization
at each node—i.e., maximizing µs(xs)—suffices to obtain the
MAP configuration.

Suppose, on the other hand, that for at least one node s ∈ V ,
there exist multiple states xs that attain the maximum of µs . In
this case, there must be multiple MAP configurations (at least
one for each state xs that achieves the maximum); moreover,
the single node max-marginals µs , on their own, do not contain
enough information to determine a valid MAP assignment. The
problem is illustrated by the following example:

Fig. 4. Illustration of symmetric problems on a simple tree, for which
multiple configurations attain the MAP value. In this case, the sin-
gle node max-marginals {µs} do not provide sufficient information
to determine a MAP configuration. Nonetheless, for a tree, a re-
cursive procedure can be used to sample the set of possible MAP
assignments

Example 1 (Insufficiency of µs). Consider a binary random
vector x ∈ {0, 1}3 on a Markov chain with three nodes, as illus-
trated in Fig. 4. Suppose that the distribution p(x) is formed as
in Eq. (2) by the following compatibility functions:3

ψs(xs) = [1 1]′ for all s = 1, 2, 3 ∈ V, (8a)

ψst (xs, xt) =
(

β (1 − β)

(1 − β) β

)
for all (s, t) ∈ E

= {(1, 2), (2, 3)}. (8b)

Here β ∈ (0, 1) is a parameter to be specified. Panels (a) and (b)
of Fig. 4 illustrate the cases β = 0.9 and β = 0.1 respectively.
Note the symmetry inherent to this problem: if a configuration
x ∈ {0, 1}3 achieves the maximum, then so will x ⊕ [1 1 1], where
⊕ denotes component-wise addition in modulo two arithmetic.
More specifically, if β > 0.5 (as in panel (a)), then it can be
seen that the MAP value is achieved by both [1 1 1] and [0 0 0].
Conversely, if β < 0.5 (as in panel (b)), then both [1 0 1] and
[0 1 0] are MAP configurations.

For any β ∈ (0, 1), suppose that we use the compatibility
functions to define another set of functions via µs(xs) = ψs(xs)
and µst (xs, xt) = ψst (xs, xt)ψs(xs)ψt (xt). As can be seen by
direct computation, the set of µ = {µs, µst } defined this way
are equivalent, up to normalization constants, to the exact max-
marginals of p(x). Since µs(xs) = [1 1]′ for each s ∈ V and
for all β ∈ (0, 1), each individual max-marginal indicates that
either choice of xs (0 or 1) is equally good independent of the
other variables, and the value of β. However, as we have seen
the true optimal MAP assignments depend heavily on the choice
of β. A random independent sampling from {0, 1} (as implied
by the single node max-marginals) will always yield an overall
optimal estimate only if β = 0.5.

Therefore, if there are multiple values of node variables that
maximize one or more of the max-marginals, then the single
node max-marginals µs do not provide unambiguous informa-
tion for MAP estimation. However, the fact that we are deal-
ing with a tree-structured distribution permits the application
of ideas from dynamic programming (Bertsekas 1995). As de-
scribed in Dawid (1992), similar ideas apply more generally to
junction trees.

148 Wainwright, Jaakkola and Willsky

Fig. 5. (a) A tree-structured graph (undirected). (b) A directed version
of the same tree, where node r is designated as the root. With the
exception of the root, each node has a unique parent; for example,
node t is the parent of node s. Nodes s and u are leaf nodes

Using the full set of single and pairwise max-marginals, it is
possible to draw samples from the set of all MAP assignments.
We begin by designating an arbitrary node r ∈ V as the root
of the tree, and then assign directions to the edges of the tree,
running from the root to the leaves, so as to ensure that each
node (except the root) has a unique parent. This procedure of
assigning directions to edges is illustrated in Fig. 5. For each
s ∈ V \{r}, let t ≡ pa(s) denote the unique parent of s. In
the context of this directed tree, for each child-parent pair {s, t},
the quantity log[µst (xs, xt)/µt (xt)] is a transition function along
the directed (t, s) edge.

For each child-parent pair {s, t}, we observe that a parent-to-
child version of Bellman’s equation (Bertsekas 1995) holds:

log µs(xs) = κ max
x ′

t ∈X

{
log

µst (xs, x ′
t)

µt (x ′
t)

+ log µt (x
′
t)

}
,

so that {log µs(xs) | s ∈ V } can be viewed as a collection of
cost-to-go functions. As a result, we can apply the following
procedure to draw a random sample from the set of configura-
tions that attain the MAP cost:

1. Make a random choice of x̂ r from the uniform distribution
over all xr ∈ X that maximize µr (xr).

2. Proceeding down the tree from the root to leaves, for each
child-parent pair {s, pa(s)} ≡ {s, t}, choose x̂s uniformly
from the set of xs ∈ X that maximize µst (xs, x̂t). Note that
the tree ordering ensures that the parent variable x̂t ≡ x̂pa(s)

is always specified prior to any of its children.

3.2. Computing max-marginals via max-product

In this section, we discuss the max-product algorithm in appli-
cation to trees. The perspective that we take differs from other
treatments (e.g., Pearl 1988), in that we interpret max-product as
a particular method for computing the max-marginal reparam-
eterization of Theorem 1. A by-product of this interpretation
is a constructive proof of the existence of this max-marginal
factorization.

For an arbitrary vertex s, consider the set of its neighbors
N (s) = {t | (s, t) ∈ E}. For each t ∈ N (s), let T (t) be the
subgraph formed by the set of nodes that can be reached from
t by paths that do not pass through node s. The key property of

Fig. 6. Decomposition of a tree, rooted at node s, into subtrees. Each
neighbor (e.g., t) of node s is the root of a subtree (e.g., T (t)). Subtrees
T (t) and T (u) (for t �= u) are disconnected when node s is blocked

a tree is that each such subgraph T (t) is again a tree, and T (t)
and T (u) are disjoint for t �= u. In this way, each vertex t in the
neighbor set N (s) can be viewed as the root node of a subtree
T (t), as illustrated in Fig. 6.

For each subtree T (t) = (V (T (t)), E(T (t))), let xT (t) =
{ xu | u ∈ T (t)}. Moreover, let

p(xT (t);ψT (t)) ∝
∏

u∈ V (T (t))

ψu(xu)
∏

(u,v)∈E(T (t))

ψuv(xu, xv)

(9)

denote the subset of terms in Eq. (1) associated with vertices
or edges in T (t). With this notation, the computation of µs can
be broken down into a set of subproblems, one for each subtree
T (t):

µs(xs) = κψs(xs)
∏

t∈N (s)

max
x′

T (t)

{
ψst (xs, x ′

t) p
(
x′

T (t);ψT (t)

)}
.

(10)

Each of the subproblems F(xs ; ψT (t)) = maxx′
T (t)

ψst (xs, x ′
t)

p(x′
T (t);ψT (t)) is again a tree-structured maximization, and so

can be then broken down recursively in a similar fashion. Simi-
larly, the computation of µst can be expressed in terms of such
subproblems:

µst (xs, xt) = κψs(xs)ψt (xt)ψst (xs, xt)
∏

u∈N (s)/t

F
(
xs ;ψT (u)

)

×
∏

v∈N (t)/s

F
(
xt ;ψT (v)

)
. (11)

Therefore, in order to compute its max-marginal, each node
s needs to receive the quantity F(xs ;ψT (t)) from each of its
neighbors t ∈ N (s). The max-product algorithm computes these
quantities efficiently by a parallel set of message-passing oper-
ations. At each iteration n = 0, 1, 2 . . . , every node t ∈ V
passes a message, denoted by Mn

ts(xs), to each of its neighbors
s ∈ N (s). Observe that the messages passed to node s are, in
fact, functions of xs . Messages are then updated according to
the following recursion:

Mn+1
ts (xs) = κ max

x ′
t

{
ψst (xs, x ′

t)ψt (x
′
t)

∏
u∈N (t)/s

Mn
ut (x

′
t)

}
. (12)

Performance of the max-product algorithm and its generalizations 149

It can be shown (e.g., Pearl 1988) that for any tree-structured
graph, the message update Eq. (12) converges to a unique fixed
point M∗ = {M∗

st } after a finite number of iterations. The con-
verged values of the messages M∗ define functions τ ∗

s and τ ∗
st

on the nodes and edges as follows:

τ ∗
s (xs) = κψs(xs)

∏
u∈N (s)

M∗
us(xs), (13a)

τ ∗
st (xs, xt) = κψs(xs)ψt (xt) ψst (xs, xt)

×
∏

u∈N (s)/t

M∗
us(xs)

∏
u∈N (t)/s

M∗
ut (xt). (13b)

Note the parallel between the structure of Eqs. (13a) and (13b),
and that of Eqs. (10) and (11).

We now prove the following important properties of these
functions:

(a) The functions τ ∗ define an alternative parameterization of
the distribution p(x).

(b) For a tree-structured graph, the functions τ ∗ are, in fact,
equivalent to the max-marginals defined in Eqs. (5) and (6)
respectively.

To establish property (a), we consider the distribution defined
by the collection τ ∗ = {τ ∗

s , τ ∗
st } as follows:

p(x; τ ∗) ∝
∏
s∈V

τ ∗
s (xs)

∏
(s,t)∈E

τ ∗
st (xs, xt)

τ ∗
s (xs)τ ∗

t (xt)
. (14)

Lemma 1 (Equivalence of distributions). The distribution de-
fined in Eq. (14) is an alternative factorization of the original
distribution p(x).

Proof: From the representation of τ ∗
s and τ ∗

st given in
Eqs. (13a) and (13b) respectively, we have

τ ∗
st (xs, xt)

τ ∗
s (xs)τ ∗

t (xt)
= κ

ψst (xs, xt)

M∗
st (xt)M∗

ts(xs)

Substituting this relation, as well as Eq. (13a), into the definition
of p(x; τ ∗) yields:

p(x; τ ∗) ∝
∏
s∈V

[
ψs(xs)

∏
u∈N (s)

M∗
us(xs)

] ∏
(s,t)∈E

ψst (xs, xt)

M∗
st (xt)M∗

ts(xs)
,

which can be seen, after cancelling out the messages, to be equiv-
alent to the original distribution p(x). �

Note that from the message-passing updates in Eq. (12), the
functions τ ∗

st and τ ∗
s defined in Eqs. (13b) and (13a) satisfy the

relation:

κ max
x ′

t ∈X
τ ∗

st (xs, x ′
t) = τ ∗

s (xs) for all xs ∈ X , (15)

where κ is a positive normalization factor that may depend on
(s, t). Of course, the max-marginals µs and µst themselves also
satisfy the local optimality condition of Eq. (15). Indeed, it turns
out that for trees, this local optimality is sufficient to guarantee
global optimality on the entire tree.

Proposition 1 (Local to global optimality). For any tree-
structured graph, the quantities τ ∗

s and τ ∗
st defined in Eqs. (13a)

and (13b) are equivalent to the max-marginals µs and µst de-
fined in Eqs. (5) and (6).

Proof: There are various proofs of this result e.g. (Cowell et al.
1999, Dawid 1992, Pearl 1988). The proof that we present in
Appendix A entails exploiting the local edgewise optimality of
Eq. (15) to remove edges from the graph one at a time. In the
end, we are left with a single edge (s, t), for which it is clear that
τ ∗

st is the max-marginal. �

4. Max-product on graphs with cycles

This section presents a reparameterization framework for under-
standing and analyzing the max-product algorithm on arbitrary
graphs. For graphs with cycles, the usual formulation of the max-
product algorithm corresponds to applying the message updates
of Eq. (12), while ignoring the presence of cycles. Unlike the
case of trees, the algorithm is no longer guaranteed to converge;
moreover, even if it does, the quantities τ ∗

s and τ ∗
st defined in

Eqs. (13a) and (13b) will not generally be equivalent to the
true max-marginals. As a result, the max-product assignment—
obtained by maximizing the individual τ ∗

s at each node—will
not, in general, be an MAP assignment. Most previous work
has focused on the dynamics of the message-passing updates
themselves. The analysis presented here, in contrast, follows in
the spirit of Section 3; we show that the max-product algorithm
(and variations thereof) can be interpreted as reparameterizing
the original distribution p(x) in terms of a set of pseudo-max-
marginals—namely, the set of τ ∗

s and τ ∗
st at every node and edge

of the graph with cycles.
Focusing on the pseudo-max-marginals allows a great deal

of the intuition for trees, as developed in Section 3, to be ex-
tended in a natural manner to graphs with cycles. We show that
at a fixed point of max-product message-passing (or reparam-
eterization) updates, the pseudo-max-marginals are required to
satisfy the same edgewise consistency as the tree case. Based
on our understanding of tree-structured problems, it then fol-
lows that the collection τ ∗ = {τ ∗

s , τ ∗
st }, while not equivalent to

the max-marginals of the original distribution p(x), must corre-
spond to a set of max-marginals for modified problems on every
spanning tree of the graph. As would be expected, this spanning
tree consistency strongly constrains the associated max-product
assignment.

This section begins with an introduction to the reparameter-
ization view of max-product on graphs with cycles. We then
establish that the max-product algorithm has at least one fixed
point for positive compatibility functions on an arbitrary graph
with cycles. In the context of reparameterization, this existence
result implies that any distribution with positive compatibility
functions can be refactored in terms of a set of pseudo-max-
marginals that are consistent on every tree of the graph. We next
turn to the question of specifying the max-product assignment.

150 Wainwright, Jaakkola and Willsky

Fig. 7. Any graph with cycles has several embedded spanning trees. (a) Original graph G. (b) One embedded spanning tree T 1. (c) Another
embedded spanning tree T 2

We show that for a graph with cycles, the consequences of non-
unique maximizers at even one of the nodes are more severe
than for a tree-structured distribution. For a graph with cycles,
the full set of single node and pairwise pseudo max-marginals
may fail to provide useful information concerning the MAP esti-
mate. As a result, the use of the max-product algorithm, in either
message-passing or reparameterization form, requires unique
single-node maximizers, an assumption that we state at the start
of Section 4.3. Under this assumption, we prove via a simple
argument that the max-product assignment is guaranteed to be
a global optimum of any portion of the cost function formed by
terms from a subgraph with at most one cycle (per connected
component). Based on this characterization, we also develop up-
per bounds on the error in the max-product algorithm—that is,
the difference between the cost of the (optimal) MAP assign-
ment, and the cost of the max-product assignment.

4.1. Reparameterization view of max-product

In this section, we present the reparameterization viewpoint of
the max-product algorithm on a graph with cycles. Our approach
is to build on Section 3, where we showed how the MAP prob-
lem on a tree can be solved by reparameterizing the distribution
in terms of its max-marginals. To demonstrate how reparame-
terization can be applied to graphs with cycles, it is convenient
to define and analyze a sequence of updates on spanning trees
of the graph. Overall, a wide class of algorithms, including the
ordinary message-passing form of max-product, can be inter-
preted as performing reparameterization. We make use of the
tree-based updates presented in this section as an exemplar for
illustrating the properties of this class of algorithms.

4.1.1. Tree-based reparameterization updates

We begin with the simple observation that embedded within any
graph with cycles are a number of spanning trees, as illustrated
in Fig. 7. Our strategy, then, is to formulate and study a sequence
of modified problems on these spanning trees. In particular, we
consider a collection {T i } of spanning trees, specified by edge
sets {Ei }.

Our starting point, as illustrated in Fig. 8(a), is a distribution
specified as a product of compatibility functions over the full
graph with cycles G (as in Eq. (2)). Given some spanning tree
T i with edge set Ei , we isolate those components of p(x) that

correspond to nodes and edges in the spanning tree:

pi (x) ∝
∏
s∈V

ψs(xs)
∏

(s,t)∈Ei

ψst (xs, xt).

We use r i (x) to denote the residual set of terms corresponding
to edges not in the spanning tree T i . Overall, we have used the
spanning tree to decompose the original distribution p(x) into
the product pi (x) r i (x) of the spanning tree component and the
residual component.

As illustrated in Fig. 8(b), the distribution pi (x) is a tree-
structured, meaning that it can be reparameterized in terms of its
max-marginals, denoted by {τs, τst }. Accordingly, we compute
these max-marginals, and then use them to specify the canonical
tree factorization of pi (x) of Eq. (7). This reparameterized form
of the tree distribution is illustrated in in Fig. 8(c). We conclude
the update by reinstating component r i (x) (without any modi-

Fig. 8. Illustration of reparameterization form of max-product updates
on spanning trees. (a) Original parameterization of p(x) in terms of
compatibility functions. (b) Tree distribution pi (x) formed of compo-
nents on spanning tree T i . (c) Spanning tree after reparameterization
update has been performed. (d) Full graph after one iteration, with
original functions re-instated on edges not in the tree

Performance of the max-product algorithm and its generalizations 151

fication), leaving the overall distribution in the form shown in
Fig. 8(d).

Note that this update simply amounts to specifying an alter-
native factorization, or reparameterization, of the original dis-
tribution p(x). An important property of this reparameterization
is that the modified compatibility functions on nodes and edges
in the spanning tree T i are, in fact, a consistent set of max-
marginals on that particular tree. In other words, the parameter-
ization is now tree-consistent with respect to the tree T i .

Of course, there are no guarantees that tree-consistency will
hold for some other tree distinct from T i . However, the ultimate
goal is to obtain a reparameterization for which tree-consistency
does hold for every tree simultaneously. In order to move towards
this goal, a subsequent iteration entails isolating a different span-
ning tree T j , and following the same sequence of steps. That
is, starting from the factorization obtained after the preceding
reparameterization step, we again perform the decomposition
p(x) ∝ p j (x)r j (x); reparameterize the tree distribution p j (x);
and then reinstate the residual term.

More formally, each of these updates can be expressed as a
functional mapping τ n → τ n+1, where τ n = {τ n

s , τ n
st }. At each

iteration n = 0, 1, 2, . . . , the collection τ n specifies a particular
parameterization of the original distribution p(x):

p(x; τ n) ∝
∏
s∈V

τ n
s (xs)

∏
(s,t)∈E

× τ n
st (xs, xt){[

maxx ′
s
τ n

st (x ′
s, xt)

][
maxx ′

t
τ n

st (xs, x ′
t)
]} . (16)

We let T 0, . . . , T L−1 denote a collection of spanning trees,
with associated edge sets E0, . . . , E L−1. The only restriction
placed on the choice of these spanning trees is that each edge
in the graph appear in at least one spanning tree. At each iter-
ation, we choose a spanning tree index i(n) ∈ {0, . . . , L − 1}.
To be concrete, although a variety of other orderings are pos-
sible (e.g., Censor and Zenios 1988), we focus on the cyclic
ordering i(n) ≡ n (mod L). With this set-up and notation,
Algorithm 1 gives a formal specification of the reparameteri-
zation updates:

Algorithm 1 (Tree reparameterization max-product).

1. At iteration n = 0, initialize τ 0 as:

τ 0
st (xs, xt) = κψs(xs)ψt (xt)ψst (xs, xt), (17a)

τ 0
s (xs) = κψs(xs)

∏
t∈N (s)

[
max

x ′
t

ψst (xs, x ′
t)ψt (x

′
t)
]
. (17b)

2. At iterations n = 1, 2, . . . , use spanning tree T i(n) with edge
set Ei(n). For each edge (s, t) ∈ Ei(n) and for each node

s ∈ V , update pseudo-max-marginals as follows:

τ n+1
st (xs, xt) = max

{x′|(x ′
s ,x

′
t)=(xs ,xt)}

pi(n)(x′; τ n), (18a)

τ n+1
s (xs) = max

{x′|x ′
s=xs }

pi(n)(x′; τ n). (18b)

For each edge (s, t) ∈ E\Ei(n), set τ n+1
st = τ n

st .

Remarks. At one level, Algorithm 1 can be viewed as a partic-
ular tree-based schedule for message passing. In this message-
passing view, each iteration entails fixing all those messages on
edges not in the spanning tree, and then updating the remaining
messages on tree edges until convergence. Conversely, the par-
allel message-passing updates in Eq. (12) can be reformulated
as a local reparameterization algorithm, in which exact compu-
tations are performed over very simple trees consisting of single
edges. The details of this equivalence for the closely related
sum-product or belief propagation algorithm can be found in
the thesis (Wainwright 2002).

4.1.2. Properties of fixed points

Highlighted by the reparameterization formulation of
Algorithm 1 is the fact that the original distribution is
not changed, a property that we formalize below. The parallel
message-passing form of max-product (12) also does not
change the distribution, since (as noted above) it can be
reformulated as reparameterization over single edges. More
generally, other procedures for scheduling messages for max-
product correspond to reparameterization procedures using
more complex (but perhaps not spanning) acyclic subgraphs.
From this equivalence, we can immediately conclude that each
fixed point M∗ of any max-product algorithm (i.e., using any
particular message-passing schedule) corresponds to a fixed
point of tree-reparameterization (Algorithm 1), where that
correspondence is specified by Eqs. (13a) and (13b). As a result,
we can exploit the insights afforded by tree-reparameterization
to analyze the fixed points of a rich class of max-product
algorithms. We summarize our results in the following:

Proposition 2 (Properties of max-product fixed points).

(a) Any fixed point τ ∗ of tree reparameterization updates or
max-product message-passing is a reparameterization of the
original distribution. That is, the distribution

p(x; τ ∗) ∝
∏
s∈V

τ ∗
s (xs)

∏
(s,t)∈E

τ ∗
st (xs, xt)

τ ∗
s (xs)τ ∗

t (xt)

is equivalent to the original one defined in Eq. (2).
(b) The elements of τ ∗ are tree-consistent for any tree embed-

ded within the graph with cycles. More precisely, given an
arbitrary tree T with edge set E(T) ⊂ E, form the tree-
structured distribution:

pT (x; τ ∗) ∝
∏
s∈V

τ ∗
s (xs)

∏
(s,t)∈E(T)

τ ∗
st (xs, xt)

τ ∗
s (xs)τ ∗

t (xt)
. (19)

152 Wainwright, Jaakkola and Willsky

Then the elements {τs |s ∈ V } and {τst |(s, t) ∈ E(T)} are
the correct max-marginals for pT (x; τ ∗).

Proof:

(a) In setting up Algorithm 1, we established that the initialized
distribution p(x; τ 0) is equivalent to the original distribu-
tion, and moreover, that the reparameterization updates do
not alter the distribution. I.e., p(x; τ n) = p(x; τ 0) for all
iterations. Since the mapping τ n → p(x; τ n) is continuous,
the set {τ | p(x; τ) ≡ p(x; τ 0)} is closed. Therefore, the in-
variance property will also hold for any fixed point τ ∗ of
Algorithm 1. The invariance can be established for explicit
message-passing updates by the argument of Lemma 1. (The
proof of this lemma is equally applicable to graphs with
cycles.)

(b) If Algorithm 1 converges, then by definition of the up-
dates, the set of pseudo-max-marginals τ ∗ = {τ ∗

s , τ ∗
st } must

be tree-consistent, in the sense of Proposition 2(b), with
respect to each of the trees T 0, . . . , T L−1 used in the al-
gorithm. By assumption, each edge (s, t) belongs to at
least one of these spanning trees, meaning that each τ ∗

st
and τ ∗

t are joint pairwise and single node max-marginals
for at least one tree-structured distribution pi (x; τ ∗). As
max-marginals, they satisfy the local consistency condition
maxx ′

s
τ ∗

st (x
′
s, xt) = κτ ∗

t (xt); that is, the elements of τ ∗ are
locally consistent on every edge of the graph. From this
point, we follow the proof of Proposition 1 to establish that
τ ∗ must be tree-consistent for an arbitrary tree embedded
within the graph. �

4.2. Existence of max-product fixed points

Proposition 2 characterizes the fixed points of tree-
reparameterization max-product (Algorithm 1), asynchronous
max-product message-passing updates (Eq. (12)), as well as
other variants. However, for general graphs, it has been an
open question of whether or not the max-product algorithm
has fixed points. Previous work (e.g., Weiss 2000, Horn 1999,
Aji et al. 1998) has established the existence of max-product
fixed points for positive compatibility functions on graphs con-
sisting of a single cycle. In this section, we generalize this results
by proving that fixed points exist for a positive distribution on
an arbitrary graph with cycles:

Theorem 2 (Existence of max-product fixed points). For any
strictly positive distribution on an arbitrary graph, the max-
product algorithm has at least one fixed point. Consequently,
any positive distribution can be reparameterized in terms of a
tree-consistent set τ ∗ of pseudo-max-marginals.

Proof: We prove the theorem by showing that a suitably mod-
ified form of the message-passing updates (12) satisfies the hy-
potheses of Brouwer’s fixed point theorem (e.g., Ortega and
Rheinboldt 2000). We begin by reformulating the updates in
terms of log messages. The message Mst from node s to node

t is a vector of length m, where the kth element denotes its
value when xt = k. For this proof, ζst denotes a m-vector that
corresponds to the logs of the elements of Mst ; the notation
ζst ;k denotes the kth element of this log message. For each edge
(s, t) ∈ E , note that the log message from s to t , denoted ζst , and
its counterpart from t to s, denoted ζts , are distinct quantities.
Accordingly, we let ζ = {ζst , ζts | (s, t) ∈ E} be a vector in R

D ,
where D = 2|E |m.

We now define a mapping that is equivalent to the message
updates of Eq. (12). For each edge (s, t) ∈ E and each element
k ∈ X , we begin by defining a mapping Lst (·; k) : R

D → R as
follows:

Lst (ζ; k) = max
j∈X

[
log ψst (j, k) + log ψs(j) +

∑
u∈N (s)/t

ζus(j)

]
.

(20)

Equation (20) is simply a re-statement of the message update
Eq. (12) in terms of log messages.

Note that the message update Eq. (12) permits the messages
to be renormalized by some factor κ . In the log domain, this
rescaling is equivalent to adding a constant (independent of k)
to all elements of the vector {Lst (ζ; k) | k ∈ X }. For analytic
purposes, it is convenient to exploit this freedom and define
another collection of mappings Fst (·; k) : R

D → R as follows:

Fst (ζ; k) = Lst (ζ; k) − 1

m

∑
j∈X

Lst (ζ; j). (21)

There are a total of D = 2|E |m of these real-valued mappings
(2m for each edge (s, t) ∈ E). Thus, the overall map F : R

D →
R

D is defined by this full collection of mappings:

F(ζ) = {Fst (ζ; k),Fts(ζ; k) | k ∈ X , (s, t) ∈ E}. (22)

With this set-up, the theorem itself is proved by applying
Brouwer’s fixed point theorem (Ortega and Rheinboldt 2000).
In order to apply this theorem, we require the following two
lemmas:

Lemma 2 (Continuity). The mapping F is continuous.

Lemma 3 (Uniformly bounded). For any distribution p(x)
formed of positive compatibility functions {ψs, ψst }, there is a
finite constant c such that ‖F(ζ)‖∞ ≤ c for all ζ ∈ R

D.

Proofs of these lemmas can be found in Appendix 6. We
now complete the proof of the theorem. Define A := {ζ ∈
R

D| ‖ζ‖∞ ≤ c}. Then A is a compact and convex set, and
by Lemma 3, the image F(A) is contained within A. Moreover,
F is continuous by Lemma 2, so that the Brouwer fixed-point
theorem (Ortega and Rheinboldt 2000) guarantees that F has a
fixed point in A. �

Remarks.

(a) The proof of Theorem 2 given here does not extend directly
to problems involving compatibility functions that are not

Performance of the max-product algorithm and its generalizations 153

strictly positive. It is possible that similar ideas could be ap-
plied in analyzing problems with zero compatibility func-
tions in which the updates take place on more global struc-
tures (e.g., turbo codes), but such extensions remain to be
explored.

(b) The implication of Theorem 2, when stated in the language
of Proposition 2, is interesting: any positive distribution p(x)
on an arbitrary graph with cycles can be reparameterized in
terms of a set of functions τ ∗ that are consistent single node
and pairwise max-marginals for every spanning tree of the
graph. For a tree, this assertion is a well-known fact (see
Theorem 1). In contrast, the existence of such a parameter-
ization for an arbitrary graph with cycles is by no means
obvious.

4.3. Specification of the max-product assignment

Our analysis up to this point has focused on properties of
the pseudo-max-marginals τ ∗ that are computed by any max-
product/reparameterization algorithm. In the remaining analy-
sis, our goal is to illuminate properties of the max-product as-
signment. Before doing so, however, we need to address the
following question: given a fixed point τ ∗ = {τ ∗

s , τ ∗
st } of the

max-product updates, how should the max-product assignment
x∗ be defined? First of all, suppose that the following condition
holds:

Asumption 1 (Unique maximum). For all nodes s ∈ V , the
maximum maxx ′

s∈X τ ∗
s (x ′

s) is attained at a unique point x∗
s .

In this case, the max-product assignment x∗ can be defined un-
ambiguously via x∗

s = arg maxx ′
s∈X τ ∗

s (x ′
s) for all nodes s ∈ V .

Suppose, on the other hand, that Assumption 1 does not hold
for some (or all) of the nodes in the graph. In Section 3.1, we
demonstrated how if Assumption 1 fails for a tree-structured
problem, then interpreting the quantities log τ ∗

s (xs) as cost-to-go
functions, as in dynamic programming (Bertsekas 1995), leads
to a recursive procedure for drawing random samples from the
set of all configurations achieving the MAP cost. Whether or not
this same type of interpretation and sampling procedure applies
to graph with cycles is an issue that does not appear to have been
addressed in the literature. In this section, we demonstrate via
some simple examples that when cycles are present in the graph,
the cost-to-go interpretation no longer applies.

An important aspect of the tree sampling procedure of
Section 3.1 is that any sampled configuration x∗ is guaranteed
to satisfy the following properties:

Node optimality: For each node s ∈ V , x∗
s achieves the optimum

maxx ′
s∈X τ ∗

s (x ′
s).

Edgewise optimality: For each edge (s, t) ∈ E , (x∗
s , x∗

t) achieves
the optimum maxx ′

s ,x
′
t ∈X τ ∗

st (x
′
s, x ′

t).

As the examples below demonstrate, it is possible, when
Assumption 1 fails for a graph with cycles, that there are no

Fig. 9. Illustration of symmetric problems for which the MAP value
is attained by multiple configurations. The single-node pseudo-max-
marginals τ ∗

s are uniform, and therefore do not yield any information.
In panel (a), there are distributions consistent with these pseudo-max-
marginals; this is not true for panel (b)

configurations that satisfy these local optimality properties for
all nodes and edges.

Example 2. We begin with an extension of Example 1. Con-
sider the graph consisting of a single cycle on three nodes, as
illustrated in Fig. 9, and a binary vector x ∈ {0, 1}3 with com-
patibility functions of the form

ψs(xs) = [1 1]′ for all s ∈ V, and

ψst (xs, xt) =
(

βst (1 − βst)

(1 − βst) βst

)

for all (s, t) ∈ E = {(1, 2), (1, 3), (2, 3)},
where βst ∈ (0, 1) are parameters to be specified. Observe that
for any values of βst in (0, 1), the local consistency condition

max
x ′

s∈X
ψst (x

′
s, xt)ψs(x ′

s)ψt (xt) = κ ψt (xt) (23)

holds for each edge (s, t) ∈ E , and for all xt ∈ X . As a
consequence, if we define τ ∗

s (xs) = ψs(xs) and τ ∗
st (xs, xt) =

ψst (xs, xt)ψs(xs)ψt (xt), then τ ∗ = {τ ∗
s , τ ∗

st } is already a fixed
point of the max-product algorithm, when considered in terms
of reparameterization. Moreover, note that since τ ∗

s (xs) = [1 1]′,
Assumption 1 fails for every node s ∈ V .

(a) First of all, suppose βst = 0.9 for all edges (s, t), as illus-
trated in panel (a). In this case, the MAP cost is achieved
by both 0 = [0 0 0] and 1 = [1 1 1]. Suppose that we
try to mimic the cost-to-go sampling procedure described
for a tree in Section 3.1. In particular, let us start by
drawing a random sample from the pseudo-max-marginal
τ ∗

1 (x1) ≡ [1 1]′—that is, choosing x∗
1 equal to 0 or 1 with

equal probability. We then proceed around the cycle in the
direction 1 → 2 → 3, first drawing x∗

2 uniformly from those
configurations that maximize τ ∗

12(x∗
1 , x2), and then x∗

3 uni-
formly from the configurations that maximize τ ∗

23(x∗
2 , x3). It

can be seen that the output of this sampling procedure is ei-
ther x∗ = 0 or x∗ = 1, depending on whether x∗

1 was chosen
to be 0 or 1 at the first step. Either configuration achieves
the MAP cost. For this particular sampling procedure, the
pseudo-max-marginal τ ∗

13 on edge (1, 3) played no role

154 Wainwright, Jaakkola and Willsky

whatsoever. Nonetheless, the constraint that it imposes—
namely, that the subvector (x1, x3) either be equal to [00] or
[11]—turns out to be satisfied by every possible output of
the sampler. However, this consistency is simply fortuitous,
as part (b) will demonstrate.

(b) Now suppose that β12 = β13 = 0.1 and β23 = 0.4, as
illustrated in panel (b). In this case, it can be seen that the
MAP cost is achieved by both [100] and [011]. Consider
the sampling procedure (1 → 2 → 3) described in part (a).
Depending on whether x∗

1 is chosen to be 0 or 1 respectively
at the first step, this sampler outputs either [010] or [101]
respectively. Unlike part (a), neither of these outputs is a
MAP configuration.

Of course, for this special case, we could obtain one of the
two MAP configurations by sampling in a different order—
say 2 → 1 → 3. But no matter which order is used to
draw samples, there is a key difference with the example
of part (a). For any order, there will be some pseudo-max-
marginal τ ∗

st that plays no role in the sampling. (For the
2 → 1 → 3 order, τ ∗

23 plays no role.) Unlike part (a), the
constraint imposed by this pseudo-max-marginal—namely,
that (x2, x3) either be equal to [10] or [01]—is never satisfied
by any sampled configuration over the entire graph with
cycles.

This inconsistency arises because the pseudo-max-
marginals τ ∗ impose a set of consistency constraints that
cannot be simultaneously satisfied. In particular, for a con-
figuration x to be edgewise optimal, each pair of random
variables (xs, xt) linked by τ ∗

st must take opposite values
for all three edges (s, t) ∈ E . There is no configuration
x ∈ {0, 1}3 that satisfies all three conditions simultaneously.

For the problems considered in Example 2, the uniform
pseudo-max-marginals τ ∗

s (xs) = [11]′ were, at worst, unhelp-
ful. The following example shows that when Assumption 1 is
not satisfied at all nodes, the pseudo-max-marginals can be quite
misleading (as opposed to simply unhelpful), even for a graph
containing only a single cycle.

Example 3 (Misleading pseudo-max-marginals). Consider the
6-node graph shown in Fig. 10(c). The random variables x5 and
x6 are special in that they take four possible values, whereas
all the other variables {x1, x2, x3, x4} are binary-valued. A set
of pairwise and single node pseudo-max-marginals are given
in panels (a) and (b) respectively of Fig. 10, in which vectors
and matrices are used to denote the values of the pseudo max-
marginals τ ∗

s and τ ∗
st respectively. Observe that quantities τ ∗

5
and τ ∗

6 are represented by 4-vectors, since the random variables
x5 and x6 each take four possible values; the remaining com-
patibility functions τ ∗

s , s �= 5, 6 are represented by 2-vectors.
Each of the edges (s, t) in the graph connects either node 5
or 6 to one of the other binary nodes, so that each compati-
bility function τ ∗

st is represented by a 2 × 4 matrix. The quan-
tity ε ≥ 0 in panel (a) is a parameter to be specified. By con-
struction, as long as ε < 0.1, the full collection τ ∗ = {τ ∗

s , τ ∗
st }

Fig. 10. A problem for which the pseudo-max-marginals are mislead-
ing. (a) Joint pairwise pseudo-max-marginals. (b) Single node pseudo-
max-marginals. (c) Structure of graphical model

of pseudo-max-marginals specified in this way satisfies local
edgewise consistency; that is, for each edge (s, t), we have
maxx ′

s∈Xs τ ∗
st (x

′
s, xt) = κτ ∗

t (xt). Therefore, τ ∗ is a fixed point
of max-product reparameterization for 0 ≤ ε < 0.1.

We use these pseudo-max-marginals to form the distribution
p(x) ∝ ∏

s∈V τ ∗
s (xs)

∏
(s,t)∈E

τ ∗
st (xs ,xt)

τ ∗
s (xs)τ ∗

t (xt)
. The nature of this distri-

bution is best understood by considering first the extreme ε = 0,
in which case the set of functions τ ∗

st , each relating one of the
binary nodes with one of the 4-value nodes (nodes 5 and 6) act,
in essence, to enforce a set of parity checks for the set of nodes
{1, 2, 4} and the set {2, 3, 4}. In particular, when ε = 0, any
configuration x for which either of the subvectors (x1, x2, x4) or
(x2, x3, x4) have odd parity are forbidden (i.e., they are given
zero probability). As a consequence, for ε = 0, all configura-
tions with positive probability have x1 = x3.

When ε is strictly larger than zero (but still very small), then
the model places positive probability on all configurations, but
very low (O(ε)) probability on any configuration for which
x1 �= x3; as a consequence, any configuration x̂ achieving the
MAP value will satisfy x̂1 = x̂3. In contrast, the pseudo-max-
marginals at nodes 3 and node 1 suggest that we should set x3 = 1
and x1 = 0 respectively. With these choices, there is no assign-
ment for the remaining variables that is edgewise optimal with
respect to all the joint {τ ∗

st }; that is, at least one edge will con-
tribute an ε-term. Thus, any configuration that is optimal with
respect to the single node pseudo-max-marginals will have O(ε)
probability in the overall model. The single node and pairwise
pseudo max-marginals have given conflicting, and in this case,
quite misleading information.

Closely related to the issue of whether or not Assumption 1
is satisfied is the notion of pseudocodewords, as discussed in

Performance of the max-product algorithm and its generalizations 155

error-correcting decoding applications (Forney et al. 2001b,
Horn 1999, Frey, Koetter and Vandy 2001). The essential idea is
to examine the (infinite) computation tree that is defined by the
evolution of the max-product message-passing updates. Suppose
that a max-product fixed point satisfies Assumption 1, thereby
(uniquely) specifying some configuration x∗. In this case, the
most likely configuration in the computation tree will be a ran-
dom vector formed by periodically-repeated copies of x∗. In
contrast, when Assumption 1 is not satisfied, it is possible that
no MAP configuration in the computation tree has this periodic
property. (For error-correcting codes, such non-periodic solu-
tions are known as pseudocodewords.) For instance, consider
the problem illustrated in Fig. 9(b), for which the computation
tree is simply an infinite chain. As our preceding discussion re-
vealed, the node and edgewise optimality conditions cannot be
satisfied for all nodes and edges in the single cycle. Therefore,
any MAP configuration in the infinite chain computation graph
must be non-periodic. Moreover, the max-product fixed point
that we considered (i.e., all uniform messages) is unstable. This
instability for a single cycle graph is in contrast to the sum-
product algorithm, where for single cycle graphs with positive
potentials there always exists a unique stable fixed point.

4.4. Characterization of max-product assignment

Based on the examples in the previous section, it is impossi-
ble to define and/or interpret a max-product assignment when
Assumption 1 is not satisfied. Accordingly, for the analysis in the
remainder of Section 4, we assume that Assumption 1 holds. We
let x∗ = {x∗

s | s ∈ V } denote the max-product assignment, with
elements x∗

s = arg maxx ′
s
τ ∗

s (x ′
s). For the purposes of analysis, it

is convenient to use the pseudo-max-marginals to define a cost
function as follows:

F(x; τ ∗; G) =
∑
s∈V

log τ ∗
s (xs) +

∑
(s,t)∈E

log
τ ∗

st (xs, xt)

τ ∗
s (xs)τ ∗

t (xt)
. (24)

From Proposition 2(a), it can be seen that F(x; τ ∗; G) is equiv-
alent (up to an additive constant) to the original cost function
J (x; G) defined in Eq. (4). Therefore, statements about the opti-
mality of x∗ with respect to F(x; τ ∗; G) can be translated directly
to optimality statements of x∗ with respect to J (x; G).

It is also useful to isolate those components of the cost
function (24) that correspond to a given subgraph H =
(V (H), E(H)) of G:

F(x; τ ∗; H) =
∑

s∈V (H)

log τ ∗
s (xs) +

∑
(s,t)∈E(H)

log
τ ∗

st (xs, xt)

τ ∗
s (xs)τ ∗

t (xt)
.

(25)

In the analysis to follow, we often make statements of the form
“the max-product assignment x∗ for G is optimal with respect to
the subgraph H”, by which we mean x∗ maximizes F(x; τ ∗; H).

In previous work, Weiss (2000) showed that the max-product
assignment is correct for any graph with at most one cycle.
Freeman and Weiss (2001) showed that in an arbitrary graph,

the max-product assignment is a local optimum over any subset
of nodes that form a node-induced subgraph with at most one cy-
cle per connected component. (See Fig. 1 for an illustration of a
node-induced subgraph.) The main result in this subsection gen-
eralizes these previous results by showing that the max-product
assignment is optimal with respect to any subgraph that contains
at most one cycle per connected component.

The following lemma is central to our analysis:

Lemma 4. For all xs, xt ∈ X , there holds:

log
τ ∗

st (x
∗
s , x∗

t)

τ ∗
t (x∗

t)
≥ log

τ ∗
st (xs, xt)

τ ∗
t (xt)

. (26)

Proof: From the tree consistency stated in Proposition 2(b),
we certainly have maxx ′

s
τ ∗

st (x
′
s, xt) = κτ ∗

t (xt) for all xt ∈ X . As
a result, the quantity maxx ′

s
τ ∗

st (x
′
s, xt)/τ ∗

t (xt) is a constant κ for
all xt . Moreover, when xt = x∗

t , this maximum is attained at x∗
s .

Therefore:

log
τ ∗

st (x
∗
s , x∗

t)

τ ∗
t (x∗

t)
= max

x ′
s

log
τ ∗

st (x
′
s, x∗

t)

τ ∗
t (x∗

t)

= max
x ′

s

log
τ ∗

st (x
′
s, xt)

τ ∗
t (xt)

≥ log
τ ∗

st (xs, xt)

τ ∗
t (xt)

,

which holds for all xs, xt ∈ X . �

Theorem 3 (Tree-plus-cycle optimality). Let τ ∗ be a fixed
point of the max-product algorithm, with corresponding max-
product assignment x∗ that satisfies Assumption 1. Then x∗ is a
global optimum of F(x; τ ∗; H) for all subgraphs H of G con-
taining at most one cycle per connected component. That is, for
all x ∈ X N , we have:

F(x∗; τ ∗; H) ≥ F(x; τ ∗; H). (27)

Proof: From Proposition 2(b), we know that x∗ is optimal with
respect to every tree T of G. We now extend this optimality
to all subgraphs H with at most a single cycle per connected
component. We assume that the subgraph has one connected
component; if it has multiple components, we can apply the
same argument separately to each component. As illustrated in
Fig. 11(a), any such subgraph H consists of a single cycle, with
(possibly) a tree dangling from each node in the cycle. For such a
graph, it is always possible to direct the edges such that each node
has exactly one incoming edge (Fig. 11(b)). Using this direction
of the edges, we can write the cost function in the following
way:

F(x; τ ∗; H) =
∑

s∈V (H)

log
τ ∗

st (xs, xt)

τ ∗
t (xt)

. (28)

In this statement, for every node s ∈ V (H), t is the
unique node that sends a directed edge to s. Applying

156 Wainwright, Jaakkola and Willsky

Fig. 11. (a) A single cycle with trees dangling from some nodes. (b) An
orientation (assignment of directions to the edges) of the graph in (a),
such that each node has exactly one incoming edge

Lemma 4 to each term in Eq. (28) yields the statement of the
theorem. �

Theorem 3 shows that any max-product assignment is optimal
with respect to a large number of cost functions that are closely
related to the original cost function. In particular, for each sub-
graph H , the cost function F(x; H) is a perturbed version of
the original cost function, where the perturbation stems from re-
moving the reparameterized compatibility functions from edges
not in the subgraph H . In Section 4.5, we exploit this fact to
develop error bounds.

Theorem 3 also has as corollaries a number of results estab-
lished in previous work. In particular, a special type of subgraph
are node-induced subgraphs; see Figs. 1 and 12 for illustra-
tions. Thus, we can show that Theorem 3 implies the result of
Freeman and Weiss (2001) mentioned above, which applies to
those node-induced subgraphs with at most one cycle per con-
nected component:

Corollary 1 (Optimality on node-induced subgraphs). Let x∗

be a max-product assignment satisfying Assumption 1. For a sub-
set S ⊂ V , let H = H [S] be the corresponding node-induced
subgraph. If H has at most one cycle per connected component,
then:

J [x∗; G] ≥ J [(xS; x∗
Sc); G]. (29)

where Sc denotes the complement V \S; and xS := {xs |s ∈ S}
ranges over all possible configurations in X |S|.

Proof: See Appendix C. �

Fig. 12. Difference between node-induced subgraphs and general subgraphs. (a) Original graph is a 5 × 5 grid. (b) A node-induced subgraph
with a single cycle; nodes in gray are not part of the subgraph. (c) A spanning tree plus a single cycle. (d) A second spanning tree plus a single
cycle. Neither of the subgraphs in (c) or (d) are node-induced

Figure 12 illustrates the difference between the set of node-
induced subgraphs to which Corollary 1 applies, and the larger
set of subgraphs to which Theorem 3 applies. Shown in Fig. 12(a)
is a graph with cycles, in this case a 5 × 5 grid. Panel (b) shows
a particular node-induced subgraph; nodes in gray correspond
to those not in the subgraph. Both Corollary 1 and Theorem 3
apply to this subgraph. Panels (c) and (d) show two subgraphs
to which Theorem 3 applies but Corollary 1 does not. Each
subgraph consists of a spanning tree plus a single cycle. Note
that the vertex sets of each of these subgraphs are the full set V ,
but their edge sets do not include every edge. Therefore, they
are not node-induced subgraphs, meaning that Corollary 1 no
longer applies.

Secondly, on the basis of Theorem 3, we can establish di-
rectly a result that was first proved, using alternative methods,
by Weiss (2000); this result is also a corollary of the Freeman
and Weiss (2001) result from above.

Corollary 2 (Exactness on single cycles). Under Assump-
tion 1, the max-product assignment is exact for a positive distri-
bution on a graph containing at most one cycle.

4.5. Error bounds and consequences

In an integer programming problem, one way to measure the
error between the optimal assignment x̂MAP and a trial assign-
ment x∗ is in terms of the difference between the optimal cost
J (x̂MAP; G) and the cost J (x∗; G) associated with the approxi-
mation. In this section, we show that our analysis enables us to
give bounds on this error in the max-product assignment in a
straight-forward manner. In addition, these bounds allow us to
prove that the max-product assignment x∗ either agrees with a
MAP configuration, or differs from any MAP configuration by
a Hamming distance larger than a linear function of the graph
girth.

Let x̂MAP = {x̂s |s ∈ V } denote a MAP assignment, and let
x∗ = {x∗

s |s ∈ V } denote the max-product assignment. We define
the following quantity to assess the discrepancy between x̂MAP

and x∗ on edge (s, t) ∈ E :

�st (x̂MAP, x∗) := log
τ ∗

st (x̂ s, x̂ t)

τ ∗
s (x̂ s) τ ∗

t (x̂ t)
− log

τ ∗
st (x

∗
s , x∗

t)

τ ∗
s (x∗

s) τ ∗
t (x∗

t)
.

With this notation, we have:

Performance of the max-product algorithm and its generalizations 157

Theorem 4 (Error bounds). Let H = (V, E(H)) be a span-
ning subgraph of G that has at most one cycle per connected
component. Then the difference between the cost of the optimal
MAP assignment x̂MAP and the max-product assignment x∗ on
the full graph G is bounded above as follows:

J (x̂MAP; G) − J (x∗; G) ≤
∑

(s,t)∈E\E(H)

�st (x̂MAP, x∗) (30a)

≤ max
x′∈X N

∑
(s,t)∈E\E(H)

�st (x
′, x∗). (30b)

Proof: To obtain an upper bound on J (x̂MAP; G) −
J (x∗; G), it is equivalent to upper bound the difference
F(x̂MAP; τ ∗; G) − F(x∗; τ ∗; G). Any constants, which are inde-
pendent of x, vanish after taking the difference. Let H be a
spanning subgraph of G with at most one cycle. Then we write:

F(x̂MAP; τ ∗; G) − F(x∗; τ ∗; G)

= [F(x̂MAP; τ ∗; H) − F(x∗; τ ∗; H)]

+
∑

(s,t)∈E\E(H)

[
log

τ ∗
st (x̂ s, x̂ t)

τ ∗
s (x̂ s) τ ∗

t (x̂ t)
− log

τ ∗
st (x

∗
s , x∗

t)

τ ∗
s (x∗

s) τ ∗
t (x∗

t)

]

≤
∑

(s,t)∈E\E(H)

[
log

τ ∗
st (x̂ s, x̂ t)

τ ∗
s (x̂ s) τ ∗

t (x̂ t)
− log

τ ∗
st (x

∗
s , x∗

t)

τ ∗
s (x∗

s) τ ∗
t (x∗

t)

]

where we have used Theorem 3 to apply the bound [F(x̂MAP;
τ ∗; H) − F(x∗; τ ∗; H)] ≤ 0. This establishes Eq. (30a), from
which Eq. (30b) follows immediately. �

4.5.1. Practical considerations

For Theorem 2 to be practically useful, we need to be able to
compute the upper bounds. Computing the bound in Eq. (30a)
is as difficult as solving the original integer program (IP), since
it involves the unknown MAP configuration x̂MAP itself. Al-
though the bound of Eq. (30b) does not involve the unknown
MAP configuration, computing it requires solving a different
IP. The complexity of this IP depends on both the graph struc-
ture, and the choice of spanning subgraph H . For a very dense
graph, a subgraph H with at most one cycle can cover only

Fig. 13. Example of an intractable graph where upper bound of Theorem 4 is efficiently computable. (a) Original graph is a 2D nearest-neighbor
grid. (b) Spanning tree. (c) Upper bound requires separate optimizations over each chain of nodes contained within a dotted ellipse

a small fraction of the edges, in which case it is likely that
Eq. (30b) will be expensive to compute. However, it is always
possible to compute a weaker upper bound by splitting the op-
timization in Eq. (30b) into several smaller and hence tractable
pieces. To be more specific, for any disjoint partition {Eβ} of
the edges in E\E(H), the following weaker upper bound is
valid:

J (x̂MAP; G) − J (x∗; G) ≤
∑

β

{
max
x′∈X N

[∑
(s,t)∈Eβ

�st (x
′, x∗)

]}
.

In the worst case, we could take the finest partition of E\E(H)
possible—namely into individual edges.

There are other types of less densely-connected graphs for
which the general MAP problem is still NP-hard, but yet a single
spanning tree covers a significant fraction of the edges. In such
cases, making a judicious choice of the subgraph H in Theorem 2
can ensure that the upper bound of Eq. (30b) is computable, as
illustrated in the following example.

Example 4. Consider a
√

N × √
N nearest-neighbor grid in

2D; it has N nodes and 2
√

N (
√

N −1) edges. The case N = 49
is illustrated in Fig. 13(a); one spanning tree for this graph is
shown in panel (b). If the spanning tree shown in (b) is used as
the subgraph H in Theorem 4, then the optimization in Eq. (30b)
naturally decouples into a set of separate optimization problems,
one for each column of the grid, as shown in Fig. 13(c). Each of
these subproblems is equivalent to a MAP estimation problem
on a chain-structured graph of length

√
N , and therefore can be

solved exactly and efficiently in O(
√

N) time. There are
√

N
such chain-structured problems to solve, one for each column
of the grid, meaning that the overall complexity of computing
the upper bound in Eq. (30b) is O(N).

4.5.2. Theoretical consequences

From a theoretical perspective, the useful part of Theorem 2 is
Eq. (30a), which links the max-product assignment x∗ to a MAP
assignment x̂MAP. In this section, we exploit this result to show
that max-product assignment either achieves the MAP cost, or
differs from the MAP assignment in very structured ways. For

158 Wainwright, Jaakkola and Willsky

two strings a, b ∈ X N , we use dH (a, b) to denote the Hamming
distance:

dH (a, b) =
N∑

i=1

δ(ai �= bi). (31)

I.e., the Hamming distance is a count of the number of elements
in which a and b differ. Given a graph G, its girth is the number
of edges in its shortest cycle. The main result of this section is
to show that the max-product assignment is either equivalent to
a MAP assignment, or differs from it by a Hamming distance
that depends linearly on the girth. This result generalizes similar
results of the same flavor by Freeman and Weiss (2001).

Before proving this result, we require the following lemmas:

Lemma 5. Whenever dH {(x̂ s, x̂ t), (x∗
s , x∗

t)} ≤ 1, then
�st (x̂MAP, x∗) ≤ 0.

Proof: If dH {(x̂ s, x̂ t), (x∗
s , x∗

t)} = 0, the statement is trivial.
Otherwise, suppose without loss of generality that x̂ s = x∗

s and
x̂ t �= x∗

t . Then we write:

�st (x̂MAP, x∗) = log
τ ∗

st (x
∗
s , x̂ t)

τ ∗
s (x∗

s) τ ∗
t (x̂ t)

− log
τ ∗

st (x
∗
s , x∗

t)

τ ∗
s (x∗

s) τ ∗
t (x∗

t)

= log
τ ∗

st (x
∗
s , x̂ t)

τ ∗
t (x̂ t)

− log
τ ∗

st (x
∗
s , x∗

t)

τ ∗
t (x∗

t)

≤ 0,

where we have used Lemma 4 to obtain the inequality. Thus,
we have established that �st (x̂MAP, x∗) ≤ 0 for all x∗ within
Hamming distance one of x̂MAP. �

Lemma 6. Given a graph G of girth g, define l(g) = 2g −
(�g/2�+1). Here �g/2� denotes the floor of g/2 (i.e., its integral
part). Then any node induced subgraph G[S] with a number of
nodes |S| ≤ l(g) − 1 has at most one cycle.

Proof: See Appendix D. �

We now proceed to the main result of this section:

Corollary 3. For a graph G with girth g, the max-product
assignment x∗ is either a MAP assignment (i.e., achieves the
MAP value), or differs from any MAP assignment by a Hamming
distance of at least l(g) = 2g − �g/2� − 1.

Proof: Suppose that the max-product assignment x∗ is not
equal to a MAP assignment; moreover, say it differs from a MAP
assignment x̂MAP in a subset of vertices S with |S| ≤ l(g) − 1.
By Lemma 6, the corresponding node-induced subgraph G[S]
can have at most one cycle. Therefore, we can augment G[S]
to a spanning subgraph H = (V, E(H)) that also contains at
most one cycle, and such that E(H) contains the edge subset
E[S] = {(ui , u j) ∈ E |ui , u j ∈ S}. Applying Eq. (30a) from
Theorem 4 to this subgraph, we obtain:

0 ≤ J (x̂MAP; G) − J (x∗; G) ≤
∑

(s,t)∈E\E(H)

�st (x̂MAP, x∗). (32)

By construction, no edge (s, t) in E\E(H) is of the form (ui , u j)
for some ui , u j ∈ S. Therefore, if x∗ differs from x̂MAP only in el-
ements within the set {x∗

u |u ∈ S}, then dH

{
(x̂ s, x̂ t), (x∗

s , x∗
t)

} ≤
1 for all (s, t) ∈ E\E(H). In this case, applying Lemma 5 to
Eq. (32) yields that J (x̂MAP; G) = J (x∗; G), so that x∗ achieves
the MAP value. Otherwise, there must be at least one vertex
s ∈ V \S (i.e., in addition to those in S) for which x∗

s �= x̂ s .
Therefore, x∗ must differ from x̂MAP by Hamming distance at
least |S| + 1. If |S| = l(g) − 1, then we are done; otherwise, we
simply augment S by adding the additional vertex s for which
x∗

s �= x̂ s , and apply the same argument to this augmented set
(using the fact that |S ∪ {s}| = |S| + 1 ≤ l(g) − 1.) This same
procedure can be applied until |S| = l(g) − 1, at which point
we will have established that x∗ is either equal to a MAP as-
signment, or differs from any MAP assignment by Hamming
distance at least l(g). �

Remark. The Hamming distance bound of Corollary 3 is tight
for g = 3, in the sense that there exist graphs for which the bound
is met with equality. For instance, consider the 4-node graph
shown in Fig. 14(a); it has girth g = 3, and l(3) = 4. There exist
potentials for this 4-node graph for which the MAP assignment
x̂MAP = [1111], whereas the max-product assignment is x∗ =
[0000], so that dH {x̂MAP, x∗} = l(3).

We conclude this section by comparing Theorem 4 and
Corollary 3 to some other approximation error results that ex-
ist for integer programming problems. For certain special cases
of the ferromagnetic Potts model, several researchers (Boykov,
Veksler and Zabih 2001, Kleinberg and Tardos 1999) provided
algorithms that provide solutions with cost within a constant
factor of optimal. For the MAX-CUT problem, Goemans and
Williamson (1995) developed a randomized algorithm based on
a semidefinite programming relaxation that also has a constant
factor guarantee (in expectation). Both of these problems are spe-
cial cases of MAP problems on pairwise Markov random fields.
Although we have not provided a constant factor guarantee, the
max-product algorithm, and hence the results given here, are
more generally applicable to an arbitrary pairwise Markov ran-
dom field. Moreover, rather than comparing solutions in terms
of their costs, Corollary 3 either guarantees that a max-product

Fig. 14. Graphs with two minimal cycles, and girths g from 3 to 5.
(a) In the case g = 3, adding a single node is sufficient to generate
multiple cycles of length 3. Note that in accordance with Lemma 6,
l(3) = 6 − (1 + 1) = 4. (b) For a girth g = 4, we have l(4) =
5 = 4 + 1, so that one node is again sufficient. (c) When g = 5, then
l(5) = 10 − 2 − 1 = 7, so that 2 additional nodes are required to form
additional cycles of length 5

Performance of the max-product algorithm and its generalizations 159

solution is MAP-optimal, or differs from any MAP solution in
terms of Hamming distance by a linear function of graph girth.
An interesting direction for future research is to obtain tighter
results for when the max-product algorithm is restricted to more
specific problem classes.

5. Generalizations of max-product

Yedidia, Freeman and Weiss (2001) proposed extensions to the
sum-product or belief propagation algorithm that entail operat-
ing over higher order cliques. It is natural, then, to consider the
analogs of such generalizations for the max-product algorithm.
As in the case of belief propagation, there are at least two rea-
sons for doing so. First of all, the usual max-product algorithm
applies to a Markov random field (MRF) with pairwise maximal
cliques. Of course, any MRF with higher order cliques can, in
principle, be converted to a pairwise MRF defined on an aug-
mented graph (see Freeman and Weiss 2001). Although the usual
max-product algorithm can be applied directly to this modified
graph, an alternative approach (described here) is to modify the
max-product algorithm itself to handle higher-order cliques in a
direct manner. Second, even for an MRF with pairwise maximal
cliques, there may be good reasons to consider larger groups
of nodes over which to update—in particular, to obtain better
approximations to the true MAP estimate. One way to construct
such groupings is by adding edges to the graph, thereby form-
ing an augmented graph with higher-order cliques. In fact, in
the limit of adding enough edges to the graph to triangulate it,
performing reparameterization over the maximal cliques of the
triangulated graph is equivalent to applying the junction tree
algorithm (Cowell et al. 1999, Dawid 1992), which yields the
exact max-marginals and MAP estimate. However, for many
graphs, the process of triangulation leads to an explosion in the
clique size, which means that the practical application of this
junction tree algorithm is limited. Given the prohibitive cost of
the junction tree algorithm, it is reasonable to consider partial
triangulations of graphs. Such structures arise in certain exten-
sions to BP, such as the GBP updates of Yedidia, Freeman and
Weiss (2001), which can be formulated as minimizing a cost
function (e.g., Kikuchi free energy) that is defined by a partially
triangulated graph.

To date, the counterparts of these extensions have not been
explored in the context of MAP estimation. Accordingly, this
section is devoted to the development and analysis of general-
ized max-product updates. These updates involve reparameter-
izing distributions that are defined by compatibility functions
over higher-order cliques. One way to discuss such updates is
in terms of aggregated graphs, where new vertices are defined
by aggregating sets of nodes of the original graph into clusters
(e.g., as in Kikuchi approximations (Yedidia, Freeman and Weiss
2001). The route that we pursue here is different, in that we for-
mulate generalized max-product updates within the formalism
of hypergraphs. Of particular importance to our development
are acyclic hypergraphs, otherwise known as hypertrees, which

are essentially equivalent to junction trees (Cowell et al. 1999)
We refer the reader to Berge (1989) and Bodlaender (1993) for
more details on hypergraphs and hypertrees. Based on this set-
up, we then introduce generalizations of the max-product algo-
rithm that entail performing reparameterization over hypertrees.
Finally, we discuss how our results on the ordinary max-product
algorithm have analogs for these generalizations.

5.1. Hypergraphs

Hypergraphs represent a natural generalization of graphs. In
particular, a hypergraph GHYP = (V, E) consists of a vertex
set V = {1, . . . , N }, and a set of hyperedges E , where each hy-
peredge h is a particular subset of V (i.e., an element of the
power set of V). The set of hyperedges can be viewed naturally
as a partially-ordered set, where the partial ordering is speci-
fied by inclusion. More details on hypergraphs can be found in
Berge (1989), whereas Stanley (1997) provides more informa-
tion on partially-ordered sets (also known as posets).

Given two hyperedges g and h, one of three possibilities can
hold:

(a) the hyperedge g is contained within h, in which case we
write g < h.

(b) if h is contained within g, then we write h < g.
(c) finally, if neither containment relation holds, then g and h

are incomparable.

We say that a hyperedge is maximal if it is not contained within
any other hyperedge.

With these definitions, an ordinary graph is a special case of a
hypergraph, in which each maximal hyperedge consists of a pair
of vertices (i.e., an ordinary edge of the graph). Note that for
hypergraphs (unlike graphs), the set of hyperedges may include
(a subset of) the individual vertices.

A convenient graphical representation of a hypergraph is in
terms of a diagram of its hyperedges, with (directed) edges rep-
resenting the inclusion relations. Diagrams of this nature have
been used by Yedidia, Freeman and Weiss (2001), who refer to
them as region graphs; other researchers (McEliece and Yildirim
2002, Pakzad and Anantharam 2002) have used the term Hasse
diagram from poset terminology (Stanley 1997). Figure 15 pro-
vides some simple graphical illustrations of hypergraphs. As a
special case, any ordinary graph can be drawn as a hypergraph;
in particular, panel (a) shows the hypergraph representation of
a single cycle on four nodes. Panel (b) shows a hypergraph that
is not equivalent to an ordinary graph, consisting of two hy-
peredges of size three joined by their intersection of size two.
Shown in panel (c) is a more complex hypergraph, to which we
will return in the sequel.

Given any hyperedge h, we define the sets of its descendants
and ancestors in the following way:

D(h) = {g ∈ E | g < h}, (33a)

A(h) = {g ∈ E | g > h}. (33b)

160 Wainwright, Jaakkola and Willsky

Fig. 15. Graphical representations of hypergraphs. Subsets of nodes corresponding to hyperedges are shown in rectangles, whereas the arrows
represent inclusion relations among hyperedges. (a) An ordinary single cycle graph represented as a hypergraph. (b) A simple hypergraph. (c) A
more complex hypergraph.

For example, given the hyperedge h = (1245) in the hypergraph
in Fig. 15(c), we have A(h) = ∅ and D(h) = {(25), (45), (5)}.
We use the notation D+(h) and A+(h) as shorthand for the sets
D(h) ∪ h and A(h) ∪ h respectively.

5.2. Junction trees and hypertrees

Of particular importance are acyclic hypergraphs, which are
also known as hypertrees. In order to define these objects, we
require the notions of tree decomposition and running inter-
section, which are well-known in the context of junction trees.
More background on junction trees and running intersection
can be found in Lauritzen (1996) or Cowell et al. (1999). Given
a hypergraph GHYP, a tree decomposition is an acyclic graph
in which the nodes are formed by the maximal hyperedges of
GHYP. Any intersection g ∩ h of two maximal hyperedges that
are adjacent in the tree is known as a separator set. The tree de-
composition has the running intersection property if for any two
nodes g and h in the tree, all nodes on the unique path joining
them contain the intersection g ∩ h. A hypergraph is acyclic if
it possesses a tree decomposition with the running intersection
property. The width of an acyclic hypergraph is the size of the
largest hyperedge minus one; we use the term k-hypertree to
mean a singly-connected acyclic hypergraph of width k.

As a simple illustration, a spanning tree of an ordinary graph
is a 1-hypertree, because its maximal hyperedges (i.e., ordinary
edges) all have size two. As a second example, the hypergraph
of Fig. 15(b) has maximal hyperedges of size three. This hyper-
graph is acyclic with width two, since it is in direct correspon-
dence with the junction tree on the two maximal hyperedges
and the single separator set (23). Figure 16 shows a more subtle
example. Again, it is easy to see that the hypergraph in panel (a)
is in direct correspondence with a junction tree, and hence is a
width three hypertree. At first glance, the hypergraph illustrated
in panel (b) might appear different, but in fact, it corresponds to
the same hypertree. From the junction tree view, the addition of
the extra hyperedge (5) and links to (25) and (45) is superfluous.
This issue will be clarified in Example 5(c).

5.3. Hypergraph-structured distributions

We now consider the role of hypergraphs and hypertrees in spec-
ifying particular factorizations of distributions. Given a hyper-

graph GHYP, we consider a distribution specified as a product
compatibility functions over hyperedges:

p(x) = 1

Z

∏
h∈E

ψh(xh). (34)

If this hypergraph is acyclic (and hence can be associated with
a junction tree), then the well-known junction tree theorem
(Cowell et al. 1999) guarantees that p can be factored as a prod-
uct of max-marginals on maximal cliques divided by a product
of max-marginals on separator sets in the junction tree.

Here we describe an alternative but equivalent factorization
in terms of the hypertree itself, which will be more convenient
for our purposes. First of all, given a hyperedge h ∈ E , we
define the associated max-marginal over the subset of variables
xh = {xs | s ∈ h}:

µh(xh) = max
{x′|x′

h=xh}
p(x′). (35)

Next, we use these max-marginals to define a function ϕh as
follows:

ϕh(x) := µh(xh)∏
g∈D(h) ϕg(xg)

, (36)

where D(h), as defined in Eq. (33a), is the set of descendants of
h. In terms of these quantities, the hypertree factorization itself
is very simple:

p(x) = 1

Z

∏
h∈E

ϕh(xh). (37)

Fig. 16. Two different graphical representations of the same underlying
hypertree. (a) This diagram clearly corresponds to an acyclic hyper-
graph. (b) This representation seems different, but in fact corresponds
to the same hypertree. Hence hypertrees cannot be identified simply by
the absence (or presence) of cycles in poset diagrams

Performance of the max-product algorithm and its generalizations 161

In this formulation, we have explicitly included a normalization
constant Z , which may or may not be necessary, depending on
how the max-marginals are normalized individually.

This factorization is, in fact, equivalent to the familiar junction
tree representation:

p(x) = 1

Z

∏
h∈Emax

µh(xh)∏
g∈Esep

[µg(xg)]d(g)−1
. (38)

In this equation, Emax denotes the set of maximal hyperedges,
Esep denotes the set of separator sets in a tree decomposition, and
d(g) denotes the number of maximal hyperedges that contain the
separator set g.

We illustrate the hypertree factorization and its equivalence
to the junction tree representation with a few examples:

Example 5 (Hypertree factorization).

(a) First suppose that the hypertree is an ordinary tree, in which
case the hyperedge set consists of the union of the ver-
tex set with the (ordinary) edge set. For any vertex s, we
have ϕs(xs) = µs(xs), whereas for any edge (s, t) we have
ϕst (xs, xt) = µst (xs, xt)/[µs(xs) µt (xt)]. Therefore, in this
special case, Eq. (37) reduces to the tree factorization in
Eq. (7).

(b) Consider the hypergraph illustrated in Fig. 15(b), specified
by the hyperedges {(123), (234), (23)}. By inspection it is
acyclic, so that we can apply the factorization of Eq. (37)
(omitting the dependence of x for notational simplicity):

p = ϕ123 ϕ234 ϕ23

= µ123

ϕ23

µ234

ϕ23
ϕ23

= µ123 µ234

µ23
.

If we were to construct the junction tree for this simple
graph, it would have maximal cliques {(123), (234)} and a
single separator set (23). Therefore, the expression that we
obtained from the hypertree factorization (37) (after some
re-arrangement) agrees with the junction tree representation
that would be obtained from Eq. (38).

(c) Now consider the hypergraph specified by {(1245),
(2356), (4578), (25), (45), (5)}, as illustrated in Fig. 16(b).
Earlier we claimed that this hypergraph is acyclic. By ap-
plying the hypertree factorization (where we again omit the
explicit dependence on x), we obtain:

p = µ1245

ϕ25ϕ45ϕ5

µ2356

ϕ25ϕ5

µ4578

ϕ45ϕ5
ϕ25 ϕ45 ϕ5

= µ1245
µ25

µ5

µ45

µ5
µ5

µ2356
µ25

µ5
µ5

µ4578
µ45

µ5
µ5

µ25

µ5

µ45

µ5
µ5

= µ1245 µ2356 µ4578

µ25µ45
. (39)

Again, this expression agrees with what would be ob-
tained from the junction tree formula (38). Moreover, ob-
serve that we would obtain the same result if we applied

the hypertree factorization to Fig. 16(a) (which is more
obviously a hypertree). Therefore, the representations in
Fig. 16(a) and (b), though ostensibly different, are effec-
tively equivalent.

5.4. Hypertree reparameterization max-product

We now have the necessary machinery to develop generaliza-
tions of the max-product algorithm. Our starting point is a hy-
pergraph GHYP, and a distribution p(x) that is formed as the
product of compatibility functions over its hyperedges. The un-
derlying assumption is that the size of the largest hyperedge (say
k+1) is sufficiently small such that it is feasible to perform exact
computations on hypertrees of width k.

We then consider a sequence of hypertree reparameteriza-
tion updates, entirely analogous to those of the tree-based max-
product updates of Algorithm 1. Specifically, consider a col-
lection of hypertrees {T 0, . . . T L−1} that covers the hypergraph;
that is, each hyperedge belongs to at least one hypertree. At any
given iteration, we pick some hypertree T i from this set, and
then split the distribution p(x) into the product of a hypertree
component pi (x), consisting of all those compatibility functions
on hyperedges in T i , and a residual component r i (x), consisting
of those terms on hyperedges not in the hypertree. We then com-
pute the exact max-marginals for the hypertree, and use them
to reparameterize the hypertree distribution pi (x). The compu-
tation of the hypertree max-marginals can be carried out by an
exact algorithm applied to the hypertree (e.g., in its junction tree
representation).

More formally, as with tree-based max-product, these updates
can be described as a sequence of functional updates on a col-
lection τ = {τh | h ∈ E} of pseudo-max-marginals on the
hyperedges of the hypergraph. Given the pseudo-max-marginal
τh and any hyperedge g that is covered by h, we define:

τg<h(xg) = max
{x′

h |x′
g=xg}

τh(x′
h). (40)

That is, τg<h is the pseudo-max-marginal on the hyperedge g
induced by τh . For the moment, we do not assume that the collec-
tion of pseudo-max-marginals is fully consistent. For example,
even if both h and h′ cover the same hyperedge g, the pseudo-
max-marginal τg<h need not be equal to τg<h′ ; moreover, neither
of these quantities has to be equal to the pseudo-max-marginal
τg defined for hyperedge g. Ultimately, however, at fixed points
of the reparameterization updates, all of these consistency con-
ditions will hold.

Now for each hyperedge h with pseudo-max-marginal τh , we
define the following quantity:

ϕh(xh ; τh) := τh(xh)∏
g∈D(h) ϕg(xg; τg<h)

. (41)

The quantity ϕh(xh ; τh) is very similar to the earlier ϕh(xh) de-
fined in Eq. (36), except that it should be viewed as a func-
tion of both xh and the pseudo-max-marginal τh . In addi-
tion, note that for any hyperedge g < h, it is the induced

162 Wainwright, Jaakkola and Willsky

marginal τg<h that is used in the denominator of the definition
of Eq. (41).

With these definition, the collection τ specifies an alternative
parameterization of the original distribution p(x) on the full
hypergraph (which includes cycles in general) as follows:

p(x; τ) = 1

Z (τ)

∏
h∈E

ϕh(xh ; τh). (42)

Example 6.

(a) To illustrate these definitions, first consider the hypergraph
representation of an ordinary graph with pairwise maximal
cliques, so that the hyperedge set consists of the union of
the vertex set and (ordinary) edge set. Suppose that we are
given a collection of pseudo-max-marginals τ = {τs, τst }.
Then applying the definition in Eq. (41) yields, for a max-
imal hyperedge h = (st) and size one hyperedge g = (s)
respectively, the following expressions:

ϕst ((xs, xt); τst) = τst (xs, xt)

maxx ′
s
τst (x ′

s, xt) maxx ′
t
τst (xs, x ′

t)

(43a)

ϕs(xs ; τs) = τs(xs). (43b)

Consequently, in this special case, the parameterization of
Eq. (42) reduces to the earlier “tree-like” decomposition in
Eq. (16).

(b) Now consider the hypergraph in Fig. 15(c). As an illustra-
tion, let us compute ϕ1245(x; τ) by applying Eq. (41). For
simplicity in notation, we omit the dependence on x, and we
assume that τ is locally consistent (so that we can ignore the
distinction between τg<h and τh). By doing so, we obtain:

ϕ1245 = τ1245

ϕ25 ϕ45 ϕ5

= τ1245 τ5

τ25 τ45
.

In order to initialize the reparameterization updates, it is con-
venient to assume that p(x) is defined by a product of compati-
bility functions {ψh} over only maximal hyperedges h. There is
no loss of generality in making this assumption, since we can
always absorb any compatibility function on a non-maximal hy-
peredge into some maximal hyperedge that contains it. Given a
hypertree T i with hypertree edge set E(T i), the hypertree com-
ponent pi (x; τ n) and residual component r i (x; τ n) are given,
respectively, by the expressions:

pi (x; τ n) ∝
∏

h∈E(T i)

ϕh

(
xh ; τ n

h

)
(44a)

r i (x; τ n) ∝
∏

h∈E\E(T i)

ϕh

(
xh ; τ n

h

)
. (44b)

With this set-up, the hypertree max-product algorithm consists
of the following steps:

Algorithm 2 (Reparameterization max-product on hyper-
trees).

1. At iteration n = 0, initialize ϕh(x; τ 0
h) as follows:

ϕh

(
x; τ 0

h

) =
{

ψh(xh) if h is maximal

1 otherwise
(45)

2. At iterations n = 1, 2, . . . , choose hypertree T i(n) with hy-
peredge set Ei(n). Update pseudo-max-marginals as follows:

τ n+1
h (xh) =

{
max{x′|x′

h=xh} pi(n)(x′; τ n) if h ∈ Ei(n)

τ n
h (xh) if h ∈ E\Ei(n)

(46)

Remarks. As a natural generalization of the tree reparame-
terization form of ordinary max-product given in Algorithm 1,
similar remarks are applicable to Algorithm 2. First of all, it is
clear that the initialization4 given in Step 1 ensures that p(x; τ 0),
as defined in Eq. (42), is equivalent to the original distribution
p(x). Computing max-marginals on a given hypertree, as
stipulated by Step 2, can be performed by any exact algorithm
applied to the hypertree.

If the updates of Algorithm 2 converge to a fixed point τ ∗,
then we are guaranteed that for any of the hypertrees T i , the
elements {τ ∗

h | h ∈ Ei } are a consistent set of max-marginals
for the hypertree distribution pi (x; τ ∗). Therefore, given any
hyperedge h ∈ Ei and any other hyperedge g < h, the following
local consistency condition must hold:

τ ∗
g (xg) = κτ ∗

g<h(xg) ≡ κ max
{x′

h |x′
g=xg}

τ ∗
h (x′

h). (47)

Since every hyperedge h belongs to at least one of the hypertrees
T 0, . . . , T L−1, we are guaranteed that Eq. (47) holds for every
nested pair g < h of hyperedges in the full hypergraph. Given
any hypertree T with edge set E(T), let us isolate those terms
corresponding to edges in the hypertree so as to form a hypertree-
structured distribution:

pT (x; τ ∗) ∝
∏

h∈E(T)

ϕh(x; τ ∗
h).

By the junction tree theorem (Cowell et al. 1999), the local
consistency of {τ ∗

h | h ∈ E(T)} on all nested sets of hyper-
edges implies that the pseudo-max-marginals {τ ∗

h | h ∈ E(T)}
are equivalent to the exact max-marginals for the hypertree-
structured distribution pT (x; τ ∗). The result that we have just
established is the analog of Proposition 2(b), generalized to the
case of hypertrees.

Moreover, it should be clear that our other results on the ordi-
nary max-product can be generalized to the hypertree reparam-
eterization updates of Algorithm 2:

1. All of the iterates τ n , as well as any fixed point τ ∗, sim-
ply specify a different parameterization of the distribution
p(x). That is, the distribution p(x) is invariant, as stated in
Proposition 2(a) for ordinary max-product.

Performance of the max-product algorithm and its generalizations 163

2. As with our earlier analysis, we can define modified cost
functions that include only those terms corresponding to a
particular embedded hypergraph. We then can state and prove
results about the hypertree max-product assignment x∗, anal-
ogous to those of Theorem 3.

3. Finally, it is possible to derive upper bounds on the difference
between the log probability of the generalized max-product
assignment and the log probability of the MAP assignment,
similar to those of Theorem 4.

6. Discussion

We have developed a reparameterization framework for under-
standing and analyzing the max-product algorithm, as well as
a rich class of its generalizations. We have shown how these
algorithms can be interpreted as seeking a particular factoriza-
tion of a graph-structured distribution in terms of pseudo-max-
marginals over (hyper)edges. These pseudo-max-marginals are,
in fact, the exact max-marginals for a tree-structured graph, but
approximate for a general graph with cycles. The significance
of this max-marginal representation is in facilitating solution of
the MAP estimation problem.

The reparameterization viewpoint gives some insight into the
nature of max-product fixed points, and the associated max-
product assignment. Key results include the fact the original dis-
tribution is never altered by reparameterization updates, and that
any max-marginal fixed point is guaranteed to be consistent on
every tree of the graph. Our analysis also establishes the fact, not
obvious for a graph with cycles, that fixed points of this nature
always exist for positive distributions. We exploited the repa-
rameterization perspective to characterize the max-product as-
signment, thereby generalizing earlier work (Freeman and Weiss
2001, Weiss 2000). We also derived computable upper bounds
on the difference in the log probability of the MAP assignment,
and that of the max-product assignment.

One open problem not addressed by our work is conver-
gence of the max-product updates to one of the fixed points
that are guaranteed to exist. For a graph with cycles, neither the
parallel message-passing updates nor the tree-based update of
Algorithm 1 are guaranteed to converge, and indeed (at least in
coding applications) failure of convergence appears to be the
dominant error mode (e.g., Benedetto et al. 1996, Weiss 2000).
Therefore, of interest are algorithms for finding fixed points with
improved or guaranteed convergence. In earlier work on the sum-
product algorithm (Wainwright, Jaakkola and Willsky 2003),
we found that more global tree-based updates, such as those of
Algorithm 1, often have convergence properties superior to those
of parallel message-passing updates. Preliminary experiments
suggest that such tree-based updates may also lead to improved
convergence for the max-product case. Another direction worth
exploring is the applicability of known techniques (e.g., Ortega
and Rheinboldt 2000) for solving fixed point equations.

This paper, in conjunction with our previous work on the sum-
product or belief propagation algorithm (Wainwright, Jaakkola

and Willsky 2003) establishes that the notion of reparameteriza-
tion is useful for analyzing a variety of algorithms for approxi-
mate inference on graphs with cycles. More generally, approx-
imate dynamic-programming algorithms, like sum-product and
max-product applied to graphs with cycles, have analogs for any
commutative semi-ring (Verdú and Poor 1987). In this context,
it is interesting to speculate about analogs of our reparameteri-
zation results for semi-rings more exotic than the sum-product
and max-product cases.

Appendix A: Proof of Proposition 1

Since Lemma 1 shows that p(x; τ ∗) ≡ p(x), it is equivalent to
prove that

τ ∗
ab(xa, xb) = κ max

{x′|(x ′
a ,x ′

b)=(xa ,xb)}
p(x′; τ ∗) (48)

for each pair (a, b) ∈ E . Note that the equivalence of the pair-
wise max-marginals implies the equivalence of the single node
max-marginals (i.e., τ ∗

a = µ∗
a).

Given any tree T , we can arbitrarily designate one node—say
node r—as the root. Every other node w ∈ V \{r} then has a
unique parent, which we denote pa(w). See Fig. 5 of Section 3.1
for an illustration. Using the parent-child relations, we decom-
pose the distribution p(x; τ ∗) as follows:

p(x; τ ∗) = τ ∗
r (xr)

∏
w∈V \{r},v≡pa(w)

τ ∗
vw(xv, xw)

τ ∗
v (xv)

, (49)

where we have used v ≡ pa(w) as short-hand for the parent of
node w.

If the tree T consists of a pair of nodes, then Eq. (48) is satisfied
trivially. Otherwise, any tree on N ≥ 2 nodes has at least two leaf
nodes (Bollobás 1998), so that we can perform a leaf-stripping
procedure to prove Eq. (48) for the root node and one of its
neighbors. Consider a leaf node s with parent t , as illustrated
in Fig. 5(c). From the decomposition in Eq. (49), the only part
of p(x; τ ∗) that depends on xs is the quantity τ ∗

st (xs, xt)/τ ∗
t (xt).

From Eq. (15), we have:

max
x ′

s

τ ∗
st (x

′
s, xt)

τ ∗
t (xt)

= κ
τ ∗

t (xt)

τ ∗
t (xt)

= κ,

which is a constant for all xs ∈ X . Therefore, if we maximize
p(x; τ ∗) over xs , then we obtain:

max
x ′

s

p(x; τ ∗) = τ ∗
r (xr)

∏
u∈V \{r,s},v≡pa(w)

τ ∗
vw(xv, xw)

τ ∗
v (xv)

× max
x ′

s

τ ∗
st (x

′
s, xt)

τ ∗
t (xt)

∝ τ ∗
r (xr)

∏
w∈V \{1,s},v≡pa(w)

τ ∗
vw(xv, xw)

τ ∗
v (xv)

.

Thus, maximizing over xs eliminates node s, thereby leaving us
with the tree T \{s} with N − 1 nodes. We can proceed in this
manner until we reach the tree with a single edge—say (r, u)

164 Wainwright, Jaakkola and Willsky

where u is a neighbor of r . At this point, we will have shown
that

τ ∗
ru(xr , xu) ∝ max

{x′|(x ′
r ,x

′
u)=(xr ,xu)}

p(x′; τ ∗), (50)

so that τ ∗
ru is equivalent to the max-marginal µru . By varying

our choice of the leaf elimination ordering, we can arrange so
that u is any of the neighbors of node r . Finally, since our choice
of the root node was arbitrary, we can prove a statement of the
form in Eq. (50) for any edge (a, b) ∈ E .

Appendix B: Proof of Theorem 2

B.1. Proof of Lemma 2

It is equivalent to show that each Lst is continuous. The func-
tion Lst (·; k) is a maximum over the finite collection (namely,
j ∈ X) of a linear function of the log messages ζ. Conse-
quently, it suffices to show that the maximum over a finite
collection is continuous. We first make note of the relation
max{a, b} = 1

2 [(a + b) + |a − b|], so that the maximum of
two numbers is continuous. This relation can be extended to
maximizing over an arbitrary finite collection by the relation
max{a, b, c} = max{max{a, b}, c}.

B.2. Proof of Lemma 3

Let (s, t) be an arbitrary edge, and let i, j, k be arbitrary elements
of X . For compactness in notation, we define

φ̃st ;s(j, k) := log ψst (j, k) + log ψs(j)

Note that |φ̃st ;s(j, k)| < ∞ for all j, k ∈ X since we have
assumed that the compatibility functionsψ were strictly positive.

Now for any ζ ∈ R
D , we have

Lst (ζ; k) = max
j∈X

[
φ̃st ;s(j, k) +

∑
u∈N (s)/t

ζus(j)

]

= max
j∈X

[
φ̃st ;s(j, i) +

∑
u∈N (s)/t

ζus(j)

+ [φ̃st ;s(j, k) − φ̃st ;s(j, i)]

]

≤ max
j∈X

[
φ̃st ;s(j, i) +

∑
u∈N (s)/t

ζus(j)

]

+ max
j∈X

[φ̃st ;s(j, k) − φ̃st ;s(j, i)]

= Lst (ζ; i) + max
j∈X

{φ̃st ;s(j, k) − φ̃st ;s(j, i)}

≤ Lst (ζ; i) + max
j∈X

|φ̃st ;s(j, k) − φ̃st ;s(j, i)|.

By interchanging k and i , we obtain for all ζ ∈ R
D:

|Lst (ζ; k) − Lst (ζ; i)| ≤ max
j∈X

|φ̃st ;s(j, k) − φ̃st ;s(j, i)|

≤ max
k,i∈X

max
j∈X

|φ̃st ;s(j, k) − φ̃st ;s(j, i)|
:= cst < ∞.

To complete the proof of the lemma, we write:

‖F(ζ)‖∞ = max
(s,t)∈E

max
k∈X

|Fst (ζ; k)|

= max
(s,t)∈E

max
k∈X

∣∣∣∣∣Lst (ζ; k) − 1

m

∑
i∈X

Lst (ζ; i)

∣∣∣∣∣
= max

(s,t)∈E
max
k∈X

∣∣∣∣∣ 1

m

∑
i∈X

[Lst (ζ; k) − Lst (ζ; i)]

∣∣∣∣∣
≤ max

(s,t)∈E
max
k∈X

1

m

∑
i∈X

|Lst (ζ; k) − Lst (ζ; i)|

≤ max
(s,t)∈E

cst

:= c < ∞.

Appendix C: Proof of Corollary 1

Let Sc = V \S denote the complement of S in the vertex set V .
Then define a partition of the edge set into three disjoint subsets
as follows:

E(H [S]) := {(s, t) ∈ E | s, t ∈ S},
E ′ := {(s, u) ∈ E | s ∈ S, u ∈ Sc},

E(H [Sc]) := {(u, v) ∈ E | u, v ∈ Sc}.
In this notation, we have

F(x∗; τ ∗; H [S]) =
∑
s∈S

log τ ∗
s (x∗

s)

+
∑

(s,t)∈E(H [S])

log
τ ∗

st (x
∗
s , x∗

t)

τ ∗
s (x∗

s)τ ∗
t (x∗

t)
.

We now express F(x∗; τ ∗; G) in terms of F(x∗; τ ∗; H [S]) and
some extra terms:

F(x∗; τ ∗; G) = F(x∗; τ ∗; H [S]) +
∑
u∈Sc

log τ ∗
u (x∗

u)

+
∑

(u,v)∈E(Sc)

log
τ ∗

us(x∗
u , x∗

s)

τ ∗
u (x∗

u)τ ∗
s (x∗

s)

+
∑

(s,u)∈E ′
log

τ ∗
su(x∗

s , x∗
u)

τ ∗
s (x∗

s)τ ∗
u (x∗

u)
. (51)

First of all, by Theorem 3, we have

F(x∗; τ ∗; H [S]) ≥ F(x; τ ∗; H [S]) (52)

Performance of the max-product algorithm and its generalizations 165

for all x ∈ X . Secondly, by Lemma 4, we have log [τ ∗
su

(x∗
s , x∗

u)/τ ∗
s (x∗

s)] ≥ log [τ ∗
su(xs, x∗

u)/τ ∗
s (xs)] for all xs ∈ X . Sub-

tracting log τ ∗
u (x∗

u) from both sides yields:

log
τ ∗

su(x∗
s , x∗

u)

τ ∗
s (x∗

s)τ ∗
u (x∗

u)
≥ log

τ ∗
su(xs, x∗

u)

τ ∗
s (xs)τ ∗

u (x∗
u)

(53)

for all (s, u) ∈ E ′, and for all xs ∈ X .
Finally, making use of Eqs. (52) and (53) in Eq. (51), we

have:

F(x∗; τ ∗; G) ≥ F(x; τ ∗; H [S]) +
∑
u∈Sc

log τ ∗
u (x∗

u)

+
∑

(u,v)∈E(Sc)

log
τ ∗

us(x∗
u , x∗

s)

τ ∗
u (x∗

u)τ ∗
s (x∗

s)

+
∑

(s,u)∈E ′
log

τ ∗
su(xs, x∗

u)

τ ∗
s (xs)τ ∗

u (x∗
u)

= F((xS; x∗
Sc); τ ∗; G).

By the equivalence of F to J , we have proved Eq. (29).

Appendix D: Proof of Lemma 6

We explicitly construct the smallest node-induced subgraph
G[S] with more than one cycle, and show that |S| = l(g). We
first choose some U ⊂ V such that G[U] is a subgraph consist-
ing of a single cycle on |U | = g nodes. We now add the minimal
number of nodes to U so as to form a second cycle, recalling
the fact that this cycle must have length at least g. In particular,
given two nodes u1, u2 in the cycle G[U], we add a set of ex-
tra nodes W so as to form a second path P(W) joining u1 and
u2. In this way, the node-induced subgraph G[U ∪ W] has two
additional cycles; each corresponds to following P(W) from u1

to u2, and then returning to u1 via one of the two directions of
the original cycle. See Fig. 14 for an illustration. By choosing
u1 and u2 appropriately, we can ensure that they are separated in
G[U] by a path formed of at most �g/2� edges, and �g/2� + 1
nodes. Therefore, in order to form a second cycle with at least
g edges (and nodes), we need to add at least g − (�g/2� + 1)
additional nodes to U . The subgraph G[S] constructed in this
way has l(g) = 2g − (�g/2� + 1) nodes in total.

Acknowledgment

Work supported in part by ODDR&E MURI Grant DAAD19-
00-1-0466 through the Army Research Office; by the Office of
Naval Research through Grant N00014-00-1-0089; and by the
Air Force Office of Scientific Research through Grant F49620-
00-1-0362.

Notes

1. Cycle codes correspond to low-density parity check codes (Gallager 1963)
for which each bit is connected to exactly two parity checks.

2. This model corresponds to a collection of binary variables with attractive
couplings between adjacent nodes.

3. Here we adopt a notational shorthand for describing compatibility functions.
In particular, the function ψs (xs) consists of m numbers {ψs (j)| j ∈ X }. For
a binary random variable, this collection can be represented as a 2-vector,
as in Eq. (8a). Similarly, the function ψst (xs , xt) consists of m2 numbers
{ψst (j, k)| j, k ∈ X }, which we collect into a m × m matrix. For binary
random variables, this matrix is 2 × 2, as in Eq. (8b).

4. There is a subtle point here: the initialization of Eq. (45) does not directly
specify τ 0, but rather the quantities ϕh (x; τ 0

h) (which suffice to specify the
parameterization of the distribution). Once each hyperedge has been updated
at least once, there will be an explicitly defined τ n

h for all h. Prior to this point,
the update of Eq. (46) should be interpreted in the following way: for any
h ∈ E\Ei(n), we set ϕh (xh ; τ n+1

h) = ϕh (xh ; τ n
h).

References

Aji S.M., Horn G., McEliece R.J., and Xu M. 1998. Iterative min-sum
decoding of tail-biting codes. In: Proc. IEEE Information Theory
Workshop, Killarney Ireland, pp. 68–69.

Aji S.M. and McEliece R.J. 2000. The generalized distributive law.
IEEE Trans. Info. Theory 46: 325–343.

Barahona F. 1982. On the computational computational complexity of
the Ising model. Journal of Physics A: Mathematical and General
15: 3241–3253.

Benedetto S., Montorsi G., Divsalar D., and Pollara F. 1996. Soft-output
decoding algorithms in iterative decoding of turbo codes. Techni-
cal report, Jet Propulsion Laboratory.

Berge C. 1989. Hypergraphs. North-Holland Publishing Company,
Amsterdam.

Bertsekas D.P. 1995. Dynamic Programming and Stochastic Control,
vol. 1. Athena Scientific, Belmont, MA.

Besag J. 1986. On the statistical analysis of dirty pictures. Journal of
the Royal Statistical Society, Series B 48(3): 259–279.

Bodlaender H. 1993. A tourist guide through treewidth. Acta Cyber-
netica 11: 1–21.

Bollobás B. 1998. Modern Graph Theory. Springer-Verlag, New York.
Boykov Y., Veksler O., and Zabih R. 2001. Fast approximate energy

minimization via graph cuts. IEEE. Trans. PAMI 23: 1222–1238.
Brémaud P. 1991. Markov Chains, Gibbs Fields, Monte Carlo Simula-

tion, and Queues. Springer.
Censor Y. and Zenios S.A. 1988. Parallel Optimization: Theory, Algo-

rithms, and Applications. Numerical Mathematics and Scientific
Computation. Oxford University Press.

Cowell R.G., Dawid A.P., Lauritzen S.L., and Spiegelhalter D.J. 1999.
Probabilistic Networks and Expert Systems. Statistics for Engi-
neering and Information Science. Springer-Verlag.

Dawid A.P. 1992. Applications of a general propagation algorithm for
probabilistic expert systems. Statistics and Computing 2: 25–36.

Forney G.D., Jr. 1973. The Viterbi algorithm. Proc. IEEE 61: 268–277.
Forney G.D., Jr., Kschischang F.R., Marcus B., and Tuncel S. 2001a.

Iterative decoding of tail-biting trellises and connections with
symbolic dynamics. In: Codes, Systems and Graphical Models.
Springer, pp. 239–264.

Forney G.D., Jr., Koetter R., Kschischang F.R., and Reznick A. 2001b.
On the effective weights of pseudocodewords for codes defined

166 Wainwright, Jaakkola and Willsky

on graphs with cycles. In: Codes, Systems and Graphical Models.
Springer, pp. 101–112.

Freeman W.T. and Pasztor E.C. 1999. Learning to estimate scenes from
images. In: NIPS, vol. 11.

Freeman W.T. and Weiss Y. 2001. On the optimality of solutions of
the max-product belief propagation algorithm in arbitrary graphs.
IEEE Trans. Info. Theory 47: 736–744.

Frey B.J. and Koetter R. 2000. Exact inference using the attenuated max-
product algorithm. In: Advanced Mean Field Methods: Theory and
Practice. MIT Press.

Frey B.J., Koetter R., and Vardy A. 2001. Signal-space characterization
of iterative decoding. IEEE Trans. Info. Theory. 47: 766–781.

Fridman A. 2002. Topology-corrected belief revision in the ising model.
Presented at Snowbird Learning workshop, Snowbird, UT.

Gallager R.G. 1963. Low-Density Parity Check Codes. MIT Press,
Cambridge, MA.

Geman S. and Geman D. 1984. Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images. IEEE Pat. Anal.
Mach. Intell. 6: 721–741.

Goemans M.X. and Williamson D.P. 1995. Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming. Journal of the ACM 42: 1115–1145.

Grötschel M., Lovász L., and Schrijver A. 1993. Geometric algo-
rithms and combinatorial optimization. Springer-Verlag, Berlin,
Germany.

Horn G. 1999. Iterative decoding and pseudocodewords. PhD thesis,
California Institute of Technology.

Jordan M. (Ed.) 1999. Learning in graphical models. MIT Press,
Cambridge, MA.

Kleinberg J. and Tardos E. 1999. Approximation algorithms for classi-
fication problems with pairwise relationships: Metric labeling and
Markov random fields. In: IEEE Symp. Found. Comp. Science,
pp. 14–24.

Lauritzen S.L. 1996. Graphical models. Oxford University Press,
Oxford.

McEliece R.J. and Yildirim M. 2002. Belief propagation on partially
ordered sets. In: Gilliam D. and Rosenthal J. (Eds.), Mathematical
Theory of Systems and Networks. Institute for Mathematics and
its Applications.

Nilsson D. 1998. An efficient algorithm for finding the M most proba-
ble configurations in a probabilistic expert system. Statistics and
Computing 8: 159–173.

Ortega J.M. and Rheinboldt W.C. 2000. Iterative solution of nonlinear
equations in several variables. Classics in Applied Mathematics.
SIAM, New York.

Pakzad P. and Anantharam V. 2002. Iterative algorithms and free en-
ergy minimization. In: Conference on Information Sciences and
Systems.

Pearl J. 1988. Probabilistic reasoning in intelligent systems. Morgan
Kaufman, San Mateo.

Stanley R.P. 1997. Enumerative combinatorics, vol. 1. Cambridge Uni-
versity Press, Cambridge, UK.

Verdú S. and Poor H.V. 1987. Abstract dynamic programming models
under commutativity conditions. SIAM J. Control and Optimiza-
tion 25(4): 990–1006.

Viterbi A. 1967. Error bounds for convolutional codes and an asymp-
totically optimal decoding algorithm. IEEE Trans. Info. Theory
IT-13: 260–269.

Wainwright M.J., Jaakkola T.S., and Willsky A.S. 2003. Tree-based
reparameterization framework for analysis of sum-product and
related algorithms. IEEE Trans. Info. Theory 49(5): 1120–
1146.

Wainwright M.J. 2002. Stochastic processes on graphs with cycles:
Geometric and variational approaches. PhD thesis, MIT.

Weiss. Y. 2000. Correctness of local probability propagation in graph-
ical models with loops. Neural Computation 12: 1–41.

Wiberg N. 1996. Codes and decoding on general graphs. PhD thesis,
University of Linkoping, Sweden.

Yedidia J.S., Freeman W.T., and Weiss Y. 2001. Generalized belief prop-
agation. In: NIPS 13, MIT Press, pp. 689–695.

