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Abstract

Let H be a tree on h ≥ 2 vertices. It is shown that if G = (V,E) is a graph with δ(G) ≥
|V |
2 +10h4

√
|V | log |V |, and h−1 divides |E| then there is a decomposition of the edges of G into

copies of H. This result is asymptotically best possible for all trees with at least three vertices.

1 Introduction

All graphs considered here are finite, undirected, and have no loops or multiple edges, unless

otherwise noted. For the standard graph-theoretic notations the reader is referred to [2]. Let H

be a connected graph. We say that a graph G has an H-decomposition if there exists a set L of

subgraphs of G, which are isomorphic to H, such that every edge of G appears in exactly one

member of L. Note that in order for G to have an H-decomposition, two necessary conditions must

hold. The first is that e(H) divides e(G). The second is that gcd(H) divides gcd(G) where the gcd

of a graph is the greatest common-divisor of the degrees of its vertices. Note that for any graph G

(assuming H is a fixed graph) we can verify in polynomial time if G satisfies these two conditions.

For convenience, we say that G has the property P (H), if G satisfies these necessary conditions.

The combinatorial and computational aspects of the H-decomposition problem have been stud-

ied extensively. The focus of the combinatorial research is to find naturally-expressible sufficient

conditions that guarantee that a graph G satisfying these conditions, and having P (H), has an

H-decomposition. Indeed, Wilson has proved in [8] that if G = Kn where n ≥ n0 = n0(H), and

G has P (H), then G has an H-decomposition. Wilson’s result can be thought of as a minimum

degree result, where the minimum degree is the highest possible, i.e. n − 1. Following Wilson,

Gustavsson has shown in [6] that if G is an n-vertex graph, δ(G) ≥ (1 − ε(H))n, where ε(H) is
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some small positive constant depending on H, and G has P (H), then G has an H-decomposition.

However, the ε(H) in Gustavsson’s result is a very small number. For example, if H is a triangle

then ε(H) ≤ 10−24. In general, ε(H) ≤ 10−24/h. It is believed, however, that the correct value

for ε(H) is much larger. In fact, Nash-Williams conjectured in [7] that when H is a triangle, then

ε(H) = 1/4, and he also gives an example showing that this would be best possible. The general

problem can therefore be expressed as follows:

Problem 1: Determine fH(n), the smallest possible integer, such that whenever G has n vertices

(where n ≥ n0(H)), and δ(G) ≥ fH(n), and G has P (H), then G also has an H-decomposition.

It is not difficult to show that fH(n) > n/2 − 2 for every connected graph H with at least 3

vertices (if H is a single edge, the decomposition problem becomes trivial). To see this, consider

the graph on n vertices, where n = 2x is even and e(H) divides x(x−1). Let G be the graph on two

vertex-disjoint Kx’s. G has n-vertices and δ(G) = x− 1. If e(H) does not divide x(x− 1)/2, then

G does not have an H-decomposition. Otherwise, delete from the first clique one edge, and delete

from the second clique e(H)− 1 independent edges (this can be done if, say, x ≥ 2(e(H)− 1). The

obtained graph G′ has δ(G′) = x−2, e(H) divides e(G′), but G′ does not have an H-decomposition.

This shows that fH(n) ≥ n/2− 1 whenever gcd(H) = 1 and n is even. It is also easy to construct

similar examples when gcd(H) > 1, or when n is odd (or both).

The purpose of this paper is to solve Problem 1, at least asymptotically, in case H is a tree.

The result is summarized in the following theorem:

Theorem 1.1 Let H be any tree with h ≥ 2 vertices. Let G be a graph on n vertices satisfying

P (H) and δ(G) ≥ n/2 + 10h4
√
n log n. Then G has an H-decomposition.

Note that whenever H is a tree, gcd(H) = 1, so P (H) reduces to having h−1 divide e(G). Stated in

the language of Problem 1, Theorem 1.1 shows that fH(n) ≤ n/2 + 10h4
√
n log n, and we therefore

have that for every tree on at least three vertices, n/2 − 2 < fH(n) ≤ n/2 + 10h4
√
n log n. Thus,

fH(n)/n is asymptotically determined for trees. We note that the previously best known result for

general trees was Gustavsson’s result, mentioned above.

Theorem 1.1 is a special case of a more general theorem, which states that graphs having good

expansion properties and have P (H), also have an H-decomposition, in case H is a tree. A graph

G = (V,E) is called r edge-expanding if for every nonempty X ⊂ V with |X| ≤ |V |/2, there are at

least r|X| edges between X and V \X.

Theorem 1.2 Let H be any tree with h ≥ 2 vertices. Let G be a graph on n vertices having P (H)

and which is 10h4
√
n log n edge-expanding. Then G has an H-decomposition.
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Note that Theorem 1.1 follows from Theorem 1.2 since, clearly, every graph on n vertices having

δ(G) ≥ n/2 + r is r edge-expanding.

In the following section we prove two lemmas which are needed for the proof of Theorem 1.2.

The proof of Theorem 1.2 appears in Section 3. Section 4 contains some concluding remarks, mainly

dealing with the algorithmic aspect of Theorem 1.2, and an open problem. Most of the proofs apply

probabilistic arguments. Throughout this paper all the logarithms are natural.

2 The lemmas

For the rest of this paper, let H be a fixed tree on h ≥ 3 vertices. A graph G = (V,E) is called

feasible if it satisfies the conditions of Theorem 1.2. Namely, |V | = n, |E| = m(h − 1) where m is

a positive integer, and G is 10h4
√
n log n edge-expanding.

Lemma 2.1 Let G = (V,E) be a feasible graph. Then E can be partitioned into h − 1 subsets

E1, . . . , Eh−1, such that |Ei| = m and if the degree of a vertex v ∈ V in Gi = (V,Ei) is denoted by

di(v), then for every v ∈ V we have

|di(v)− d(v)

h− 1
| ≤ 2.5

√
d(v) log n.

( d(v) denotes the degree of v in G.) Furthermore, each spanning subgraph Gi is 5h3
√
n log n edge-

expanding.

Proof: First note that an r-expanding graph must have minimum degree at least r, so for each

v ∈ V we have n > d(v) ≥ 10h4
√
n log n. Therefore, we also have

n1/8 > (
n

log n
)1/8 > h ≥ 3.

We let each edge e ∈ E choose a random integer between 0 and h − 1, where 0 is chosen with

probability β = n−1/2 and the other numbers are chosen with probability α = (1− β)/(h− 1). All

the choices are independent. For i = 0, . . . , h−1, let Fi ⊂ E be the set of edges which selected i. Let

d′i(v) be the number of edges adjacent to v which belong to Fi. Clearly, E[|Fi|] = α|E| = m(1−β),

for i 6= 0. We may use the large deviation result of Chernoff (cf., e.g. [1] Appendix A) to derive

that for i 6= 0

Prob[|Fi| > m] = Prob[|Fi| −m(1− β) > mβ] < exp(− 2m2β2

m(h− 1)
) = (1)

exp(− 2m

n(h− 1)
) ≤ exp(−10h4

√
n log n

(h− 1)2
) < 1/n.
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Similarly, we have that for all i 6= 0 and for all v ∈ V

Prob[|d′i(v)− αd(v)| >
√
d(v) log n] < 2 exp(

−2d(v) log n

d(v)
) =

2

n2
. (2)

Similarly, for i = 0 we get

Prob[|d′0(v)− βd(v)| >
√
d(v) log n] < 2/n2. (3)

Since

(h−1)·(1/n)+n(h−1)·(2/n2)+n·(2/n2) = (h−1)/n+2h/n < 3h/n < 3h/h8 = 3/h7 ≤ 1/36 < 0.1

we have by inequalities (1) (2) and (3) that with probability greater than 0.9, all of the following

events hold:

1. |Fi| ≤ m for i = 1, . . . , h− 1.

2. |d′i(v)− αd(v)| ≤
√
d(v) log n for all i = 1, . . . , h− 1 and for all v ∈ V .

3. |d′0(v)− βd(v)| ≤
√
d(v) log n for all v ∈ V .

Consider, therefore, a partition of E into F0, . . . , Fh−1 in which all of these events hold. Since

|Fi| ≤ m, we may partition F0 into h − 1 subsets Q1, . . . , Qh−1, where |Qi| = m − |Fi|. Put

Ei = Fi ∪Qi for i = 1, . . . , h− 1. Note that |Ei| = m and Ei ∩ Ej = ∅ for 1 ≤ i < j ≤ h− 1. Put

Gi = (V,Ei) and let di(v) be the degree of v in Gi. Clearly,

di(v) ≥ d′i(v) ≥ αd(v)−
√
d(v) log n =

d(v)

h− 1
− d(v)√

n(h− 1)
−
√
d(v) log n ≥ (4)

d(v)

h− 1
−
√
d(v)

h− 1
−
√
d(v) log n ≥ d(v)

h− 1
−
√
d(v)(2

√
log n).

We also need to bound di(v) from above:

di(v) ≤ d′i(v) + d′0(v) ≤ αd(v) + βd(v) + 2
√
d(v) log n =

d(v)

h− 1
− d(v)√

n(h− 1)
+ 2

√
d(v) log n+

d(v)√
n
≤ (5)

d(v)

h− 1
+ 2

√
d(v) log n+

d(v)√
n
≤ d(v)

h− 1
+ 2

√
d(v) log n+

√
d(v) ≤ d(v)

h− 1
+ 2.5

√
d(v) log n.

It now follows from inequalities (4) and (5) that |di(v)− d(v)
h−1 | ≤ 2.5

√
d(v) log n.

Consider the partition of E into F0, . . . , Fh−1. We have already shown that with probability greater

than 0.9 this partition is good in the sense that one may obtain the desired partition into the subsets
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Ei by transferring vertices from F0 to the Fi’s. This, however, does not guarantee that the graphs

Gi = (V,Ei) are 5h3
√
n log n edge-expanding, as required. Since r edge-expansion is a monotone-

increasing property, it suffices to show that with probability at least 1 − 0.9 = 0.1, all of the

graphs G′i = (V, Fi) are 5h3
√
n log n edge-expanding. We prove this as follows: Let X ⊂ V with

|X| ≤ n/2. Let ni(X) denote the number of edges between X and V \X in G′i. Our aim is to show

that ni(X) ≥ 5|X|h3
√
n log n for all i = 1, . . . , h − 1 and for all X, with probability at least 0.1.

Let n(X) be the number of edges between X and V \X in G. Since G is 10h4
√
n log n expanding

we have that

n(X) ≥ 10|X|h4
√
n log n.

Clearly, E[ni(X)] = αn(X). Applying the large deviation bound once again we have

Prob[|ni(X)− αn(X)| > αn(X)/2] < 2 exp(−2n(X)2α2/4

n(X)
) = 2 exp(−n(X)α2/2) ≤

2 exp(−n(X)/(2h2)) ≤ 2 exp(−5|X|h2
√
n log n) <

2

n|X|h2
<

1

n(h− 1)
( n
|X|
)

with lots of room to spare in the last part of this inequality. Since there are
( n
|X|
)

sets of size

|X|, and since there are n/2 possible sizes to consider, we get from the last inequality that with

probability at least 0.5 > 0.1, for all i = 1, . . . , h− 1 and for all sets X ⊂ V with |X| ≤ n/2,

|ni(X)− αn(X)| ≤ αn(X)/2.

In particular this means that

ni(X) ≥ αn(X)/2 ≥ 1− 1/
√
n

h− 1
5|X|h4

√
n log n ≥ 5|X|h3

√
n log n.

2

We call a partition of E into the subsets Ei having the properties guaranteed by Lemma 2.1 a

feasible partition. Given a feasible partition of a feasible graph, our next goal is to orient the edges

of every Ei, such that the oriented sets, denoted by E∗i have certain properties. Let d+i (v) and

d−i (v) denote the outdegree and indegree of v in E∗i , respectively. Clearly, di(v) = d+i (v) + d−i (v)

for all v ∈ V and i = 1, . . . , h − 1. In order to define the properties which we require from our

orientation, we need several definitions.

Let q be a leaf of H. Fix a rooted orientation H(q) of H where the root of H is q. Such

an orientation can be obtained by performing a Breadth-First Search (BFS) (cf. [3]) of H which

originates from q. Let e1, . . . , eh−1 be the oriented edges of H(q), in the order they are discovered

by the BFS. Note that for i = 2, . . . , h− 1, the edge ei = (x, y) has a unique parent-edge, which is
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the unique edge ej entering x. (Thus, ej = (z, x) for some z). The edge e1 is the only edge which

has no parent, since it is the only edge emanating from q. For i = 2, . . . , h − 1, let p(i) = j if ej

is the parent of ei. Note that p(i) < i. We say that j is a descendent of i if j = i or if p(j) is a

descendent of i. Note that this definition is recursive.

An orientation of a feasible partition is called a feasible orientation if for all v ∈ V , d−p(i)(v) =

d+i (v), where i = 2, . . . , h − 1, and |d+i (v) − d−i (v)| ≤ 5i
√
n log n, for all i = 1, . . . , h − 1. Note

that the second requirement implies also that |d+i (v) − di(v)/2| ≤ 2.5h
√
n log n and, similarly,

|d−i (v)− di(v)/2| ≤ 2.5h
√
n log n.

Lemma 2.2 Every feasible partition of a feasible graph has a feasible orientation. Furthermore,

in every feasible orientation

d+i (v) ≥ 4h3
√
n log n (6)

holds for all v ∈ V and for all i = 2, . . . , h− 1.

Proof: We show how to construct our orientation in h − 1 stages, where in stage i we orient the

edges of Ei and form E∗i . We begin by orienting E1. It is well-known by Euler’s Theorem (cf. [2]),

that the edges of every undirected graph can be oriented such that the indegree and outdegree of

every vertex differ by at most 1. Such an orientation is called Eulerian. We therefore let E∗1 be

any Eulerian orientation of E1. Thus |d+1 (v)− d−1 (v)| ≤ 1 ≤ 5
√
n log n. Assume now that we have

oriented all the subsets Ej for 1 ≤ j < i, such that the conditions of a feasible orientation hold for

j. We show how to orient the edges of Ei, such that the conditions also hold for i. Let j = p(i), and

put cv = d−j (v). We are required to orient the edges of Ei such that for every v ∈ V , d+i (v) = cv.

Our initial goal is to show that |d+i (v)− d−i (v)| ≤ 5i
√
n log n. Our second goal is to show that such

an orientation exists. The following inequality achieves the first goal:

|d+i (v)− d−i (v)| = |2cv − di(v)| = |2dj(v)− 2d+j (v)− di(v)| ≤ |2d+j (v)− dj(v)|+ |dj(v)− di(v)| =

|d+j (v)− d−j (v)|+ |dj(v)− di(v)| ≤ 5j
√
n log n+ |dj(v)− d(v)

h− 1
|+ |di(v)− d(v)

h− 1
| ≤

5j
√
n log n+ 5

√
d(v) log n ≤ 5i

√
n log n.

We now need to show that the desired orientation exists. Note that
∑
v∈V cv = m and hence the

desired orientation exists if every vertex v can select cv edges from the di(v) edges adjacent to

v, and such that every edge of Ei is selected by exactly one of its endpoints. To prove this is

possible we define a bipartite graph B as follows. B has two vertex classes of size m each. One

vertex class is Ei, while the other vertex class, denoted by S, contains cv copies of each v. Thus,
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S = {v(k) | v ∈ V, 1 ≤ k ≤ cv}. The edges of B are defined as follows. A member vk ∈ S is

connected to e ∈ Ei if v is an endpoint of e. Clearly, our aim is to show that B has a perfect

matching. By Hall’s Theorem (cf. [2]), it suffices to show that for every set S′ ⊂ S, |N(S′)| ≥ |S′|
where N(S′) ⊂ Ei are the neighbors of S′ in B. Fix ∅ 6= S′ ⊂ S. Let V ′ = {v ∈ V | v(k) ∈ S′}.
Put V ′ = {v1, . . . , vt}. Clearly, |S′| ≤

∑t
l=1 cvl . Note that N(S′) contains all the edges of Ei which

have an endpoint in V ′. Let T1 ⊂ Ei be the set of edges having only one endpoint in V ′ and let

T2 = N(S′) \ T1 be the set of edges of Ei having both endpoints in V ′. Put t1 = |T1| and t2 = |T2|.
Clearly, t1+2t2 =

∑t
l=1 di(vl). We first consider the case t ≤ n/2. Since Gi = (V,Ei) is 5h3

√
n log n

edge-expanding and since |V ′| = t ≤ n/2, we have t1 ≥ 5h3t
√
n log n. Now,

|N(S′)| = t1 + t2 =
t∑
l=1

di(vl)

2
+
t1
2
≥ (

t∑
l=1

di(vl)

2
) + 2.5h3t

√
n log n >

t∑
l=1

(
di(vl)

2
+ 2.5h

√
n log n) ≥

t∑
l=1

cvl ≥ |S
′|.

The case where t > n/2 is proved as follows. Put V ′′ = V \V ′ = {vt+1, . . . , vn}. Note that T1 is the

set of edges connecting V ′ with V ′′. Since Gi is 5h3
√
n log n edge-expanding and since |V ′′| ≤ n/2

we have t1 ≥ 5h3(n− t)
√
n log n. Now,

|N(S′)| = t1 + t2 =
t∑
l=1

di(vl)

2
+
t1
2
≥ (

t∑
l=1

di(vl)

2
) + 2.5h3(n− t)

√
n log n >

m−
n∑

l=t+1

(
di(vl)

2
− 2.5h

√
n log n) ≥ m−

n∑
l=t+1

cvl =
t∑
l=1

cvl ≥ |S
′|.

Finally, we need to show that (6) holds. We use the fact that |d+i (v)− di(v)/2| ≤ 2.5h
√
n log n and

Lemma 2.1 which states that

|di(v)− d(v)

h− 1
| ≤ 2.5

√
d(v) log n

and the fact that h ≥ 3 to obtain that

|d+i (v)− d(v)

2(h− 1)
| ≤ 3h

√
n log n.

Thus,

d+i (v) ≥ d(v)

2(h− 1)
− 3h

√
n log n ≥ 10h4

√
n log n

2(h− 1)
− 3h

√
n log n ≥ 4h3

√
n log n.

2
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3 The proof of the main result

We begin this section by showing that a feasible orientation defines a decomposition of the edges of

a feasible graph G into a set L∗ of m edge-disjoint connected graphs, each graph having h−1 edges,

one from each Ei. Furthermore, each of these graphs is homomorphic to H(q) (and, thus, to H), in

the sense that every member of L∗ which happens to be a tree, is isomorphic to H. Unfortunately,

not all the members of L∗ are necessarily trees, and we will need to mend L∗ in order to obtain

our desired decomposition.

We now describe the process which creates L∗. Fix a feasible orientation of G, and let E∗i denote

the oriented edges of Ei. Let D+
i (v) ⊂ E∗i denote those edges of E∗i which emanate from v, and

let D−i (v) ⊂ E∗i be the edges of E∗i which enter v. For i = 2, . . . , h− 1 and for all v ∈ V we know

that |D−p(i)(v)| = |D+
i (v)| = d+i (v). Therefore, let Bi(v) be a perfect matching between D−p(i)(v) and

D+
i (v). (Note that there are d+i (v)! different ways to select Bi(v), so we pick one arbitrarily). The

members of Bi(v) are, therefore, pairs of edges in the form ((x, v), (v, y)) where (x, v) ∈ D−p(i)(v) and

(v, y) ∈ D+
i (v). We say that (x, v) and (v, y) are matched if ((x, v), (v, y)) ∈ Bi(v) for some i. The

transitive closure of the ”matched” relation defines an equivalence relation where the equivalence

classes are connected directed graphs, each having h − 1 edges, one from each E∗i , and which

are homomorphic to H(q), by the homomorphism which maps the edge ei of H(q) to the edge

belonging to E∗i in an equivalence class. Thus, L∗ is the set of all of these graphs, (or, in set

theoretical language, the quotient set of the equivalence relation). Note that although each T ∈ L∗

is homomorphic to H(q), it is not necessarily isomorphic to H(q) since T may contain cycles. For

a simple example, consider the case where H(q) is a directed path on 3 edges (q, a, b, c). It may

be the case that T is composed of the edges (x, y) ∈ E∗1 , (y, z) ∈ E∗2 and (z, x) ∈ E∗3 . Thus T is a

directed triangle, but not a directed path on 3 edges. It is clear, however, that if T happens to be

a tree, (or, equivalently, if T contains h vertices) then it is isomorphic to H(q).

As noted, there are many ways to create L∗. In fact, there are

Πh−1
i=2 Πv∈V d

+
i (v)!

different ways to create the decomposition L∗. Our goal is to show that in at least one of these

decompositions, all the members of L∗ are, in fact, trees, and this will conclude Theorem 1.2.

Before proceeding with the proof of Theorem 1.2, we require a few definitions.

For a member T ∈ L∗, and for i = 1, . . . , h− 1, let Ti be the subgraph of T which consists only

of the first i edges, namely those belonging to E∗1 ∪ . . .∪E∗i . Note that Ti is a connected subgraph

of T . Let T (i) be the edge of T which belongs to E∗i . Note that for i > 1, Ti is obtained from Ti−1

by adding the edge T (i). Now, suppose Ti−1 is a tree, and Ti is not a tree. Let T (i) = (v, u). (Note
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that (v, u) ∈ D+
i (v) in this case). It follows that u already appears in Ti−1. We therefore call an

edge T (i) = (v, u) bad if u already appears in Ti−1. Otherwise, the edge is called good. Clearly, T

is a tree iff all its h− 1 edges are good. Let

N(v, i) = {T ∈ L∗ |T (i) ∈ D+
i (v), T (j) is bad for some j ≥ i}.

Clearly, |N(v, i)| ≤ d+i (v). Our first goal is to show that if all the n(h − 2) perfect matchings

Bi(v) are selected randomly and independently, then with high probability, |N(v, i)| is significantly

smaller than d+i (v).

Lemma 3.1 If all the perfect matchings Bi(v) are selected randomly and independently, then with

probability at least 0.9, for all i = 1, . . . , h− 1 and for all v ∈ V , |N(v, i)| ≤ h
√
d+i (v).

Proof: For j ≥ i, let

N(v, i, j) = {T ∈ L∗ |T (i) ∈ D+
i (v), T (j) is bad}.

Clearly, |N(v, i)| ≤
∑h−1
j=i |N(v, i, j)|. We will therefore estimate the |N(v, i, j)|’s. Since the perfect

matchings are selected randomly and independently, we may assume that the n matchings Bj(u)

for all u ∈ V are selected after all the other n(h−3) matchings Bk(u), for k 6= j, are selected. Prior

to the selection of the last n matchings, the transitive closure of the ”matched” relation defines two

sets M∗ and N∗ each having m members. Each member in M∗ is a subgraph containing the edges

of an equivalence class, with exactly one edge from each E∗r where r is a descendent of j. Each

member of N∗ is a subgraph containing the edges of an equivalence class, with exactly one edge

from each E∗r where r is not a descendent of j (note that if j = 1 then i = 1 and since N(v, 1, 1) = 0

always, we may assume j > 1, and thus N∗ is not empty). Note that the matchings Bj(u) for

all u ∈ V match the members of M∗ with the members of N∗, and each such match produces a

member of L∗. Let us estimate |N(v, i, j)| given that we know exactly what N∗ contains; i.e. we

shall estimate {|N(v, i, j)| | N∗}. Consider a set U = {(x1, u1), (x2, u2), . . . , (xk, uk)} of k edges,

where for t = 1, . . . , k, (xt, ut) ∈ D−p(j)(ut), and (xt, ut) belongs to a member T t of N∗ containing

an edge of D+
i (v). The last requirement is valid since all the edges of D+

i (v) belong to members

of N∗ because i is not a descendent of j. Similarly, the edges of D−p(j)(ut) belong to members of

N∗ since p(j) is not a descendent of j. We call U bad, if for all t = 1, . . . , k, (xt, ut) is matched in

Bj(ut) to an edge (ut, yt) ∈ D+
j (ut) where yt already appears in T t. (Note that the edges in D+

j (ut)

belong to members of M∗). Since there are less than h vertices in T t, and since Bj(ut) is selected

at random, we have that

Prob[(xt, ut) is matched in Bj(ut) to a bad edge] <
h

d+j (ut)
.
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Similarly, the probability that (xt, ut) is matched in Bj(ut) to a bad edge, given that (xs, us) is

matched in Bj(us) to a bad edge, for all 1 ≤ s < t, is less than h/(d+j (ut)− (t− 1)). Thus,

Prob[U is bad] < Πk
t=1

h

d+j (ut)− t+ 1
.

Assuming k ≤ d+j (ut)/2, and using (6) we have

Prob[U is bad] < (
1

2h2
√
n log n

)k.

Consequently,

Prob[|N(v, i, j)| ≥ k | N∗] <
(
d+i (v)

k

)
(

1

2h2
√
n log n

)k.

Note that the estimation in the last inequality does not depend on N∗, and thus,

Prob[|N(v, i, j)| ≥ k] <

(
d+i (v)

k

)
(

1

2h2
√
n log n

)k.

Let k = b
√
d+i (v)c. (Note that this choice of k still satisfies k ≤

√
n ≤ d+j (ut)/2). Using the fact

that
( x
b
√
xc
)
≤ (e
√
x)
√
x we have that

Prob[|N(v, i, j)| ≥
√
d+i (v)] ≤ (e

√
d+i (v))

√
d+i (v)(

1

2h2
√
n log n

)
√
d+i (v) ≤

(
e

2h2
)
√
d+i (v) ≤ 2−n

1/4
<

1

10nh2
.

Thus, with probability at least 1− nh2/(10nh2) ≥ 0.9, for all 1 ≤ i ≤ j ≤ h− 1, and for all v ∈ V ,

|N(v, i, j)| ≤
√
d+i (v). In particular, |N(v, i)| ≤ h

√
d+i (v). 2

For two vertices u, v ∈ V (not necessarily distinct) and for two indices 0 ≤ j < i ≤ h − 1 let

L([u, j], [v, i]) denote the set of members of L∗ which contain an edge of D−i (v) and also contain

an edge of D−j (u). Note that when j = 0, D−j (u) is undefined, so we define D−0 (u) = D+
1 (u) and

d−0 (u) = d+1 (u) in this case only. For the sake of symmetry, define L([v, i], [u, j]) = L([u, j], [v, i]),

and define L([u, i], [v, i]) = 0, when u 6= v.

Lemma 3.2 If all the perfect matchings Bi(v) are selected randomly and independently, then, with

probability at least 3/4, for every u, v ∈ V and for 0 ≤ j < i ≤ h− 1,

|L([u, j], [v, i])| ≤ 2
√
n log n. (7)

Proof: Consider first the case where j = p(i) or i = 1 and j = 0. In this case, L([u, j], [v, i]) is

simply the set of members of L∗ which contain (u, v) as their edge from E∗i . Trivially, this set is

10



empty if (u, v) /∈ E∗i and contains exactly one element if (u, v) ∈ E∗i . Thus, |L([u, j], [v, i])| ≤ 1 in

this case, so (7) clearly holds.

We may now assume i > 1 and j 6= p(i). Let k = p(i), so we must have k 6= j. Suppose that we

know, for all x ∈ V , that |L([u, j], [x, k])| = fx (i.e. we know all these n values). We wish to estimate

the value of |L([u, j], [v, i])| given this knowledge. This is done as follows. Let L([u, j], [x, k], [v, i])

be the subset of L([u, j], [v, i]) consisting of the members having an edge of D−k (x). Note that

|L([u, j], [x, k], [v, i])| ≤ |L([x, k], [v, i])| ≤ 1 according to the previous case, since k = p(i). More

precisely, if (x, v) /∈ D−i (v) then |L([u, j], [x, k], [v, i])| = 0. If, however, (x, v) ∈ D−i (v) then

E[|L([u, j], [x, k], [v, i])| | |L([u, j], [x, k])| = fx] = fx/d
+
i (x),

since the matching Bi(x) is selected at random and fx/d
+
i (x) is the probability that (x, v) is matched

to one of the fx members of D−k (x) which are edges of members of L([u, j], [x, k]). Thus, if we put

Rx = {|L([u, j], [x, k], [v, i])| | |L([u, j], [x, k])| = fx}

then for (x, v) ∈ D−i (v) we have that Rx is an indicator random variable with E[Rx] = Prob[Rx =

1] = fx/d
+
i (x), while for (x, v) /∈ D−i (v) we have Rx = 0. Note that if (x, v) ∈ D−i (v) and x 6= y

then Rx is independent from Ry, since the value of Rx depends only on the matching Bi(x), which

is independent from the matching Bi(y). Let

R = {|L([u, j], [v, i])| | ∀x ∈ V, |L([u, j], [x, k])| = fx}.

According to the definition of R, we have

R =
∑
x∈V

Rx =
∑

(x,v)∈D−
i (v)

Rx.

Thus, R is the sum of independent indicator random variables. By linearity of expectation,

E[R] =
∑

(x,v)∈D−
i (v)

E[Rx] =
∑

(x,v)∈D−
i (v)

fx/d
+
i (x).

On the other hand, we know that
∑
x∈V fx = d−j (u), since this sum equals to the number of copies

of L∗ having an edge of D−j (u), and this number is exactly d−j (u). We also know from (6) that

d+i (x) ≥ 4h3
√
n log n. Therefore,

E[R] ≤
d−j (u)

4h3
√
n log n

. (8)

Note that if fx = 0 for some x ∈ V , then Rx = 0, and the term Rx can be eliminated from the sum

which yields R. Since
∑
x∈V fx = d−j (u) this means that R is the sum of at most d−j (u) independent

11



indicator random variables. We can now apply the Chernoff bounds for R, and obtain, for every

α > 0:

Prob[R− E[R] > α] < exp(− 2α2

d−j (u)
).

In particular, for α =
√
d−j (u) log(2hn),

Prob[R− E[R] >
√
d−j (u) log(2hn)] < exp(−

2d−j (u) log(2hn)

d−j (u)
) =

1

4h2n2
,

and it now follows from (8) that with probability at least 1− 1/(4h2n2),

R ≤
d−j (u)

4h3
√
n log n

+
√
d−j (u) log(2hn) <

√
n

2
+
√

2n log n ≤ 2
√
n log n. (9)

Note that the estimation for R in (9) does not depend on the fx’s. Thus, with probability at least

1− 1/(4h2n2),

|L([u, j], [v, i])| ≤ 2
√
n log n.

Consequently, with probability at least 1− h2n2/(4h2n2) = 3/4, (7) holds for all u, v ∈ V and for

0 ≤ j < i ≤ h− 1. 2

Proof of Theorem 1.2: According to Lemmas 3.1 and 3.2 we know that with probability at

least 0.65, we can obtain a decomposition L∗ with the properties guaranteed by Lemmas 3.1 and

3.2. We therefore fix such a decomposition, and denote it by L′. We let each member T ∈ L′

choose an integer c(T ), where 1 ≤ c(T ) ≤ h − 1. Each value has equal probability 1/(h − 1). All

the m choices are independent. Let C(v, i) be the set of members of T which selected i as their

value and they contain an edge of D+
i (v). Put |C(v, i)| = c(v, i). Clearly, 0 ≤ c(v, i) ≤ d+i (v), and

E[c(v, i)] = d+i (v)/(h− 1). Since the choices are independent, we know that

Prob[c(v, i) <
d+i (v)

h
] < exp(− 2d+i (v)2

h2(h− 1)2d+i (v)
≤ exp(−2d+i (v)

h4
) ≤ exp(−8h3

√
n log n

h4
) <

1

2nh
.

Thus, with positive probability (in fact, with probability at least 0.5), we have that for all v ∈ V
and for all i = 1, . . . , h− 1,

c(v, i) ≥ d+i (v)

h
. (10)

We therefore fix the choices c(T ) for all T ∈ L′ such that (10) holds.

We are now ready to mend L′ into a decomposition L consisting only of trees. Recall that each

member of L′ is homomorphic to H(q). We shall perform a process which, in each step, reduces

the overall number of bad edges in L′ by at least one. Thus, at the end, there will be no bad edges,

and all the members are, therefore, trees. Our process uses two sets L1 and L2 where, initially,
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L1 = L′ and L2 = ∅. We shall maintain the invariant that, in each step in the process, L1 ∪L2 is a

decomposition of G into subgraphs homomorphic to H(q). Note that this holds initially. We shall

also maintain the property that L1 ⊂ L′. Our process halts when no member of L1 ∪L2 contains a

bad edge, and by putting L = L1∪L2 we obtain a decomposition of G into copies of H, as required.

As long as there is a Tα ∈ L1 ∪ L2 which contains a bad edge, we show how to select a member

T β ∈ L1, and how to create two subgraphs T γ and T δ which are also homomorphic to H(q) with

E(Tα) ∪ E(T β) = E(T γ) ∪ E(T δ), such that the number of bad edges in E(T γ) ∪ E(T δ) is less

than the number of bad edges in E(Tα) ∪ E(T β). Thus, by deleting Tα and T β from L1 ∪ L2 and

inserting T γ and T δ both into L2, we see that L1 ∪ L2 is a better decomposition since it has less

bad edges. It remains to show that this procedure can, indeed, be done.

Let i be the maximum number such that there exists a member Tα ∈ L1 ∪ L2 where Tα(i) is bad.

Let Tα(i) = (v, w). Consider the subgraph T ε of Tα consisting of all the edges Tα(j) where j is a

descendent of i. Our aim is to find a member T β ∈ L1, which satisfies the following requirements:

1. c(T β) = i.

2. T β(i) ∈ D+
i (v).

3. No vertex of Tα, except v, appears in T β.

We show that such a T β can always be found. The set C(v, i) is exactly the set of members of

L′ which meet the first two requirements (although some of them may not be members of L1).

Let U be the set of vertices of Tα, except v. For u ∈ U , and for all 0 ≤ j ≤ h − 1, all the

members of L([u, j], [v, p(i)]) are not allowed to be candidates for T β. This is because each member

of L([u, j], [v, p(i)]) contains an edge of D−p(i)(v), and thus an edge of D+
i (v), but it also contains

the vertex u, which we want to avoid in T β, according to the third property required. According

to Lemma 3.2,

|L([u, j], [v, p(i)])| ≤ 2
√
n log n.

Hence,

| ∪u∈U ∪h−1j=0L([u, j], [v, p(i)])| < 2h2
√
nlogn.

Let C ′(v, i) be the set of members of C(v, i) which satisfy the third requirement. By (10), (6) and

the last inequality,

|C ′(v, i)| ≥ c(v, i)− 2h2
√
n log n ≥ d+i (v)

h
− 2h2

√
n log n ≥

4h2
√
n log n− 2h2

√
n log n = 2h2

√
n log n.
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We need to show that at least one of the members of C ′(v, i) is also in L1. Each member T ∈ C(v, i)

that was removed from L′ in a prior stage was removed either because it had a bad edge T (j) where

j ≥ i (this is due to the maximality of i), or because it was chosen as a T β counterpart of some prior

Tα, having a bad edge Tα(i) = (v, z) for some z. There are at most |N(v, i)| members T ∈ C(v, i)

which have a bad edge T (j) where j ≥ i, and there are at most |N(v, i, i)| members T ∈ C(v, i)

having T (i) as a bad edge. According to Lemma 3.1, |N(v, i)|+ |N(v, i, i)| ≤ (h+ 1)
√
d+i (v). Since

|C ′(v, i)| ≥ 2h2
√
n log n > (h+ 1)

√
d+i (v), we have shown that the desired T β can be selected.

Let T π be the subgraph of T β consisting of all the edges T β(j) where j is a descendent of i. T γ

is defined by taking Tα and replacing its subgraph T ε with the subgraph T π. Likewise, T δ is

defined by taking T β and replacing its subgraph T π with the subgraph T ε. Note that T γ and T δ

are both still homomorphic to H(q), and that E(Tα) ∪ E(T β) = E(T γ) ∪ E(T δ), so by deleting

Tα and T β from L1 ∪ L2, and by inserting T γ and T δ to L2 we have that L1 ∪ L2 is still a valid

decomposition into subgraphs homomorphic to H(q). The crucial point however, is that every edge

of E(Tα) ∪ E(T β) that was good, remains good due to requirement 3 from T β, and that the edge

Tα(i) which was bad, now plays the role of T δ(i), and it is now a good edge due to requirement 3.

Thus, the overall number of bad edges in L1 ∪ L2 is reduced by at least one. 2

4 Concluding remarks and open problems

1. The proof of Theorem 1.2 can also be implemented as a randomized algorithm. That is,

given a feasible graph G, one can produce an H-decomposition of G with constant positive

probability. To see this, note that Lemma 2.1 is algorithmic, as the partition into the Fi’s

having the required properties can be done with probability of success at least 0.9, and the

Fi’s can be checked to have the required properties in polynomial time. The correction of the

Fi’s into the Ei’s which are 5h3
√
n log n edge-expanding can be done in polynomial time with

probability of success at least 0.5. The orientations in Lemma 2.1 can be performed by using

any polynomial time algorithm for bipartite matching. If we fail to obtain one of the perfect

matchings, this means that one of the graphs Gi = (V,Ei) is not 5h3
√
n log n edge-expanding

(but this can only happen with probability at most 0.5, as stated above). After choosing the

n(h−2) perfect matchings Bi(v) randomly and independently, one can compute in polynomial

time that the obtained L∗ satisfies the conditions in Lemmas 3.1 and 3.2. This happens with

probability at least 0.65, according to these lemmas. If this is the case, the choices for c(v, i)

in Theorem 1.2 can be checked to comply with (10) in polynomial time, and (10) holds with

probability at least 0.5. The final step of mending L′ into the desired decomposition L is a
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purely sequential, non-randomized process, which can be done in polynomial time. We note

here that it is known, as a special case of the result of Dor and Tarsi in [4], that if h ≥ 4,

deciding whether a general graph G has an H-decomposition where H is a tree on h vertices,

is NP-complete (cf. [5] for a definition of this complexity class).

2. As mentioned in the introduction, Theorem 1.1 states that fH(n) ≤ n/2 + 10h4
√
n log n. We

conjecture, however, that the dependency on
√
n log n can be eliminated.

Conjecture 4.1 For every tree H with at least 3 vertices, there exists a constant c(H) such

that fH(n) ≤ n/2 + c(H).

3. The constant 10h4 appearing in Theorem 1.2 can be somewhat improved, but this is not

crucial since our proofs cannot improve upon the more significant
√
n log n factor appearing

there, for arbitrary H.
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