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Tree diversity and species identity effects on soil
fungi, protists and animals are context dependent
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Plant species richness and the presence of certain influential species (sampling effect) drive the
stability and functionality of ecosystems as well as primary production and biomass of consumers.
However, little is known about these floristic effects on richness and community composition of soil
biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding
approach to identify the major eukaryote groups directly from soil with roughly species-level
resolution. Using this method, we examined the effects of tree diversity and individual tree species on
soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in
Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses
revealed that the effects of tree diversity and individual species on soil biota are largely context
dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH,
nutrients and tree species directly affect richness of different taxonomic groups. The community
composition of most soil organisms was strongly correlated due to similar response to
environmental predictors rather than causal relationships. On a local scale, soil resources and tree
species have stronger effect on diversity of soil biota than tree species richness per se.
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Introduction

Plant interactions and feedbacks with soil biota
determine ecosystem functioning and primary pro-
ductivity in terrestrial habitats (Wardle et al., 2004;
van der Heijden et al., 2006; Bagchi et al., 2014;
Wagg et al., 2014). Soil microorganisms and meio-
fauna (that is, microfauna and mesofauna) have key
roles in nutrient cycling. In particular, fungi act as
obligate root symbionts, decomposers or pathogens
of other organisms. Soil meiofauna and protists
consume living organisms and dead organic material
and disperse these degradation products as well as
fungal and bacterial propagules in soil (Wardle, 2002;
Adl and Gupta, 2006).

Greater taxonomic and functional diversity of
plants promotes ecosystem services and enhances
stability (Cardinale et al., 2011; Gamfeldt et al., 2013).
The plant diversity effects on these functions are more
pronounced in stress conditions (Steudel et al., 2012)

and become stronger with time (Reich et al., 2012).
Through resource availability and niche differentia-
tion, increase in plant biomass and species richness
favours the accumulation of soil microbial and
faunal biomass and abundance that accommodate
greater number of species. Such bottom-up relation-
ships among diversity of food-web organisms occur
both aboveground and belowground and are
reflected along the trophic cascades (Scherber
et al., 2010; Eisenhauer et al., 2013; but see
Porazinska et al., 2003). Recent studies on natural
grassland plants showed that plant species richness
is positively correlated with that of several major
fungal groups on a local scale (Hiiesalu et al., 2014;
Pellissier et al., 2014). Richness of free-living
protists, meiofauna and saprotrophic fungi may
similarly benefit from specialization on different
sources of food or substrate for decomposition.

Top-down relationships may also regulate ecosys-
tem functioning. In experimental systems, more
diverse communities of arbuscular mycorrhizal fungi
promote plant diversity, productivity and nutrient
uptake (van der Heijden et al., 2006; Wagg et al., 2011)
that could be related to the mediation of interspecific
competition (van der Heijden et al., 2003) and
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differential benefits of phylogenetically distantly
related fungi (Maherali and Klironomos, 2007). In
ectomycorrhizal (EcM) symbiosis, fungal species
provide differential benefits to their hosts (van der
Heijden and Kuyper, 2003) and more diverse
communities are more efficient in the uptake of
organic phosphorus (Baxter and Dighton, 2005).
Counterintuitively, greater diversity of pathogens
may also enhance plant richness by specifically
suppressing dominants (Bagchi et al., 2014) and
reducing the yield in monospecific agroforestry
systems (Cardinale et al., 2011).

In addition to taxonomic and functional richness,
certain component species may determine the
efficiency of ecosystem processes, a phenomenon
termed as (taxonomic) sampling effect (Cardinale
et al., 2006, 2011). Many of the pioneering ecological
studies failed to separate sampling effect from the
diversity effect per se, which requires optimizing the
experimental design (Huston, 1997; Wardle, 1999;
Tedersoo et al., 2014a). Sampling effect can be
eliminated or accounted for by (i) comparing species
performance in monocultures and polycultures
(Wardle, 1999) or (ii) by using model selection or
variation partitioning, incorporating component spe-
cies as dummy variables (Healy et al., 2008; Wagg
et al., 2011).

A vast majority of biodiversity studies have recorded
short-term effects (but see Reich et al., 2012) and
focussed on grassland ecosystems. However, ecosys-
tems naturally dominated by woody plants cover
nearly half of the land surface on the Earth. Compared
with grassland plants, tree individuals may live for
several centuries and they are more widely spaced,
creating heterogeneous patches via stem flow and
accumulation of root and leaf litter (Nadrowski et al.,
2010). Tree species differ substantially in the quality of
their litter that determine the chemical composition
and microbial biomass directly or indirectly by
stimulating earthworm activity (Frouz et al., 2013).
Soil and litter quality affect degradation rates and
community composition of saprotrophic and EcM
fungi (Aponte et al., 2013; Prescott and Grayston,
2013) and meiofauna (Ayres et al., 2009). Tree species
richness has usually a neutral (including unimodal
relationships) or slightly positive effect on ecosystem
processes (Nadrowski et al., 2010). Because of great
differences in physiology and ecological properties,
tree species drive many of the biochemical and
ecological processes in soils (Nadrowski et al., 2010;
Gamfeldt et al., 2013). The few available studies so far
suggest that tree diversity has a neutral effect on
richness of herbs and arthropods on a local scale, but
the effects of tree species composition predominate
(Vehviläinen et al., 2008; Ampoorter et al., 2014). Plant
communities may also correlate with communities of
soil organisms such as fungi (Bahram et al., 2012; Peay
et al., 2013), but the statistical methods explicitly
addressing community-wise relationships and their
underlying mechanisms are poorly validated in eco-
logical literature.

Nearly all previous biodiversity studies have used
traditional morphology-based identification methods
to determine the richness of consumers (but see
Hiiesalu et al., 2014; Pellissier et al., 2014). This
approach requires substantial taxonomic expertise
and long processing time given the large number of
samples and individuals (Scherber et al., 2010).
Many microscopic taxa are comprised of cryptic
species that potentially exhibit different ecological
requirements, but they remain undetected owing to
the paucity of taxonomically informative morpholo-
gical character states. The alternative DNA-based
tools have been developed and increasingly used for
identification of bacteria, protists and fungi since
two decades ago. More recently, the massively
parallel DNA metabarcoding technology has been
adopted for large-scale community-level identifica-
tion of fungi (Jumpponen and Jones, 2009), protists
(Chariton et al., 2010; Medinger et al., 2010) and
animals (Porazinska et al., 2009). For meiofauna,
metabarcoding studies have focussed on specific
order to phylum-level groups such as nematodes or
certain arthropods (Porazinska et al., 2009;
Hajibabaei et al., 2011). The cytochrome I oxidase
gene, the standard barcode for animals, has proven to
be suboptimal for metabarcoding analyses owing to
problems with primer coverage and large DNA
insertions in certain taxa (for example, Creer et al.,
2010; de Wit and Erseus, 2010; Deagle et al., 2014;
Zhan et al., 2014). It has been outlined that multiple
taxonomic groups should be addressed simulta-
neously for better documenting their relative abun-
dance (Soininen et al., 2013) and understanding of
ecological and biogeographic processes (Coleman,
2009; Soininen, 2014). For these reasons, the small
subunit (SSU) of ribosomal DNA has been targeted
following traditions in microbiology and kingdom-
level phylogenetics (Bik et al., 2012). However, there
are multiple primer mismatches and/or this marker
is too conservative for species-level resolution in
nearly all groups of protists, fungi, plants and
animals (Pawlowski et al., 2012; Schoch et al.,
2012; Tang et al., 2012; Bachy et al., 2013; Lindahl
et al., 2013). As an alternative to these markers, the
internal transcribed spacer 2 (ITS2) has been
proposed as a common species-level metabarcoding
marker in eukaryotes, although taxonomic groups
differ somewhat in length and there is some
intraindividual variation inherent to all nuclear
markers (Coleman, 2009; Koetschan et al., 2010;
Yao et al., 2010: Bengtsson-Palme et al., 2013; Wang
et al., 2015). The ITS2 marker has been successfully
used to target fungi (Clemmensen et al., 2013),
various protist groups (for example, Arif et al.,
2014) and plants (De Barba et al., 2014) in metabar-
coding studies. Although a large number of animal
ITS sequences have been deposited in public
databases, this region has been hitherto overlooked
in the DNA metabarcoding of meiofauna.

In this study, we first describe the development of
a DNA metabarcoding method for identification of
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multiple eukaryotic organisms simultaneously at
species-level resolution. We constructed multiple
taxon-targeted primers for the ITS2 region in single
PCR reactions to maintain ribosomal DNA-based
proportions of organisms. By using the metabarcod-
ing analysis of DNA extracted from pools of
thousands of soil cores, we disentangled the relative
roles of tree diversity, confounding sampling effects
as well as spatial and edaphic variables on taxo-
nomic richness and community composition of soil
fungi, protists and meiofauna. We postulated the
following alternative hypotheses: (1) tree diversity
per se and taxonomic sampling effect influence
microbial biomass and richness of soil biota; (2) the
effect of these biotic variables is relatively stronger in
biotrophic organisms compared with saprotrophs
and trophically directly unrelated organisms; (3)
vegetation has both direct effects, and indirect effects
through altered soil chemistry and microbial bio-
mass, on richness of soil biota; and (4) communities
of soil biota shift in concordance mainly owing to
similar responses to the environment.

Materials and methods

Experimental design and sampling
We selected two forest diversity experiments in
Satakunta, Finland (61° N; 22° E) and Järvselja,
Estonia (58° N; 27° E) to test our hypotheses. The
Finnish experiment was established across three
sites in a clear-cut boreal forest in 1999. We selected
sites 1 and 3 for sampling, because these were the
least damaged by moose (Ampoorter et al., 2014).
At the time of sampling, trees had reached a height of
5–11m and formed a closed canopy in most of the
plots. The soils are podzols with a silty or sandy
texture on granite bedrock. Seedlings of Pinus
sylvestris L., Picea abies (L.) H. Karst., Larix sibirica
Ledeb., Betula pendula Roth. and Alnus glutinosa
(L.) Gaertn. were planted as monocultures or equal
combinations of two, three or five species in 400-m2

square plots (Scherer-Lorenzen et al., 2006). To
avoid edge effects, we restricted our sampling to
300m2 in the centre of each plot by excluding the
outermost row of trees.

Vegetation at the Estonian study system constitu-
tes a remnant of a large-scale forest experiment
established in early 1920 s on clear-cut forested land.
The soils are formed on postglacial alluvial deposits
and exhibit loamy or sandy texture. Certain forest
quadrats were planted with trees, whereas others
were left for natural regeneration. At the sapling
stage, trees were selectively thinned and forest
quadrats were deeply drained to stimulate tree
growth and prevent waterlogging. In the second half
of the twentieth century, intensity of management
declined and forest development was subjected
to natural succession that was affected by sporadic
selective cutting and differential moisture regime
owing to degradation of the ditch network.

The combination of these treatments and processes
resulted in the development of vegetation with
different dominant trees (P. abies, P. sylvestris,
B. pendula, A. glutinosa, Tilia cordata Mill. or
Populus tremula L.) and a range in tree richness
(2–11 species; other subdominant EcM trees Corylus
avellana L., Quercus robur L., Salix caprea L. and
arbuscular mycorrhizal hosts Ulmus glabra Huds.,
Fraxinus excelsior L., Acer platanoides L. and
Sorbus aucuparia L.). Because the original quadrats
were of unequal size and shape, we established
round 2500-m2 plots in uniform patches of vegeta-
tion. For mature forests, greater plot size represents
better the edaphic and floristic processes and the
interacting biota (Bruelheide et al., 2014).

In each plot, we determined the basal area (BA) of
all tree species and coverage of understorey vascular
plant species. In Finnish plots, we estimated the
relative amount of birch coppice (cut in spring, 2010)
in 10 abundance classes based on the number and
size of stumps. For Estonian plots, we obtained
additional information about productivity, volume
and height of trees from the State Forest Management
Centre (www.rmk.ee).

In summer 2011, we collected samples from 43
Finnish plots (spread over two sites 10 km distant,
each roughly 4 ha) and 41 Estonian (spread evenly
across 1000 ha) plots. In Finland, we randomly
selected 40 trees per plot to equally represent the
composition of planted species. At ca. 0.5 m distance
from the trunk of each tree individual, we collected a
single soil core by hammering a PVC tube (5 cm
diameter) to 5 cm depth. In Estonia, we similarly
sampled 40 soil cores per plot, but we collected each
pair of cores 1–1.5m distant from each of 20
randomly selected trees (410 cm diameter at breast
height) located at least 8m distant from each other to
account for spatial autocorrelation range in soil biota
(Bahram et al., 2013). For Finnish and Estonian
study areas, information about plant species compo-
sition and other metadata is given in Supplementary
Table S1, and Supplementary Data S1 and S2.

In both study areas, the cores nearly always
comprised both the organic layer and top mineral
soil and included roots. Although deep soil may
comprise some unique organisms adapted to anoxic
conditions and low nutrients, our sampling was
limited to topsoil, because 450% of microbial
biomass and its biological activity occurs in the
topmost organic soil (Serna-Chavez et al., 2013) and
deeper sampling was impossible in Finnish soils
owing to great abundance of rocks. All 40 soil cores
per plot were pooled, thoroughly mixed and air-
dried at 30–40 °C for 24 h. Drying was selected as an
alternative to deep freezing or fresh extraction
because of improved options for pulverization of
large amounts of soil and necessity to standardize
extractable material on a dry weight basis. Dried soil
was stored air-tight in zip-lock plastic bags and
ground into fine powder by heavy rubbing of the zip-
lock bags followed by bead beating using 3-mm
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tungsten carbide balls in Mixer Mill MM400 (Retsch
GmbH, Haan, Germany) at 30 Hz for 10min for
subsequent soil nutrient and molecular identifica-
tion analyses.

Soil nutrients, phospholipid fatty acids and ergosterol
Concentrations of C, N, 13C and 15N were measured
from 2 to 70mg of soil using an elemental analyser
(Eurovector, Milan, Italy) coupled with an isotope
ratio mass spectrometer (MAT 253; Thermo Electron,
Bremen, Germany) according to Tedersoo et al.
(2012). Total phosphorus was extracted using ammo-
nium lactate and determined using flow injection
analysis. Potassium concentration was determined
from the same extract by the flame photometric
method (AOAC956.01). Exchangeable magnesium
and calcium content were determined in ammonium
acetate extract (pH=7.0).

Bacterial biomass was assessed using the phos-
pholipid fatty acid analysis for which the samples
were extracted with a mixture of chloroform–

methanol–phosphate buffer (1:2:0.8; V/V) according
to Bligh and Dyer (1959). Phospholipids were
separated using solid-phase extraction cartridges
LiChrolut Si60 (Merck, Whitehouse Station, NJ,
USA), and the samples were subjected to mild
alkaline methanolysis (Šnajdr et al., 2008). The
samples were analysed with gas chromatography–
mass spectrometry (450-GC, 240-MS; Varian, Palo
Alto, CA, USA). Methylated fatty acids were identi-
fied according to their mass spectra using a mixture
of chemical standards (Sigma, St Louis, MO, USA).
Actinobacterial biomass was estimated as the sum of
10Me-16:0, 10Me-17:0 and 10Me-18:0. Total bacter-
ial biomass was determined on the basis of i14:0,
i15:0, a15:0, i16:0, i17:0, a17:0, 16:1ω7, 18:1ω7,
cy17:0, cy19:0, 16:1ω5, 10Me-17:0, 10Me-18:0 and
10Me-16:0 (Šnajdr et al., 2011).

Fungal biomass was estimated based on ergosterol
concentration. Total ergosterol was extracted and
analysed as described previously (Šnajdr et al.,
2008). Samples (0.5 g) were sonicated with 3ml
10% KOH in methanol at 70 °C for 90min. Distilled
water (1ml) was added and the samples were
extracted three times with 2ml cyclohexane, evapo-
rated under nitrogen, redissolved in methanol and
analysed isocratically using an high performance
liquid chromatography system with methanol as a
mobile phase at a flow rate of 1mlmin− 1. Ergosterol
was quantified by ultraviolet detection at 282 nm.
Saprotroph and EcM fungal biomass was calculated
based on the proportion of sequences corresponding
to each functional group, assuming that these two
groups have equal ergosterol-to-ribosomal DNA ratio
on average (Štursova et al., 2014).

Molecular analyses
DNA was extracted from 2.0 g of soil per sample
using the PowerMax Soil DNA Isolation Kit (MoBio,

Carlsbad, CA, USA) according to the manufacurer’s
protocols. PCR was performed using a mixture of 11
forward primers (ITS3tagmix1-11 in equimolar con-
centration) analogous to ITS3 and a degenerate
reverse primer ITS4ngs analogous to ITS4 (the
original primers are described in White et al., 1990;
Tedersoo et al., 2014b, 2015a). Both primers were
shortened and modified to perfectly match 499.5%
of all Fungi (except Tulasnellaceae and Microspor-
idia; Supplementary Table S2). The ITS3 primer
mixes were designed to cover Cercozoa protists
(amoebae from Rhizaria superkingdom), Ciliophora
protists (Alveolata superkingdom), Chlorophyta
(unicellular algae from Viridiplantae superkingdom),
as well as soil animals (Acari, Nematoda, Collem-
bola, Rotifera and Annelida (Metazoa). Based on a
wide range of studies, these groups are the most
abundant and species-rich eukaryote taxa in soil. For
primer design, we downloaded available sequences
from the International Nucleotide Sequence Data-
bases Consortium (INSDC) and aligned the con-
served 5.8 S and large subunit (LSU) regions by
classes or phyla by using MAFFT ver. 7 (Katoh and
Standley, 2013). The primer annealing sites for ITS3
and ITS4 were visually examined to distinguish true
mismatches from low-quality sequences and mito-
chondrial LSU sequences. We further checked
primer matching by running BLASTn searches
against targeted organisms in INSDC, setting the
number of comparisons greater than the number of
species available for that taxonomic group. The
ITS4ngs primer was tagged with one of the 110
identifier barcodes (10–12 bases) that were modified
from those recommended by Roche (Basel, Switzer-
land) to differ by 43 bases, to start only with
adenosine and to comprise the proportion of adeno-
sine and thymidine between 0.3 and 0.7 to equalize
their affinities in an adapter ligation step. The PCR
cocktail comprised 0.6 μl DNA, 0.5 μl each of the
primers (20 μM), 5 μl 5 ×HOT FIREPol Blend Master
Mix (Solis Biodyne, Tartu, Estonia) and 13.4 μl
double-distilled water. PCR was carried out in four
replicates in the following thermocycling conditions:
an initial 15min at 95 °C, followed by 30 cycles of
95 °C for 30 s, 55 °C for 30 s, 72 °C for 1min, and a
final cycle of 10min at 72 °C. PCR products
(typically 350–400 bp) were pooled and their relative
quantity was estimated by running 2 μl DNA on 1%
agarose gel for 15min. DNA samples yielding no
visible band or a strong band were re-amplified using
35 and 25 cycles instead. We also used negative (for
DNA extraction and PCR) and positive controls
(Hydnoplicata whiteii specimen MURU5860)
throughout the experiment. Amplicons were puri-
fied by use of exonuclease and Shrimp alkaline
phosphatase enzymes (Fermantas, Kaunas, Lithua-
nia) at 37 °C for 45min and at 85 °C for 15min.
Purified amplicons were subjected to normalization
of quantity by use of SequalPrep Normalization Plate
Kit (Invitrogen, Carlsbad, CA, USA) following the
manufacturer’s instructions. Normalized amplicons
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were divided into two pools that were each subjected
to 454 adaptor ligation, emulsion PCR and 454
pyrosequencing using the GS-FLX+ technology and
Titanium chemistry as implemented in Beckman
Coulter Genomics (Danvers, MA, USA).

Pyrosequencing resulted in 625 074 reads with a
median length of 412 bases. By use of Acacia 1.52
(Bragg et al., 2012), these sequences were re-assigned
to samples based on the barcodes, and quality
trimmed (options: minimum average quality thresh-
old =30, maximum k-mer distance = 13; homopoly-
mer significance threshold=− 2) to exclude short
and low-quality sequences. The resulting 564 305
sequences were subjected to removal of the flanking
5.8S and 28S rRNA genes for better resolution in
clustering of ITS sequences and removal of chimeric
sequences by use of the ITSx software (Bengtsson-
Palme et al., 2013). We retained sequences of499 bp
in length to remove most of the partial sequences.
We ran a second round of chimera checking using
UCHIME (Edgar et al., 2011). After these quality-
filtering steps, the 401 762 retained sequences were
further clustered at 98.0% sequence similarity as
implemented in CD-Hit 4.6.1 (Fu et al., 2012).
Compared with the routinely used 97%, this thresh-
old is a better proxy at species level in several groups
of fungi (Kõljalg et al., 2013), protists (Litaker et al.,
2007) and animals (Noge et al., 2005). Of 16 437
clusters, 6823 (41.5%) were represented by a single
sequence. These singletons were removed from
further analyses, because these comprise a high
proportion of technical artefacts (Tedersoo et al.,
2010). The longest sequence of each remaining 9614
clusters was selected as a representative for BLASTn
sequence similarity search (word size = 7; penalties:
gap =− 1; gap extension =−2; match = 1) against the
INSDC and UNITE (Abarenkov et al., 2010a) data-
bases. In addition, we ran BLASTn searches against
reference sequences of fungi in 99.0% similarity
species hypotheses that include third-party taxo-
nomic and metadata updates (Kõljalg et al., 2013) as
implemented in the PlutoF workbench (Abarenkov
et al., 2010b). For each query, we considered 10 best-
matching references to annotate taxa as accurately as
possible. If no taxonomy was reliably revealed, we
ran manual BLASTn searches against INSDC with
500 best-matching sequences as output. We followed
the regularly updated INSDC and Index Fungorum
(www.indexfungorum.org) for higher-level taxon-
omy of eukaryotes and up to class-level taxonomy
of fungi, respectively. We assigned each fungal
genus, family or order to functional categories. If
different lifestyles were present in specific genera,
we chose the dominant group (475% of species
assigned to a specific category) or considered its
ecology unknown (o75%). Taxa were considered to
be EcM if they best matched to any sequences
belonging to EcM lineages (Tedersoo and Smith,
2013) and exhibited sequence length/blast scores
above predetermined lineage-specific thresholds.
Targeted groups of protists and soil animals were

too poorly represented in INSDC to allow reliable
trophic categorization. We selected 98.0% sequence
similarity to represent roughly species-level discri-
mination of operational taxonomic units (OTUs) in
all taxa based on post-hoc determination of optimal
metabarcoding thresholds (Põlme et al., 2014;
Tedersoo et al., 2014c). Only for Collembola, we re-
clustered all sequences at 94.0% sequence similarity,
because this level distinguishes better among species
(Anslan and Tedersoo, 2015).

Statistical analyses
We chose to analyse richness and community
composition in groups that were represented by
450 OTUs (Cercozoa, Ciliophora, Chlorophyta,
Collembola, Nematoda as well as EcM, saprotrophic,
plant pathogenic fungi). For richness analyses of soil
biota, we calculated the residuals of OTU richness in
relation to square root of the number of obtained
sequences to account for differences in sequencing
depth. We excluded two outlier samples from Fin-
land and four outliers from Estonia that were
dominated by a few species of moulds (relative
abundance of sequences belonging to Trichocoma-
ceae 45%, Mortierellaceae 420% or Mucoraceae
420%, that exceeds three times the mean+3 s.d.),
which is indicative of substandard sample preserva-
tion (Tedersoo et al., 2014b). By use of vegan package
of R, ‘individual’-based rarefied OTU accumulation
curves were constructed separately for functional
groups of fungi and major taxa of animals and
protists in the two study systems (Supplementary
Figure S1).

Concentrations of soil nutrients and vegetation
measurements were logarithm-transformed prior to
analyses to improve the distribution of residuals and
reduce non-linearity. To estimate taxonomic sam-
pling effects, the relative BA of each tree species was
log-ratio transformed (Szava-Kovats et al., 2011).
Besides species richness, we calculated both Shan-
non and Simpson indices of diversity for trees and
understorey vascular plants (Magurran, 1988). To
account for spatial autocorrelation that may arise
from both spatially structured environmental factors
and dispersal limitation, we calculated Principal
Components of Neighbours Matrices (PCNM) spatial
eigenvectors based on geographical coordinates of
plots by using the vegan and packfor packages of R
(R Core Development Team, 2014). These vectors
represent spatial variation at different geographical
scales over the study area and are used to control for
spatial autocorrelation in ecological data sets
(Legendre, 2008). To disentangle the effects of
edaphic, floristic and spatial variables on residual
richness of soil biota and biomass estimates, indivi-
dual variables were subjected to multiple regression
model selection based on the corrected Akaike
information criterion. The components of best
models were forward-selected to determine their
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adjusted coefficients of determination as implemen-
ted in the packfor package of R.

We used Structural Equation Models (SEM) to
determine the direct and indirect paths between
environmental predictors, biomass and richness of
EcM fungi and saprotrophs. We also included
bacterial biomass in these models for comparison.
The initial SEM models were constructed based on
the best models for these variables using Amos ver.
22 (SPSS, Chicago, IL, USA). We tested all direct and
indirect relations among exogenous and endogenous
variables, together with their error terms. Then the fit
of models was maximized based on both chi-square
test and root mean square error of approximation and
Comparative Fit Index. We followed a backward
stepwise elimination approach to remove non-
significant links to maximize model fit.

The relative effects of edaphic, spatial and floristic
variables on communities of soil organisms were
determined based on Hellinger dissimilarity, exclu-
sion of OTUs occurring in a single sample and a
multivariate model selection procedure as imple-
mented in DISTLM function of Permanova+
(Anderson, 2005). To obtain coefficients of determi-
nation (cumulative R2

adjusted) and statistics (Fpseudo)
for each variable, the components of best models
were forward selected. We prepared Global Non-
metric Multidimensional Scaling graphs in parallel,
using the same options. Significant variables were
fitted into the ordination space using the envfit
function in the vegan package of R.

To test the correlation in community composition
among soil biota, trees and herbs, we calculated the
bidirectional Procrustes correlation coefficient using
4999 permutations as implemented in protest func-
tion in the vegan package of R. False discovery rate
associated with multiple testing was reduced using
the sharpened false discovery rate procedure
(Benjamini and Hochberg, 2000). To test whether
intimately associated communities display more
similar beta diversity and to recover any sampling
biases (size of matrices, connectance), we added the
relatively small communities of trees, herbs and
fungal subgroups belonging to mycoparasites, flagel-
lates (Chytridiomycota) and white rot decomposers
to the correlation matrices. The effects of association
intimacy as well as the size of matrices and
connectance on RProcrustes were tested using multiple
regression analyses separately for Estonian and
Finnish data sets. To further test whether the
correlations among communities are potentially
causal or related to the shared driving mechanisms
of environmental variables, we calculated partial Pro-
crustes association metrics accounting for the environ-
mental and spatial predictors (Lisboa et al., 2014).

Variation partitioning analyses were conducted on
standardized biomass and OTU richness data and
Hellinger-transformed community data using the
packfor and vegan packages of R. Because of the
limits of variation partitioning, we generated four
components of variance, including richness (tree and

understorey richness and Shannon index), sampling
effect (log ratio-transformed proportions of tree
species), other floristic as well as edaphic characters
(total BA, tree volume, productivity, herb and ericoid
cover, soil pH and nutrients) and space (PCNM
vectors). By using one-way analyses of variance, we
further tested whether the groups of different
mobility (mobile: actively moving organisms exclud-
ing amoeboid groups), body size (average cell
diameter and organism diameter) and trophic strate-
gies (biotrophic and non-biotrophic) exhibit signifi-
cant differences in the relative importance of tree
richness, individual tree species and space.

Results

Identification of soil biota
The metabarcoding approach enabled us to recover
all targeted groups of eukaryotes from composite soil
samples and identify them at different taxonomic
levels (Supplementary Data S1). Across study sys-
tems, kingdom-level assignment of 1.0% of the
recovered sequences and 3.9% OTUs remained
unknown. Sequences and OTUs (98% similarity
threshold) assigned to Fungi (81.1% of taxa),
Alveolata (4.8%, mostly Ciliophora), Metazoa
(4.8%, mostly Nematoda and Collembola) and
Viridiplantae (4.0%, mostly Tracheophyta, Bryo-
phyta and Chlorophyta) dominated among the soil
eukaryote kingdoms both in Finland and Estonia
(Figure 1). Saprotrophs, EcM mutualists and plant
pathogens comprised 47.5, 17.7 and 3.5% of all
fungal OTUs, respectively. The higher-level taxo-
nomic distribution of soil organisms was remarkably
similar in Finnish and Estonian samples (Figure 1).
One of the negative controls produced two fungal
sequences, whereas the two positive controls yielded
six different fungal and oomycete sequences in
addition to H. whiteii.

Richness and biomass
Tree species richness was positively correlated with
richness of soil fungal groups in Estonia and EcM
fungi in Finland, but it was poorly correlated with
richness of protists and meiofauna (Supplementary
Figure S2). Taxonomic sampling effect of plants and
edaphic variables were usually among the best
predictors of belowground richness depending on
organisms and study systems (Figures 2 and 3;
Supplementary Figure S3; Supplementary Table
S3). Richness of all fungi was most strongly affected
by herb cover (positive effect: F1,35=17.30;
R2

adj=0.289; P=0.001) and tree BA (negative
effect: F1,35=17.30; R2

adj,partial=0.108; P=0.007) in
Finland. In Estonia, P. sylvestris BA (F1,32=63.29;
R2

adj=0.644; Po0.001) and tree species richness
(F1,32=25.21; R2

adj,partial=0.149; Po0.001), respec-
tively, had a negative and positive effect on fungal
richness. Richness of EcM fungi was negatively
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affected by A. glutinosa BA (F1,34=14.60;
R2

adj=0.289; P=0.003) but positively by increasing
soil pH (F1,34=16.98; R2

adj,partial=0.217; P=0.001) and
tree diversity (Shannon index: F1,34=13.05;
R2

adj,partial=0.127; P=0.002) in Finland. In Estonia,
BA of P. sylvestris (F1,32=40.28; R2

adj=0.522;
Po0.001) and BA of A. glutinosa (F1,32=11.35;
R2

adj,partial=0.109; Po0.003) had a strong negative
effect on EcM fungal richness, explaining 63.1% of
variation, but there was no significant tree
diversity effect. Herb cover enhanced (F1,34=30.16;
R2

adj=0.422; Po0.001), but increasing C/N ratio
reduced (F1,34=10.61; R2

adj,partial=0.114; P=0.002),
plant pathogen richness in Finland. Similarly, soil C/
N ratio had a strong negative effect on plant pathogen
richness in Estonia (F1,30=40.28; R2

adj=0.627;
Po0.001). Richness of saprotrophic fungi was
negatively influenced by total BA of trees
(F1,35=18.25; R2

adj=0.301; P=0.001) and BA of
P. abies (F1,35=9.94; R2

adj,partial=0.117; P=0.004) in
Finland. In Estonia, however, tree species richness
per se had a strong positive effect on saprotroph
richness (F1,32=25.60; R2

adj=0.406; Po0.001).
Richness of the Cercozoa amoebae was most

strongly enhanced by herb cover (F1,34=8.72;
R2

adj=0.162; P=0.006) and soil pH (F1,34=9.46;
R2

adj,partial=0.149; P=0.010) in Finland but nega-
tively affected by C/N ratio (F1,33=17.75;
R2

adj=0.318; P=0.001) and soil Ca concentration
(F1,33=17.75; R2

adj,partial=0.151; P=0.003) in Estonia.
Chlorophyta richness was reduced by increasing
total tree BA in Finland (F1,37=21.12; R2

adj=0.335;
Po0.001) but promoted by A. glutinosa BA in
Estonia (F1,31=5.41; R2

adj=0.109; P=0.022). Cilio-
phora richness was favoured by the relative amount
of cut birch coppice (F1,35=32.57; R2

adj=0.441;
Po0.001) and understorey richness (F1,35=12.05;
R2

adj,partial=0123; P=0.004) in Finland but by soil
Ca concentration in Estonia (F1,31=52.90; R2

adj=
0.590; Po0.001).

Of soil animals, the richness of Collembola was
affected by soil C/N ratio (F1,37=9.93; R2

adj=0.182;
P=0.002) and spatial eigenvectors in Finland
(F2,37=17.34; R2

adj,partial=0.250; P=0.001) but driven
only by spatial variables in Estonia (F2,34=15.17;
R2

adj,cumul=0.288; P=0.001). Nematoda richness
responded positively to L. sibirica BA in Finland
(F1,38=9.93; R2

adj=0.072; P=0.047), whereas soil
C/N ratio had a negative effect on roundworms in
Estonia (F1,34=9.64; R2

adj=0.196; P=0.003).
Although the Estonian and Finnish soils differed

considerably in nutrient concentrations
(Supplementary Figure S4), the biomass of microbial
groups in both study systems was positively related
to soil macronutrients (Figure 2). Model selection
indicated that the total microbial biomass and
bacterial biomass were positively influenced by soil
P concentration both in Finland and Estonia
(Supplementary Table S3). The biomass of Actino-
bacteria increased with soil P concentration in
Finland (F1,38=45.55; R2

adj=0.527; Po0.001), but it
responded positively to increasing proportion of
A. glutinosa BA (F1,33=14.43; R2

adj=0.272;
P=0.001) and soil Ca concentration (F1,33=8.84;
R2

adj,partial=0.133; P=0.011) in Estonia. Fungal bio-
mass, including that of saprotrophs and EcM fungi,
was largely determined by N concentration in both
study systems. The ratio of saprotrophs to EcM
symbionts increased with the relative BA of A.
glutinosa in both systems (Supplementary Table
S3). In addition, soil Ca concentration negatively
affected the relative proportion of saprotrophs in
Estonia (F1,33=14.85; R2

adj,partial=0.254; P=0.001).
Structural equation modelling revealed that site

(PCNM1) had a strong effect on soil pH, N and P
concentrations in Finland (Figure 4a). All these
variables as well as tree diversity (Shannon index)
had a direct positive effect on EcM fungal richness,
whereas A. glutinosa BA had a direct negative effect
on both EcM fungal biomass and richness. Soil
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nitrogen concentration and total BA had, respec-
tively, a direct positive and negative effect on the
richness of saprotrophs. Saprotroph biomass posi-
tively influenced saprotroph richness and EcM
fungal biomass, but the opposite paths were of minor
importance (P40.1). Similarly for the Estonian data
set, SEM largely confirmed the results of model
selection, emphasizing the direct positive effect of
tree richness and EcM fungal biomass but negative
effects of A. glutinosa and P. sylvestris BAs on EcM
fungal richness (Figure 4b). According to SEM, EcM
fungal biomass and richness had strong positive
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effects on saprotroph biomass and richness,
respectively.

The variation partitioning analysis was generally
consistent with model selection (Supplementary Table
S4; Supplementary Figure S3). There were no general
differences in the relative strength of tree diversity or
individual species effects on organisms with different
mobility, body size or biotrophic associations (P40.2).
Variation partitioning analysis ascribed much of the
environmental variation to a shared effect among
space, soil and vegetation (Supplementary Table S4),
confirming the SEM results that much of the floristic
effects are spatially and edaphically structured. Across
all data sets, the effect of space was significantly greater
in Finland than in Estonia (F1,42=7.90; P=0.007). This
could be ascribed to the arrangement of plots in two
distinct blocks (sites) in Finland as opposed to a more
uniform plot distribution in Estonia. Furthermore, the
Estonian experiment was subjected to natural regen-
eration that may have been influenced spatially
structured soil parameters.

Community composition
Communities of soil biota were generally driven by
spatial vectors and soil variables in Finland and
Estonia, respectively (Supplementary Table S5;
Figures 5 and 6). According to the best multivariate
model, the total fungal community was driven by
spatial variation in Finland (F1,37=8.09; R2

adj=0.151;
Po0.001) but by soil C/N ratio (F1,33=7.08; R2

adj=
0.144; Po0.001) and Ca concentration (F1,33=3.90;
R2

adj,partial=0.086; P=0.001) in Estonia. The

community composition of EcM fungi was mostly
affected by spatial structure (F1,36=4.31; R2

adj=0.076;
P=0.001) and BA of B. pendula (F1,36=4.37;
R2

adj,partial=0.073; P=0.001) in Finland. In Estonia,
the EcM fungal community was mostly affected by
the cover of Ericaceae (F1,33=5.44; R2

adj,partial=0.110;
Po0.001). The community structure of plant patho-
gens was driven by spatial variation (F1,38=4.10;
R2

adj,partial=0.072; P=0.001) in Finland. Pathogen
community was most strongly influenced by soil N
(F1,34=5.37; R2

adj=0.108; Po0.001) and Ca
(F1,34=3.87; R2

adj,partial=0.068; P=0.001) concentra-
tion in Estonia. Finnish saprotroph communities
were primarily affected by spatial distance
(F1,38=11.47; R2

adj=0.207; Po0.001), whereas Estonian
saprotroph communites were influenced by soil C/N
ratio (F1,33=8.96; R2

adj=0.181; Po0.001), N concentra-
tion (F1,33=4.20; R2

adj,partial=0.069; P=0.001) and pH
(F1,33=4.12; R2

adj,partial=0.063; P=0.001).

In protists, community composition of Cercozoa was
strongly influenced by soil pH both in Finland
(F1,39=3.33; R2

adj=0.055; P=0.001) and in Estonia
(F1,34=4.88; R2

adj=0.097; P=0.001), whereas the com-
munity structure of Chlorophyta was mainly affected by
space in Finland (F1,39=4.01; R

2
adj=0.071; P=0.001) and

by herb cover in Estonia (F1,35=2.71; R2
adj=0.076;

P=0.001). Community structure of Ciliophora responded
most strongly to soil Ca concentration (F1,36=7.83;
R2

adj=0.146; P=0.001) in Finland but to Ericaceae cover
in Estonia (F1,34=5.05; R

2
adj,partial=0.101; Po0.001).

Of soil animals, the community of Collembola was
affected by spatial structure in Finland (F2,38=5.53;
R2

adj,cumul=0.083; P=0.001) but by soil pH in Estonia
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(F1,34=3.27; R2
adj,partial=0.059; P=0.001). Nematode

communities were weakly affected by soil P
concentration in Finland (F1,39=2.66; R2

adj=0.040;
P=0.005) but by soil N concentration in Estonia
(F1,32=4.78; R

2
adj=0.095; P=0.001).

Procrustes analysis revealed that communities
of nearly all soil organisms and those of trees and
herbs significantly correspond to each other in both
study systems (Supplementary Table S6). Further
analysis revealed that RProcrustes was strongly linearly
related to the logarithm of the size of the community
matrix (Finland: t=10.6; R2

adj=0.634; Po0.001;
Estonia: t=7.9; R2

adj=0.446; Po0.001), indicating
that the Procrustes statistic may have inherent biases
related to sampling depth and richness. Partial
Procrustes tests revealed that strong and highly
significant correlations between communities were
lost after accounting for environmental and spatial
predictors (Supplementary Table S6). Consistent
with our past hypothesis, these results suggest that
the same spatial or environmental variables drive the
community composition of different organisms

convergently with no causal relationships among
these groups.

Discussion

Taxonomic richness and biomass
Diversity and identity of trees exhibited context-
dependent effects on taxonomic richness of
soil biota, depending on the study system and
taxonomic group, which only partly supports
our first hypothesis. Nonetheless, tree diversity
was an important driver of the richness of EcM
fungi in Finland and saprotrophic fungi in Estonia,
suggesting that richness of both mutualistic
and free-living organisms may benefit from greater
producer diversity in certain conditions. Consistent
with previous research on understorey richness
(Ampoorter et al., 2014) and ecosystem services
(Nadrowski et al., 2010; Gamfeldt et al., 2013),
neutral effects of tree diversity prevailed in
plant–soil biota relationships in both study systems.
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The low tree diversity impact contrasts with implica-
tions from grasslands, in which richness effects on
functioning increase with ecosystem's age (Hooper
et al., 2012; Reich et al., 2012).

The effects of individual tree species were usually
stronger than diversity effects on richness and
biomass of soil biota, corroborating the relatively
strong sampling effects on ecosystem services
(Cardinale et al., 2006; Nadrowski et al., 2010;
Gamfeldt et al., 2013). Our results indicate that the
magnitude and directionality of individual species
effects are system specific. For example, the increas-
ing proportion of P. sylvestris strongly suppressed
richness of all fungi and in particular that of
saprotrophs in Estonia, but it had a slight but
significant positive effect on these groups in Finland.
The richness of Cercozoa and Chlorophyta
responded to different tree species in the two study
systems. By contrast, the relative abundance of A.
glutinosa consistently suppressed EcM fungal rich-
ness in both study systems that corroborates with the
low mycobiont range in Alnus spp. worldwide
(Põlme et al., 2013).

Taken together, negative and positive sampling
effects were nearly equally represented, suggesting
that both stimulating and suppressive species
effects are common in tree–soil biota richness
relationships. The positive effects are probably
related to the abundance of a particularly suitable
substrate or facilitation, whereas the negative effects
may stem from low palatability, poor compatibility
with mutualistic partners or strong defence
mechanisms (such as allelochemicals) against soil
biota. Variation partitioning further revealed that
tree diversity and sampling effects did not differ
between biotrophic (pathogens, mutualists) and
free-living organisms, providing no support to our
second hypothesis.

Both SEM and model selection revealed that soil
pH and nutrient concentration were generally the
strongest direct or indirect predictors for richness of
soil biota in spite of great differences in vegetation.
Consistent with the third hypothesis, soil N and P
concentrations determined the biomass of bacteria
and fungi, especially that of saprotrophs; biomass
was the strongest direct predictor of saprotrophic
fungal richness in Finland and EcM fungal richness
in Estonia. The positive biomass effects are in
agreement with studies in grasslands, in which the
abundance of individuals or their biomass deter-
mines taxonomic richness of particular groups of
meiofauna both aboveground and belowground
(Scherber et al., 2010; Borer et al., 2012). Soil
nutrient concentration or lower C/N ratio had a
strong positive effect on richness of Ciliophora in
Finland and that of plant pathogenic fungi, Cercozoa
amoebae, Ciliophora and Nematoda in Estonia.
Apart from nutrients, richness of EcM fungi and
Cercozoa responded positively to increasing soil pH
in Finland, which is consistent with the substantial

pH effect on phylogenetic composition of soil
microbes (Rousk et al., 2010).

Community composition
Plant biodiversity experiments carried out so far
have seldom addressed community composition
of the responding biota. Understanding whether
species composition of organisms in one trophic
level affects the community structure of organisms in
a linked trophic level enables ecologists to further
shed light into biological processes shaping the
communities of interacting organisms and into the
stability of the interaction networks (Nuismer et al.,
2013). In our study systems, community composition
of most groups of soil biota were related to edaphic
variables, especially soil pH and Mg concentration in
Finland but to soil pH, C/N ratio, Ca and N
concentration in Estonia. Individual tree species
had a minor effect at the community level, except
that of T. cordata on EcM fungi and Nematoda, and
ericoid plant cover on EcM fungi, Cercozoa, Cilio-
phora and Collembola in Estonia. Such sampling
effects were fewer in Finland, but it could be due to
the absence of T. cordata and paucity of Ericaceae in
the Finnish plots. These two taxa transform the soil
environment into extremities in terms of pH and C/N
ratio (Read et al., 2004; Frouz et al., 2013).

Our results indicate that different environmental
variables drive biomass, richness and community
composition of soil organisms. Only site effect and
soil pH were among the statistically significant shared
determinants of both richness and community com-
position for groups of soil biota in Finland, whereas
soil pH and soil Ca concentration sometimes deter-
mined both richness and community composition in
Estonia. These results suggest that soil pH is uni-
versally related to both environmental filtering and
niche differentiation that underlie richness and
community development, respectively (Pärtel, 2002;
Lauber et al., 2009; Tedersoo et al., 2014b).

Methodological advances
This is the first study to address organisms from
multiple eukaryotic kingdoms simultaneously using
a molecular marker with species-level resolution.
The mixture of 11 forward primers designed to
perfectly match Fungi, Viridiplantae, Ciliophora,
Cercozoa, Straminipila and selected groups of
Metazoa enabled us to recover the identity of all
these target organisms in a metabarcoding analysis of
a single PCR template. Our approach allows addition
of further primer variants to capture additional
taxonomic groups. Alternatively, different groups
can be targeted in separate PCR reactions or using
different markers followed by estimation of biomass
or individuals by subsampling or quantitative PCR
(Fierer et al., 2005; de Barba et al., 2014; Lentendu
et al., 2014). Multiple pairs of MID-tagged primers
and preparing several metabarcoding libraries per
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sample dramatically enhance requirements for time
and analytical costs. Our approach of simultaneous
identification of multiple organism groups from soil
offers a relatively cheap and powerful alternative.
The drawback of this method is that it renders cost-
effective MID-tagging only the more conserved
primer, but updated technologies exist for adding
unique identifiers to templates before amplification
(Lunderg et al., 2013). With further increase in
sequence length (4700 bp), the full ITS region could
be targeted as there are more universal eukaryote
primer sites in the end of SSU (Tedersoo et al., 2015a).
Adding further degenerate positions to the ITS4ngs
primer (5′-TCCTSSGCTTANTDATATGC-3′) would
render it universal to nearly all eukaryotes.

Previous studies have used ribosomal DNA
SSU genes to target taxonomic composition of
various protist kingdoms in soil and water
(Moon-van der Staay et al., 2001; Bates et al.,
2013). However, SSU offers poor species-level
resolution in most eukaryote groups (Pawlowski
et al., 2012; Schoch et al., 2012; Tang et al., 2012),
and the ‘universal’ SSU primers exhibit several
mismatches to many large and important eukaryote
kingdoms (Pawlowski et al., 2012; Tedersoo et al.,
2015a, b). Although SSU and cytochrome I oxidase
have additional problems with multiple introns
in several taxonomic groups, there is also consider-
able variation in the length of ITS sequences
(for example, Acari, many Insecta; Wang et al.,
2015). These biological phenomena cause exclusion
of a small fraction of taxa from any metabar-
coding data sets using a single marker (de Barba
et al., 2014).

Ecologists may argue that our strategy of metabar-
coding composite soil samples is better suited to
detect immobile organisms. Other studies of soil
animals have typically relied on identification of
organisms obtained from specifically extracted pools
of individuals (Porazinska et al., 2009; Hajibabaei
et al., 2011). That approach is more labour intensive
and enables to address only specific group(s) of soil
biota, usually resulting in capturing the most mobile
subset of the target species that respond to light or bait.
Nonetheless, inclusion of only the active community
members rather than eggs, dormant stages and pieces
of cuticle may pose an advantage of that approach in
certain cases. Alternatively, inactive community
members can be discriminated against by targeting
RNA instead of DNA (Baldrian et al., 2012).

Based on our analysis of DNA and microbial
biomass, the amount of cells and ribosomal DNA
molecules of soil animals is in minority compared
with that of bacteria and fungi, which is in agreement
with previous studies targeting SSU and LSU
(Baldwin et al., 2013; Ramirez et al., 2014; Tedersoo
et al., 2015a). The fungal dominance could be related
to the actual differences in the number of cells and/or
copies of ribosomal DNA (Medinger et al., 2010;
Vetrovsky and Baldrian, 2013). One gram of organic
forest soil may comprise 4103m of hyphae that

roughly translates into 108 cells (Leake et al., 2004).
The same amount of soil harbours thousands of
nematodes that altogether comprise 106

–107 cells
(Wardle, 2002). The estimated cell numbers of protists
generally fall into the same orders of magnitude (Adl
and Gupta, 2006). Deeper sequencing using the
Illumina (San Diego, CA, USA) or forthcoming ultra-
high-throughput platforms are likely to provide more
accurate richness estimates by exhaustively capturing
taxonomic groups that are common but exhibit a
relatively low biomass or marker gene content (Smith
and Peay, 2014).

Conclusions

Compared with the effects of individual species and
soil parameters, tree diversity per se has generally
relatively low influence on taxonomic richness of
soil biota. Our results outline that biodiversity effects
are contex dependent and that experiments and field
studies should be replicated to secure representa-
tiveness and understand system specificity
(Vehviläinen et al., 2008; Bruelheide et al., 2014).
Corresponding changes in beta diversity among
vegetation and soil biota are largely explained by
the convergent effect of environmental predictors,
indicating that these variables must be accounted for
in addressing community-wise relationships.
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