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Abstract

Understanding the mutational heterogeneity within tumors is a keystone for the development of efficient cancer

therapies. Here, we present SCITE, a stochastic search algorithm to identify the evolutionary history of a tumor from

noisy and incomplete mutation profiles of single cells. SCITE comprises a flexible Markov chain Monte Carlo sampling

scheme that allows the user to compute the maximum-likelihood mutation history, to sample from the posterior

probability distribution, and to estimate the error rates of the underlying sequencing experiments. Evaluation on real

cancer data and on simulation studies shows the scalability of SCITE to present-day single-cell sequencing data and

improved reconstruction accuracy compared to existing approaches.

Background
Tumor progression can be described as a dynamic evo-

lutionary process acting at the level of individual cells

[1–3]. A tumor typically arises from a single founder

cell whose distinct set of genetic (and epigenetic) lesions

gives it a growth advantage over the surrounding cells

and helps it to evade the patient’s immune response. As

a consequence, the clone arising from this cell expands

and, over the course of time, the descendant cells develop

further into subclones by acquiring additional somatic

mutations [4]. The subclones compete against each other

for resources in the tumor environment and the more

successful ones will replace others until eventually they

themselves are out-competed by new subclones [4, 5]; see

also Fig. 1a.

The genetic diversity arising from this process, referred

to as intra-tumor heterogeneity, is believed to be a major

cause of relapse after cancer treatment [6, 7]. The com-

mon explanation is that drug therapy often targets the

dominant subclone at the time of diagnosis, and upon

its remission, either an expansion of previously sup-

pressed subclones, non-susceptible to the treatment, or

an emergence of new resistant subclones is likely to hap-

pen [8]. For monoclonal tumor progression, the tem-

poral order in which specific mutations have occurred
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has been shown to be informative for disease progres-

sion and susceptibility to drug therapy [9]. Therefore, a

more comprehensive understanding of the genetic diver-

sity of individual tumors and their evolutionary history is

likely to be a key component in the design of personalized

cancer therapies that are more effective [6, 10, 11].

All cells in a tumor are related via a binary genealogi-

cal tree (Fig. 1b). To reconstruct their evolutionary history

based on single-nucleotide variants (SNVs), the infinite

sites assumption is typically made, which implies that

the mutation profiles of the cells (Fig. 1c) form a perfect

phylogeny. A perfect phylogeny exists if for all pairs of

mutations i1, i2, the set of cells having mutation i1 and the

set of cells having mutation i2 are either disjoint or one is a

subset of the other [12]. Most approaches to reconstruct-

ing tumor phylogenies focus on the partial (temporal)

order among the mutation events (Fig. 1d). This tree type

implicitly defines the set of possible subclones via the

mutation profiles that can be read from the tree by col-

lecting the mutations on the path from the root to any

other node in the tree. Not all possible subclones, in par-

ticular those at inner nodes, need to have surviving cells.

Also, by chance, cells from surviving subclones may not

be sampled.

The main challenge in obtaining knowledge on

intra-tumor heterogeneity is that common bulk high-

throughput sequencing admixes the DNA of millions of

cells in a sample before sequencing. The mutation pro-

files obtained from themixture constitute an average of an

unknown number of unknown subclones each making up

an unknown fraction of the mixture [13]. Therefore, tree

© 2016 Jahn et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-016-0936-x-x&domain=pdf
mailto: niko.beerenwinkel@bsse.ethz.ch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Jahn et al. Genome Biology  (2016) 17:86 Page 2 of 17

a b c

d fe g

Fig. 1 Tumor evolution and cell phylogeny. a Schematic representation of tumor evolution with time progressing downwards. Stars denote new

mutations leading to subclone expansion. The quadrangles belong to minor extinct subclones with no traces in the present-day populations. The

mutations founding these clones may not have induced a sufficient growth advantage to have surviving descendant cells or may have been lost by

chance. The gray discs on the bottom denote single cells sequenced after tumor removal. The stars they contain indicate the mutations observed in

the cell. b Binary genealogical tree of the sequenced cells. An empty disc represents a normal somatic cell, which is an outgroup for the tumor cells. c

Binary mutation matrix representing the mutation status of the sequenced tumor cells. A zero entry denotes the absence of a mutation in the

respective cell, while a one denotes its presence. d The perfect phylogeny represented as a mutation tree, the partial (temporal) order of the

mutation events. Mutations are summarized in a single node when their order is unidentifiable from the sampled cells, as is the case here for the

two top-most mutations with the matrix from (c). e Hierarchical subclone structure. Cells with identical mutation profiles cluster into subclones,

which serve as taxa in this phylogenetic tree. fMutation tree with single-cell samples attached. g Noisy mutation matrix with missing values. The red

numbers indicate flipped mutation states with respect to the true mutation matrix in (c). For 0 → 1, a false positive, the mutation is called but not

present in the cell. For 1 → 0, a false negative, the mutation is not called but present in the cell, most likely due to allelic dropout during the DNA

amplification. The red dash indicates a missing value; it is unknown whether the site is mutated or in the normal state in this cell

reconstruction needs to be completed by a deconvolu-

tion of the mixed signal to identify the subclones, the taxa

of the tree. In the past years, an abundance of tools has

been developed to study subclone composition in mixed

samples [14–19]. Among the approaches that additionally

reconstruct the evolutionary relationships, the majority

separates subclone estimation and tree reconstruction

[20–24], while others combine both tasks into a single step

[25–27]. The typical output of these tools would be one

or several trees as in Fig. 1d, augmented with the esti-

mated prevalence of the different subclones in the tumor.

Signals from multiple samples from different locations in

the tumor increase the statistical power [24–27]. Samples

taken from different time points are useful as well [28] but

are usually not available for solid tumors, as biopsies are

typically taken only once, at the point when the tumor is

removed from the patient.

Approaches using mixed samples provide valuable

insights into intra-tumor heterogeneity. However, their

resolution is inherently limited and inference of both com-

plex subclone structures and low-frequency subclones

remains difficult [13, 29]. The advent of single-nucleus

sequencing techniques has started to change the situation.

Here, the taxa are known in the form of the individual cells

sequenced from a tumor. However, the data we obtain

from single-cell sequencing experiments are notoriously

error-prone, in particular the false negative rate can be

extremely high (≥10 %) due to the high allelic dropout

rate in the DNA amplification process. The false positive

rate is also elevated in comparison to bulk sequencing.

Lastly, unobserved sites can be a problem. For example,

58 % of the data points are reported as missing due to

low quality in an early single-nucleus sequencing data

set [30] thus giving no information on whether the site



Jahn et al. Genome Biology  (2016) 17:86 Page 3 of 17

is mutated or not in the respective cell. This combina-

tion of error types prohibits the application of standard

perfect phylogeny reconstruction approaches. While gen-

eralizations of the perfect phylogeny problem to deal with

imperfect data exist, they are typically NP-hard, and mod-

ify the input data in the binary mutation matrix, either by

finding the minimum number of entries that need to be

changed to remove all inconsistencies [31], or by remov-

ing the minimum number of samples (taxa) to remove all

the inconsistencies [32].

Probabilistic approaches are an alternative to make use

of all information contained in the (inconsistent) data.

In addition, using a Bayesian scheme, the whole poste-

rior tree distribution instead of just a single tree can be

obtained and model parameters such as the error rates

of the sequencing experiments can be learned. Bayesian

approaches typically use polynomial-time Markov chain

Monte Carlo (MCMC) sampling heuristics to explore a

(super-)exponential search space.

A fully Bayesian approach is BitPhylogeny [33], which

uses non-parametric clustering in combination with a

tree-structured stick-breaking process to identify sub-

clones and their evolutionary relationships. Unlike tree-

based approaches for mixed samples, BitPhylogeny

clusters samples into subclones and sets these in a phylo-

genetic relation (Fig. 1e).

Kim and Simon [34] introduced a pairwise ordering

test for mutations in an attempt to find the best fit-

ting tree from noisy and incomplete single-cell data [30].

Their approach reconstructs a mutation history as in

Fig. 1d, also referred to as mutation tree. The restric-

tion to pairwise tests results in an efficient polynomial-

time algorithm but comes at the cost of a potential

loss in reconstruction quality, as all information from

more complex relations than pairwise order is discarded.

Instead of using pairwise orders, one could consider test-

ing the ordering of triplets of nodes and then higher

groupings.

Here we propose a likelihood-based approach to test

the entire mutation tree at once and perform a stochas-

tic search to find the best fitting tree. We introduce

SCITE (Single Cell Inference of Tumor Evolution), a

flexible MCMC sampling scheme that allows us to com-

pute the maximum likelihood (ML) tree plus attachment

points of the samples, sample from their posterior, or

treat mutation trees with the attachment points marginal-

ized out. These can be combined with learning the error

rates of the sequencing experiments. We evaluate SCITE

on real cancer data, showing its scalability to present-

day single-cell sequencing data and its improved results

over BitPhylogeny [33], the approach of [34], classic per-

fect phylogeny reconstruction, and methods designed for

bulk-sequencing data. In addition, we estimate from sim-

ulation studies the number of cells necessary for reliable

mutation tree reconstruction, which could inform the

design of future single-cell sequencing projects.

Results and discussion
Tree inference from single-cell mutation profiles

We first provide a brief description of our approach to tree

inference from single-cell mutation profiles. We start with

amodel for representing single-cell mutation histories and

the likelihood-based approach to deal with sequencing

errors. Then we give an overview on the different variants

of theMCMC sampling scheme implemented in SCITE. A

more technical description of SCITE is in the “Methods”

section.

Model of tumor evolution and tree representation

We restrict the evolutionary model to point mutations in

this work and make the infinite sites assumption, which

states that every genome position mutates at most once in

the evolutionary history of a tumor. No further constraints

are necessary, in particular no assumption on a mono-

clonal origin of the tumor is made, a core assumption in

tree reconstruction from mixed samples.

We represent the mutation status of m single cells at n

different loci in a binary n × m mutation matrix E where

a 1, respectively a 0, at entry (i, j) denotes the presence,

respectively the absence, of mutation i in cell j (Fig. 1c).

With the exclusion of convergent evolution due to the

infinite sites assumption, thismatrix defines a perfect phy-

logeny of the single cells. This means that there exists a

rooted binary tree with the cells as leaves in which every

mutation can be placed on one edge such that the muta-

tion status of every leaf equals the set of mutations on its

path to the root (Fig. 1b). Mutations present in all cells can

be removed from the data as their location in the tree is

known. The same is true for mutations observed only in a

single cell. These are directly associated with the cell and

non-informative in the tree reconstruction. For example,

the mutation matrix from Fig. 1c reduces to:

E =

⎛

⎝

s1 s2 s3 s4 s5 s6 s7

M1 1 1 1 0 0 0 0

M2 0 0 0 0 1 1 1

M3 0 0 0 0 1 1 0

⎞

⎠, (1)

where we now represent the remaining three mutations

as M1, M2, and M3. In general, the binary tree defined by

the matrix E will not be unique. In the example in Fig. 1b,

since the three left-most leaves all have the samemutation

status, their branching order in the tree is, therefore, arbi-

trary. Also the correct placement of the fourth leaf is not

unique, as it has no mutation other than the ones shared

by all samples. It could equally well branch off in the left

subtree after the two ubiquitous mutations instead of the

right one. A more compact tree representation of E is a

mutation tree T, which represents the mutations as nodes
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and connects the nodes according to their order in the

evolutionary history. An empty node is used to indicate

the root (Fig. 1d). The mutation tree can be seen as the

perfect phylogeny tree, where instead of placing the muta-

tions along the edges we encapsulate them inside internal

nodes. This slight change in representation facilitates our

inference later. The mutation tree can be augmented with

the sequenced cells by attaching them to the node that

matches their mutation state (Fig. 1f). The order of muta-

tions shared by the exact same set of cells is unidentifiable

in the mutation tree, as is the case for the two top-most

mutations in Fig. 1f. Such subsets of mutations are sum-

marized in a single node, here highlighted as a shaded

box.

Observational errors

In real data, we do not observe a perfect mutation matrix

(Fig. 1c) but a noisy version of it (Fig. 1g), which we denote

by D in the following. If the true mutation value is 0, we

may observe a 1 with probability α (false positive), and

if the true mutation value is 1, we may observe a 0 with

probability β (false negative) such that

P(Dij = 0|Eij = 0) = 1 − α, P(Dij = 0|Eij = 1) = β ,

P(Dij = 1|Eij = 0) = α, P(Dij = 1|Eij = 1) = 1 − β .

(2)

Assuming the observational errors are independent of

each other, the likelihood of the data given a mutation tree

T, knowledge of the attachment of the samples σ , and the

error rates θ = (α,β) is then

P(D|T , σ , θ) =

n
∏

i=1

m
∏

j=1

P(Dij|Eij), (3)

where E is the mutation matrix defined by T and σ .

For the posterior,

P(T , σ , θ |D) ∝ P(D|T , σ , θ)P(T , σ , θ), (4)

we can factorize the prior, P(T , σ , θ) = P(σ |T , θ)P(T , θ),

and we assume independence of the error rates to set

P(T , σ , θ) = P(σ |T)P(T)P(θ) so that the attachment

prior P(σ |T) depends on T. Such a prior might be useful if

one suspects that cells are more likely to be sampled from

later stages in tumor development and lower down in the

tree. Here though we use a uniform attachment prior.

MCMC sampling

Ourmodel for learningmutation histories from single-cell

mutation profiles consists of three parts: themutation tree

T, the sample attachment vector σ , and the error rates of

the sequencing experiment θ . The resulting search space

has a continuous component for θ and a discrete compo-

nent of size (n+1)(n−1)(n+1)m for (T , σ ), which prohibits

an exhaustive search. Instead, with Eqs. 3 and 4 we built

SCITE, a MCMC scheme to sample from the joint pos-

terior given the data. From the current state (T , σ , θ), we

propose a new state (T ′, σ ′, θ ′) with an ergodic mixture of

moves where we change one component at a time. With

properly defined transition probabilities and acceptance

ratio, our chain converges to the posterior. In practice, we

marginalize out the sample attachments in our model not

only to speed up convergence but to focus on the muta-

tion tree T as the informative part for understanding the

mutation history. Thus,

P(T , θ |D) =
∑

σ

P(T , σ , θ |D). (5)

We then only need to consider moves in the joint (T , θ)

space, thereby reducing the search space by a factor of

(n + 1)m. It is still possible to augment the tree with

the samples in a post-processing step by sampling them

conditionally on the tree.

After convergence, the MCMC chain can be used to

sample trees and error rates proportionally to the joint

posterior distribution in Eq. 4. In addition, it is possible to

obtain a single best fitting combination of mutation tree

and error rates via point estimates of the model parame-

ters. One way of doing this is via maximum a posteriori

(MAP) estimates:

(T , θ)MAP = argmax
(T ,θ)

P(T , θ |D). (6)

Another possibility is to use ML estimates. Since the

likelihood depends on the full set of model parameters

(T , σ , θ), it is more natural to optimize them all jointly

rather than marginalizing out the sample attachment:

(T , σ , θ)ML = arg max
(T ,σ ,θ)

P(D|T , σ , θ). (7)

In the ML framework, SCITE includes a parameter γ that

amplifies the likelihood and which can speed up discovery

of the ML tree.

Finally, SCITE provides an option to skip the learning of

error rates when fixed error rates are provided. Since these

are often available for sequencing data, they can be used

instead to reduce the search space size.

Reconstructing mutation histories from real tumor data

For a first evaluation of SCITE, we applied it to three real

single-cell tumor data sets of different data quality.

JAK2-negativemyeloproliferative neoplasm

The first tumor data is single-cell exome sequencing

data from a JAK2-negative myeloproliferative neoplasm

(essential thrombocythemia) [30]. It originally consists of

712 SNVs detected in the exomes of 58 tumor cells. In our

evaluation, we focus on the 18 mutation sites selected as

cancer-related by [30]. The error rates of the sequencing

were estimated as α = 6.04 × 10−6 (false positives) and

β = 0.4309 (false negatives, allelic dropout). In addition,
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the reduced set has 45 %missing data points (compared to

58 % in the full data set). The mutation matrix (Additional

file 1: Figure S1a) is taken from [34]. It distinguishes three

observed states: normal, heterozygous, and homozygous

mutation. This means only that a homozygous mutation

is observed, not that it is actually present in the data. The

latter would contradict the infinite sites model that each

site mutates at most once. Explanations consistent with

infinite sites are that we either have a false negative for the

normal copy of a heterozygous site, or less likely, a com-

bination of a false positive and an allelic dropout for a site

whose true state is homozygous normal. Another explana-

tion for observing a homozygous mutation could be a loss

of heterozygosity. We adapted our approach to integrate

the third mutation state by using the same error probabil-

ities as [34]. They assume that an allelic dropout is equally

likely to cause a heterozygous mutation to be recorded

as a normal state or as homozygous. Denoting heterozy-

gous sites by 1 and homozygous sites by 2, this assumption

results in the error probabilities:

P(Dij = 0|Eij = 0) = 1 − α −
αβ

2
, P(Dij = 0|Eij = 1) =

β

2
,

P(Dij = 1|Eij = 0) = α, P(Dij = 1|Eij = 1) = 1 − β ,

P(Dij = 2|Eij = 0) =
αβ

2
, P(Dij = 2|Eij = 1) =

β

2
.

(8)

Mutation tree reconstruction We computed the ML

tree for the 18 mutation sites with SCITE. When optimiz-

ing tree and sample attachment, we obtain a mostly linear

mutation tree with a single branching in the lower part of

the tree (Additional file 1: Figure S2a) with a ML log score

of −378.4.

We observe that quite a few samples are placed at nodes

high up in the tree (Additional file 1: Figure S3), though

many of these placements are uncertain, as indicated by

the multiple co-optimal attachments. Taking into account

the uncertainties due to the high error rates and the large

number of missing values (45 %), it is not unexpected that

many cells fit equally well to several neighboring nodes.

The linear nature of the tree matches a sequential mon-

oclonal development. The subclone expansion starting

towards the bottom of the tree indicates the co-existence

of multiple subclones at the point of sampling. However,

from the single time point data, it is not possible to decide

whether the more recent subclones are on the verge of

replacing the more ancestral clones, or will coexist for

longer.

Along with finding the ML tree with attachments, we

performed a fully Bayesian sampling of trees and attach-

ments from the posterior. To summarize such a sample,

we consider as an example the number of branches the

trees possess. The distribution for the data from [30]

(Fig. 2a) shows that the trees mostly have a single branch-

ing point (with two branches) like the ML tree and often

occur as a simple linear chain with a single branch.

Comparison to trees foundwith other approaches The

same data have previously been analyzed with two com-

peting methods [33, 34].

Kim and Simon [34] employ the same underlying likeli-

hood with errors as in Eq. 8 but they use the data to learn

ancestral relations between each pair of mutation nodes

instead of the whole tree at once. They also use the data to

learn a parameter representing how quickly the mutation

tree branches. This parameter is then used to calculate the

prior probability of ancestral relations, which is fed into

their pairwise test and subsequent tree reconstruction.

With the data from [30] (on the same 18 selected muta-

tions), [34] estimate that 92 % of the evolutionary time

of the phylogenetic tree should be before the first binary

split. In their model, this translates into expecting over

80 % of the mutations to occur before any branching in

the mutation tree. Despite this very linear tree estimate,

their algorithm to turn the pairwise ancestral relations

into a mutation tree leads to the very branched tree in

Additional file 1: Figure S2c, which has a much lower log-

likelihood of −1059.7 than the ML tree found with SCITE

(with a log-likelihood of −378.4). This may be due to the

use of the minimum spanning tree algorithm by Kim and

Simon. The method effectively needs to turn ancestral

relations into strict parent–child relations and thereby, it

essentially discounts the deeper history embedded in their

pairwise tests.

We cannot compare directly to the tree found by Bit-

Phylogeny [33] since their algorithm aims to find the

phylogenetic connection between the samples themselves

rather than the mutation tree. Furthermore, the algorithm

groups samples into clones according to the data and a

stick-breaking prior. For example, using all the mutation

data from [30], as well as a bulk normal and bulk can-

cer sequence, and with a particular stick-breaking tree

prior they find one large clone accounting for over half

the samples and eight further smaller clones arranged in

a tree structure [33]. However, we can view their result

as a mutation tree with attachments where the muta-

tions themselves have been censored. This leaves just the

sample attachment information as well as the global tree

structure between their groupings.

To build a complete mutation tree we allow each muta-

tion to be placed before any one of the clonal groupings

of samples (or completely afterwards). For each muta-

tion, we find its ML position and hence find the ML tree

(with attachments), which respects the result of [33]. The

resulting tree (Additional file 1: Figure S2b) is a mostly

linear chain like the ML tree SCITE finds and involves

some of the same genes at the branches although one
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c d
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Fig. 2 The posterior tree branch and error distributions. The posterior distribution for the number of tree branches for the data from [30] in (a), for

the data from [35] in (c), and for the data from [36] in (e), all with fixed false negative error rate β . The prior distributions from uniformly sampled

trees are in light purple. The posterior distributions for β for the same data sets are given in (b), (d), and (f) with the priors included as light purple

lines. When β is learned, the posterior distribution of the number of tree branches shifts slightly as indicated by the black crosses in (a), (c), and (e). SD

standard deviation

of our branches is lost. The log-likelihood of −642.3 for

this tree is substantially better than the tree of [34] but

worse than the tree SCITE finds (with a log-likelihood

of −378.4). With single-cell sequencing we can, as we do

here, simply treat each cell as its own clone and discover

the phylogeny directly. BitPhylogeny [33] instead focuses

on clustering samples into subclones during tree inference

thereby reducing the resolution of the reconstruction.

Error rate learning Within our Bayesian MCMC

approach, we can also sample error rates from the pos-

terior. Focusing on the false negative error rate β while

keeping the false positive α fixed, for the beta prior on β

with mean 0.4309, we chose a large standard deviation

of 0.1. In the MCMC chain, with probability 10 % a

new β ′ is proposed following a Gaussian random walk

with standard deviation equal to one third of the prior’s.

Running the chain for 10 million steps, throwing away

the first quarter, and plotting the resulting posterior of

β we arrive at Fig. 2b. The posterior mean is 0.455 with

standard deviation 0.027 so that the data indicates that

the measured value of 0.4309 is a little underestimated

but well within tolerances.

More interesting for our purposes is how these error

rates affect the tree inference. The MAP β is 0.455

while the MAP tree (with attachments marginalized out)

is a simple chain (Additional file 1: Figure S4). The

mutation order is similar to the ML tree (Additional

file 1: Figure S2a) up to the branching point sug-

gesting a monoclonal tumor development. Keeping the

error rate fixed at 0.4309 instead, we find an iden-

tical MAP tree giving us confidence that the infer-

ence is robust against minor differences in the error

rates.

Mutation tree inference for a larger set of mutations

We also considered a larger set of mutations compris-

ing all 78 non-synonymous mutations from the full data

set. For this number of mutations, with only 58 sampled

cells and high levels of missing data (48 %), the poste-

rior is rather flat making discovering a global optimum

rather than a local optimummore difficult. Increasing the

parameter γ to 2–3 to amplify the likelihood landscape

helped in discovering high-scoring trees. We also tested

that the alternative tree representation (see “Methods”)

designed for instances with more mutations than sam-

ples aided in finding the ML tree (Additional file 1:

Figure S5). The ML tree is again highly linear but the

order especially of some of the 18 mutations varies com-

pared to the ML tree inferred for that subset of the data
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(Additional file 1: Figure S3).Withmissing data, the muta-

tions may fit equally well along several edges and they

were placed in their earliest position, which may explain

some of the variation.More generally though, the high lev-

els of missing data allow mutations and samples to move

without affecting the likelihood while high error rates

allow further rearrangements with only a small effect. For

example, the mutation in the gene PDE4DIP that changes

most between the two data sets has 59 % missing data.

Also the order is essentially determined by the smaller

number of samples that attach higher up the trees. This

smaller number is effectively reduced further by the miss-

ing data, limiting the accuracy of any tree reconstruction,

as explored later with the simulations.

Clear-cell renal-cell carcinoma

The second data set is from single-cell exome sequencing

data of a clear-cell renal-cell carcinoma [35]. The muta-

tion statuses of 50 sites in 17 tumor cells are detailed in the

supplementary material of [35]. We marked the presence

of an SNV when the call was different from the consensus

of five normal tissue cells (in line with the totals provided

in their supplementary material). As for the data from

[30, 35] distinguish between heterozygous and homozy-

gous mutations so we again use Eq. 8. Of the 50 sites, only

35 were not mutated in at least one cell. Only those were

selected since the remaining 15 would simply be placed

at the top of the mutation tree. The error rates were esti-

mated by [35] as α = 2.67 × 10−5 (false positives) and

β = 0.1643 (false negatives) and the data also has 22 %

missing entries (Additional file 1: Figure S1b).

Mutation tree reconstruction The ML and MAP trees

both possess a completely linear accumulation of muta-

tions (Additional file 1: Figures S6 and S7a), which is

consistent with a series of monoclonal expansions and the

conclusions of [35]. The linearity is confirmed in the full

posterior distribution of trees with a linear chain being

dominant (Fig. 2c). In addition, we observe that almost

all of the samples are placed towards the end of the tree.

Again a larger value of the parameter γ and the alternative

tree representation sped up discovery of ML trees.

Error rate learning Fixing a beta prior for β with mean

0.1643 and standard deviation of 0.06 the posterior dis-

tribution of β was obtained by averaging over ten runs

of 10 million steps (with a quarter as burn-in) (Fig. 2d).

The posterior mean is a little larger at 0.207 with a stan-

dard deviation of 0.019 so the stated value is just within

the uncertainties. The MAP value of β instead is a lit-

tle closer at 0.198 while the MAP tree (Additional file 1:

Figure S7b) is essentially identical to that with a fixed value

of β = 0.1643 (Additional file 1: Figure S7a). The order of

some of the higher mutations varies, however, since their

exact placement hardly affects the posterior probability.

Estrogen-receptor positive (ER+) breast cancer

The third data set is from single-nucleus exome sequenc-

ing of 47 tumor cells from an estrogen-receptor positive

(ER+) breast cancer [36]. Only two states are called for

each site: the presence or absence of a SNV. Estimated

error rates from [36] are 9.72 % for allelic dropout, and

1.24 × 10−6 for false discovery. In our analysis, we use

the 40 mutations present in at least two tumor cells

(Additional file 1: Figure S1c).

Mutation tree reconstruction The MAP tree computed

for this data set is shown in Fig. 3. In the Supplement, we

additionally show theML tree (Additional file 1: Figure S8)

and a version of the MAP tree with attached samples

(Additional file 1: Figure S9a). In both the MAP and the

ML trees, we observe a linear accumulation of muta-

tions in the early stages of the tumor, suggesting that

the development was through a sequential replacement of

subclones with no surviving side branches and only a few

cells with ancestral states surviving until present. In the

later stages of the tumor, we observe a complex branch-

ing into co-existing subclones. This branching is exhibited

more generally in the full posterior distribution of trees as

summarized in Fig. 2e.

From the single time point data available for this tumor,

it cannot be inferred whether there will be a long-term

coexistence of subclones, or if we observe a transient state

that will eventually lead to a single surviving subclone. For

initial cancer treatment, however, the status quo, what-

ever mutations co-occur in cells, is already informative

for jointly targeting the present subclones and therefore,

minimizing the risk of further differentiation into therapy-

resistant subclones.

Error rate learning Using a beta prior for β with mean

0.0972 and standard deviation of 0.04, we averaged over

20 runs of 10 million steps (with a quarter as burn-in) to

obtain the posterior distribution of β (Fig. 2f). The poste-

rior mean is more than double at 0.228 (with a standard

deviation of 0.015), which disagrees with the stated value.

This result is in contrast to our later simulations on learn-

ing the error rate (Fig. 4) that show that the MAP value is

close to the true one. A possible explanation for the dis-

crepancy is that allelic dropout only comprises one part

of the false negative rate. Other contributing factors could

include inaccuracies in calling heterozygous mutations at

low coverage.

The MAP value of β is 0.226 with a MAP tree

(Additional file 1: Figure S9b), which shares many feature

with the MAP tree at fixed β = 0.0972 (Additional file 1:

Figure S9a) but has some rearrangements of the branches
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Fig. 3MAP tree for the (ER+) breast cancer for the [36] data. See Additional file 1: Figure S9a for a version with samples attached. Yellow genes

indicate non-synonymous mutations in known cancer genes [36]

lower down and some reordering of the mutations higher

up. Learning the error rate also leads to slightly fewer

branches in the posterior distribution, as indicated by the

black crosses in Fig. 2e.

Systematic evaluation of SCITE on simulated data

With the limited availability of single-cell sequencing data

at this point and the lack of the ground truth in real data,

we performed a more systematic evaluation of SCITE on

simulated data sets. Our analysis focuses on the accuracy

of tree inference and error rate learning, the effect of data

quality, and the practical run times of SCITE.

Accuracy of tree inference

To check the consistency of our approach, we simu-

lated random mutation trees with attachments uniformly,

which allows for poly-clonal tree topologies. First, for

n = 20 and α = 10−5, we generated 100 such trees

with up to 100 attachments. For error rates 100β ∈

{5, 15, 25}, for each tree we sampled from a lognormal

with standard deviation 0.1 and multiplied it by β to

obtain β∗. Then we added noise to the perfect data

with rates (α,β∗) and removed 1 % of the data. Tak-

ing subsets of the data of size m, we learned the ML

and MAP trees for the error rates β . This gives us
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Fig. 4 Learning error rates. Comparison of the MAP false negative rate

β learned using SCITE for n = 20 against the β used to generate the

data. The solid blocks are one and two standard deviations of inferring

β if the tree was known.MAPmaximum a posteriori probability

a random misspecification of around 10 % compared

to β∗.

We quantified the difference between the inferred trees

and the true tree by counting how often a node has the

wrong parent (Fig. 5 and the top row of Additional file 1:

Figure S10). In the ML setting, if no samples are attached

to a chain of mutations, then any ordering of those muta-

tions has the same likelihood. Here, in the score we do

not penalize this non-identifiability and take the order-

ing that minimizes the distance to the generating tree.

The non-identifiability will, however, tend to decrease as

the number of samples m increases. The MAP tree does

select an ordering (roughly following the frequencies) and

hence has higher distances than the ML tree. In general,

MAP inference should be more robust and less prone to

overfitting, but can have a higher bias. To compare the

ML and MAP inference fairly, we chose a random order-

ing of the mutations in non-identifiable regions in the

ML trees and recomputed the distances to the generat-

ing tree. We do observe a marginal improvement in the

tree reconstruction with the MAP tree (Additional file 1:

Figure S11).

The errors, however, are not a result of the infer-

ence method, since SCITE indeed finds the ML tree

(Additional file 1: Figure S12). Instead these errors are

inherent in noisy data where another tree might happen

to fit the data better than the generating tree. The discrep-

ancy can only be resolved by reducing errors or increasing

the sample size and Additional file 1: Figure S10 gives

an indication of how this occurs. To put the errors in

scale, a value of two would refer to adjacent mutations in

a chain being swapped. Since samples contain the muta-

tions along their entire history in the mutation tree, we

have a greater consensus about the mutation structure

higher up the tree than lower down. The exact placement

of mutations near the bottom of the tree may be deter-

mined by only a couple of samples so that the errors we

typically see with larger m are mutations near the bottom

of the tree being shifted, or two adjacent mutations being

swapped. With this in mind, we obtain very good trees

with about 60 samples, depending on the error rate.

Fig. 5 Comparison of different methods. Comparison of the tree learning for n = 20 using SCITE for the ML tree (dashed) and MAP tree (dotted)

against results from [34] (solid lines). The ML tree distances do not include non-identifiable regions. K&S Kim and Simon [34],MAPmaximum a

posteriori,MLmaximum likelihood
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We repeated the simulations for n = 40 and up to

200 attachments as depicted along the bottom row of

Additional file 1: Figure S10 and again find good recon-

struction when we have several samples per mutation.

Learning the error rates

Since SCITE can also perform fully Bayesian tree infer-

ence, we examined its ability to infer the false negative rate

from data. For 2000 random trees with 60 attachments, we

generated data with a range of β from 5 to 25 %, α = 10−5,

and 1 %missing data. We further fixed a uniform prior for

learning β so that no information is passed to SCITE apart

from the noisy and incomplete mutation matrix.

There is very high correlation between the generating β

and the MAP value learned (Fig. 4). To put this in context,

we consider the theoretical distribution if the tree was

known. From the random trees and attachments, around

22 % of the entries in the perfect mutationmatrix are ones.

They are randomly changed with the rate β , leading to a

binomial distribution and a standard deviation of

√

100β(1 − β)

22mn

when inferring β from the result. One and two standard

deviation intervals are included in Fig. 4, showing again

that SCITE performs very well as it must also infer the tree

structure and handle the missing data.

Similar plots for m = 40 and m = 80 (Additional file 1:

Figure S13) show also a tightening of the β inference asm

increases.

The effect of missing data

High rates ofmissing data points due to unobservedmuta-

tion states are typical for present-day single-cell sequenc-

ing data. We performed simulation experiments to test

how this feature affects the accuracy of mutation tree

reconstruction. With an error rate of β = 10 % and

the same misspecification as before, we generated up to

400 random trees with up to 80 attachments. Keeping

α = 10−5, we varied the amount of missing data from

1 to 20 % to see the effect on the tree reconstruction for

m = {40, 60, 80}. We see a very weak increase in recon-

struction errors as themissing data rate increases (top row

of Additional file 1: Figure S14). Since SCITE treats the

inference probabilistically, missing data is akin to effec-

tively reducing the number of samples m, so the behavior

in Additional file 1: Figure S14 is in line with changing m

slightly in Additional file 1: Figure S10. The behavior also

shows that SCITE is robust even against high missing data

rates.

Looking back to the even higher missing data rates in

the earliest data sets, we simulated up to 60 % missing

data with 400 trees and the same settings as before. The

reconstruction progressively gets worse with increasing

missing data (bottom row of Additional file 1: Figure S14).

At around 30–40 % missing data with 80 attachments, we

have similar performance as for 40 cells attached with no

missing data, and so have effectively halved our sample

size. With 60 %missing data, the reconstruction is notably

poorer again, although SCITE does find about half the

parents correctly for the MAP solution and a large major-

ity with the ML approach. This difference is because the

optimal order is chosen for the ML solutions in case of

non-identifiability.

Doublet samples

Rarely, instead of isolating a single cell for sequencing, a

pair of cells is captured instead. We checked how robust

SCITE is to these sorts of perturbations by again simulat-

ing data from 400 random trees with 20 nodes and up to

100 attachments. To represent the sequences of doublet

samples, we took up to 20 pairs of attached samples and

combined them by recording a mutation whenever it was

present in either of the original single cells. Errors were

added with a rate of β = 10 % (misspecified as previ-

ously), α = 10−5, and 1 % missing data. We ran SCITE

with m = {40, 60, 80} total samples, including up to 20

doublets, to see their effect on the tree reconstruction.

We observe a linear increase in reconstruction errors

as the number of doublets increases (Additional file 1:

Figure S15) with decreasing gradient as m increases since

then the doublets represent a smaller proportion of the

total sample. Unlikemissing data, which reduces the effec-

tive sample size, doublets add confounding mutations,

which could disagree with the tree topology. However,

since SCITE employs probabilistic inference, and at the

level of the mutation tree rather than the sample tree,

the consensus of the single-cell samples moderates the

negative effects of the doublets. Even at high rates of dou-

blet sampling, like 10 or 20 %, the tree reconstruction,

therefore, performs well.

Run times

To uncover the complexity of the stochastic search and

MCMC scheme, we simulated data from 400 uniformly

sampled trees with up to 100 nodes and 400 attached sam-

ples. We set α = 10−5 and β = 0.1 (with the same

misspecification as before), included 1 % missing data and

set the parameter γ = 1 as for the MCMC case. For each

tree, we ran SCITE 100 times and recorded how many

steps the algorithm took to first hit the highest likelihood

tree uncovered by that run, as well as the time of the run.

The lengths of the chains were chosen so that nearly all

of the runs would share the same highest likelihood. The

average number of steps needed to first find the consen-

sus ML tree can then be calculated (for those runs with a

lower likelihood, we add the length of the chain and then

assumed they would find the ML tree in an additional
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average number of steps). This can then be multiplied by

the average time per step to give a measure of how long

SCITE takes to find a ML tree on average, and repeated

for all 400 trees to provide Fig. 6.

On the theoretical side, arguments analogous to those in

[37] indicate that the MCMC chain requires O(n2 ln(n))

steps to converge or find ML trees. The likelihood land-

scape may also depend on n and m in non-trivial ways,

which can further affect the convergence. With each

MCMC step taking O(mn) to score the tree, we get an

overall estimate of O(mn3 ln(n)) for convergence.

Compared to the numerical results in Fig. 6, the gra-

dients in the log–log plots are 4.5, 4.5, and 4.2 for m =

{n, 2n, 4n} respectively. Since m ∼ n in the simulations,

these are a little higher than the power of 4 suggested by

the estimate, but roughly in line with it. To check the lin-

ear scaling with m, we take the fit lines at n = 60 in

the middle of the simulation and we find that doubling

m from n to 2n and then 4n increases the time by a fac-

tor of 1.9 and then 1.95, slightly less than double and

in line with linear scaling. With linear scaling in m, and

for a reasonable number of mutations, SCITE will, there-

fore, be able to handle large numbers of sampled cells

efficiently.

Further parameters with influence on the practical per-

formance of SCITE are the move probabilities and for

ML tree discovery, additionally the parameter γ . We per-

formed a systematic search for the optimal parameters,

which is described in Additional file 1. Our observation

is that an optimal choice of move probabilities gives a

constant factor speed-up compared to default values. Sim-

ilar results were observed for γ , for which the optimum

for finding a ML tree quickly is just below 1, the value

required for the MCMC sampling.

Comparison with competing approaches

To assess further the performance of SCITE, we compared

it to a simple perfect phylogeny approach, two methods

designed for single-cell data, and two recent methods for

tree inference from bulk-sequencing data.

Perfect phylogeny

We first compared SCITE against a simple algorithm

for solving the perfect phylogeny problem (i.e. testing

whether the data defines a phylogeny, and if it does to

construct one [12]). A mutation matrix has a perfect phy-

logeny if a tree can be constructed such that the leaves

are the samples and the mutations are each placed at

exactly one edge, such that for every leaf the mutations

on the path leading to it from the root reflect its mutation

status. Such a tree exists only if there are no contradic-

tions in the data due to noise or recurring mutations. But

if it exists, it can be represented as a mutation tree by

labeling nodes instead of edges. To test for perfect phy-

logeny, we use a version of the data with nomissing values.

From our simulated trees and data, only very few are free

of contradictions, which limits the tree comparison to a

few instances. The perfect phylogenies on average deviate

more from the true tree than bothML andMAP trees and

none is found for instances with more than 45 samples.

The differences between the perfect phylogeny and the

true tree are due to both the errors introduced and insuf-

ficient information to fully reconstruct the tree. Details of

the comparison are given in Additional file 1: Table S1.

The approach of Kim and Simon [34]

The method in [34] reconstructs the same type of muta-

tion trees as our approach. However, in their approach,

a parameter representing how quickly the mutation tree

branches is first learned from the data. This parameter

is then used to calculate the prior probability of ances-

tral relations, which informs a pairwise ordering test and

subsequent tree reconstruction. Instead of learning the

parameter from the data, we give their method the exact

value from the tree that was actually used to generate the

data since this simplifies running the simulation test. Of

Fig. 6 Scaling behavior. The average time taken for SCITE to first find a ML tree as the number of mutations n in the tree is varied along with the

number of attached samplesm = {n, 2n, 4n}
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course, in practice, this piece of information would not

be available so the results from their algorithm are over

optimistic. Nevertheless, the pairwise approximation per-

forms comparatively poorly (Fig. 5). In particular, there is

little improvement as the number of samples increases.

Although the pairwise ancestral tests will become more

accurate, this additional information appears to have little

impact on the conversion to a mutation tree.

Comparisonwith BitPhylogeny

More advanced probabilistic inference is provided by Bit-

Phylogeny [33]. This method, however, reconstructs a

hierarchical subclone structure rather than a mutation

tree thereby precluding a direct comparison to SCITE and

the approach of [34]. Therefore, we convert the outcome

of each method into a complete mutation tree with sam-

ples attached. For SCITE, this means finding the ML tree

with attachments. For the approach of [34], we place the

samples at their best fitting position on the tree found.

For BitPhylogeny instead, we place the mutations along

the branches of their clonal tree in the position that max-

imizes the likelihood. Since the mutations and samples

may be grouped together, as a measure of fit we use the

consensus node-based shortest path distance (as defined

in [33]) between the (completed) inferred tree and the

generating tree. In particular, for each tree, the pairwise

shortest distance between any two samples is their num-

ber of differing mutations. We then normalize by aver-

aging over the absolute differences between the pairwise

distances in the inferred and generating trees, rather than

taking the sum.

For n = 20, α = 10−5, and β = 0.1 (with the

same misspecification as before), we generated 400 such

trees with 1 % missing data. For simplicity and giving

BitPhylogeny a slight advantage, we passed it the com-

plete data. The results for m ∈ {40, 60, 80} are presented

in Fig. 7. The methods compared perform significantly

more poorly than SCITE, with BitPhylogeny [33] perform-

ing better than the algorithm of [34], but with neither

approaching the performance of SCITE.

We can also compare the performance of the differ-

ent methods in terms of the difference in log-likelihoods

between the inferred and generating trees, normalized

by dividing by the number of data matrix elements

(Additional file 1: Figure S12). This shows similar behav-

ior to Fig. 7 and we observe that SCITE always provides

a non-negative difference. SCITE, therefore, always found

either the generating tree or one with a slightly higher

likelihood than the generating tree.

Comparisonwith bulk-sequencingmethods

Finally, we compared SCITE to methods designed for

deconvolution and tree reconstruction from mixed bulk

sequences. We chose PhyloWGS [24] and AncesTree [22]

as two recent high-performing methods that allow sam-

ples to be treated separately as well as combined. Phy-

loWGS employs a stick-breaking tree prior (like BitPhy-

logeny) while AncesTree solves the deconvolution and

ancestry as a matrix factorization. When passing the sim-

ulated single-cell mutations as individual samples to both

methods, neither returned anything other than a single

grouping of mutations. A possible explanation for this

result is that the two methods interpret the binary muta-

tion states as cellular prevalence in mixed samples, which

likely causes trouble in the deconvolution step. Better per-

formance was obtained when combining the single cells

into a bulk mixture, with both methods returning muta-

tion trees with the mutations possibly grouped together at

the nodes. To compare with the other methods, we again

placed the samples at their best positions in the inferred

trees to obtain the results in Fig. 7. AncesTree performs

slightly worse than PhyloWGS and both are notably worse

than BitPhylogeny and SCITE. This is not unexpected,

as only the latter two are designed to handle single-cell

Fig. 7 Comparison of additional methods. Comparison of the tree inference of SCITE, the algorithm of [34], BitPhylogeny [33], PhyloWGS [24], and

AncesTree [22]. The quantity �d is the normalized consensus node-based shortest path distance (as defined in [33]) between the inferred and

generating trees. AT AncesTree, BP BitPhylogeny, KS Kim and Simon [34], PW PhyloWGS



Jahn et al. Genome Biology  (2016) 17:86 Page 13 of 17

data. The main conclusion here is that specialized meth-

ods are necessary for single-cell data as approaches for

mixed samples are not readily applicable.

Conclusions
Single-cell sequencing data is giving unprecedented

insights into intra-tumor heterogeneity, a major obsta-

cle to permanent remission in cancer treatment. In this

paper, we introduced SCITE, a likelihood-based recon-

struction of tumor genealogies from noisy and incomplete

mutation profiles of single cells. The approach provides a

flexible MCMC sampling scheme that allows us to either

find the best fitting tree or sample from the posterior dis-

tribution, and it can be combined with learning the error

rates of the sequencing experiments. We have shown that

the probability model underlying SCITE is highly adapt-

able. It performs well in the presence of various types of

noise, including types that were not explicitly modeled,

such as doublet samples (the inadvertent sequencing of

two instead of a single cell). The model also lends itself

to some straightforward extensions, such as the incorpo-

ration of position-specific error rates, or the introduction

of further mutation and error types that would maintain

the independence of genome positions. Besides its flexi-

bility, the key advantage of SCITE is its linear scaling with

the number of samples. While this feature is negligible for

present data sets, it will become essential as soon as hun-

dreds or even thousands of cells of a tumor are routinely

sequenced.

Using SCITE, we reconstructed the monoclonal origin

of an ET tumor and a clear-cell renal-cell carcinoma, as

well as a complex subclonal structure in an ER+ breast

cancer. The consistency of SCITE is shown in simulation

studies, which we also used to estimate the number of cells

necessary to obtain reliable tree reconstructions, a piece

of information that could be useful in the design of future

sequencing experiments.

SCITE differs from earlier approaches, in particular Bit-

Phylogeny [33], in its use of single cells as taxonomic units,

giving it the highest possible resolution in the tree recon-

struction. Because each cell provides information about

all the mutations, and all this detail is used, this approach

allows a more robust reconstruction of the mutation tree.

This in turn aids the identification of driver mutations.

The placement of the individual cells is, however, less

certain. Clustering cells into clones instead, as done in

BitPhylogeny [33], and placing these as the taxa means

we can use the consensus of single-cell information in

each clone to deduce more robustly the ancestral relation-

ships between the clones themselves, but at the expense of

reduced accuracy in the reconstruction of the mutational

history.

Further improvements in tree reconstruction could be

achieved by considering copy number alterations along

with point mutations. For one, copy number information

could be used to understand point mutations states bet-

ter, e.g. a seemingly homozygous mutation may in fact

be loss of heterozygosity, but more importantly it can be

used as a feature in tree reconstruction itself, as has been

done previously for bulk-sequencing data [24]. The main

challenges here will be that for large-scale copy number

events, the independence of mutation sites is no longer

given, and that the infinite sites assumption would no

longer hold.

The knowledge of individual mutation histories is a

promising source of information for personalized can-

cer treatment. Once single-cell sequencing has become

more prevalent, the unprecedented resolution of muta-

tion histories reconstructed from single cells will likely

be valuable in many more respects. One direction is the

identification of recurrent mutation patterns by compar-

ing high-resolution mutation trees from patients with the

same and/or different tumor types. Another direction

could be to combine single-cell data from different time

points and different locations in the tumor to obtain a bet-

ter understanding of the temporal and spatial organization

of subclonal populations of tumor cells, again at a higher

resolution than would be possible with bulk-sequencing

data. When sampling cells from the primary tumor and

metastasis, the attachment point of metastatic cells to the

mutation tree could help to answer the open question of

whether subclones with the potential to metastasize arise

early or late in tumor development.

Methods
Mutation trees

In SCITE, we represent a rooted mutation tree T over n

mutations as an augmented ancestor matrix A(T) where

every node is considered an ancestor of itself:

Aik =

{

1, if i = k or i is an ancestor of k,

0, elsewise.
(9)

For example, the augmented ancestor matrix for the tree

in Fig. 1d, reduced to the mutation matrix given in 1 is

A =

⎛

⎝

M1 M2 M3 R

M1 1 0 0 0

M2 0 1 1 0

M3 0 0 1 0

⎞

⎠, (10)

where R represents the root of the mutation tree. The cells

are attached to T such that the path to the root spells out

their mutation status. This placement is denoted by a vec-

tor σ , which records at the jth position the attachment

point of sample j. Carrying on the example from Eq. 1 and

Fig. 1d, we have σ = (1, 1, 1, 4, 3, 3, 2) where 4 represents
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the root. The connection between the mutation matrix

and the mutation tree is

(Eij|T , σ ) = A(T)iσ j . (11)

This simply means that for a given tree and sample attach-

ment, the mutation status of a sample is identical to the

one observed in the node where the sample attaches to the

tree. Therefore, the likelihood in Eq. 3 can be rewritten as

P(D|T , σ , θ) =

n
∏

i=1

m
∏

j=1

P(Dij|A(T)iσ j) (12)

and thereby computed directly from T and σ .

MCMC sampling

In principle, the MCMC of SCITE needs three types of

moves to separately alter the tree T, the attachment vector

σ , and the error rates. In fact, it is possible to marginalize

out the σ component, such that we only need to con-

sider moves in the joint (T , θ) space. We first focus on the

marginalization and then describe the remaining move

types.

Marginalization of the sample attachment

A move where we pick a sample and a new parent for

it uniformly would satisfy the necessary properties for

the MCMC chain on σ to converge, but we can achieve

convergence much faster. This is because the likelihood

in Eq. 12 factorizes into a product for each sample to

be attached. As long as the prior P(σ |T , θ) can also be

factorized (so that the attachment for each sample is inde-

pendent of the others), we can include the priors as in

Eq. 4 and efficiently sum Eq. 12 over σ to marginalize it

out:

P(T , θ |D)

P(T , θ)
∝

∑

σ

m
∏

j=1

[

n
∏

i=1

P(Dij|A(T)iσ j)

]

P(σ j|T , θ)

(13)

=

m
∏

j=1

n+1
∑

σ j=1

[

n
∏

i=1

P(Dij|A(T)iσ j)

]

P(σ j|T , θ).

Computation of Eq. 13 is in O(mn) time due to the tree

structure underlying A(T). Along with efficient computa-

tion of Eq. 13, we now need only search over the (n + 1)m

times smaller space of trees T and error rates θ leading

to much faster MCMC convergence. This marginalization

is equivalent to grouping all attachments to the same tree

into a single object, which is responsible for the similarly

large speed-up for sampling Bayesian networks in order

MCMC [38] and more recently partition MCMC [39].

Analogously, nested effect models average over all effects

with uniform prior [40].

With the attachments marginalized out, we need to con-

sider only moves in the joint (T , θ) space. We can change

one component at a time to propose a new pair (T ′, θ ′)

with transition probabilities q(T ′, θ ′|T , θ) and accepting

moves with the ratio

ρ = min

{

1,
q(T , θ |T ′, θ ′)P(T ′, θ ′|D)

q(T ′, θ ′|T , θ)P(T , θ |D)

}

(14)

to sample proportionally to P(T , θ |D). Once we have

sampled a tree, we can easily sample each attachment

independently following Eq. 13.

Treemoves

Akin to standard MCMC approaches on graphical struc-

tures [41], we build a scheme on rooted mutation trees for

fixed errors θ as follows. Given the current tree T, we find

the neighborhood of all trees reachable with the MCMC

move from T. One then samples a tree T ′ from this neigh-

borhood with some proposal probability q(T ′, θ |T , θ) and

accepts the move with the probability in Eq. 14.

As long as the moves satisfy reversibility (that is, if the

move from T to T ′ can be proposed with a non-zero

probability, the reverse move from T ′ to T also has non-

zero probability to be proposed), irreducibility (that is, a

sequence of moves exists that leads from any tree to any

other), and aperiodicity (which can be ensured by includ-

ing the tree T in its neighborhood or adding a non-zero

probability not to move), once the chain converges this

scheme would allow us to sample trees proportionally to

P(T , θ |D).

The basic MCMC move we use is prune and reattach.

We sample a node i uniformly from the n available and

cut the edge leading to this node to remove the subtree

from the tree. Then we sample one of the remaining nodes

(including the root) uniformly and attach the subtree there

instead. An example is illustrated in Fig. 8.

The reverse move, where we again sample i first but

then pick its old parent, has the same proposal probabil-

ity q(T , θ |T ′, θ) = q(T ′, θ |T , θ) since the non-descendant

set has the same size each time i is removed. This term

then drops from Eq. 14 and need not be calculated. Since

we can also choose the old parent when sampling a new

one, this move has a non-zero probability of proposing the

same tree T, ensuring aperiodicity. There is also a path

from any tree to a tree with all nodes attached to the

root, by moving each node to the root step by step. Via

reversibility, we can likewise move from there to any other

tree ensuring irreducibility. The prune and reattachmove,

therefore, suffices to sample trees according to their pos-

terior. To speed up the convergence of the chain, we use

two additional moves in our MCMC scheme: swap nodes

to swap the labels of two nodes and swap subtrees to swap

two subtrees. (See Additional file 1 for more details.) One

of the three moves is picked at each step of the chain with

a fixed probability.
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Fig. 8 Prune and reattach MCMCmove. a From our starting tree T, we first select a node uniformly, hereM5 , and detach it from the rest of the tree. b

Then we sample one of the remaining nodes in the rooted tree; hereM2 is chosen. c Finally, we attach the detached subtree formed ofM5 and its

descendants to the newly selected nodeM2

Error learning

Where estimates of the error rates are known, we can

input this information into the prior P(θ). Since θ is

between 0 and 1, we choose a beta prior with mean equal

to the known estimates and a large standard deviation

to be weakly informative. Although for a given (T , σ ) we

can marginalize out θ analytically, this interferes with the

speed-up in Eq. 13. Instead, to move in the error space, we

choose a simple Gaussian random walk with fixed stan-

dard deviations in each direction and centered on the

current value θ .

Maximum likelihood tree

Along with utilizing our MCMC scheme to perform fully

Bayesian tree inference, we can adapt the method to

search for the ML tree as well. In the ML framework, we

consider the full space of trees with attachments (T , σ )

and find the best scoring pair, rather than summing over

the attachment points. Keeping the error rates θ fixed for

simplicity, when we wish to search for the ML tree with

attachments, after maximizing over all possible place-

ments, we can define the following score for each tree:

S(T) = P(D|T , σ ∗) , σ
∗ = argmax

σ
P(D|T , σ ).

(15)

Since the likelihood in Eq. 12 factorizes, we can find the

best attachment for each sample independently of the

others,

σ
∗
j = argmax

k

n
∏

i=1

P(Dij|A(T)ik), (16)

by running over the columns of A(T) and comparing to

the observed data with the error rates as in Eq. 2. If sev-

eral placements provide the same maximum, any may be

selected for calculating S(T), which is then

S(T) = max
σ

P(D|T , σ ) (17)

and which again involves only O(mn) simple operations.

Now we can turn our attention to finding the ML tree:

T∗ = argmax
T

S(T), (18)

which because of Eq. 17 is the tree thatmaximizes the like-

lihood in Eq. 12. The number of rooted trees with (n + 1)

nodes (including the root) grows factorially so an exhaus-

tive search becomes infeasible for more than ten nodes or

so.

Instead we can reuse our MCMC scheme on the space

of rooted mutation trees where given the current tree T

we propose a tree T ′ according to one of the three move

types with the same proposal probability q(T ′|T) but now

accept the move with probability

ρ = min

{

1,
q(T |T ′)S(T ′)γ

q(T ′|T)S(T)γ

}

. (19)

The power of γ here is a way to flatten the distribution

(for γ < 1) or make it more pronounced (for γ > 1). Sim-

ulated annealing would involve running the chain while

simultaneously increasing γ → ∞ to end up in a local

maximum. Here, instead, we chose a value (depending on

the data) for this parameter that allows fast discovery of

the maximally scoring tree and simply run many chains,

recording the maximally scoring tree we encounter.

In the Bayesian framework, we can search for the MAP

tree. Including the prior on all discrete components and

updating S(T) accordingly, we would find the joint MAP

tree and attachments with the scheme here. Averaging out

the attachments instead, we can search just for the MAP

tree as well. In particular, we replace S(T) by P(T , θ |D) in
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Eq. 19. We can also find jointly maximal trees and error

rates by putting the error moves back in.

Alternative representation for ML discovery

For theML tree with attachments, since the optimal place-

ment for each attachment can be easily found, we are left

to search over all rooted trees with (n+1) nodes. However,

when m � n, we may return to the binary genealogical

tree (Fig. 1b) with m sampled cells as leaves and (m − 1)

internal binary divides. The mutations are placed along

the edges and they are present in all cells further down

that lineage. For a given genealogical tree with leaves, the

optimal placement of every mutation along the edges is

simple to compute. Each tree is assigned a score corre-

sponding to the likelihood of the data given the optimal

placement of the mutations, which can again be calcu-

lated in O(mn) time. The binary tree with the highest

score is then the ML binary genealogical tree that directly

provides the ML mutation tree with attachments when

we change the representation back to mutations trees

(Fig. 1f).

We can search the binary tree space with analogous

moves as for the mutation trees. A prune and reattach

move can be performed by detaching one half of any inter-

nal binary divide (the remaining neighboring edges join

together) and reinserting it into any of the edges then

present. We can also swap leaf labels. The size of the

relevant binary tree space is

m! (m − 1)!

2m−1
,

which may be smaller than the mutation tree space of

(n+1)(n−1), or easier to search, allowing theML tree to be

discovered more quickly. This alternative representation

is implemented in the SCITE software package.

In the binary tree space, one can further marginalize,

but this is over the mutation placement rather than the

sample attachments and the resulting posterior distribu-

tion does not translate directly into one over the mutation

tree space.
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