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Abstract 45 

 46 

Drought events are increasing globally, and reports of consequent forest mortality are 47 

widespread. However, due to a lack of a quantitative global synthesis, it is still not clear 48 

whether drought-induced mortality rates differ among global biomes and whether functional 49 

traits influence the risk of drought-induced mortality. To address these uncertainties, we 50 

performed a global meta-analysis of 58 studies of drought-induced forest mortality. Mortality 51 

rates were modelled as a function of drought, temperature, biomes, phylogenetic and 52 

functional groups, and functional traits. We identified a consistent global-scale response, 53 

where mortality increased with drought severity (log mortality (trees trees-1 year-1) increased 54 

0.46 (95% CI=0.2-0.7) with one SPEI unit drought intensity). We found no significant 55 

differences in the magnitude of the response depending on forest biomes or between 56 

angiosperms and gymnosperms or evergreen and deciduous tree species. Functional traits 57 

explained some of the variation in drought responses between species (i.e. increased from 30 58 
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to 37% when wood density and specific leaf area were included). Tree species with denser 59 

wood and lower specific leaf area showed lower mortality responses. Our results illustrate the 60 

value of functional traits for understanding patterns of drought-induced tree mortality and 61 

suggest that mortality could become increasingly widespread in the future.  62 

 63 

INTRODUCTION 64 

 65 

Increased frequency and intensity of drought events, defined as deviation from local 66 

long-term average climate, are predicted to occur throughout the world as a consequence of 67 

global climate change (Dai, 2013; Trenberth et al. 2014). Forest mortality related to extreme 68 

drought has already been reported worldwide (Allen et al. 2010, 2015), with potentially far-69 

reaching impacts on forest diversity and function (Slik, 2004), human society and economies 70 

(Anderegg et al. 2013; Hanewinkel et al. 2013), biogeochemical cycling (Bonan 2008; 71 

Adams et al. 2010), and species distribution (Benito-Garzon et al. 2013). Forests play a major 72 

role in driving global climate due to their key role in hydrological cycling (Bonan 2008; 73 

Frank et al. 2015) and ability to sequester and store large amounts of carbon (Pan et al. 2011). 74 

Evidence already exists for a widespread reduction in carbon sequestration during drought in 75 

tropical (Gatti et al. 2014; Doughty et al. 2015) and temperate forest ecosystems (Anderegg et 76 

al. 2015). 77 

 78 

There are many examples of drought-induced tree mortality, and several reviews and 79 

region-specific syntheses (e.g. Fensham et al. 2009; Allen et al. 2010; Phillips et al. 2010). 80 

Additionally, the information gleaned from observational studies of drought-induced tree 81 

mortality is supplemented by broad-scale experimental work, which usually allows clearer 82 

attribution of causes and deeper mechanistic understanding (Estiarte et al. 2016; Meir et al. 83 
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2015). There is however, a lack of quantitative synthesis at a global scale. Despite recent 84 

syntheses addressing size-dependent mortality (Bennett et al. 2015) and the importance of 85 

hydraulic traits in global-scale mortality (Anderegg et al. 2016), it is difficult to discern 86 

broad-scale patterns or to predict future responses. While differential mortality is often 87 

reported between co-existing species (e.g. Mueller et al. 2005; Ruthrof et al. 2015), and 88 

studies have increased our understanding of the physiological mechanisms of tree mortality 89 

(Mencuccini et al. 2015; Davi and Cailleret, 2017), there is still a lack of knowledge of 90 

drought-induced mortality responses of different tree functional strategies at a global scale.  91 

 92 

Examples of recent mortality related to drought and heat stress exist across all 93 

forested continents and major forest types (Figure 1). In Northern temperate forests, high 94 

mortality rates are reported for Pinus sylvestris, associated with droughts in the 1990s and 95 

2000s (Dobbertin et al. 2005; Galiano et al. 2010) and for Populus tremuloides in western 96 

Canada (Hogg et al. 2008) and in the USA (Worrall et al. 2008; Ganey and Vojta, 2011; Kane 97 

et al. 2014). Drought impacts are particularly well known in the Southwest USA (Allen et al. 98 

2015), with high mortality of numerous tree species, including: Juniperis monosperma (Gitlin 99 

et al. 2006), Pinus ponderosa, Pinus edulis, Pseudotsuga menziesii, and Abies concolor 100 

(Ganey and Vojta 2011; Kane et al. 2014).  Mortality is also well documented in 101 

Mediterranean areas, for example in Spain, high mortality is occurring in Pinus halepensis 102 

plantations (Garciá de la Serrana et al. 2015), in natural forests in the Sierra Nevada (Herrero 103 

et al. 2013) and in Scots pine populations in the Pyrenees and the north east (Vilà-Cabrera et 104 

al. 2013). In the southern hemisphere, broad-scale tree die-off events are affecting multiple 105 

Eucalyptus and Corymbia species in Australia (Fensham and Holman, 1999; Rice et al. 2004; 106 

Fensham et al. 2009; Matusick et al. 2013) and Nothofagus and Austrocedrus stands in 107 

Patagonia (Suarez and Kitzberger 2008). In tropical areas, extreme droughts associated with 108 
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El Niño-Southern Oscillation events have led to increased mortality in species-rich tropical 109 

forests in Asia (Aiba and Kitayama, 2002), Central America (Chazdon et al. 2005) and South 110 

America (Williamson et al. 2000) while 2005 and 2010 droughts in Amazonia were also 111 

associated with mortality increases (Phillips et al. 2009; Feldpausch et al. 2016). 112 

 113 

Some studies suggest that drought and/or increased temperature impacts on 114 

demography will be greatest in, or limited to, already arid ecosystems (Ruiz-Benito et al. 115 

2014). Indeed, a synthesis by Anderegg et al. (2015) found evidence of stronger reductions in 116 

tree growth after drought in dry ecosystems. Conversely, we could expect that the trees in 117 

these drier ecosystems may be more adapted to water stress (Arndt et al. 2015), and that the 118 

species growing in generally moister conditions could be most sensitive to extreme drought 119 

events (Jump et al. in press). Similarly, individuals growing nearer the dry range edge of their 120 

species may be more sensitive, but not necessarily, as local adaptation could play a role in 121 

counteracting the effects of drier conditions (Lázaro-Nogal et al. 2016). Current uncertainty 122 

about which areas are likely to be the most vulnerable to drought is an obstacle for 123 

conservation and management planning, while gaps in our understanding of the physiological 124 

explanations for drought-induced mortality, and high variation between locations and species 125 

make long-term and broad-scale predictions of forest vulnerability and community 126 

composition difficult (McDowell et al. 2013; Meir et al. 2015). 127 

 128 

Drought-induced tree mortality can lead to long-term changes in the composition and 129 

structure of forests due to species and age-specific sensitivities (Martínez-Vilalta and Lloret, 130 

2016). Cailleret et al. (2013) predict future broad-scale mortality of the dominant tree species 131 

Picea abies and Abies alba and their replacement with Fagus sylvatica in response to summer 132 

droughts in Bavaria, and Ruthrof et al. (2015) show that Eucalyptus marginata is more 133 
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sensitive to drought than Corymbia calophylla in southwestern Australia and predict future 134 

compositional shifts. Several examples exist where high mortality of dominant tree species 135 

suggests a shift in community composition; montane forests of Switzerland and northern 136 

Spain may be undergoing a vegetation shift due to increased drought. Pinus sylvestris suffers 137 

high mortality and poor regeneration and tends to be replaced by the more drought tolerant 138 

Quercus species (Galiano et al. 2010; Rigling et al. 2013; Aguade et al. 2015). In the 139 

Southwest USA Pinus edulis suffers high mortality during drought and Juniperus spp are 140 

becoming dominant (Mueller et al. 2005), or forest die-off leads to a persistent shift of 141 

vegetation type from forest to woodland (Allen and Breshears, 1998). In Patagonia, severe 142 

drought events have led to a shift in forest composition, with Nothofagus dombeyi being 143 

replaced with Austrocedrus chilensis (Suarez and Kitzberger, 2008). In extreme cases, 144 

changes in drought conditions could potentially lead to a biome shift, resulting in, for 145 

example, a seasonally dry tropical forest becoming a savanna, especially when other drivers 146 

of change, such as deforestation, act in synergy with drought (Staal et al. 2015). 147 

 148 

Changes in tree species and functional composition directly affect forest structure and 149 

functioning, although today there is still debate on which functional groups are the most 150 

sensitive to drought. Functional groups are composed of individuals with shared 151 

physiological responses to, and impacts on, the environment (Tilman et al. 1997). Individuals 152 

are often classified into groups based on shared values of particular traits, with the aim of 153 

aiding the prediction of response to changes in environment (Hooper and Vitousek, 1997). 154 

Evidence exists for differential response of species depending on functional traits and groups; 155 

e.g. Phillips et al. (2010) found a higher sensitivity to drought in larger trees with lower-156 

density wood in tropical forests. The functional composition of these forests is, therefore, 157 

expected to shift in favour of smaller trees with denser wood, which could result in a 158 
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reduction in carbon storage (Stephenson et al. 2014; Fauset et al. 2015). The study of changes 159 

in functional composition, and the differential response of species depending on functional 160 

traits or broad functional groups, could offer some scope for generalisation of drought 161 

response and the mechanisms involved. Indeed, differences in response have been identified 162 

based on broad taxonomic and functional groupings; for example, gymnosperms are 163 

generally shown to be more sensitive to drought than angiosperms (Anderegg et al. 2015). In 164 

Mediterranean and temperate regions of Europe, angiosperms and gymnosperms show 165 

contrasting responses to global change. While drying climate reduces growth in both, an 166 

increase in temperature and changes in recent management have been associated with 167 

increased dominance of angiosperms at the expense of gymnosperms (Gómez-Aparicio et al. 168 

2011; Coll et al. 2013; Rigling et al 2013; Vayreda et al. 2016). Widespread evidence also 169 

exists that larger trees generally may be more at risk from drought-induced mortality (Phillips 170 

et al. 2010; Bennett et al. 2015; McDowell and Allen, 2015). The importance of tree size has 171 

been suggested in both observational studies and broad-scale experiments in tropical forests 172 

(Nepstad et al. 2007; Rowland et al. 2015). Other traits implicated in drought responses, such 173 

as wood density (Pratt et al. 2007), specific leaf area (Valladares and Sánchez-Gómez 2006) 174 

and root depth (Irvine et al. 2002, 2004) also are likely to affect tree sensitivity to drought. 175 

 176 

Given the likely impacts of climate change on ecosystem composition and function, 177 

there is an urgent need to synthesise data on tree mortality in order to better understand 178 

current patterns and predict the impacts on different forest biomes at a global scale. Here we 179 

synthesised data from 58 papers including 398 tree species, from 33 locations and 42 drought 180 

events worldwide (Figure 1). We modelled mortality data (proportion of standing dead trees 181 

and annual rates) in response to drought and temperature, and we explored differences 182 

between biomes and functional groups and investigated the influence of specific functional 183 
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traits. Specifically, we ask: 1) Is there a consistent broad-scale relationship between drought, 184 

temperature and forest mortality, or are there significant differences between biomes? 2) Are 185 

there differences in mortality based on major phylogenetic or functional groups such as 186 

angiosperms/gymnosperms or deciduous/evergreen species? 3) Do functional traits explain 187 

variation in species-level mortality? 188 

 189 

METHODS 190 

 191 

A global dataset of forest mortality in response to drought  192 

 193 

We sought relevant peer-reviewed publications via Web of Science, Google Scholar and 194 

Scopus using combinations of the following search terms: “mortality”, “drought”, “forest”, 195 

“tree”, “dieback”, “die-off”, “defoliation”, “drying” and “climate change”. Additional 196 

references from the review of Allen et al. (2010) were also included. We screened papers for 197 

relevance based on the abstract and saved them for further consideration if they met the 198 

general criteria of reporting drought-induced tree mortality.  Papers were selected for final 199 

inclusion in the meta-analysis if they met the following criteria: 1) mortality data were 200 

provided, as a proportion of trees dead, either as a single value based on one survey or as an 201 

annualized rate calculated between two or more survey periods; these two types of data were 202 

analysed separately. 2) Surveys were ground-based, from aerial photographs or satellite 203 

imagery, or a combination of these methods. 3) Mortality was attributed to drought (either 204 

one event or a series of events). Experimental studies were only included when the control 205 

plots were subject to natural drought during the experimental period and then only the data 206 

from these controls were included. 4) The data were collected at the plot level, with a 207 

minimum plot size of 0.01 ha, and a minimum number of trees for each species and plot of 208 
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five individuals. 5) The survey year(s) and the drought year(s) were clearly reported. 6) Cases 209 

where mortality occurred due to fire acting in combination with drought were excluded, but 210 

studies where biotic interactions such as attack by bark beetles had occurred were included. 211 

Finally, 7) mortality was reported for adult trees (not seedlings or saplings) at the species 212 

level.  Initially, we studied more than 200 drought and mortality relevant papers in detail, and 213 

extracted relevant data. Finally, 58 papers met all the inclusion criteria, 30 of these provide 214 

annualized mortality rates, and 28 have single survey proportional values of standing 215 

mortality. The case studies cover all forested continents and major forest types (Figure 1). 216 

Thirty-three different locations (at the geographic scale of country or state in the case of 217 

USA) and 42 drought events (location/time combinations) are covered by our dataset. 218 

Selection criteria and particularly the need for quantitative mortality information led to 219 

several important and broad-scale studies being excluded (e.g. Phillips et al. 2009). 220 

 221 

From each publication, we extracted information on the standing proportional 222 

mortality (% dead trees of all trees of each species) or an annual rate of mortality (m=1-223 

(N1/N0)
1/t, where N0 and N1 are the number of trees present at the beginning and end of the 224 

survey interval, t (Sheil et al. 1995)), at the species-level. We report this species-specific 225 

mortality as a proportion: trees trees-1 year -1. We also recorded species identity, geographic 226 

coordinates, year of the drought, plot size (ha) and sample size (No. plots and trees). If the 227 

information was available, we recorded site data as stand density (No. trees ha-1), soil 228 

descriptions (e.g. order/classification, depth, texture) and management history. While such 229 

site-specific differences will introduce additional variation into the response of trees to 230 

drought, these factors were rarely reported, and we could not incorporate them into the 231 

analysis. We were also unable to account for forest age or successional stage, as this was 232 



 10 

rarely reported. Full information on all studies and species included in the analysis is 233 

available in Supporting Information (Appendix S1 and S2). 234 

 235 

Drought, temperature and functional trait data at a global scale 236 

 237 

In order to assess the relationship between climate change and mortality we collected drought 238 

and temperature data. We calculated drought with the Standardised Precipitation 239 

Evapotranspiration Index (SPEI), using the mean SPEI at a 12-month timescale, obtained 240 

from SPEIbase v.2.3 (2014) (http://hdl.handle.net/10261/104742). SPEI is a multi-scalar 241 

drought index available as a global gridded dataset at a spatial resolution of 0.5○ and has 242 

advantages over other drought indices as it allows for the identification of drought at different 243 

temporal scales, whilst also being sensitive to changes in evaporative demand (Vicente-244 

Serrano et al. 2010). It has weaknesses, in that soil properties are not accounted for so it does 245 

not include a measure of water extractability, but we chose it here based on the evidence that 246 

it outperforms other traditional indices such as PDSI (Palmer drought severity index) and SPI 247 

(standardised precipitation index) (Vicente-Serrano et al. 2010; Bachmair et al. 2015; Blauhut 248 

et al. 2016). SPEI is calculated based on the difference (D) between monthly precipitation 249 

and potential evapotranspiration (D=P-PET), with the D values aggregated at different 250 

timescales from 3 to 24 months, following a procedure whereby SPEI is expressed as a 251 

standardised index, with negative values indicating drought over the timescale considered, 252 

relative to median values for a long-term reference period. SPEI currently covers the period 253 

January 1901 to December 2014. We chose a 12-month period, as it should identify 254 

prolonged droughts, of significance for trees. For temperature, we used monthly data from 255 

CRUTEM4 dataset (HadCRUT4, https://crudata.uea.ac.uk/cru/data/temperature/), a global 256 

gridded dataset at 0.5○ spatial resolution (Osborn and Jones, 2014) developed by the Climatic 257 
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Research Unit (University of East Anglia) and the Hadley Centre (UK Met Office). For each 258 

study the climate data described above were extracted for the reported geographical 259 

coordinates for seven temporal windows: each of 1-5 years preceding the final date of 260 

mortality data collection reported in the study, the period between surveys (only for annual 261 

rate data), and the reported drought periods. Mean and minimum values of SPEI and mean 262 

and maximum values for temperature were calculated from monthly data for each of these 263 

periods for every study. We considered the SPEI for up to 5 years before the mortality 264 

occurred because a lag is often reported between drought and subsequent mortality. Although 265 

these climatic datasets are excellent resources for our global analysis, the somewhat coarse 266 

spatial resolution at which they are available potentially reduces the variation that we can 267 

explain since we are unable to consistently describe climate at a finer site-specific scale. 268 

 269 

Each study was categorised into a broad biome type based on geographic location, species 270 

composition, climate conditions and forest type. Biome types are broadly based on the 271 

categories described by Whittaker (1975). We categorised each study to one of the following 272 

types: temperate gymnosperm (mid-high latitude and/or altitude forests composed mainly of 273 

gymnosperm species); temperate angiosperm (mid-high latitude and/or altitude forests 274 

composed mainly of angiosperm species); Mediterranean and dry woodlands (Mediterranean 275 

systems and dry temperate, subtropical woodlands and woodland savanna ecotones); tropical 276 

(wet tropical forests). While these biome categories encompass diverse forest types, 277 

alternative groupings did not lead to different results when the effect of biome was modelled. 278 

We obtained information on phylogenetic groups depending on angiosperm or gymnosperm 279 

classification and functional groups depending on leaf phenology/lifespan 280 

(evergreen/deciduous) by searching the literature for species information in peer reviewed 281 

publications. We obtained functional trait data from the TRY traits database (wood density 282 
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(WD), specific leaf area (leaf area per unit dry mass; SLA), maximum tree height (MH) 283 

(Kattge et al. 2011; Appendix S2)) and from the Royal Botanic Gardens Kew Seed 284 

Information Database (seed mass; SM: Royal Botanic Gardens Kew, 2016)). Full trait data 285 

was available for 171 of the 398 species in our dataset (see Appendix S2 for species list and 286 

data). The subset of species for which trait data were available was similar in terms of the 287 

balance between biomes to the full annual mortality dataset (Appendix S3, Table S3.1). For a 288 

small number of species, the trait value was extrapolated from the genus level, by averaging 289 

the value for three or more species of the same genus (details in Appendix S2). We selected 290 

the traits WD, SLA, MH and SM to achieve a balance between drought relevance and data 291 

availability. These traits are widely recognised as key traits of plant function and 292 

performance; they are relevant to growth, survival and reproduction and can determine 293 

species positions along major axes of ecological strategies of resource acquisition and use 294 

(Swenson et al. 2012; Díaz et al. 2016). Traits such as P50 (the xylem pressure inducing 50% 295 

loss of conductivity; Choat et al. 2012) may be more directly related to drought but hydraulic 296 

traits were not available for most species. We show the relationship between WD and SLA 297 

and raw mortality (Fig. S3.1 and S3.2 in Appendix S3) and P50 (Figure S3.3). For the species 298 

we modelled, we found a weak positive correlation between P50 and WD (r =0.2), and a 299 

stronger positive correlation between P50 and SLA (r=0.75 for a logarithmic fit; Figure 300 

S3.3). While the TRY traits database represents an excellent resource, we acknowledge that 301 

there are limitations associated with the application of species mean values. Variation in 302 

study methods, and differences in sample sizes between species occur for traits deposited in 303 

TRY, which could lead to some uncertainty around trait values, and there is no consideration 304 

of intraspecific variation. Nevertheless, we do not expect such variability to introduce a 305 

systematic bias into our analyses.   306 

 307 
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Statistical analysis 308 

 309 

We followed a linear, three-step modelling process whereby we determined the effects on 310 

species-specific tree mortality of: 1) different timescales of SPEI and temperature; 2) biome 311 

and phylogenetic and functional groups; and 3) functional traits. We fitted linear mixed effect 312 

models using a normal error distribution and log link following an Information Theoretic 313 

Approach (Burnham and Anderson, 2002), where models are ranked based on AIC (Akaike 314 

Information Criterion) values. Models were fitted with the lme4 package (Bates et al. 2015) 315 

in R 3.2.2 (R Core Team 2015). Annualised and proportional species-level mortality data 316 

were log transformed prior to analysis, and were analysed separately due to the different 317 

nature of these data types. Since there were some zero values in the dataset, 0.001 was added 318 

to every mortality value before transformation.  319 

 320 

To be sure of the representativeness of the timescale selected, we determined the 321 

effects of different timescales of SPEI and temperature on species-level mortality rate. 322 

Mortality was modelled against mean and minimum SPEI and mean and maximum 323 

temperature calculated at the seven timescales defined (each of 1-5 years before final 324 

mortality data collection, year(s) of reported drought, the years between surveys). The 325 

predictor variables were standardised to z scores prior to modelling using the scale function 326 

in R, which subtracts the mean and divides by the standard deviation. Models containing 327 

different combinations of the timescales of SPEI and temperature were compared with the 328 

best model selected through ranking of AICc values (AIC corrected for small sample size, 329 

Burnham and Anderson 2004; Bunnefeld and Phillimore 2012), and the importance of fixed 330 

effects was assessed through the magnitude of parameter estimates. We consider a reduction 331 

of AICc of 2 or more to indicate a significantly better model (Burnham and Anderson, 2004). 332 
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Additionally, a likelihood ratio test was performed to test the significance of the best model 333 

(as indicated by AICc value) compared to a null model containing only random effects, and 334 

the next best model in the AICc ranking. SPEI and temperature variables were included as 335 

fixed effects in all models, and a study-specific identifier was included as a random intercept 336 

to account for multiple species occurring in one study and for the site-specific information 337 

such as tree density and soil information that we were unable to include in the models. The 338 

different timescales of drought were investigated first through model comparison 339 

parameterised only with SPEI, and then temperature was added as an additional fixed effect 340 

to the model including the optimum drought timescale. 341 

 342 

Once the most parsimonious combination of climatic fixed effects was determined, 343 

the differences between biomes and due to major phylogenetic and functional groups were 344 

investigated (i.e. angiosperms/gymnosperms and deciduous/evergreen, respectively). Biome 345 

was included as a fixed main effect and angiosperm/gymnosperm, deciduous/evergreen 346 

groups were included as a fixed main effect and an interaction term with climate (SPEI and 347 

temperature). Each model was compared to the same model without the inclusion of the 348 

respective subgrouping, based on model AICc values and likelihood ratio test.  349 

 350 

Finally, the effects of functional traits on drought-induced mortality rates were 351 

determined. The four continuous functional traits (specific leaf area, maximum height, wood 352 

density and seed mass) were added to the best model identified through the process described 353 

above as both fixed effects and fixed effect interactions with climate. All traits were initially 354 

included and were sequentially removed based on parameter estimates, model AICc values 355 

and likelihood ratio tests, as described above. Prior to analysis, we checked for correlation 356 

and collinearity between traits. No pair of traits was significantly correlated (maximum r of 357 
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0.15 for WD and SLA) or collinear (maximum variance inflation factor (VIF; Dormann et al. 358 

2012) of 1.2). We also used PCA to investigate trait collinearity and to determine if any 359 

combination of traits represented a certain functional strategy. No consistent strategies were 360 

identified (Table S3.2, Appendix 3). Trait data were standardised to z scores before 361 

modelling to allow parameter estimates to be compared. These functional trait models were 362 

fitted based on a subset of the data for which the functional trait data were available (171 of 363 

398 species), so AICc values are not comparable with the full optimum model.  364 

 365 

To better explore the direction of the important trait interaction effects identified 366 

through the above modelling process, predicted values based on models including each trait 367 

individually were plotted as 3D surface plots. These 3D plots were created in SigmaPlot 368 

(SigmaPlot v. 12.5 Systat software, San Jose); all other plots were created in R 3.2.2. (R Core 369 

team 2015). 370 

 371 

RESULTS 372 

 373 

The available standing proportional mortality data are based on single surveys and are limited 374 

in their value because it is not possible to determine the date of death, since the trees standing 375 

dead at one point in time may have died over a wide range of dates. Therefore, only the 376 

results from the analysis of annualised data, which could be attributed to specific drought 377 

events, are presented here. However, the results of this analysis were largely consistent with 378 

those for standing proportional mortality. The results for standing proportional mortality data, 379 

which were analysed separately, are available in Appendix S4. 380 

 381 
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Annualised mortality data consisted of 30 studies, 308 species and 27 drought events 382 

(Figure 1; Appendix S1). Drought intensity of the reported drought event was highest in 383 

Arizona in 2000-2004 with a SPEI value of -3.3 (a monthly mean value; Negron et al. 2009) 384 

and lowest in Costa Rica at -0.8 in 1997-1998 (Chazdon et al. 2005). Annual mortality rates 385 

(species-level) varied between 0.4 trees trees-1 yr-1 (Negron et al. 2009) and zero (various 386 

sources). 387 

 388 

Relationship between mortality, drought intensity and temperature 389 

 390 

The observed SPEI values for the studies included in our analysis show some divergence 391 

from global values. A comparison of the distribution of SPEI associated with the study areas 392 

and mortality events, relative to the global values over the full time period covered by the 393 

studies (1977-2014), shows more negative SPEI values for the time periods associated with 394 

reported mortality events (the 5 years before final mortality surveys). There is, however, a 395 

large degree of overlap in the distributions of SPEI for the study period and the five years 396 

preceding the reported mortality event (Appendix S5).  397 

 398 

The mean SPEI of the reported drought years was the best climatic predictor of annual 399 

mortality (Table 1). We identified a consistent response to drought that occurred across all 400 

biomes, with mortality increasing as values of SPEI decreased, i.e. as drought, defined as 401 

deviation from a long term mean, became more intense (Figure 2a, b). There is little support 402 

for the inclusion of biome as a fixed interaction with drought (ΔAICc = 3.2) and the 403 

parameter estimates for biome comparisons suggests that the difference in mortality between 404 

biomes is small (Figure 3). 405 

 406 
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Functional groups, phylogenetic groups and functional trait effects on drought-induced 407 

tree mortality 408 

 409 

We detected no significant difference in the response to drought between angiosperms and 410 

gymnosperms or deciduous and evergreen species. The inclusion of these groups as fixed-411 

effect interaction terms with SPEI did not improve the model (AICc increased by 0.2 and 0.7, 412 

respectively) and parameter estimates suggest no difference in drought mortality response 413 

(Figure 4a, b). 414 

 415 

The functional traits WD and SLA influenced the drought-induced mortality response; 416 

the inclusion of these traits improved the model compared to one that included drought 417 

effects alone (Table 2; Figure 5a, b). However, MH and SM did not correlate with drought 418 

responses (Table 2). Drought-induced mortality was higher among species with lower values 419 

of WD (Figure 6a) and higher values of SLA (Figure 6b). We observed that the slope of 420 

interaction with WD was highest at very negative values of SPEI (more severe drought). For 421 

the interaction with SLA it is stronger at higher values of SPEI, (i.e. when drought is less 422 

severe), and the relationship is reversed compared to that seen at more negative values of 423 

SPEI, where mortality is slightly lower when SLA is higher (Figure 6b). 424 

 425 

DISCUSSION 426 

 427 

Global-scale patterns of drought-induced mortality 428 

 429 

We found a consistent response of tree mortality to drought across biomes, indicative of a 430 

global-scale threat to forests from drought, which is consistent with the widespread nature of 431 
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recent reports of forest mortality (e.g. Allen et al. 2010, 2015). The fact that we find evidence 432 

for a linear increase in log (mortality) (Figures 2 and 5a) with increasing drought intensity 433 

means that the relationship with SPEI is exponential and, therefore, increases in drought 434 

could have critical consequences for forests. This result is indicative of a threshold response, 435 

and contrasts with other broad-scale studies that have suggested a linear relationship between 436 

mortality and drought (e.g. Phillips et al 2010). Such a response at the species-level seems 437 

realistic, given what we know of responses to drought intensity in individual studies (e.g. 438 

Meir et al. 2015).  Note, however, that the shape of the drought-mortality response is likely to 439 

differ depending on the metric used to characterize drought intensity.  440 

 441 

Our study is the first to identify a global-scale effect of drought intensity on tree mortality at 442 

the species-level; previous syntheses have either been limited geographically (Fensham et al. 443 

2009; Phillips et al. 2010), or have focused on drivers such as size-dependence of mortality 444 

(Bennett et al. 2015) and the influence of hydraulic traits (Anderegg et al. 2016), rather than 445 

global patterns. It has been suggested that only dry forests are at risk from drought-induced 446 

mortality (Steinkamp and Hickler, 2015). Studies of tree growth have shown responses to 447 

drought occurring across the northern hemisphere, although with differences in timescale of 448 

response depending on long-term average aridity (Vicente-Serrano et al. 2014). Recent work 449 

provides a physiological basis for this global-scale vulnerability to drought-induced 450 

mortality, indicating that some 70% of forest species operate at narrow hydraulic safety 451 

margins irrespective of biome (Choat et al. 2012). Therefore, species in both arid and mesic 452 

habitats could be at high risk of embolism and related mortality if drought increases. 453 

 454 

Our synthesis suggests that there is little difference between angiosperms and 455 

gymnosperms or between evergreen and deciduous species in the response of mortality to 456 
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drought, in line with a recent synthesis by Anderegg et al. (2016). Our global-scale analysis 457 

complements that of Anderegg et al. (2016) as these authors use a strict meta-analytic 458 

approach by comparing species within a study and consider hydraulic traits, while we focus 459 

on a range of traits that are more available and have broad applicability because they relate to 460 

multiple aspects of plant functioning (Díaz et al. 2016). We also account explicitly for 461 

drought intensity through the inclusion of SPEI data in our models. The fact that we obtain 462 

some common results, despite the different methods applied, gives increased support to both 463 

analyses. Although our selection of traits allowed for a large sample size, given the greater 464 

availability of data, there are certain drawbacks to consider, as the traits we study are unlikely 465 

to be directly related to drought-mortality responses. The use of traits with a stronger 466 

mechanistic basis (e.g., hydraulic traits) for which the relationship with drought-induced 467 

mortality is more direct is probably preferable when they are available. 468 

 469 

While the global scale of our study is valuable for identifying broad-scale patterns, we 470 

acknowledge that the range of species and biomes included may have led to a masking of 471 

differences between groups, since in some cases the advantages of one functional strategy in 472 

one biome may not be applicable in another.  For example, to be an evergreen species has 473 

different implications in temperate versus tropical forests. Furthermore, the small sample size 474 

and associated statistical limited power also may have constrained our ability to find 475 

differences between biomes and functional and phylogenetic groups. Despite these potential 476 

limitations, the global patterns that we identify and their congruence with related work by 477 

other authors demonstrates the value of this work for increasing our understanding of forest 478 

drought risk worldwide. 479 

 480 

Functional traits mediate drought response 481 
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 482 

Our results suggest that high wood density can be associated with lower susceptibility to 483 

drought. Although wood density is a complex trait that may be associated with many 484 

ecological signals (Broderson, 2016; Gleason et al. 2016) this finding is substantially in 485 

accordance with reported functionality of this trait. Wood properties correlated with density 486 

affect water storage and transport, because the width and length of conduits determines 487 

hydraulic conductance (Chave et al. 2009) and wood density affects mechanical stability and 488 

is associated with resistance to drought-induced cavitation (Hacke et al. 2001; Pratt et al. 489 

2007). In a study of saplings and seedlings from dry tropical forest, Markesteijn et al. (2011) 490 

found a lower vulnerability to cavitation (an ability to withstand more negative P50) in 491 

species with higher wood density. They also found evidence for a trade-off between 492 

cavitation resistance and hydraulic conductivity, suggesting that the ability to withstand 493 

drought leads to a competitive disadvantage during times when water is not limiting. 494 

However, weak support was found for this trade-off in a global synthesis by Gleason et al. 495 

(2016), which showed that many species can have both low hydraulic conductivity and low 496 

cavitation resistance, and that high wood density is not necessarily associated with low 497 

conductivity and high cavitation resistance. Generally, species with high wood density are 498 

associated with lower growth rates and lower background mortality rates (Chave et al. 2009). 499 

The results of our study show that this strategy can lead to lower mortality rates when 500 

exposed to drought stress. In contrast to our findings, Hoffmann et al. (2011) found that 501 

although species with higher density wood had higher cavitation resistance, their mortality 502 

under drought was higher, due to an inability to prevent declines in water potential, compared 503 

to species with less dense wood. Hoffmann et al. studied the response to an especially severe 504 

drought at the community level, whereas we consider a wide range of drought conditions and 505 

vegetation types, suggesting that differences in overall drought severity and spatial scale 506 
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might explain the differences between the results that they report and those presented here. It 507 

is notable that despite the complexity of this trait and its relationship with hydraulic 508 

performance, we still find a significant, although noisy, global signal.  509 

 510 

Our analyses provide evidence that tree species with high specific leaf area can be 511 

more susceptible to drought-induced mortality than species with lower specific leaf area, 512 

although the nature of the relationship varied with drought severity. Specific leaf area 513 

determines plant response to changing resource availability (i.e. water and light), 514 

photosynthetic potential and growth rates (Poorter et al. 2009). Depending on stomatal 515 

properties, higher specific leaf area could imply a higher potential for leaf water loss; in 516 

contrast, a low specific leaf area is often associated with xeromorphic plants, adapted to high 517 

water stress (Bussotti et al. 2015). Furthermore, woody species associated with arid niches 518 

are characterised by relatively lower specific leaf area in the Mediterranean (Costa-Saura et 519 

al. 2016). An experimental study by Valladares and Sánchez-Gomez (2006) showed within-520 

species lower specific leaf area if seedlings were exposed to drought, although across species, 521 

a high specific leaf area was associated with greater drought tolerance. Reducing specific leaf 522 

area under prolonged drought conditions seems to be consistent across species and studies 523 

(Poorter et al. 2009) and is suggestive of a higher resistance to drought in plants with a lower 524 

specific leaf area. Although we identify a global-scale signal in the relationship between 525 

drought and SLA, as for wood density, many ecological signals are associated with SLA 526 

making this relationship highly complex. In the future, the integration of directly relevant 527 

traits such as P50 could improve the approach taken here.  528 

 529 

Several studies have shown that larger trees could have lower resistance to drought 530 

(e.g. Bennett et al. 2015). For example, an experimental drought in a Brazilian Amazonian 531 
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rainforest resulted in much larger increases in the mortality rates of larger trees compared to 532 

smaller ones (Nepstad et al. 2007; Rowland et al. 2015) and a pan-tropical analysis also 533 

revealed that larger trees tend to suffer most during drought (Phillips et al. 2010). A global-534 

scale synthesis by Bennett et al. (2015) shows that drought-related mortality is generally 535 

greater in larger trees; they analysed drought mortality related to DBH, but they hypothesised 536 

that the relationship is due to height effects. However, in our global-scale analysis that 537 

explicitly included species maximum height, we did not find a strong effect due to tree 538 

height. This apparent contrast might be because the importance of the other traits that we 539 

considered overwhelmed any effect of height, but it also could be due to the different 540 

approach taken in our study compared to that of Bennett et al. Our analysis was based on 541 

species-level maximum height, while their study used size classes at the plot level 542 

irrespective of species. Future work should seek to incorporate individual-level tree heights 543 

and stand age, as this will provide the most direct assessment on the importance of tree size.  544 

 545 

Implications  546 

 547 

Our results suggest that at a global scale, trees with lower wood density and higher specific 548 

leaf area tend to be more sensitive to drought. Future increases in the intensity and duration 549 

of drought events could therefore lead to changes in forest composition and structure, with 550 

implications for forest diversity and ecosystem function. Changes in functional diversity due 551 

to the drought sensitivity of different species will also affect forest functioning and drought 552 

resilience (Laureto et al. 2015). Forests are an important global carbon sink (Pan et al. 2011) 553 

and changes in forest energy exchange could have major consequences for global climate 554 

(Frank et al. 2015). Wood density and specific leaf area are both traits that are important for 555 

carbon sequestration (Prado-Junior et al. 2016) and storage in aboveground biomass (Chave 556 
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et al. 2014). It is, therefore, important to consider the impacts that the greater vulnerability 557 

associated with particular values of these traits under drought conditions could have on 558 

broad-scale carbon storage (Finegan et al. 2015). Generally, higher biomass might be 559 

expected to be stored in ecosystems rich in species with levels of these traits associated with 560 

high growth rates (low wood density and high SLA (Grime 1998)), but this is context 561 

dependent. For example, in dry tropical forests, species with high wood density and low 562 

specific leaf area are associated with high growth rates and carbon storage, precisely because 563 

they can continue to function during drought (Prado-Junior et al. 2016). Our results also have 564 

successional implications; early successional tree species are characterised by low wood 565 

density and high specific leaf area (Aiba et al. 2016). If disturbance increases due to drought-566 

induced mortality, then these early successional species could dominate forests, making the 567 

community more susceptible to future die-off.  568 

 569 

Our synthesis identifies global-scale drought-induced tree mortality responses, and our 570 

analyses of species-specific mortality rates with climate and functional trait data provide 571 

quantitative insights into global-scale patterns. However, our best model only explained 37% 572 

of the variation in mortality rate. To reliably assess the impact of drought events, and to 573 

predict the consequences for forests in the future, effective long-term monitoring across a 574 

wide range of forest types is required. In addition, detailed reporting of site conditions would 575 

allow future syntheses to consider the importance of factors such as tree density in drought-576 

induced mortality at a global scale (Jump et al. in press). Here, we identified drought-induced 577 

mortality responses worldwide that are species-specific, but further analysis depending on 578 

stand and tree level characteristics are critical to adequately identify and manage vulnerable 579 

forests. Additionally, the consideration of intra-specific variation in functional traits could 580 

significantly improve our ability to predict the responses of forests to future drought. The 581 
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traits we have identified as critical for drought resistance at a global scale are known to vary 582 

within species across environmental gradients (Fajardo and Piper, 2011), thus trait variation 583 

across environmental gradients (e.g. Vilà-Cabrera et al. 2015) should be incorporated in 584 

future models to better predict climate change impacts in forests worldwide. Although our 585 

results do not have high predictive power in themselves, they provide an advance, since our 586 

current ability to predict drought-induced mortality is limited (Meir, Mencuccini and Dewar, 587 

2015) and this prediction needs global assessment. Our study highlights the global 588 

vulnerability of forests to drought-induced tree mortality and shows that widely available 589 

functional traits, such as wood density and specific leaf area, can improve explanatory power. 590 

 591 

Conclusion 592 

 593 

Based on a synthesis of studies of drought-induced tree mortality events at a global scale we 594 

find evidence of greater forest mortality risk from more severe droughts, consistent across 595 

biomes and major functional groups. Using functional traits, we could explain an additional 596 

fraction of the variation in drought-induced tree mortality. Trees with less dense wood and 597 

high specific leaf area may be most at risk. These results further illustrate the value of 598 

species-level trait data for understanding general trends in species responses. Overall, our 599 

findings indicate that, with increasingly severe future droughts projected, associated drought-600 

induced tree mortality could become increasingly widespread, with significant implications 601 

for forest diversity, ecosystem function and climate feedbacks.  602 
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TABLES 1232 

 1233 

Table 1: Model comparison using AICc values (AIC corrected for small sample size) and 1234 

parameter estimates for sets of models used to identify the optimum model(s). The 95% 1235 

confidence intervals associated with the parameter estimates are shown for the fixed effects 1236 

in the best model, highlighted in bold. SPEIm represents mean SPEI and TEMPm mean 1237 

temperature. Confidence intervals were calculated with boot strapped resampling. The 1238 

random effect included in these models was a study specific identifier. Results of likelihood 1239 

ratio tests (P-values) are shown for the best models compared to the null model (one 1240 

including only random effects) and the next best model, as indicated by AICc values.  1241 

 1242 

Fixed effect(s) Parameter 

estimate(s) 

(95% CI) 

AICc ΔAICc R2 

marginal/ 

conditional 

P-value 

 

SPEIm drought years -0.46 (-0.7 to -

0.2) 

1876.7 0.0 0.06/0.29 0.0005; 

<0.0001 

SPEIm between survey years -0.43  1880.1 3.4 0.05/0.32  

SPEIm drought + TEMPm 3 

years pre survey end 

-0.46; -0.01 1880.3 3.6 0.06/0.30  

SPEIm drought + TEMPm 5 

years pre survey end 

-0.46; 0.002 1880.3 3.6 0.06/0.30  
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SPEIm drought + TEMPm 2 

years pre survey end 

-0.46; -0.007 1880.3 3.6 0.06/0.30  

SPEIm drought + TEMPm 4 

years pre survey end 

-0.46; 0.0009 1880.3 3.6 0.06/0.30  

SPEIm drought + TEMPm 

between survey years 

-0.46; 0.01 1880.4 3.7 0.06/0.30  

Min SPEI drought years -0.45 1880.5 3.8 0.06/0.34  

Min SPEI 2 years pre survey 

end 

-0.54 1880.8 4.1 0.03/0.33  

SPEIm + maximum 

temperature 2 years pre 

survey end 

-0.46; -0.04 1880.8 4.1 0.06/0.30  

SPEIm + maximum 

temperature 3 years pre 

survey end 

-0.46; -0.01 1880.9 4.2 0.06/0.30  

SPEIm + maximum 

temperature 4 years pre 

survey end 

-0.45; 0.01 1880.9 4.2 0.06/0.30  

SPEIm + maximum 

temperature 5 years pre 

survey end 

-0.45; 0.01 1880.9 4.2 0.06/0.30  

SPEIm drought + maximum 

temperature between survey 

years 

-0.45; 0.009 1880.9 4.2 0.06/0.30  

Minimum SPEI between -0.39 1881.5 4.8 0.04/0.34  
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survey years 

Min SPEI 3 years pre survey 

end 

-0.32 1883.0 6.3 0.03/0.33  

Min SPEI 4 years pre survey 

end 

-0.30 1883.3 6.6 0.03/0.32  

Min SPEI 5 years pre survey 

end 

-0.31 1883.3 6.6 0.03/0.33  

SPEIm 2 years pre survey end -0.24 1883.8 7.1 0.02/0.31  

SPEIm 3 years pre survey end -0.27 1884.3 7.6 0.02/0.30  

SPEIm 5 years pre survey end -0.19 1885.8 9.1 0.01/0.31  

SPEIm 4 years pre survey end -0.15 1887.0 10.3 0.006/0.31  

 1243 

 1244 

 1245 

 1246 

 1247 

 1248 

 1249 

 1250 

 1251 

 1252 

 1253 

 1254 

 1255 

 1256 
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Table 2: Model comparison and selection when considering functional traits and drought 1257 

response. AICc values (AIC corrected for small sample size) and parameter estimates for sets 1258 

of models used to identify the optimum model. SPEIm represents mean SPEI. The model 1259 

containing the best combination of fixed effects is shown in bold. The traits considered are 1260 

wood density (WD), specific leaf area (SLA), maximum height (MH) and seed mass (SM). 1261 

The results of likelihood ratio tests are shown for the best model (P-value), compared to a 1262 

null and the next best model. Here the null model for comparison contains random effects and 1263 

the fixed effect of mean SPEI of the drought.  1264 

 1265 

Fixed effect(s) Parameter 

estimate(s) 

AICc ΔAICc R2 

marginal/conditional 

P-value  

SPEIm 

drought + 

SPEIm 

drought x WD 

+ SPEIm 

Drought x SLA 

-1.28 (-2.04 to 

-0.52) 

0.38 (-0.2 to 

0.97) 

-0.41 (-0.95 to 

0.13) 

1013.5 0.0 0.14/0.37 0.001; 

0.01 

SPEIm drought 

+ SPEIm 

drought x WD 

 

-1.19; 0.39 1014.8 1.3 0.10/0.33  

SPEIm drought 

+ SPEIm 

drought x SLA 

-1.22; -0.38 1015.7 2.2 0.09/0.34  

SPEIm drought -1.14 1016.6 3.1 0.06/0.30  
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SPEIm drought 

+ SPEIm 

drought x WD 

+ SPEIm 

drought x MH 

-1.26; 0.26; -

0.63 

1016.6 3.1   

SPEIm drought 

+ SPEIm 

drought x WD 

+ SPEIm 

drought x SLA 

+ SPEIm 

drought x MH 

-1.28; 0.27; -

0.26; -0.53 

1016.8 3.3 0.15/0.37  

SPEIm drought 

+ SPEIm 

drought x SLA 

+ SPEIm 

drought x MH 

-1.24; -0.22; -

0.56 

 
 
 
 
 

1019.7 6.2 0.10/0.33  

SPEIm drought 

+ SPEIm 

drought x (WD, 

SLA, MH, SM) 

-1.28; 0.37; -

0.27; -0.5; -

0.21 

1022.8 9.3 0.16/0.38  

SPEIm drought 

+ SPEIm 

drought x SM 

-1.17; -0.12; 

0.02 

1022.9 9.4 0.07/0.31  

 1266 
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FIGURES 1267 

Figure 1: Locations of the studies included in the analysis. Dark grey shading indicates studies 1268 
providing annual rates of mortality based on two or more surveys and light grey standing proportional 1269 
mortality values based on a single survey (these are analysed separately with annual mortality rate 1270 
analyses presented in the main text and single survey proportions presented in supporting 1271 
information). The biome category of each study is indicated by shape. Temperate gymnosperms: 1272 
diamonds, temperate angiosperms: triangles, Mediterranean and dry woodlands: circles and tropical: 1273 
squares. Annual mortality studies: Aiba and Kitayama, 2002; Chazdon et al. 2005; Condit et al 1995; 1274 
da Costa et al. 2010; Dobbertin et al. 2005; Faber-Langendeon and Tester 1993; Fan et al 2012; 1275 
Ganey and Vojta 2011; Granzow de la Cerda et al. 2012; Gu et al 2015; Hogg et al. 2008; Huang et al. 1276 
2010; Itoh et al. 2012; Kane et al. 2014; Kardol et al. 2010; Klos et al. 2009; Kukowski et al. 2013; 1277 
Mueller et al. 2005; Nakagawa et al. 2000; Negron et al. 2009; Newbery and Lingenfelder 2008; 1278 
Olano and Palmer, 2003; Potts, 2003; Poulos, 2014; Smith et al. 2015; Tafangenyasha, 1997; 1279 
Tsopelas, 2001; Tsopelas et al. 2004; van Nieuwstadt and Shiel, 2005; Worall et al. 2008. Single 1280 
survey proportional mortality studies: Aakala et al. 2011; Becker et al. 1998;  Bowker et al. 2012; 1281 
Cailleret et al. 2013; Fensham, 1998; Fensham and Holman, 1999; Floyd et al. 2009; Foden et al. 1282 
2007; Garcia de la Serrana et al. 2015; Gitlin et al. 2006; Heitzman et al. 2007; Khan et al. 1994; 1283 
Koepke et al. 2010; Linares et al. 2011; Lwanga, 2003; Markalas, 1992; Martínez Vilalta and Pinol, 1284 
2002; Matusick et al. 2013; Millar et al. 2012; Mokria et al. 2015; Rice et al. 2004; Savage, 1997; 1285 
Slik, 2004; Suarez and Kitzberger, 2008; Twidwell et al. 2014; Viljoen, 1995; Vincke et al. 2010; 1286 
Zegler et a. 2012. 1287 
 1288 
 1289 

Figure 2: Annual observed mortality data at species-level plotted against mean SPEI for the 1290 

reported drought years (a), and log-scale annual observed mortality against mean SPEI for the 1291 

reported drought year, including the model prediction using the parameter estimate for the 1292 

best model with 95% confidence intervals (b). More negative values of SPEI indicate more 1293 

severe drought. 1294 

 1295 

Figure 3: Parameter estimates for the model including mean SPEI of the reported drought 1296 

years and biome as fixed effects to test if drought induced mortality varies by biome. The 1297 

parameter estimates show the difference in the mortality response to drought of each biome 1298 

with 95% confidence intervals, calculated using bootstrapped resampling. Sample sizes 1299 

(number of studies) by biome are as follows: temperate gymnosperms: five, temperate 1300 

angiosperms: eight, Mediterranean and dry woodlands: seven and tropical: ten. 1301 

 1302 
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Figure 4: Parameter estimates for the models including mean SPEI of the reported drought 1303 

years and the groups angiosperms/gymnosperms (a) and evergreen/ deciduous (b) as fixed 1304 

effect interactions with mean SPEI. 95% confidence intervals are shown, calculated using 1305 

bootstrapped resampling.  1306 

 1307 

Figure 5: Relationship between predicted annual mortality and drought (solid line) with 95 % 1308 

confidence (dotted lines) based on the best model including the effect of climate and its 1309 

interaction with species-level functional trait data (WD and SLA). This is based on a subset 1310 

of the mortality data, for which trait information was available (a). Parameter estimates for 1311 

each of the fixed effects included in the best trait model, with 95% confidence intervals, 1312 

calculated using bootstrapped resampling (b). 1313 

 1314 

Figure 6: The effect of the interaction of mean SPEI of the reported drought years with wood 1315 

density (WD) (a) and specific leaf area (SLA) (b) on log drought-induced tree mortality (trees 1316 

trees -1 year -1).  1317 
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