
TREE PATTERN MATCHING TO SUBSET MATCHING IN
LINEAR TIME∗

RICHARD COLE† AND RAMESH HARIHARAN‡

SIAM J. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 32, No. 4, pp. 1056–1066

Abstract. In this paper, we show an O(n + m) time Turing reduction from the tree pattern
matching problem to another problem called the subset matching problem. Subsequent works have
given efficient deterministic and randomized algorithms for the subset matching problem. Together,

these works yield an O
(
n log2 m+m

)
time deterministic algorithm and an O(n logn + m) time

Monte Carlo algorithm for the tree pattern matching problem.

Key words. tree pattern matching, subset matching

AMS subject classifications. 68W05, 68W40

DOI. 10.1137/S0097539700382704

1. Introduction. In the tree pattern matching problem, the text and the pat-
tern are ordered, binary trees, and all occurrences of the pattern in the text are sought.
Here, the pattern occurs at a particular text position if placing the pattern with root
at that text position leads to a situation in which each pattern node overlaps some
text node. This problem has a number of applications (see [6]). Actually, in these
applications, the tree need not be binary and the edges may be labelled; however, as
shown in [4], this general problem can be converted to a problem on binary trees with
unlabelled edges but with a blow-up in size proportional to the logarithm of the size
of the pattern. In fact, this blow-up can also be avoided in our approach, as we will
indicate in our description.

The naive algorithm for tree pattern matching takes time O(nm), where n is
the text size and m is the pattern size. Hoffman and O’Donell [6] gave another
algorithm with the same worst case bound. This algorithm decomposes the pattern
into strings, each string representing a root-to-leaf path. It then finds all occurrences
of each of these strings in the text tree. The first o(nm) algorithm was obtained by
Kosaraju [9], who first noticed the connection of the tree pattern matching problem
to the problem of string matching with don’t-cares and the problem of convolving two
strings. Kosaraju’s algorithm takes O(nm.75 logm) time. Dubiner, Galil, and Magen
[4] improved Kosaraju’s algorithm by discovering and exploiting periodicities in paths
in the pattern. They obtained a bound of O(nm.5 logm). This was the best bound
known to date. Dubiner, Galil, and Magen also made the observation that the naive
algorithm actually takes O(nh) time, where h is the height of the pattern.

In this paper, we show how to reduce the tree pattern matching problem to the
subset matching problem in linear time. The subset matching problem is to find all

∗Received by the editors March 29, 2000; accepted for publication (in revised form) April 25,
2003; published electronically July 8, 2003. This work was supported in part by NSF grants
CCR9202900, CCR9503309, CCR9800085, and CCR0105678. This work is based on an earlier work:
“Tree pattern matching and subset matching in randomized 0(n log3 m) time,” in Proceedings of
the Twenty-Ninth Annual ACM Symposium on Theory of Computing (STOC’97), c© ACM, 1997.
http://doi.acm.org/10.1145/258533.258553.

http://www.siam.org/journals/sicomp/32-4/38270.html
†Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,

NY 10012-1185 (cole@cs.nyu.edu).
‡Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012,

India (ramesh@csa.iisc.ernet.in). This work was done in part while this author was visiting NYU.

1056

TREE PATTERN MATCHING TO SUBSET MATCHING 1057

a

c
b

a
c

b
c

a

c
b

e
f

e
f

b

a
c

a
c

b

a
c

a
c

b

a
c

a
c

b

match

not a match

not a match

p

t

Fig. 1. Example of subset matching.

occurrences of a pattern string p of length m in a text string t of length n, where
each pattern and text location is a set of characters drawn from some alphabet. The
pattern is said to occur at text position i if the set p[j] is a subset of the set t[i+j−1]
for all j, 1 ≤ j ≤ m. It is required to find all text locations at which the pattern
matches; i.e., each pattern set is a subset of the aligned text set (see Figure 1).

The reduction from tree pattern matching to subset matching proceeds in two
steps.

• We show that the general tree pattern matching problem can be reduced to the
following special case, called spine pattern matching, by a linear time Turing reduction.
In spine pattern matching, there is a special path in each of the pattern and text called
their spines. The spine begins at the root of its tree, and in addition each node on
the spine has at most one nonspine child. Spines have additional properties as well,
which will be described later. All matches of the pattern in the text are sought with
the additional restriction that the spine of the pattern must match a portion of the
spine of the text; i.e., nodes on the pattern spine must be aligned with nodes on the
text spine. For intuition, one can think of the spine as being the path of left children
starting at the root (and in fact one can reduce the general problem to this case in
linear time, although we will not do so).

The above reduction may create several instances of the spine pattern matching
problem, but the sum of the sizes of these instances will be linear. This reduction is
completely deterministic. It proceeds by using the periodicity structure of paths and
by decomposing the text tree into periodic paths in a nontrivial manner. Each path
then gives a spine for the spine pattern matching problem.

• Next, we reduce the spine pattern matching problem to the subset matching
problem in linear time. This is, in fact, readily done. The spine of the text tree gives
the text string for the subset matching problem; the subtrees hanging from this spine
determine the various text sets. Analogous facts hold for the pattern.

The two reductions above imply that the tree pattern matching problem can be
reduced to several instances of the subset matching problem, the sum of the sizes
of these instances being linear. Therefore, an algorithm for the subset matching
problem yields an algorithm for the tree pattern matching problem with the same
time complexity.

Cole and Hariharan [1] gave a randomized algorithm for the subset matching
problem running in time O((n + s) log3 m), where s is the sum of the sizes of all

1058 RICHARD COLE AND RAMESH HARIHARAN

0 0 1 0 0 1 0 0 1
period

Fig. 2. A path and its associated string.

the pattern and text sets. Subsequently, Indyk [7] gave a deterministic algorithm for

the subset matching problem running in time O((n + s)m

√
log log m

log m (1+o(1))). Later,
Cole, Hariharan, and Indyk [3] gave a deterministic algorithm running in time O((n+

s) log3 m) and a randomized algorithm running in time O((n + s) log3 m
log logm). Indyk [8]

also gave a randomized Monte Carlo algorithm with running time O(cn log n) and
failure probability O(1/nc) for any fixed constant c ≥ 1. Finally, Cole and Hariharan
[2] gave a deterministic algorithm running in time O(n log2 m). It follows that there is
a deterministic algorithm running in time O(n log2 m) and a Monte Carlo randomized
algorithm running in time O(n log n) for the tree pattern matching problem.

This paper is organized as follows. Section 2 gives some required definitions.
Section 3 describes the reduction of the spine pattern matching problem to the subset
matching problem. Section 4 describes the reduction from the tree pattern matching
problem to the spine pattern matching problem.

2. Definitions.

Definition 2.1 (tree pattern matching). We consider ordered binary trees; i.e.,
each internal node has a left and/or a right child. The text tree t has n nodes and
the pattern tree p has m nodes. The problem entails finding all nodes v in t where p
matches; i.e., when the root of p is aligned with v, each node in p is aligned with a
node in t.

Definition 2.2 (paths, strings, and periods). Note that paths in trees p and t
can be expressed as strings over a two character alphabet, one character signifying a
left edge and the other a right edge (see Figure 2: 0 represents a left edge and 1 a
right edge). The period of a string s[1 . . . |s|] is the smallest number j > 0 such that
s[i] = s[i + j] for all i, 1 ≤ i ≤ |s| − j. If no such j exists, then the period of s is
defined to be |s|. The period of a path is defined to be the period of its associated
string.

It is well known that the period can be computed in linear time [5]. The following
lemma is classical [10].

Lemma 2.3. If k ≤ |s| − j is such that the period j of s does not divide k, then
the string s[k + 1 . . . k + j] differs from the string s[1 . . . j].

Definition 2.4 (spine pattern matching). This is a restricted version of the
tree pattern matching problem. In this problem, the text and the pattern each have
one designated path, called their spines. The text and pattern spines originate at their

TREE PATTERN MATCHING TO SUBSET MATCHING 1059

set of names
of nodes in

f

e
d
c

a
b

a

c

g
h

b

f

a
b

c

d e

f

a

b

g

c
f

h

r1 r2 r3 r|π| = φ

r2

p1
r1

p2

p3 r3

p4r4

p5 r5

π

r|π|−1

p|π|

Fig. 3. The spine and its associated set string.

respective roots and are maximal paths having the same period, θ say (the θ needed for
tree pattern matching will be determined later). If the input does not have this form,
it is not a legitimate input for this problem. In fact, both spines when represented as
strings will have the form xkx′, where |x| = θ and x′ is a prefix of x (here, the values
of k and x′ could differ for the pattern spine and the text spine, but x is identical for
both spines). All matches of the pattern in which the pattern spine falls completely on
the text spine are sought.

From maximality, it follows that both spines terminate at nodes with at most
one child (a child which when added to the spine destroys its periodic structure).
Since both spines have the same period θ, it follows that the pattern spine will fall
completely on the text spine only if the root of the pattern is placed at certain nodes
on the text spine. These nodes will occur at integer multiples of θ from the text root
and will be designated “anchor nodes.”

3. Reducing spine pattern matching to subset matching. The spines of
the pattern p and the text t will define the strings for the subset matching problem.
The subsets at each location in these strings will correspond to the off-spine subtrees
of the spine nodes; an off-spine subtree is a subtree whose root is a nonspine node
but the parent of whose root is on the spine. These subsets are obtained by labelling
the nodes of the off-spine subtrees as follows (see Figure 3). The key fact about this
labelling is that two nodes in two distinct off-spine subtrees (both of which could be

1060 RICHARD COLE AND RAMESH HARIHARAN

in the pattern or in the text, or, alternatively, one could be in the pattern and the
other in the text) get the same label if and only if the paths from these nodes to the
roots of their respective off-spine subtrees represent identical strings.

The off-spine subtrees of p are labelled first. The subtrees are overlaid to form a
combined pattern subtree; the overlaying aligns the roots of the off-spine subtrees and
recursively overlays their subtrees. Then the combined pattern subtree is traversed
by any convenient method, e.g., a breadth first traversal, and the nodes are labelled
by the associated numbering. For each spine node, we form a subset consisting of the
collection of numbers labelling the nodes of its off-spine subtree. This collection of
subsets defines the pattern for the subset matching problem instance. The off-spine
subtrees of t are labelled using the same labelling. To do this, each off-spine text
subtree and the combined pattern subtree are traversed in lock-step. Consider the
text subtree laid over the combined pattern subtree. Clearly, any text node that lies
beyond the combined pattern subtree will not be part of any match in which the
pattern spine is aligned with a portion of the text spline. Consequently, these text
nodes need not be and are not given labels, and indeed need not be and are not
traversal. As a result, we have the following easy fact about the time complexity of
the above computation.

Fact 1. The labels to nodes in off-spine subtrees of the pattern can be given in
O(m) time. The labels to any one off-spine subtree t′ in the text can be given in time
O(min{|t′|,m}). The total time taken for the labelling is thus O(n+m); consequently,
the size of the resulting subset matching problem is also O(n + m).

Recall our remark from the introduction that the case of larger degree and labelled
trees can be handled without any extra overhead. Larger degree is simply handled
by the usual binarization. Labelled trees are handled by pairing the given labels with
the labels obtained here.

Clearly, there is a match in the subset matching problem beginning at a location
corresponding to an anchor node if and only if there is a match in the spine pattern
matching problem with the pattern tree root aligned with the corresponding anchor
node. This completes the reduction from spine pattern matching to subset matching.

4. Reducing tree pattern matching to one or more instances of spine
pattern matching. Consider two matches of the pattern with the text in which the
pattern instances overlap in m/2 or more locations. To avoid checking such matches
independently, we seek to have the roots of both pattern instances lie on the same
instance of a spine obtained from t.

Definition 4.1. The size of a node v in a tree is defined to be the number of
nodes in the subtree rooted at v. Let tv denote the subtree of t rooted at a node v in
t, and let pv denote the subtree of p rooted at a node v in p.

4.1. Processing the pattern. We define the spine π of the pattern p to be
the following path from the root to a node with at most one child. π consists of two
segments, π1 and π2. π1 is a centroid path; i.e., it is obtained by moving to the child
with larger size at each step, with ties broken arbitrarily. π1 ends when a node x
such that |px| ≤ m

2 is reached. Note that |px| ≥ m
4 . Let θ be the period of π1. π2 is

the longest path starting at x such that the path π continues to have period θ. Note
that π2 has a vertex in common with π1. π is readily computed in linear time. π1 is
terminated at x rather than at a node with at most one child to guarantee an overall
linear-sized construction.

TREE PATTERN MATCHING TO SUBSET MATCHING 1061

R

Green Subtree

G

≥ m nodes

Anchor Nodes

θ

Red Subtree

Link Node

≥ m
4

nodes

< m
4

nodes

≥ |π1|

≥ |π|

Fig. 4. A θ-Path in C.

4.2. Decomposing the text.

Definition 4.2 (see Figure 4). A path in t from a node u to a node v in tu is
a θ-path if it has period θ and is identical to the spine of the pattern in the first θ
locations (when both paths are viewed as strings). This path is maximal if extending
it to the distance θ ancestor of u or either child of v results in a path which is not
a θ-path (in fact, v can have only one child). These paths are the candidate spline
paths in the text, but we need to impose some further restrictions. Continuing with the
definitions, the link node l in this path is the node closest to v such that |tl| ≥ m

4 . An
anchor node on this path is a node at distance an integer multiple of θ from the start
node. The strong anchor nodes w on this path also satisfy the following properties. As
we will see, matches occur only when the pattern root is aligned with a strong anchor
node.

1. tw has at least m nodes.
2. The distance from w to l is at least |π1|, and thus has length at least θ.
3. The distance from w to v is at least |π|.
4. Consider the subtrees hanging from the maximal θ-path starting at w. Classify
them as red subtrees if they have at least m

4 nodes and as green subtrees
otherwise. If all these subtrees except exactly one are green, then the green
subtrees plus the path together have at least m/2 nodes.

5. Either u = w or the distance from u to w is an integer multiple of θ.

We form a collection C of maximal θ-paths in t, whose start nodes are strong
anchor nodes; i.e., they satisfy properties 1–5 above.

Clearly, if any of properties 1–3 or 5 do not hold, there cannot be a match with p’s
root aligned with w. To see the need for property (4) we argue as follows. Consider a
match of p in which at most one of the off-spine subtrees R in t is red. As the spine
of p does not match any nodes in R, the subtree of p matching R has size less than
m/2. Consequently, the remainder of p, of size at least m/2, matches the aligned
spine portion in t and its green subtrees, which therefore have combined size at least
m/2.

Note that the paths in C need not be disjoint; however, their combined length
will still be O(n), as we shall show later in Lemma 5.18.

The algorithm for constructing these paths is given next.

1062 RICHARD COLE AND RAMESH HARIHARAN

The path decomposition algorithm. The decomposition is obtained using the
following algorithm. For each node x in T , this algorithm first determines the longest
θ-path which begins at x. This is done in O(n) time using a Knuth–Morris–Pratt-
type automaton in conjunction with a depth-first traversal of t as in the algorithm
of Hoffman and O’Donell [6]. Next, the algorithm determines those maximal θ-paths
found above which satisfy properties 1–4, discarding all other paths. To this end, it
computes the size of each subtree, which allows property 1 to be tested. Properties
2–4 are readily tested by means of a subsequent traversal of each path. It will also
be useful to determine, for each such maximal θ-path, whether the node at distance
θ from the start of the path is also a strong anchor node. Since, as we will see, the
sum of the length of paths in C is O(n), the total time taken above is O(n).

Thus determining matches of p at strong anchor nodes on paths in C suffices to
determine all matches of p in t. Further, note that when p is placed with its root at
a strong anchor node on some path in C, the spine of p lies completely on that path.

4.3. Processing paths in C. The purpose of processing a path ρ ∈ C is to
determine whether or not p matches at w for each anchor node w on ρ. Each path ρ
in C will be processed as follows.

Let u be the node at which ρ starts. u itself is a strong anchor node. Whether
or not the pattern matches at u is determined in a brute force manner. This requires
O(m) time. We will show in Lemma 5.17 that there are O(n/m) paths, and hence
the total time taken over all paths in this process is just O(n).

Matches at other strong anchor nodes on ρ are determined differently, i.e., by
reduction to an instance of the spine pattern matching problem.

Consider the portion of ρ starting from the second anchor node onwards, denoted
trunc(ρ). If trunc(ρ) starts with a strong anchor node, it provides the spine of the
text instance. Clearly, there is a match of p rooted at an anchor node on trunc(ρ) if
and only if there is a match at the same location in the corresponding spine pattern
matching problem instance.

This concludes the reduction.

5. The analysis. Let s1, . . . , s|ρ|−θ denote the off-spine subtrees, if any, for
trunc(ρ), in increasing order of distance from the start node of ρ. Some of the si’s
might not exist. By Fact 1, reducing this instance of the spine pattern matching

problem to the subset matching problem takes time O(
∑|ρ|−θ

i=1 min{|si|,m} + |ρ| − θ)
(plus, of course, O(m) time for processing the pattern, which is common to all the
instances of the spine pattern matching problem which result above); also, it yields a

text of size O(
∑|ρ|−θ

i=1 min{|si|,m} + |ρ| − θ) and a pattern of size O(m).

The total time taken to process ρ is thus O(m +
∑|ρ|−θ

i=1 min{|si|,m} + |ρ| − θ).
This quantity can be split into four parts: O(m) time for checking for an occurrence of
p at the first anchor node, time proportional to its size for each green subtree hanging
from trunc(ρ), O(m) time for each red subtree hanging from trunc(ρ), and O(|ρ|− θ)
time for the path itself. We need to show that this sums to O(n) over all paths ρ.
By Lemma 5.17, there are O(n/m) paths; hence the first part sums to O(n) time.
By Corollary 5.3, the green subtrees in the truncated paths are disjoint; hence the
second part sums to O(n). By Lemma 5.8, there are O(n/m) red subtrees; hence the
third part sums to O(n). Finally, by Corollary 5.2, the truncated path lengths sum
to O(n), and hence the fourth part sums to O(n) also. This yields O(n) time overall.
The same argument shows the resulting subset matching problems have texts of total
size O(n); also, they each have the same pattern of size O(m).

TREE PATTERN MATCHING TO SUBSET MATCHING 1063

ρ′

Link Nodes
ρ

u′

u

branch node

≤ θ − 1

w

Fig. 5. Overlap is at most θ − 1.

5.1. Showing O(n) time.

5.1.1. Some properties of paths in C.

Lemma 5.1. Consider two paths ρ, ρ′ in C starting at nodes u and u′, respectively
(see Figure 5). Suppose u′ lies on ρ. Then at most the first θ− 1 edges of ρ′ are also
present in ρ.

Proof. From the construction of C, the length of the path between u and u′ is
not divisible by θ. The lemma then follows from Lemma 2.3.

Corollary 5.2. If the first θ edges are removed from each path in C, then the
resulting collection of paths is node disjoint. Hence the truncated paths have total
lengths O(n). Also, as the link node is not among the first θ nodes by property 2 of
paths in C, the link node of ρ′ cannot lie on ρ.

Corollary 5.3. The green subtrees hanging from the truncated paths are all
disjoint.

Proof. It suffices to consider the green subtrees hanging from two paths ρ, ρ′ ∈ C,
starting at u, u′, respectively, where u is a proper ancestor of u′ (for if u and u′

are unrelated, then clearly the green trees hanging from ρ and ρ′ are disjoint). By
Corollary 5.2, trunc(ρ) and trunc(ρ′) are disjoint. For a contradiction, suppose that
G is a green subtree hanging from trunc(ρ) and containing v, a node in a green subtree
hanging from trunc(ρ′). It follows from Lemma 5.1 that trunc(ρ′) lies within G. But
trunc(ρ′) includes the first anchor node w′ on ρ′, and the subtree of t rooted at w′

contains at least m nodes. Then G, which contains this subtree, would be red.

Lemma 5.4. Let ρ, ρ′ be as in Lemma 5.1 (see Figure 5). Then ρ′ cannot overlap
a node in ρ which is a proper descendant of ρ’s link node w. Therefore, if ρ′ overlaps
the link node w of ρ, then it branches away from ρ at w.

Proof. By Corollary 5.2, the link node l′ of ρ′ is not on ρ. If ρ′ overlaps a node
w′ in ρ which is a proper descendant of w, then |tw′ | ≥ |tl′ | ≥ m

4 , and therefore w
cannot be the link node of ρ, a contradiction.

Lemma 5.5. Let ρ, ρ′, and ρ′′ be three paths whose start nodes appear in this
order on the path from the root of t to the start node of ρ′′. Suppose that ρ′′ overlaps
ρ′’s link node, and suppose that ρ′ shares at least one edge with ρ. Then ρ and ρ′′ do
not overlap.

Proof. Suppose, for a contradiction, that ρ and ρ′′ overlap. Consider the portion
q of ρ′ up to the start node of ρ′′. By assumption, q lies entirely on ρ, and thus by
Lemma 5.1, |q| ≤ θ − 1. But q is a period of the portion of ρ′ from its start node

1064 RICHARD COLE AND RAMESH HARIHARAN

to its link node, as can be seen by considering the overlap of ρ′ with ρ′′. Further,
this portion of ρ′ has π1 as a prefix, and as |π1| ≥ θ, q would also be a period of π1,
contrary to the definition of θ.

5.1.2. Bounding the number of red subtrees. We bound the number of red
subtrees hanging from the truncated paths in C by associating them in part with a
set of O(n/m) nodes of t, called marked nodes. A path with k red subtrees will have
k − 1 marked nodes.

Definition 5.6. A node in t is marked if its left and right subtrees both contain
at least m

4 nodes.
Lemma 5.7. The number of marked nodes in t is O(n

m).
Proof. Each subtree of m/4 or more unmarked nodes is contracted to a single

unmarked leaf if its parent is marked. Each maximal subtree of unmarked nodes
whose parent is unmarked is discarded. Finally, maximal paths of unmarked nodes
are replaced by single edges. This reduces the original tree to a new tree in which all
internal nodes are marked and correspond one to one to the original marked nodes,
and all leaves are unmarked, each corresponding to m/4 or more distinct unmarked
nodes in t. Further, each internal node has two children. Thus, as there are at most
4n/m leaves, there are fewer than 4n/m internal nodes.

Lemma 5.8. There are O(n/m) red subtrees hanging from truncated paths whose
first node is a strong anchor.

Proof. Suppose strongly anchored truncated path ρ has k > 1 red subtrees hang-
ing from it. Such a path has k − 1 marked nodes (namely the lcas of the red subtree
roots). By Corollary 5.3, as these truncated paths are disjoint, and by Lemma 5.7,
as there are O(n/m) marked nodes, there can be only O(n/m) anchored truncated
paths with two or more red subtrees.

If a strongly anchored truncated path has only one red subtree then by property
4 of the paths, the path together with its green subtrees contains at least m/2 nodes.
This is also true if it has no red subtrees. By Corollaries 5.2 and 5.3, the paths
and their green subtrees are disjoint from each other. Consequently, there are only
O(n/m) such paths.

5.1.3. Bounding the number of paths. It remains to bound the number of
paths. To this end, we form suitable collections of paths.

Consider the following procedure for forming collections of paths. A collection
starts with a path ρ̃ whose start node is not overlapped by any other path; ρ̃ is called
the root path of the collection. The collection is built up by iterating the following
step. For each path ρ in the collection, every path ρ′, whose start node is on ρ but
which does not overlap the link node of any other path, is added to the collection.
Call these level 1 collections. Level i+ 1 collections are formed in the same way from
paths not in any level h collection, h ≤ i, and ignoring overlaps with paths in level h
collections, h ≤ i.

We will show that there are O(n/m) paths in the collections containing two or
more paths. We will then characterize the one path collections and show that they
too contain O(n/m) paths.

Definition 5.9. The point of attachment for a level i+ 1 collection C, i ≥ 1, is
defined in terms of C’s root path ρ and the parent ρ̃ whose link node l̃ is overlapped
by ρ; the point of attachment for C is link node l̃.

Definition 5.10. The tree for collection C is the tree formed by the edges on its
paths. The reduced tree for collection C is the subtree of its tree rooted at its point of
attachment.

TREE PATTERN MATCHING TO SUBSET MATCHING 1065

Lemma 5.11. Each node in the tree for collection C on the path from the tree’s
root to its attachment point has a single child.

Proof. Let C̃ be the collection containing ρ̃, the path whose link node is overlapped
by ρ, the root path of C. Suppose, for a contradiction, that ρ′ were a path in C, with
start node on ρ and which branches away from ρ at or before C’s point of attachment.
We argue that ρ′ would in fact have been added to C̃. Clearly, ρ′’s start node lies
on ρ̃. By assumption, ρ′ does not branch away from ρ̃ at its link node l̃; hence by
Lemma 5.4, it branches away before. If ρ′ overlapped the link node of another path
in C̃, then ρ̃ would overlap this link node too, which is not the case. Thus ρ′ can be
added to C̃, and so would not be in C, a contradiction.

Lemma 5.12. Let C be a level i + 1 collection, i ≥ 1, ρ its root path, ρ̃ the path
whose link node is overlapped by ρ, and C̃ the collection containing ρ̃. Then every
path overlapping ρ̃’s link node is in C.

Proof. By Lemma 5.5, if ρ and ρ′ both overlap ρ̃’s link node, they do not overlap
each other’s link nodes. Thus they would both be added to C.

Lemma 5.13. The reduced trees for the collections are disjoint.

Proof. Without loss of generality, suppose that all the paths are connected (oth-
erwise consider each connected component of paths separately). We will prove that
not only are the reduced trees disjoint but that for each i, the reduced trees for level i
collections are unrelated (for short the level i reduced trees); i.e., no tree is ancestral
to another. The proof is by induction on i, the collection level. Clearly, the trees for
level 1 collections are disjoint and unrelated. Now suppose that the reduced trees for
each level h collection, h ≤ i, are all disjoint and that the level i reduced trees are
unrelated. Then the link nodes appearing in the level i reduced trees are also unre-
lated, for each link node appears on only one path in a collection. By construction,
the root path of each level i + 1 collection overlaps the link node of a path in a level
i collection. By Lemma 5.12, each such root path overlaps a distinct link node, and
thus the level i+ 1 reduced trees are disjoint from each other and are unrelated.

Lemma 5.14. Each collection of k > 1 paths has its own k − 1 distinct marked
nodes.

Proof. The marked nodes for a collection C of k paths are simply the least
common ancestors (LCAs) of the link nodes for these paths. As t is binary, and these
k link nodes are distinct, there are k− 1 LCAs. Each LCA has a link node in each of
its two subtrees, and consequently each LCA is marked. Finally, Lemma 5.11 implies
that the LCAs all lie in the reduced tree for C, and as by Lemma 5.13 these reduced
trees are disjoint, the marked nodes associated with each collection are distinct.

Corollary 5.15. There are O(n/m) paths in collections of two or more paths.

Now consider the paths in collections of size one. These paths form chains of
paths in which each successive path overlaps the link node of its predecessor.

Lemma 5.16. There are O(n/m) paths in the above chains.

Proof. Two sets Ce and Co of paths are formed. Ce comprises every even index
path on the chains (the second, fourth, . . . paths) and Ce the odd index paths.

By construction, none of the chains overlap. By Lemma 5.5, none of the paths
in Ce overlap (apply the lemma to successive paths ρ2i, ρ2i+1, ρ2i+2 on a chain), and
the same holds for paths in Co.

Now we argue in a similar way to the proof of Lemma 5.11. There are O(n/m)
paths in Ce with one or more marked nodes (as marked nodes on distinct paths must
be distinct). The remaining paths on Ce have at most one red subtree each; by
property 4, each such path includes between its nodes and those of its green subtrees

1066 RICHARD COLE AND RAMESH HARIHARAN

at least m/2 distinct nodes (i.e. unshared with any other such path). This is a further
O(n/m) paths. Thus Ce includes O(n/m) paths. The same is true for Co.

We have shown the following lemmas:
Lemma 5.17. There are O(n/m) paths.
Lemma 5.18. The paths have total length O(n).
This leads to the following theorem.
Theorem 5.19. There is a linear time reduction from the tree pattern matching

problem to a collection of instances of the subset matching problem of overall linear
size.

Proof. This is immediate from Corollary 5.2 and Lemma 5.17.

6. Further comments. It is not completely clear whether this construction
maps unlabelled trees to the set strings as compactly as possible, for ancestral infor-
mation is lost in the reduction. Indeed, an unlabelled n-node tree can be represented
using O(n) bits, whereas a size n set problem in general requires Θ(n log n) bits and
will do so after our reduction. In general, n labels would require Θ(n log n) bits, so
it appears the reduction is tight for labelled trees. Thus this raises the question of
whether there are algorithms for unlabelled tree pattern matching that are faster by
a Θ(log n) factor.

Acknowledgment. We thank the referees for their suggestions which helped
improve the presentation.

REFERENCES

[1] R. Cole and R. Hariharan, Tree pattern matching and subset matching in randomized
O(n log3 m) time, in Proceedings of the 29th ACM Symposium on Theory of Comput-
ing, El Paso, TX, 1997, pp. 66–75.

[2] R. Cole and R. Hariharan, Verifying candidate matches in sparse and wildcard matching,
in Proceedings of the 34th ACM Symposium on Theory of Computing, Montreal, QC,
Canada, 2002, pp. 592–601.

[3] R. Cole, R, Hariharan, and P. Indyk, Tree pattern matching and subset matching in deter-
ministic O(n log3 m) time, in Proceedings of the Tenth Annual ACM-SIAM Symposium
on Discrete Algorithms, Baltimore, MD, 1999, pp. 245–254.

[4] M. Dubiner, Z. Galil, and E. Magen, Faster tree pattern matching, J. ACM, 41 (1994),
pp. 205–213.

[5] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University Press, Cam-
bridge, UK, 1997.

[6] C. M. Hoffman and M. J. O’Donell, Pattern matching in trees, J. ACM, 29 (1982), pp. 68–
95.

[7] P. Indyk, Deterministic superimposed coding with applications to pattern matching, in Pro-
ceedings of the 38th IEEE Symposium on Foundations of Computer Science, Miami Beach,
FL, 1997, pp. 127–136.

[8] P. Indyk, Faster algorithms for string matching problems: Matching the convolution bound,
in Proceedings of the 39th IEEE Symposium on Foundations of Computer Science, Palo
Alto, CA, 1998, pp. 166–173.

[9] S. R. Kosaraju, Efficient tree pattern matching, in Proceedings of the 30th IEEE Symposium
on Foundations of Computer Science, 1989, pp. 178–183.

[10] M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, New York, 1994,
pp. 27–31.

