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Abstract
We investigated relationships between tree-ring δ13C and growth, and flux tower estimates of
gross primary productivity (GPP) at Harvard Forest from 1992 to 2010. Seasonal variations of
derived photosynthetic isotope discrimination (Δ13C) and leaf intercellular CO2 concentration
(ci) showed significant increasing trends for the dominant deciduous and coniferous species.
Δ13C was positively correlated to growing-season GPP and is primarily controlled by
precipitation and soil moisture indicating that site conditions maintained high stomatal
conductance under increasing atmospheric CO2 levels. Increasing Δ13C over the 1992–2010
period is attributed to increasing annual and summer water availability identified at Harvard
Forest and across the region. Higher Δ13C is coincident with an enhancement in growth and
ecosystem-level net carbon uptake. This work suggests that tree-ring δ13C could serve as a
measure of forest GPP and be used to improve the calibration and predictive skill of ecosystem
and carbon cycle models.

S Online supplementary data available from stacks.iop.org/ERL/9/074011/mmedia
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1. Introduction

Our ability to project the future carbon cycle is limited by our
lack of understanding of terrestrial carbon (C) cycle dynamics
and the feedbacks that constrain C budgets. Projections of C-
flux and C-sequestration from current coupled terrestrial car-
bon cycle models give widely divergent results (Friedlingstein
et al 2006). The lack of agreement among projections is, in
part, related to poorly constrained model parameters.

Constraining carbon budget projections is an important issue
given the current mitigation of anthropogenic emissions by
terrestrial ecosystems sequestering C (Le Quéré et al 2009).
Terrestrial ecosystems sequestered approximately 30% of
anthropogenic emissions from 2000 to 2006, and there is
interest in the potential to manage forest ecosystems to increase
the strength of the carbon sink (Hurtt et al 2002, Canadell
et al 2007, Woodbury et al 2007). Longer periods of obser-
vational data on C-cycle variability, in particular, would help
constrain model parameters and improve model performance.
CO2 flux measurements between ecosystems and the atmo-
sphere from eddy covariance flux towers (Baldocchi 2003) are
valuable for model evaluation (Suzuki and Ichii 2010,
Richardson et al 2012, Schaefer et al 2012, Keenan
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et al 2012a, Raczka et al 2013), but they only measure CO2

flux conditions over short periods (maximum 20 years, most
⩽10 years) in a small footprint (1 km2) and the regional tower
density is low (e.g., five sites in northeastern US forests with
>10 years of data). Consequently, a variety of other types of
measurements are needed to constrain C-cycle model para-
meters and to improve projections of interannual variability in
C-cycle dynamics in terrestrial ecosystems (Pan et al 2006,
Sims et al 2006, Randerson et al 2009, Babst et al 2013).

Annual measurements of forest carbon production can be
obtained from tree rings that integrate the influence of climate
and site factors on forest growth (Babst et al 2013). Attempts
to associate tree-ring width with net ecosystem exchange
(NEE) and gross primary productivity (GPP) measurements
from flux towers have proven inconclusive (Rocha
et al 2006). Integrals of annual growth over a few to several
years have yielded similar net carbon fluxes as continuous
flux tower measurements, but annual increment and flux
tower measurements do not show strong inter-annual corre-
lations (Barford et al 2001).

The composition of carbon isotopes (δ13C) of an annual
tree ring records the proportions of assimilated carbon and is
closely linked to photosynthetic capacity and stomatal regula-
tion during tree growth (Farquhar et al 1989, Ogée et al 2009).
Therefore, the distribution of stable carbon isotopes within a
tree ring reflects the carbon assimilation and environmental
conditions experienced by a tree through the growing season.
The δ13C is widely used to study the linkage between envir-
onmental conditions and the physiological processes that
control tree growth at inter- and intra-annual time resolutions
(Loader et al 1995). Tree rings, particularly wood cellulose
δ13C, contain valuable records of past climate, leaf-gas
exchange, and carbon allocation within trees (e.g. Barbour
et al 2002). Several studies used tree-ring δ13C to reconstruct
the intrinsic water use efficiency (iWUE) of trees (e.g.
Duquesnay et al 1998), and δ13C within a tree ring has been
shown to track the physiological changes at the canopy level as
recorded by the flux towers (Walcroft et al 1997, Michelot
et al 2011). This approach has shown the potential to better
understand the link between canopy-level physiology, tree-ring
isotopic signature and climate drivers (Offermann et al 2011).

In this paper, we identify the relationships between
interannual variability in tree-ring δ13C, tree-ring increment,
flux tower measurements of CO2, and climate for a temperate
forest in the northeastern United States. The period of analysis
spans 18 years (1992–2010) and is from the longest available
record of continuous flux tower measurements (Harvard
Forest, Petersham, Massachusetts; Urbanski et al 2007). We
analyzed the δ13C (of α-cellulose) from tree-ring latewood
(LW) because it is less dependent on carbon stored during the
previous growth year and therefore corresponds to the iso-
topic signal of recently assimilated C during the growing
season. We conducted this analysis for one broad-leaf
deciduous and one evergreen needle-leaf co-dominant species
in the flux-tower footprint to contrast species response. Spe-
cifically, we: (1) identified the relationship between tree-ring
δ13C, GPP, and tree growth, and, (2) assessed the responses of
tree physiology and growth to rising atmospheric CO2 mole

fraction and climate variation. We also discuss how changes
in climate conditions and atmospheric CO2 concentration
over the period of record may have modulated growth and
forest productivity over the last 18 years.

2. Materials and methods

2.1. Study site and tree-ring chronologies

The forest within the flux-tower footprint (1 km2; Harvard
Forest-EMS tower) is mainly deciduous and is dominated by
Quercus. rubra (L.) (northern red oak; 52% of basal area),
Acer rubrum L. (red maple; 22% of basal area) and Tsuga
canadensis (L.) (eastern hemlock; 17% of basal area).
Increment core sampling focused on canopy dominant trees.
To identify interannual variability in tree growth and tree-ring
δ13C, we cored Q. rubra and T. canadensis with a 5 mm
increment borer at 1.37 m stem height (table 1). Two cores
were taken from each tree to build ring-width chronologies.
Additionally, we cored five and four trees respectively of each
species at the same height with a 12 mm increment borer. The
large cores were used to analyze the δ13C in the LW of the
tree rings. A sample of four trees is sufficient to achieve good
precision of the δ13C sample mean (McCarroll and Loa-
der 2004, Leavitt 2008).

Ring-width chronologies were developed for each spe-
cies using standard dendrochronological techniques
(Speer 2010). For the site, Q. rubra mean age was 97 years
(range 71–115 years) and T. canadensis mean age was 145
years (range 89–221 years). For isotope cores, Q. rubra mean
age was 103 years (range 87–113 years) and T. canadensis
mean age was 142 years (range 93–188 years). All ages were
estimated from inner ring dates.

Basal area increment (BAI) was calculated for each tree
and species using the dplR package in R (Bunn 2008). We
used the ‘outside in’ function to convert raw ring-width
measurements to BAI based on the diameter of the tree and
the width of each ring moving towards the pith of the tree.
The method assumes a circular growth pattern. BAI was used
instead of ring width as a surrogate of radial growth and
carbon gain because it represents more accurately tree annual
biomass increment without the need for standardization

Table 1. Sample characteristics for Quercus rubra and Tsuga
canadensis from the Harvard Forest site.

Species Quercus rubra Tsuga canadensis

No. of dated cores 42 (16 trees) 55 (22 trees)
No. of isotopic cores 5 (5 trees) 4 (4 trees)
Mean intercorrelation RW 0.67 0.61
Mean intercorrelation δ13C 0.71 0.67
EPS RW (1992–2010) 0.95 0.96
EPS δ13C (1992–2010) 0.85 0.86

Numbers of dated cores and trees for chronology and isotopic analyses. Mean
intercorrelation for isotopic cores. Note that only one core per tree was
sampled for isotopic analyses as the intra-tree variability is small in
comparison with the inter-tree variability (Daux et al 2011).
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(Biondi and Qeadan 2008). A mean BAI value was computed
for each species at an annual resolution, averaged over all the
trees cored for both carbon isotope analyses and ring-width
chronologies (i.e., 16 trees/42 cores for Q. rubra and 22 trees/
55 cores for T. canadensis).

2.2. Stable istope analyses

We analyzed the LW portion of each tree ring from individual
trees over the 1992–2010 period (table 1). The samples were
milled using an ultra-centrifugation mill (Qiagen TissueLy-
serII) and α-cellulose was extracted from each wood sample
following the Soxhlet method elaborated by Green (1963) and
modified by Leavitt and Danzer (1993). δ13C ratios were
measured on the CO2 produced by α-cellulose combustion in
a Costech elemental analyzer coupled with a Thermo Delta V-
IRMS. The sample accuracy was determined to be ±0.08‰ (1
σ standard deviation calculated from the average difference
between measured and true internal standard, n= 13). The
isotopic value is expressed in the delta (δ) notation relative to
the VPDB (‰ VPDB).

2.3. Calculation of Δ, ci and iWUE

We used δ13C to determine carbon isotope discrimination (Δ)
by the plant against atmospheric δ13C, and variation in plant
iWUE. The Δ describes the isotopic difference between the
δ13C of air (δ13Cair) and the plant (δ13Cplant) and results from
the preferential use of 12C over 13C during photosynthesis. Δ
is calculated using:

Δ δ δ= − +( ) ( )d C C C‰ 1 1000 . (1)13
air

13
plant

13
plant

Records of δ13Cair were obtained from Mauna Loa from
1992 to 2002, and from aircraft measurements collected in
Worcester, Massachusetts at 500 m above ground and avail-
able from 2003 to 2010 (White and Vaughn 2011). The model
of Farquhar et al (1982) describes isotopic Δ for C3 plants via:

Δ = + −a b a c c‰ ( ) , (2)i a

where a is the fractionation during CO2 diffusion through the
stomata (4.4‰: O’Leary 1981); b is the fractionation by
RuBP carboxylase (27‰: Farquhar and Richards 1984); and
ci and ca, are the leaf intercellular space and ambient CO2

concentrations (μmol Mol−1), respectively. We used the data
of atmospheric CO2 concentration (ca) measured at 29 m
height on the eddy-covariance tower to calculate ci from
equation (2). The fractionations due to diffusion and car-
boxylation are constant but additive; therefore, the δ13C
records variations in ci as regulated by two main processes:
stomatal conductance (ca/ci) and photosynthetic assimilation
rate (A). The iWUE is the ratio of the net photosynthetic
assimilation rate (A) and water vapor conductance (gH2O) and
is described by Ehleringer and Cerling (1995) as:

= = −iWUE A g c c (1 1.6). (3)H O a i2

The iWUE derived from plant isotope data is used to
compare photosynthetic properties independent from eva-
porative demand (Osmond et al 1980), and is therefore, often

applied as an indicator of long-term trends in the internal
regulation of carbon uptake and water loss of plants (Seibt
et al 2008). We used summer (June, July and August) values
of δ13Cair and ca to calculate Δ, and to reconstruct ci and
iWUE for the period corresponding to LW formation.

2.4. Meteorological and CO2 flux data and data analyses

We used hourly gap-filled meteorological data from the eddy-
covariance tower measured by sensors above the canopy at
29m height (Urbanski et al 2007, Harvard Forest Data Archive
HF004) to compute monthly mean temperature, vapor pressure
deficit (VPD), incident photosynthetically active radiation,
relative humidity as well as monthly total precipitation from
1992 to 2010. Hourly gap-filled GPP was used to provide
monthly cumulative GPP. We used the Palmer Drought
Severity Index (PDSI) for the central Massachusetts climate
region from the National Climatic Data Center.

The association between climate variables and tree-ring Δ
chronologies were assessed using correlation analyses. The
GPP time series during the growing season (from May to
October) were compared to tree-ring Δ chronologies for each
species. Correlations were calculated between monthly GPP
and LW-Δ using the Pearson (pairwise) product-moment
correlation. Trends over the 1992–2010 period were estimated
using linear regression.

3. Results

We assessed the number of trees required to extract a common
reliable climate signal (thus, the degree to which isotopic
composition series vary in parallel) using the expressed
population signal (EPS, Robertson et al 1997, McCarroll and
Pawellek 1998). The EPS values calculated using the
1992–2010 isotopic compositions are ⩾0.85 for two trees from
each species. An EPS value of ⩾0.85 suggests that the sample
size is adequate (Wigley et al 1984). At the high frequency
investigated in this study (year to year), the δ13C series display
a high common variance within each species (table 1). We
assessed the confidence interval (CI) around annual mean
values to account for the differences in the absolute isotopic
values (McCarroll and Loader 2004). The sample size of 4 T.
canadensis and 5 Q. rubra provided a CI95%= 0.3‰ and
0.18‰ respectively. The mean values of 1992–2010 individual
series were calculated for all tree cores to produce one main
series for each species (Shi et al 2011) hereafter called
δ13CTSCA for T. canadensis and δ13CQURU for Q. rubra.

δ13C measurements were significantly different between
species (t= 2.02, P < 0.05). The mean δ13CTSCA display
higher ratios than δ13CQURU, this difference is probably
linked to hydraulic conductivity in conifers which is less
efficient than in ring-porous deciduous species (Stuiver and
Braziunas 1987, McCulloh et al 2010) or other factors such as
differences in the maximum photosynthetic capacity or leaf
morphology (Barbour et al 2002). The species specific time
series of annual δ13C variations are positively correlated with
each other (r= 0.61 P < 0.001). The derived Δ and ci series for
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each species reveal similar and significant increasing trends
over time, although the increase was more pronounced for T.
canadensis (figure 1). The iWUE over the period of record
remained stable which translates into a constant ca− ci or an
increasing ci/ca. A few years did display a higher iWUE in
comparison to most years; in particular, iWUE spikes in 1999
in both species records.

The mean BAI also showed a significant increasing trend
over the period of record for Q. rubra (R2 = 0.64, P= 0.0001)
but the trend was less pronounced for T. canadensis
(R2 = 0.32, P< 0.05). Overall, the trends analysis using linear
regression shows that Δ, ci and BAI have increased for each
species. The changes were significant (p< 0.05) and the
slopes were positive (table 2).

The Δ was strongly correlated with July (0.55, P< 0.05)
and October (0.53, P< 0.05) GPP for T. canadensis, and with
July (0.49, P< 0.05), August (0.58, P< 0.01), and October

(0.55, P< 0.05) GPP for Q. rubra. Online supplementary
table S1 (available at stacks.iop.org/ERL/9/074011/mmedia)
summarizes the Pearson correlation obtained between
monthly climate variables and ΔQURU and ΔTSCA. Overall, the
strongest positive correlations were found with PDSI from
May to August for T. canadensis and for May for Q. rubra. A
positive correlation was found between Δ of both species and
early-growing season precipitation (April and May).

4. Discussion

4.1. Relationship between Δ, growth, and flux tower estimates
of GPP

The carbon contribution to stem growth during LW formation
should primarily originate from the immediate product of

Figure 1. From top to bottom: trends in the δ13C discrimination Δ (‰), the leaf intercellular CO2 concentration (ci, ppm), intrinsic water use
efficiency (iWUE) and basal area increment (BAI) for T. canadensis (Left) and Q. rubra (Right) throughout time. The slopes of the linear
regressions fitted to the data, the coefficients of determination and the P-values are reported for each parameter (see also table 2). The upper
and lower levels of the 95% confidence interval for each linear trend are shaded in gray.
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carboxylation thus reflecting the δ13C signature of recent
assimilates (Helle and Schleser 2004). The interannual
variability of Δ was compared with monthly GPP to identify
the seasonality of carbon uptake and allocation to above-
ground woody biomass. The correlations shown in figure 2
indicate that recent photosynthates provided the substrates for
stem radial growth occurring in the second part of the
growing season (Gessler et al 2009, Offermann et al 2011).
The Δ-GPP correlations are logical based on the timing of LW
formation for both T. canadensis and Q. rubra. LW tracheid
formation and cell wall thickening in T. canadensis begins
later in the growing season (late July–October, Skene 1972)
coincident with the significant correlations. In contrast, LW
formation in Quercus species begins approximately five
weeks after the unfolding of first leaves and continues until
radial growth cessation in late summer or early fall (Zasada
and Zahner 1969, Voelker et al 2012).

The Δ-GPP correlations are consistent with the season-
ality of carbon uptake from eddy flux measurements and C
storage estimates at the deciduous forest-EMS tower site and
the Hemlock Forest tower site located 0.5 km from the EMS
tower (Hadley and Schedlbauer 2002, Hadley et al 2009). Net
C uptake at the deciduous forest site occurs between the end
of May and mid-October. At the hemlock site, the peak in net
C uptake and storage occurs in April and May. This period is
not influencing the δ13C in the LW, although it shows the
effect of conifers on the annual pattern of the C exchange.
Conifers currently represent 17% of the total basal area at the
deciduous forest site. After C uptake declines in June, it
increases in July, and falls in August before a second uptake
peak in October, consistent with the Δ-GPP correlations for T.
canadensis.

The species seasonality of carbon allocation is further
reflected in the relationship between LW-Δ and growth. The
correlation for Q. rubra LW-Δ and mean BAI was significant
(r= 0.72, P < 0.001), and was slightly higher with the mean Q.
rubra BAI of all sampled trees (r= 0.75, P< 0.001). To
illustrate the relationship between aboveground carbon gain
and photosynthetic discrimination we regressed BAI against
Δ, and a strong positive trend was obtained for Q. rubra

(R2 = 0.39 P < 0.01). The growth increase of Q. rubra could
be interpreted as the result of a greater photosynthetic rate
induced by increased ci concentrations (von Caemmerer and
Farquhar 1981, Schubert and Jahren 2012), and a substantial
allocation of carbohydrates to LW formation and radial
growth (Keel et al 2006, Palacio et al 2011). However stage
of stand development may also be contributing to this
increase in BAI (e.g. Foster et al 2014, figure S1). A rela-
tionship between Δ and BAI was not found for T. canadensis,
probably because carbon sequestered after June contributes
little to the current year radial growth or that carbon allocation
differs by species (Richardson et al 2013). The trend in the
BAI growth enhancement for Q. rubra is consistent with
changes in the measured annual increment of aboveground
biomass in the flux-tower footprint from 1993–2010 (∼20%
increase, Data Archive: HF069), and provides a quantification
of carbon stored in aboveground woody biomass. Interest-
ingly, the aboveground biomass over the last decade
accounted for ∼50% of the total carbon sequestered (Keenan
et al 2012a) confirming the relationship we found between Q.
rubra BAI and Δ, and growing season GPP (figure 2). The
remaining carbon uptake could be attributed to litter or soil
pools; however, these carbon proportions and stocks are not
accounted for in the tree-rings δ13C.

The inter-annual variability and fraction of carbon uptake
and sequestration explained by the tree-ring derived Δ
(figures 2(c), (d)) provides a quantitative proxy that can be
used to constrain models that estimate forest productivity.
Process-based models fail to accurately reproduce the
observed inter-annual variability of C-fluxes (Keenan
et al 2012b) mainly because of inaccurate model allocation
structure and lagged effects of climate variability on tree
growth and physiology (Gough et al 2009). In contrast, the Δ
integrates biotic factors which modulate the δ13C fractiona-
tion and the isotopic composition of the total pool of carbon
fixed during photosynthesis at seasonal and annual cycles
(Leavitt 1993).

4.2. Climate drivers and physiological implication of the Δ trend

We examined the climatic drivers of Δ using meteorological
data from the eddy-covariance tower and PDSI. The climate
signal within both species Δ series is dominated by monthly
precipitation and PDSI during the growing season (table S1),
although they have a stronger influence on T. canadensis due
to its particularly drought-sensitive nature caused by a rela-
tively shallow rooting-depth (Cook and Cole 1991).

The carbon isotope discrimination properties can be used
to assess how trees are responding to increasing atmospheric
concentration ca and changes in climate. Three physiological
response scenarios described by Saurer et al (2004) identify
possible changes in iWUE and ci following ca increase: (1) ci
remains constant such that ci/ca decreases and iWUE increa-
ses; (2) ci increases proportional to ca such that ci/ca remains
constant and iWUE increases; (3) ci increases at the same rate
as ca, ci/ca increases and iWUE remains constant. In this
study, Δ and ci increased and there was no increase in iWUE
for both species (figure 2, table 2). The ci/ca calculated for

Table 2. Trend statistic, per species, for isotopic discrimination (Δ),
intercellular CO2 concentration (ci), intrinsic water use efficiency
(iWUE) and basal area increment (BAI). All units are given per year
(yr). The slopes are estimated using linear regression.

Slope Sig

Δ TSCA (‰ yr–1) 0.06 <0.0001*
Δ QURU (‰ yr–1) 0.03 0.01**
ci TSCA (ppm yr–1) 2.01 <0.0001*
ci QURU (ppm yr–1) 1.72 <0.0001*
iWUETSCA (μmol mol yr–1) −0.018 0.9***
iWUEQURU (μmol mol yr–1) 0.16 0.2***
BAITSCA (cm2 yr–1) 0.22 0.01**
BAIQURU (cm2 yr–1) 0.40 <0.001*

The significance of each variable slope is given * p< 0.01,
** p< 0.05 and *** Positive or negative but non-
significant.
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both species increases indicating ci follows the increase in ca
at a rate of 2 ± 0.21 ppm yr–1 for T. canadensis, and
1.7 ± 0.17 ppm yr–1 for Q. rubra. The ci/ca increase and no
change in iWUE suggest a weak stomatal response to ca
increase and is described as a passive response to changes in
ca (McCarroll et al 2009) where neither stomatal conductance
nor photosynthetic rate change. The most common response
documented in trees is an active response as stomatal con-
ductance is reduced (Bert et al 1997, Saurer et al 2004,
Peñuelas et al 2011). The iWUE trends derived from the tree-
rings δ13C in our study show a divergence from the instan-
taneous WUE (the ratio of carbon assimilation to transpira-
tion, Farquhar and Richards 1984) trend documented at the
ecosystem level using continuous measurements of CO2 and
water vapor fluxes at HF (Keenan et al 2013). The canopy-
integrated water use efficiency calculated as the ratio between
gross ecosystem photosynthesis (GEP) and Ecosystem eva-
potranspiration (E) shows a significant increase over the
measurements period (3.5% change yr−1, P = 0.01). The latter
was calculated taking into account the atmospheric evapora-
tive demand and therefore is referred to as ‘inherent’ water
use efficiency (Wei). The ‘intrinsic’ water use efficiency as
derived from tree-rings δ13C is often used as an indicator of
long-term trends in the internal regulation of carbon uptake
and water loss independently from evaporative demand
(Osmond et al 1980). Therefore iWUE inferred from δ13C
may not be representative of instantaneous or inherent WUE.
Although both are affected by similar processes (i.e. stomatal
conductance), they can vary independently because they are
influenced by additional factors like mesophyll conductance,
leaf N-content and C-respiratory losses (Griffiths et al 1999,
Seibt et al 2008). We note that when iWUE is calculated from
the flux tower measurements (as the ratio between GEP and
canopy water conductance), the magnitude of the trend is
lower and the statistical strength is no longer significant

compared to those calculated for Wei (1% change yr−1,
P = 0.2, Keenan et al 2013).

The Δ trend found in this study during the last 18 years is
unusual but not unique. Results from literature often reported
a decrease in Δ inferred from tree-ring records, and thus a
strong improvement of iWUE during the last 100 years under
increased atmospheric CO2 (Arneth et al 2002). However,
Marshall and Monserud (1996) showed that iWUE has
remained static in sites from western US and a switch in
iWUE from an active to a passive response around AD 1970
has been noted in several European sites (Gagen et al 2011).
The spatial variability of stomatal regulation and iWUE
response to increasing ca is explained by the strong depen-
dence of water and carbon usage on moisture stress experi-
enced at a specific site and species sensitivity to moisture
availability (Warren et al 2001). The increased discrimination
is a reflection of the availability of CO2. When the level of
CO2 (ci) is high, large discrimination is observed reflecting
the RuBisCO enzymatic preference for 12CO2 (Stewart
et al 1995). Clearly, the Δ chronologies at HF indicate that
despite higher ca concentrations, factors like physiology and
site condition contributed to stomatal openness and
conductance.

The strong correlation between Δ and growing season
PDSI and precipitation for both species suggest a link
between water availability and stomatal conductance
(Dupouey et al 1993). The climatic data for central Massa-
chusetts indicates that precipitation and moisture (PDSI) are
high at HF and are rarely limiting tree growth (Voelker 2011).
In fact, the region became wetter over the period of analysis.
The mean annual precipitation from 1898 to 2010 was
107.45 cm and increased 0.28 ± 0.06 cm yr–1 (p< 0.0001).
The trend in precipitation is also reflected in a trend of
increasing PDSI of 0.03 ± 0.005 units yr–1 (P < 0.0001) over
the same period. Since 1992, precipitation and PDSI have

Figure 2. Tree-ring Δ chronologies and monthly GPP data from April to October. Pearson correlations from 1992 to 2010 between Δ and
mean monthly GPP data for T. canadensis (a) and Q. rubra (b). May–October GPP and the Δ chronologies for T. canadensis (c) and Q. rubra
(d) versus time.
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increased at rates of 1.30 ± 0.67 cm yr–1 (P< 0.07) and
0.15 ± 0.05 units yr–1 (P< 0.006), respectively. The increase
in regional scale water availability (Wang et al 2013) is also
evident at the HF site. Annual precipitation and growing
season precipitation have increased by 10% and 15% over the
last 18 years, respectively (Keenan et al 2013).

We conclude on the basis of the photosynthetic dis-
crimination sensitivity to water availability that the long-term
increase in moisture which controls Δ drove the increase in
stomatal conductance and carbon photosynthetic discrimina-
tion. A positive correlation between Δ and mean annual and
summer precipitation has been confirmed for modern leaf
tissues from multiple biomes in North America (Diefendorf
et al 2010). This correlation is explained by the effect of the
mean annual and summer precipitation levels on both soil
water status and VPD (Hartman and Danin 2010). It is
noteworthy that despite the mesic conditions of the HF site,
precipitation and soil moisture levels remain very strong
predictors of CO2 discrimination. Similar to our findings,
drought sensitivity has been demonstrated for radial growth of
T. canadensis and Q. rubra growing in mesic sites located in
the New York City watershed (Pederson et al 2013).

The sensitivity to water availability is further illustrated
by iWUE data for the year 1999. Both species exhibited a
higher iWUE reflecting lower Δ values (figure 1). The sum-
mer of 1999 was very dry with decreased soil moisture levels
resulting in the restriction of the CO2 supply to the leaf
(Brugnoli et al 1988) because of stomatal closure, and in a
weaker carbon uptake observed in the summertime NEE
record (Urbanski et al 2007).

5. Conclusion

An enhancement in photosynthetic isotopic 13C discrimina-
tion and ci was observed over the last 18 years for two co-
dominant species at the Harvard Forest. The combined effect
of increased water availability and higher atmospheric CO2

concentration lead to increased plant CO2 assimilation. The
higher net photosynthesis can in part explain the growth
enhancement of Q. rubra and above-ground GPP (e.g.
Linares and Camarero 2012) and is consistent with the
observed higher CO2 uptake and C storage documented in the
flux-tower measurements over the same period. The tree-ring
Δ-GPP relationship identified in this study can be used as a
quantitative proxy to reconstruct and interpret past forest
productivity, as driven by climate variability and in response
to long-term atmospheric CO2 increase.

The photosynthetic carbon isotopic discrimination model
is embedded in most of the models of forest carbon cycling
(Richardson et al 2012) that are coupled with earth-system
models to project terrestrial carbon cycle and feedbacks to
climate change (Sitch et al 2008). We show that the data
provided by tree-ring δ13C, recording the seasonal and
interannual patterns of plant carbon assimilation, can be used
to inform forest ecosystem model parameterization (Bodin
et al 2013), to improve simulations of monthly scale eco-
system-function (e.g. Medvigy et al 2013), and to constrain

longer term terrestrial carbon dynamics in response to climate
fluctuations and forest management (e.g. Brooks and
Mitchell 2011).

Whether the documented isotopic trends in the present
study are merely temporary or a site specific phenomenon
remains to be seen. Further investigations of tree-ring δ13C
and ecosystem physiology measurements from other flux-
tower sites in northeastern US forests need to be explored to
assess physiological responses at the regional scale.
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