

 © 2020 Ika Alfina, Indra Budi and Heru Suhartanto. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Tree Rotations for Dependency Trees: Converting the Head-

Directionality of Noun Phrases

Ika Alfina, Indra Budi and Heru Suhartanto

Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia

Article history

Received: 02-09-2020
Revised: 12-11-2020
Accepted: 17-11-2020

Corresponding Author:
Ika Alfina
Faculty of Computer Science,
Universitas Indonesia, Depok,
Indonesia
Email: ika.alfina@cs.ui.ac.id

Abstract: To overcome the lack of NLP resources for the low-resource
languages, we can utilize tools that are already available for other
highresource languages and then modify the output to conform to the target
language. In this study, we proposed an approach to convert an Indonesian
constituency treebank to a dependency treebank by utilizing an English
NLP tool (Stanford CoreNLP) to create the initial dependency treebank.
Some annotations in this initial treebank did not conform to Indonesian
grammar, especially noun phrases’ head-directionality. Noun phrases in
English usually have head-final direction, while in Indonesian is the
opposite, head-initial. We proposed a variant of tree rotations algorithm
named headSwap for dependency trees. We used this algorithm to convert
the head-directionality for noun phrases that were initially labeled as a
compound. Moreover, we also proposed a set of rules to rename the
dependency relation labels to conform to the recent guidelines. To evaluate
our proposed method, we created a gold standard of 2,846 tokens that were
annotated manually. Experiment results showed that our proposed method
improved the Unlabeled Attachment Score (UAS) with a margin of 32.5%
from 61.6 to 94.1% and the Labeled Attachment Score (LAS) with a
margin of 41% from 44.1 to 85.1%. Finally, we created a new Indonesian
dependency treebank that converted automatically using our proposed
method that consists of 25,416 tokens. The dependency parser model built
using this treebank has UAS of 75.90% and LAS of 70.38%.

Keywords: Dependency Parsing, Head-Directionality, Indonesian, Noun
Phrases, Tree Rotations

Introduction

Syntactic parsing is “a task of recognizing an input

string and assigning a structure to it” (Jurafsky and

Martin, 2008). In general, the approaches in syntactic

parsing are divided into two types: Phrase structure and

typed-dependency structure. Phrase structure focuses on

identifying phrases and their recursive structure, while

the type-dependency structure focuses on relations

between words. Phrase structure parsing is also known

as constituency parsing.

The dependency parsing has gained more popularity

because of its applicability to a wide range of NLP tasks
such as machine translation (Čmejrek et al., 2004;
Galley and Manning, 2009; Jiang et al., 2016; Gao et al.,

2017), information extraction (Niklaus et al., 2018;
Gashteovski et al., 2019), question answering (Meng et al.,
2017; Cao et al., 2018) and so on. These works have

motivated the conversion of the available constituency

treebanks to the dependency treebanks.
Several works had built constituent-to-dependency

converter for English treebank (Johansson and Nugues,
2007; Choi and Palmer, 2010; De Marneffe et al., 2006;
Schuster and Manning, 2016). These converters accept
treebanks in the Penn Treebank format as the input. The
Penn Treebank (PTB) is a constituency treebank in
English (Marcus et al., 1993). The PTB annotation
guidelines are considered as a de-facto standard in
building constituency treebank.

For non-English treebank, many converters of
constituency-to-dependency have been built, such as
for Arabic (Žabokrtský and Smrz, 2003), Spanish
(Gelbukh et al., 2005), French (Candito et al., 2010)
and Sanskrit (Goyal and Kulkarni, 2014). In general,
these works used a rule-based approach based on the
target language’s morphology and syntactic in
converting constituency to dependency annotation.

Ika Alfina et al. / Journal of Computer Science 2020, 16 (11): 1585.1597
DOI: 10.3844/jcssp.2020.1585.1597

1586

Indonesian, a language of the Austronesian language
family, is a low-resource language for Natural Language
Processing (NLP) studies. Not only are dataset limited,
tools for processing datasets are also rarely available.

As far as we know, the only constituency treebank
available was developed by the Universitas Indonesia
(UI) as the continuation of the development of their
POS-tagger corpus (Dinakaramani et al., 2014). This
treebank was later converted to the Penn Treebank
format by (Arwidarasti et al., 2019).

As for the dependency treebank, there are two
treebanks publicly available, both provided by Universal
Dependencies (UD): Indonesian-GSD (McDonald et al.,
2013) and Indonesian-PUD (Zeman et al., 2017).
However, according to (Alfina et al., 2019), these two
dependency treebanks do not fully conform to Indonesian
grammar, especially the tokenization and POS tagging
annotation. The Indonesian-PUD recently had been
revised by (Alfina et al., 2019; 2020). This situation
motivated us to convert the only Indonesian constituency
treebank (Dinakaramani et al., 2014; Arwidarasti et al.,
2019) to a dependency treebank.

In this study, we present a different approach to
convert constituency to dependency annotation. Unlike
previous works that create the tool from scratch for the
target language, we prefer to utilize the already
available tools for the high-resource language like
English and conducting some adjustments so that the
final output will conform to the target language, in this
case to Indonesian grammar.

We proposed a method to revise the output of an
English NLP tool named Stanford Universal Dependencies
(SUD) converter (Schuster and Manning, 2016) so that the
resulting treebank conforms to Indonesian grammar. SUD
converter was initially built for treebank in English. It was
reported that the accuracy of this tool is more than 90%
for an English treebank. However, when we use this tool
for treebank in Indonesian, we found out that accuracy is
very low of around 60%.

After conducting error analysis, we observed that one

of the low accuracy causes is the difference in head-

directionality in some noun phrases between English-

Indonesian. According to (Hawkins, 1990), there are two

kinds of head-directionality: Head-initial or head-final.

For head-initial, the second word describes the first word

and for head-final, the opposite. While English usually

uses head-final direction for noun phrases, Indonesian

noun phrases usually use head-initial direction with

some exceptions (Alwi et al., 2010).

Figure 1 shows an example of noun phrases in

English and its corresponding noun phrases in

Indonesian. For the English noun phrase, the position of

store as the head is after the book as the dependent,

while for Indonesian noun phrases, the position of toko

(store) as the head is before buku (book).

Fig. 1: Head-directionality of the noun phrase in English

(head-final) Vs. Indonesian (head-initial)

To revise the dependency tree to have noun phrases

with the correct head-directionality, we proposed a variant

of the tree rotations algorithms for dependency trees. Our

tree rotations algorithm will change the shape of the tree

where some tokens get promoted to be the head and other

being demoted to be the dependent of the new head. We

named our proposed tree rotations algorithms for

dependency trees as the headSwap algorithm.
We also use this algorithm to implement a rule to

convert the head-directionality of noun phrases that were
initially labeled as a compound. Upon applying this rule,
we achieved an improvement of around 32% for UAS
(Unlabeled Attachment Score). This result shows the
effectiveness of our proposed method.

The contributions of our work are three-fold:

1. We propose a variant of tree rotations algorithms

named headSwap that works on the dependency
trees to swap the head between two nodes

2. We present a case in which the headSwap algorithm
can be applied: Revising the head-directionality of
noun phrases that initially labeled as compound for
Indonesian treebank

3. We produced a new dependency treebank for
Indonesian that had been made public1

We believe our proposed headSwap algorithm can

also be applied not only for noun phrases but also for

other phrases such as verb phrases, prepositional

phrases, etc. Since the head-directionality differences do

not only happen between English and Indonesian, the

headSwap algorithm can also be applied for dependency

trees of other languages.

The rest of the paper is organized as follows: Section 2

describes the related work, section 3 presents differences

between Indonesian and English noun phrases; section 4

describes our proposed method; section 5 discusses the

experiments and results and finally, section 6 presents the

conclusions and future work.

Related Work

In this section, we discuss dependency trees, Universal
Dependencies (UD) and Stanford UD converter.

1https://github.com/ialfina/hd-converter

Book Store Toko Buku

Ika Alfina et al. / Journal of Computer Science 2020, 16 (11): 1585.1597
DOI: 10.3844/jcssp.2020.1585.1597

1587

Dependency Trees

Dependency parsing is an approach to represent the
syntactic structure of sentences in natural language
using dependency grammar (Jurafsky and Martin,
2008). For dependency grammar, a sentence’s syntactic
structure is described in terms of the words and
associated set of directed binary grammatical relations
among the words. The arguments to this binary relation
consist of a head and a dependent. Also, a label that
describes the kinds of grammatical relation between the
dependent and its head can be added.

Dependency graphs and dependency trees are used
to represent the sentences for dependency parsing. In
(Kübler et al., 2009), a dependency graph/tree is
defined as follows:

 A sentence is a sequence of tokens denoted by S =
w0w1…wn where w0 is an artificial ROOT token.

 Let R = {r1,…, rm} be the dependency relation type set

 A dependency graph G = (V, A) is a labeled directed
graph consists of nodes V and arch A, such that for
sentence S = w0w1…wn the following holds:

1. V {w0, w1,…,wn}

2. A VxRxV

3. if (wi, r, wj)A then (wi, r0, wj) A for all r r

 Any dependency graphs that is a directed tree

originating out of node w0 and has a spanning node

set V = VS are called dependency trees

 A dependency tree G = (V, A) satisfies the single-

head property

Figure 2 shows a dependency graph for a sentence of

“He worked for the BBC for a decade.” and Fig. 3 shows

the corresponding dependency tree.

Universal Dependencies

Universal Dependencies (UD) is currently the de-

facto standard in annotating the dependency treebank.

Before, some treebanks have their own annotation

guidelines that made it difficult for cross-lingual parsing.

A consistent and universal annotation guideline is

needed for multilingual syntactic analysis.

Fig. 2: A dependency graph for a sentence of “He worked for the BBC for a decade.” (Zeman et al., 2017)

Fig. 3: A dependency tree for a sentence of “He worked for the BBC for a decade.” (Zeman et al., 2017)

<root>

worked
root
VERB

He
nsubj
PRON

BBC
obl
PROPN

decade
obl
NOUN

.
punct
PUNCT

for the for a
case det case det
ADP DET ADP DET

Ika Alfina et al. / Journal of Computer Science 2020, 16 (11): 1585.1597
DOI: 10.3844/jcssp.2020.1585.1597

1588

De Marneffe et al. (2006) designed type dependency
for English while conducting a project to convert the
constituency to dependency treebank. This dependency
type design later was developed into Stanford typed
dependencies (De Marneffe and Manning, 2008).
Stanford dependencies scheme was designed to represent
English grammatical relations between words in a
sentence. In 2014, the Stanford dependencies were
adopted to create universal dependencies that can be
applied to other languages to support cross-linguistically
parsing, named Universal Stanford Dependencies (USD)
(De Marneffe et al., 2014).

Finally, several initiatives agreed to create a new
standard named Universal Dependencies by introducing
annotation guidelines and a set of treebanks called
Universal Dependencies v1 (UD v1) (Nivre et al.,
2016). The recent version of the annotation guidelines
is the UD v2 (Nivre et al., 2020), which has a tagset of
17 POS tags and 37 universal dependency relations
with additional subtypes to adjust to the specific
features of certain language.

Stanford Universal Dependencies Converter

Among the English NLP tools that can be used for
low-resource languages like Indonesian is the Stanford
UD converter (Schuster and Manning, 2016). This tool
was built to convert an English constituency treebank in
the Penn Treebank (PTB) (Marcus et al., 1993) format to
a dependency treebank in the CoNLL-U format.

This converter is a revision to an initial converter
(De Marneffe et al., 2006) that converts PTB-like
treebank to dependency treebank in Stanford
Dependencies (De Marneffe and Manning, 2008)
representation. The SUD converter was reported to
have UAS of 96.1% and LAS of 92.6% when
evaluated on an English UD Treebank.

This UD converter tool is included in Stanford
Core NLP (Manning et al., 2014). Since the
constituency-to-dependency converter of the latest
release of the Stanford CoreNLP only has output
conforms to the UD v1 guidelines, Schuster had
provided a tool2 to convert it to the UD v2 format. We
refer to the Stanford UD converter tool and its
extension to UD v2 as the SUD+ converter.

Syntactic Annotation of Noun Phrases

In this section, we discuss the syntactic annotation
of noun phrases. First, we present the differences
between noun phrases in English and Indonesian, then
we explain how UD v2 annotates noun phrases and
finally, we describe how the SUD+ converter
represents the noun phrases.

2https://github.com/UniversalDependencies/tools/tree/master/v2-
conversion

Noun Phrases in Indonesian vs. English

Table 1 shows six types of Indonesian noun phrases

with their corresponding head-directionality and the

comparison with English. Note that on that table and the

rest of this study, we use the Part-Of-Speech (POS)

tagset of the Penn Treebank (PTB) (Marcus et al., 1993)

to explain syntax or rules.

Noun phrases in line #1-#5 on Table 1 already

discussed in (Alfina et al., 2019). We added the sixth

syntax that is a special case of the 5th type (NN/NNP +

NN/NNP), which involved nouns used to describe

another noun’s position. In (Alwi et al., 2010), the

locative noun in Indonesian is discussed. Examples of

such nouns are atas “above”, dalam “inside” and antara

“between”. The locative nouns are used in prepositional
phrase, with the syntax of di/ke/dari + [locative NN] +

[NN/NNP] (Alwi et al., 2010).

Table 2 shows some examples of noun phrases

with locative nouns in Indonesian and English

corresponding phrases. In (Alwi et al., 2010), di atas

meja is parsed into di and atas meja, not into di atas

(on) and meja (table).

We can see from Table 1 that Indonesian noun phrases

usually have head-initial direction, except for noun

phrases with quantity determiner and locative noun.

Noun Phrases in the UD v2 Annotation Guidelines

The dependency relations (deprels) in UD annotation

guidelines are divided into two groups: Universal

dependency relations and language-specific relations

called subtypes. UD v2 defines 37 universal deprels and

many subtypes that can be defined for special

construction in certain languages.

Table 1: The differences in head-directionality between

Indonesian and English noun phrases

Syntax ID EN

1 NN/NNP + Demonstrative DT Initial N/A

2 Quantity DT + NN/NNP Final Final

3 NN/NNP + Possessive PRP Initial N/A

4 NN/NNP + JJ Initial N/A

5 NN/NNP + NN/NNP Initial Final

6 Locative NN + NN/NNP Final N/A

Note: The N/A values in the EN column means that such
syntax doesn’t exist in English

Table 2: Prepositional phrase in Indonesian vs. English

Indonesian English

Di atas meja On the table

Di antara kita Between us

Ke dalam rumah Into the house

Dari pinggir jalan From the side of the road

Note: The bold words in the first column are locative nouns

Ika Alfina et al. / Journal of Computer Science 2020, 16 (11): 1585.1597
DOI: 10.3844/jcssp.2020.1585.1597

1589

Table 3: UD v2 dependency relation labels for noun phrases

Deprel Type Description Example of NP

amod Universal For the adjective that describes the noun New house
clf Universal For the classifier of a noun Tiga buah rumah “three houses”
compound Universal For nominal compound word Ice cream
det Universal For the determiner of a noun Some students
flat Universal MWE for name, number, date, etc. 3 hundred
nmod Universal Noun modifier of a noun Capital of India
nummod Universal For the numeric modifier of a noun 25 books
flat:foreign Subtype MWE for foreign terms -
flat:name Subtype MWE for name Albert Einstein
nmod:poss Subtype The possessive determiner of a noun Her book
nmod:tmod Subtype The time modifier of a noun 2019 annual report

Note: Words with bold font in the 4th column are words to be annotated with the corresponding deprel label.

Table 4: The distribution of head-directionality of noun phrases of

SUD+ converter output

Deprel Freq. H-final (%) H-initial (%)

amod 686 1.60 98.40
compound 4331 99.54 0.46
det 132 100.00 0.00
nmod 2041 15.63 84.37
nmod:poss 145 0.00 100.00
nmod:tmod 70 14.29 85.71
nummod 1339 58.55 41.45

Among 37 universal deprels of UD v2, seven deprels

are used to represent noun phrases. Table 3 shows the
seven universal deprels for noun phrases and four
subtypes that are usually used in the English dependency
treebank. Note that the universal deprel clf that is used to
label the classifier of a noun is rarely used in English,
but this syntactic construction does exist in Indonesian
and other languages.

How the SUD+ Converter Annotates Noun Phrases

In this study, we used the SUD+ converter to convert
an Indonesian constituency treebank to a dependency
one. We analyzed how the SUD+ converter represents
the noun phrases. Table 4 shows the statistics of deprels
that SUD+ converter used to annotate noun phrases in
the Kethu treebank. We present the frequency of
occurrences of each deprel along with the proportion of
each head-directionality.

For deprel amod that is intended to label adjectives
that describe nouns, SUD+ converter had already
annotated them correctly since 98.40% of head-
directionally are head-initial as expected by Indonesian
grammar. For the remaining 1.60% of them are noun
phrases affected by English terms such as makro ekonomi
“macro economy” or some exceptions in Indonesian
grammar such as for pertama kali “first time”.

We conducted a further analysis for deprel compound

that occurred 4331 times (around 15% of total 28,262

tokens). Table 5 shows the 11 noun phrases syntax

where deprel compound is used for one of its tokens

along with the example in Indonesian, the expected

head-directionality and the expected deprel. Table 4

shows that 99.54% of head-directionality of deprel

compound are head-final, but the head-directionality of 9

noun phrases syntax for Indonesian are head-initial. Only

the fourth syntax in Table 5 aligns with the SUD+

converter’s output that was initially designed for the

English treebank. Based on the Indonesian dependency

treebank’s annotation guidelines (Alfina et al., 2019;

2020), almost all relations that initially tagged as a

compound by SUD+ converter have the incorrect label.

For deprel det, we found that the SUD+ converter

only labels quantitative determiners correctly since its

syntax is the same as English. All demonstrative

determiners are labeled as dep, a label used by UD v2 for

unknown relation.
For deprel nmod, 84.37% of tokens are already

tagged correctly since the expected head-directionality
is headinitial in Indonesian grammar. We found out
that most of the errors caused by SUD+ that uses
nmod as the default value when there are options
either to use nmod or obl.

For deprel nmod:poss, SUD+ converter has been
correctly labeled the relation between the noun and
possessive pronoun with 100% accuracy. However, it
fails to recognize the possessive relationship between
noun and noun. For deprel nmod:tmod and nummod,
since both head-directionality are possible for them,
we can not evaluate the correctness of SUD+ annotation
using this data.

We can see that among the seven deprels used by the
SUD+ converter to represent noun phrases, the deprel
amod is the one that best fits Indonesian grammar, while
the deprel compound is the least compliant. The deprel
det and nmod:poss are also already 100% correct, but
other cases that should be label det or nmod:poss are still
tagged with deprel dep.

Based on this analysis, we decided to propose a
method on how to revise the annotation for the deprel
compound. Specifically, we propose the method to
convert its the head-directionally from head-final to
head-initial.

Ika Alfina et al. / Journal of Computer Science 2020, 16 (11): 1585.1597
DOI: 10.3844/jcssp.2020.1585.1597

1590

Table 5: List of noun phrases’ syntax with label compound on one of its tokens produced by the SUD+ converter and the expected
direction and deprel

Syntax Example Expected direction Expected deprel

1 NN + NN (compound) Air mata initial/final compound
2 NN + modifier NN toko buku “book store” initial nmod
3 NN + possessor NN bulu kucing initial nmod:poss
4 Locative NN + NN atas meja final nmod:lmod
5 NN + NNP sepatu Adidas “Adidas shoe” initial nmod
6 NNP + NN Sabtu malam “Saturday night” initial nmod
7 NNP + NNP Bill Gates initial flat:name
8 CD + CD 5 juta ”5 million” initial flat
9 FW + FW net buy initial flat:foreign
10 FW + NN rating lembaga “institutional rating” initial nmod
11 FW + NNP rating LBPN initial nmod

Note: words with bold font in the 3rd column are words to be annotated with the corresponding expected deprel label

The Proposed Method

This section presents our proposed method of
conducting tree rotations for dependency trees to convert
the head-directionality of noun phrases.

Tree Rotations for Swapping the Head

Our proposed tree rotations algorithm’s objective is
to swap the head between two nodes in a dependency
tree. If node A is initially the head of node B, we want to
change the tree, so that node A becomes the dependent
of node B. The tree rotations should preserve the
requirement for a dependency tree (Kübler et al., 2009).
We named this proposed tree rotations algorithm the
headSwap algorithm.

To illustrate the headSwap algorithm, we will use

a sentence as the example: “Pemkot Delhi berencana

mendatangkan monyet dari negara bagian

Rajasthan.” (The Delhi city government plans to bring

in monkeys from the state of Rajasthan.). Figure 4a

shows the initial dependency graph given by the

SUD+ converter to this sentence and Fig. 4b is the

expected dependency graph.

There are three dependency relations with label

compound in Fig. 4a: Between token Pemkot and Delhi

where Delhi becomes the head, between token negara

and bagian where bagian becomes the head and finally

between token bagian dan Rajashtan. We want to swap

the head-directionality of those three pairs of tokens, as

shown in Fig. 4b, so that in the relation between Pemkot

and Delhi, token Pemkot will become the new head. The

same situation applies to the other two pairs. Note that

we also need to swap the parent and the dependents of

the respected tokens. The parent and the children of the

old head become the parent of the new head.

In this study, we work on the dependency trees in the

CoNLL-U format3. Among the ten fields in the CoNLL-

U format, we will utilize only five fields: ID, FORM,

3https://universaldependencies.org/format.html

UPOS, HEAD and DEPREL. Furthermore, we designed

a data structure for token data with five attributes: ID,

FORM, UPOS, HEAD and DEPREL. We define four

arguments for the headSwap procedure, as shown in the

Algorithm 1, as follows:

1. tokenList, contains the tokens data in a

dependency tree

2. oldHeadID, the ID of the old head

3. newHeadID, the ID of the new head

4. moveDepFlag, the boolean flag whether the

dependent(s) of the old head need to be moved to

the new head

Algorithm 1: headSwap

 Input:

tokenList,oldHeadID,newHeadID,moveDepFlag

 Output: the revised tokenList

1 oldDependentList []

2 foreach token in tokenList do

3 if token.HEAD == oldHeadID and

 token:ID newHeadID then

4 oldDependentList:append(token)

5 end

6 end

7 oldHead tokenList[oldHeadID]

8 newHead tokenList[newHeadID]

9 label newHead:DEPREL

10 newHead:HEAD oldHead:HEAD

11 newHead:DEPREL oldHead:DEPREL

12 oldHead:HEAD newHeadID

13 oldHead:DEPREL label

14 if moveDepFlag == TRUE then

15 foreach token in oldDependentList do

16 token:HEAD newHeadID

17 end

18 end

Ika Alfina et al. / Journal of Computer Science 2020, 16 (11): 1585.1597
DOI: 10.3844/jcssp.2020.1585.1597

1591

(a)

(b)

Fig. 4: An example of the initial and the expected dependency graphs for sentence “Pemkot Delhi berencana mendatangkan

monyet dari negara bagian Rajasthan.” (The Delhi city government plans to bring in monkeys from the state of
Rajasthan.); (a) the initial dependency graph; (b) the expected dependency graph

This procedure swaps the head from the old head to

the new one. If the flag is true, then all the old head’s
previous dependents will be moved to the new head.

Applying the HeadSwap Algorithm to Revise the

Compound Noun Phrases

In this subsection, we explain in more detail how to
convert the head-directionality for compound noun-
phrases in a dependency tree. The procedure is shown in
Algorithm 2.

Algorithm 2: compound

 Input: tokenList
 Output: the revised tokenList

1 phraseList generatePhraseList()
2 foreach phrase in phraseList do

3 skipFlag isException(phrase)

4 if skipFlag True then

5 old phrase:HEAD

6 new phrase:DEP[0]
7 headSwap(tokenList, old,new,True)
8 updatePhraseList(phrase)
9 end
10 end

To illustrate the proposed rule, we use the sentence in

Fig. 4. This sentence consists of 10 tokens with ID of 1-
10. First, we need to generate the list of tokens that
become the head of the noun phrases contains the
compound label. We named this list phraseList in the

procedure. The phraseList is a list of A B where A is
the head and B is the dependent(s) of A. For our
example, we have three pairs of tokens with the
compound label: Pemkot-Delhi, negara-bagian and
bagian-Rajashtan. For the first pair token #2 becomes the
head of token #1, for the second pair token #8 is the head

and for the third pair, the head is token #9. Hence, we

have three phrases: 2 {1}, 8 {7} and 9 {8}.
Secondly, for each phrase in phraseList, we need to

apply the headSwap algorithm to change the head-
directionality. However, since in Table 5, there are cases
where the compound noun phrases already comply with
Indonesian grammar, i.e., locative nouns case, we have
to set the value of the skipFlag variable to true so that
the phrase is not to be swapped. Otherwise, we applied
the headSwap algorithm.

Finally, after applying headSwap, we need to update the
phraseList. Table 6 shows how the phraseList was updated
from the initial to final state. After each headSwap, we
update the head and dependency information.

Revising the Dependency Relation Labels

Besides revising the head-directionality of noun
phrases in the dependency tree, we also proposed a set of
rules named rename to revise the dependency relation
labels. These rules were designed by observing the
recent version of an Indonesian-PUD treebank revised by
(Alfina et al., 2019). Table 7 shows the design of our 32
proposed rules to improve the accuracy of dependency
relation labels.

The decision to rename was made based on the
information of the current deprel label of a token (old
deprel), the POS tag of the token (child POS) and the
POS tag of the head of the token (parent POS). In some
cases, the decision was based on more detailed
information. For example, for label nmod:lmod that is
used to represent the locative nouns, this rule needs to
have a list of locative nouns in Indonesian.

The rule rename currently only revised the label for a
token initially labeled as compound, compound:prt, dep,
nmod, nmod:tmod, nsubj and obj. In future work, we can
add more labels after conducting further analysis of the
annotation guidelines.

Ika Alfina et al. / Journal of Computer Science 2020, 16 (11): 1585.1597
DOI: 10.3844/jcssp.2020.1585.1597

1592

Table 6: Updating the phrases list for rule compound

Description The state of PhraseList

Initial 2{1}, 8{7}, 9{8}

After 1st iteration 1[2}, 8{7}, 9{8}

After 2nd iteration 1{2}, 7{8}, 9{7}

After 3rd iteration 1{2}, 7{8}, 7{9}

Table 7: The rules for revising the dependency relation labels

Old Deprel Child POS Parent POS New Deprel

1 compound CD CD flat
2 compound FW FW flat:foreign
3 compound FW NN/NNP nmod
4 compound NN NN/NNP/FW nmod
5 compound NN (locative) NN/NNP/FW nmod:lmod
6 compound NNP NN/FW nmod
7 compound NNP NNP flat:name
8 compound:prt RP VB/JJ advmod:emph
9 dep CC any POS cc
10 dep CD CD flat/nmod
11 dep CD NN/NNP/FW/SYM nummod
12 dep CD VB/JJ obl
13 dep DT any POS det
14 dep IN NN/NNP/FW/PRP/CD case
15 dep IN VB/JJ mark
16 dep MD any POS aux
17 dep NN (locative) NN/NNP/FW nmod:lmod
18 dep NN/NNP/FW/PRP/WP NN/NNP/FW/PRP/WP/CD nmod
19 dep NN/NNP/FW/PRP/WP VB/JJ obl
20 dep PRP$ NN/NNP/FW nmod:poss
21 dep RB any POS advmod
22 dep RP (foregrounding) any POS advmod:emph
23 dep RP (negating words) any POS advmod
24 dep VB/JJ NN/NNP/FW/PRP/CD acl
25 dep VB/JJ VB/JJ advcl
26 nmod NN/NNP (temporal) NN/NNP/FW/PRP nmod:tmod
27 nmod NN/NNP (temporal) VB/JJ obl:tmod
28 nmod NN/NNP/FW/PRP/WP VB/JJ obl
29 nmod:tmod NN/NNP (temporal) VB/JJ obl:tmod
30 nsubj any POS VB (passive) nsubj:pass
31 obj NN/NNP (temporal) VB obl:tmod
32 obj any POS VB (passive) obl

For deprel compound, we created seven rules (#1-

#7) that were aligned with the discussion in section 3,
especially with Table 5 that discusses the expected
deprel label for each syntax that was initially labeled
as compound.

For deprel compound:prt, since in English, there is a
unique construction of verb compound with syntax ”Verb
(VB) + Particle (RP)” such as give up, take down and so
on, SUD+ converter labels each occurrence of this syntax
to compound:prt. However, for Indonesian grammar, such
syntax is not for verb compound, but for foregrounding
particles such as lah, kah, tah and pun (Sneddon et al.,
2010). Rule #8 was designed for this problem.

The deprel dep is used to label unknown relations.
The SUD+ converter used this label if it does not
familiar with the syntax on the processed treebank. So, it
is important to rename this label completely to other

labels. To rename this label, we proposed 17 rules (#9-
#25) for various cases.

We also decided to revise the label of deprel nmod
that in UD v2 is used to represent the nominal modifier
of a noun. In UD v2 annotation guidelines, the nominal
modifier of a noun is labeled as nmod, while the nominal
modifier of a predicate of verb/adjective should be
labeled as obl (oblique modifier). However, we found
out that SUD+ incorrectly labels tokens that should be
labeled as obl as also nmod. Rule #28 was designed to
fix this problem.

Rules #26, #27, #29 and #31 are related to noun
phrases that are used as a temporal modifier. There are
two subtypes for temporal modifier: nmod:tmod and
obl:tmod. The label nmod:tmod is used if the phrase
modifies a noun and obl:tmod is used if the phrase is to
modify a predicate of verb/adjective. Rules #26 and #27

Ika Alfina et al. / Journal of Computer Science 2020, 16 (11): 1585.1597
DOI: 10.3844/jcssp.2020.1585.1597

1593

are used to revise the label for a token that initially labeled
as nmod, rule #29 is used for the incorrect label of
nmod:tmod that should be obl:tmod, while rule #31 are for
tokens that is initially labeled as obj (the object of a
transitive verb) but actually should be labeled as obl:tmod.

Rules #30 and #32 are related to passive verbs. Using
rule #30, we revise the token that initially tagged as
nsubj to nsubj:pass if its head is a passive verb and in

rule#32 we change the label from obj to obl if the head is
a passive verbs since grammatically passive verbs could
not have an object.

Experiments and Results

This section discusses the experiments in converting

the head-directionality of noun phrases and automatically

building an Indonesian dependency treebank.

Dataset

In this study, we use the Kethu treebank produced by

(Arwidarasti et al., 2019) as the initial constituency

treebank to be converted to a dependency treebank. This

treebank uses the same format as the Penn Treebank, both

the Part-Of-Speech (POS) tagset, the bracketing and the

annotation guidelines, which makes Kethu suitable as the

input for the SUD+ converter that designed for the Penn

Treebank. The Kethu treebank consists of 1,030 sentences

and 28,262 tokens, with an average sentence length of

27.4 tokens per sentence. The genre of the sentences is

news, mainly about the economy and finance.

To evaluate the proposed method, we chose 105 of

1,030 sentences of the Kethu treebank as the sample. For

every 50 sentences, five first sentences are chosen to

make sure a representative sample from the original

treebank was created. This dataset consists of 2,846

tokens. We named this subset of Kethu treebank as the

Kethu-105 treebank.

Creating the Gold Standard

We used the SUD+ converter to convert the Kethu-

105 treebank to a dependency treebank in UD v2 format.

We regarded the dependency treebank from Kethu-105

as the baseline treebank that will be converted using our

proposed method so that the noun phrases comply with

Indonesian grammar. To evaluate our proposed method,

we need to create a gold standard.

The gold standard was created by revising the

baseline treebank manually. Two annotators with a

background in computer science and Indonesian

linguistics revised the dependencies.
The gold standard creation consists of three phases

that conducted iteratively: (1) Learning the UD v2
annotation guidelines; (2) Learning the proposed
adjustment of UD v2 to Indonesian grammar by

(Alfina et al., 2019; 2020); and (3) Revising the
baseline treebank manually.

Several meeting was held to compare and discuss the
annotation results between the two annotators until all of
the inter-annotator disagreements were resolved. The
resulting gold standard was named Gold Kethu-105.

Evaluating the Proposed Method

We evaluated the accuracy of our proposed method
using MaltEval (Nilsson and Nivre, 2008). The quality
measurements used are Unlabeled Attachment Scores
(UAS) and Labeled Attachment Score (LAS) (Kübler et al.,
2009). Table 8 shows the experiment results for three
scenarios. First, the evaluation for the output of SUD+
converter as the baseline. The second scenario is by
applying SUD+ converter plus the rule compound and
the last scenario by combining SUD+ converter, rule
compound and rename altogether.

We evaluated the accuracy of our proposed method
using MaltEval (Nilsson and Nivre, 2008). The quality
measurements used are Unlabeled Attachment Scores
(UAS) and Labeled Attachment Score (LAS) (Kübler et al.,
2009). Table 8 shows the experiment results for three
scenarios. The first scenario evaluates the output of the
SUD+ converter as the baseline. The second scenario is
applying the rule compound to the output of the SUD+
converter. The last scenario is combining the SUD+
converter, rule compound and rename altogether.

For the baseline, the UAS and LAS are only 61.6 and
44.1%, respectively, which is very low. Since the SUD
converter was reported to have an accuracy of more than
90% for an English treebank, we can see that some
adjustments are needed to use this tool for non-English
treebanks, especially for Indonesian in our case.

The result for the SUD+ converter plus rule

compound is very good since the UAS improves

significantly from 61.6 to 94.1% with a margin of

32.5% and the LAS improves 11.5% from only 44.1 to

55.6%. This result shows the effectiveness of our

approach in converting the head-directionality of noun

phrases in the treebank.
Finally, the last scenario combines the SUD+

converter, rule compound and rename to produce a
dependency treebank that has UAS of 94.1% and LAS of
85.1%. This result shows that the rule rename has
successfully improved the LAS with a margin of 29.5%
from 55.6 to 85.1%.

Furthermore, we investigated what rules that have
revised the deprel labels with reasonable accuracy.

Table 8: Experiment results

Description UAS (%) LAS (%)

SUD+ (baseline) 61.6 44.1
SUD+ + compound 94.1 55.6
SUD+ + compound + rename 94.1 85.1

Ika Alfina et al. / Journal of Computer Science 2020, 16 (11): 1585.1597
DOI: 10.3844/jcssp.2020.1585.1597

1594

Table 9: The comparison of the distribution of noun phrases in the Gold Kethu-105, baseline (SUD+) and the output of the
rule rename

Deprel Gold SUD+ Rename Diff

amod 80 79 79 -0.01
compound - 418 - -
det 79 20 80 -0.01
flat 49 - 37 -0.24
flat:foreign 9 - 9 0
flat:name 175 - 157 -0.10
nmod 430 197 488 0.13
nmod:lmod 18 - 13 -0.28
nmod:poss 23 16 17 -0.26
nmod:tmod 11 7 9 -0.18
nummod 98 102 106 0.08
Total 972 839 995

Note: The last column contains the relative differences between the count in column Rename and Gold.

Furthermore, we investigated what rules that have

revised the deprel labels with good accuracy. Table 9

shows the comparison of the distribution of deprel

labels between the Gold Kethu-105, the baseline

(output of SUD+ converter) and the final result after

applying the rule rename. We can see the big

differences between the Gold Kethu-105 and the

SUD+ converter for labels of compound, det, flat,

flat:foreign, flat:name and nmod.

We suggest that besides the differences in noun

phrases syntax between English and Indonesian, the

SUD+ converter itself has not implemented the rule for

deprel flat, a universal dependency relation in UD v2

annotation guidelines. The SUD+ converter labels all

dependency relations that should be flat or its subtypes

to the compound.

We also can see that the rule rename have errors less

than or equal to 10% for deprel det, flat:foreign, flat:name

and nummod. For deprel flat, nmod:tmod and nmod:poss

the errors are more than 23% which are need improvement.

Building Dependency Parser

Furthermore, we built an Indonesian dependency

parser using the supervised method by using the

remaining 925 sentences of Kethu treebank that were not

used as the gold standard on the previous experiment as

the training dataset. We named this part of the Kethu

treebank as the Kethu-925 dataset. We converted this

dataset to a dependency treebank using the best approach

we got before: The combination of SUD+ converter, the

compound rule with the headSwap method and the

relabel rules. Table 10 shows the general comparison

between the gold standard (Kethu-105) and the

converted Kethu-925 dataset.

We can see that the average sentence length of both

treebanks is almost the same, that we can suggest the

level of difficulty for conducting parsing in both

treebanks are more or less the same. The converted

Kethu-195 treebank has more variations on the POS

tagset and deprel labels. We found that there is no

token with POS SYM that is usually used for nouns

like %, or $ on the gold standard, while there are 17

occurrences of them in the Kethu-195 dataset. Kethu-

925 also has tokens with POS WRB that are typically

used for adverbial interrogative pronouns like how,

when, where and why. This POS tag is not represented

in the gold standard.

After creating the converted Kethu-925, we used

UDPipe (Straka et al., 2016), a trainable pipeline for

tokenization, tagging, lemmatization and dependency

parsing of CoNLL-U files to build the Indonesia

dependency parser model. The evaluation results for the

resulting dependency are UAS of 75.90% and LAS of

70.38%. We consider this result quite good since another

work by? that also built the Indonesian dependency

parser had UAS of around 82% and LAS of 79% with

the treebank that fully manually annotated with the size

of 19,440 tokens and the average sentence length of only

19.4 tokens per sentence.

Moreover, we also already converted the POS

tagset of the Gold-Kethu-105 and the Converted

Kethu-925 from PTB to UD v2, along with additional

information required by the UD validation tool like

sentence id, the original sentence before the

tokenization and the tag SpaceAfter = No that is used to

indicate whether after a token there is a space or not.

Both datasets are already made public4.

From these two experiments, we have shown our

approach’s effectiveness in converting an Indonesian

constituency treebank to a dependency one using an

already available tool for English treebank and our

proposed headSwap rules to convert the head-

directionality of noun phrases in Indonesian sentences.

4https://github.com/ialfina/hd-converter

Ika Alfina et al. / Journal of Computer Science 2020, 16 (11): 1585.1597
DOI: 10.3844/jcssp.2020.1585.1597

1595

Table 10: The comparison of the Gold Kethu-105 and the
converted Kethu-925

Description Gold-105 Converted-925

Sentence count 105 925
Token count 2,846 25,416
Average sentence length 27.11 27.47
PTB POS count 24 26
Deprel count 37 36

Conclusion and Future Work

We proposed an approach to revise automatically a
dependency treebank of a low-resource language that
was initially produced by an NLP tool of a high-resource
language. In our case, we need to revise an Indonesian
dependency treebank produced by converting a
constituency treebank to dependency using the Stanford
UD converter (SUD+) that is designed for English
treebank. We proposed a variant of tree rotations
algorithm for dependency trees named headSwap to swap
the head between two nodes to fix the wrong annotations.

We applied the algorithm to revise the head-
directionality of noun phrases with the dependency
relation label named compound, a label based on our
observation that the SUD+ conversion has more than
90% incorrect head-directionality for Indonesian noun
phrases. The rule to revise the head-directionally of the
deprel compound was named rule compound. Moreover,
we also propose a rule called rename to revise the
dependency relation labels so that the treebank conforms
to the UD v2 annotation guidelines and the recent
guidelines used by an Indonesian dependency treebank.

To evaluate the proposed method, we conducted
experiments on an Indonesian constituency treebank
named Kethu. First, we created a gold standard of 105
sentences and 2,846 tokens by annotating them manually.
The evaluation shows that the rule compound successfully
improves the UAS by a big margin of 32.5% from 61.6 to
94.1% and the LAS with a margin of 11.5% from 44.1 to
55.6%. The rule rename finally improve the LAS to
85.1%. These results show the effectiveness of our
proposed method in revising the output of the SUD+
converter for the Indonesian treebank.

Furthermore, we also built the Indonesian parser

model using a new training dataset that was built

automatically using our proposed method. The training

dataset consists of 925 sentences and 25,416 tokens. We

built the parser using UDPipe, a trainable pipeline for

dependency parsing, to build the model. Experiments

show that the resulting dependency parser model has

UAS of 75.90% and LAS of 70.38%, a quite good result

for a small treebank that automatically converted and has

an average sentence length of 27.4.
We want to build a bigger Indonesian dependency

treebank using a semi-supervised approach using the
treebank produced by this study as the seed for future work.

Acknowledgement

The authors thank Jessica N. Arwidarasti and
Arawinda Dinakaramani, who helped us in preparing
and annotating the gold standard and also to
Mohamad Ivan Fanany for the insightful feedback for
the draft of this study.

Funding Information

This study was supported by the research grant of
“Publikasi Terindeks Internasional (PUTI) Q2 2020”
Number: NKB-1475/UN2.RST/HKP.05.00/2020 from
Universitas Indonesia.

Author’s Contributions

Ika Alfina: Literature study, design and
implementation, data analysis, writing the article.

Indra Budi: Drafting the article and reviewing it for
significant intellectual content.

Heru Suhartanto: Reviewing the paper for
significant intellectual content and giving final approval
of the version to be submitted and any revised revision.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of
the other authors have read and approved the manuscript
and no ethical issues involved.

References

Alfina, I., Dinakaramani, A., Fanany, M. I., &
Suhartanto, H. (2019). A Gold Standard
Dependency Treebank for Indonesian. In in
Proceeding of the 33rd Pacific Asia Conference
on Language, Information and Computation
(PACLIC 33).

Alfina, I., Zeman, D., Dinakaramani, A., Budi, I., &
Suhartanto, H. (2020). Selecting the UD v2
Morphological Features for Indonesian
Dependency Treebank. In Proceedings of the
2020 International Conference of Asian Language
Processing (IALP).

Alwi, H., Dardjowidjojo, S., Lapoliwa, H., & Moeliono,
A. M. (2010). Tata bahasa baku bahasa Indonesia
(ketiga). Jakarta: Balai Pustaka.

Arwidarasti, J. N., Alfina, I., & Krisnadhi, A. A. (2019,
November). Converting an Indonesian Constituency
Treebank to the Penn Treebank Format. In 2019
International Conference on Asian Language
Processing (IALP) (pp. 331-336). IEEE.

Candito, M., Crabbé, B., & Denis, P. (2010, May).
Statistical French dependency parsing: Treebank
conversion and first results.

Ika Alfina et al. / Journal of Computer Science 2020, 16 (11): 1585.1597
DOI: 10.3844/jcssp.2020.1585.1597

1596

Cao, Q., Liang, X., Li, B., Li, G., & Lin, L. (2018).
Visual question reasoning on general dependency
tree. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp.
7249-7257).

Choi, J. D., & Palmer, M. (2010). Robust constituent-to-
dependency conversion for English.

Čmejrek, M., Hajič, J., & Kuboň, V. (2004). Prague
Czech-English dependency treebank: Syntactically
annotated resources for machine translation. In
Proceedings of EAMT 10th Annual Conference.

De Marneffe, M. C., Dozat, T., Silveira, N., Haverinen, K.,

Ginter, F., Nivre, J., & Manning, C. D. (2014, May).

Universal Stanford dependencies: A cross-linguistic

typology. In LREC (Vol. 14, pp. 4585-4592).

De Marneffe, M. C., MacCartney, B., & Manning, C. D.

(2006, May). Generating typed dependency parses

from phrase structure parses. In Lrec (Vol. 6, pp.

449-454).

De Marneffe, M. C., & Manning, C. D. (2008, August).

The Stanford typed dependencies representation.

In Coling 2008: Proceedings of the workshop on

cross-framework and cross-domain parser

evaluation (pp. 1-8).

Dinakaramani, A., Rashel, F., Luthfi, A., & Manurung,

R. (2014, October). Designing an Indonesian part of

speech tagset and manually tagged Indonesian

corpus. In 2014 International Conference on Asian

Language Processing (IALP) (pp. 66-69). IEEE.

Galley, M., & Manning, C. D. (2009, August).

Quadratic-time dependency parsing for machine

translation. In Proceedings of the Joint Conference

of the 47th Annual Meeting of the ACL and the 4th

International Joint Conference on Natural Language

Processing of the AFNLP (pp. 773-781).

Gao, S., Yang, X., Yu, Z., Pan, X., & Guo, J. (2017).

Chinese-Naxi machine translation method based on

Naxi dependency language model. International

Journal of Machine Learning and Cybernetics, 8(1),

333-342.

Gashteovski, K., Wanner, S., Hertling, S., Broscheit, S.,

& Gemulla, R. (2019). Opiec: An open information

extraction corpus. arXiv preprint arXiv:1904.12324.
Gelbukh, A., Torres, S., & Calvo, H. (2005).

Transforming a constituency treebank into a
dependency treebank. Procesamiento del lenguaje
natural, (35), 145-152.

Goyal, P., & Kulkarni, A. (2014, August). Converting

phrase structures to dependency structures in

Sanskrit. In Proceedings of COLING 2014, the 25th

International Conference on Computational

Linguistics: Technical Papers (pp. 1834-1843).

Hawkins, J. A. (1990). A parsing theory of word order

universals. Linguistic inquiry, 21(2), 223-261.

Jiang, W., Zhang, W., Xu, J., & Cai, R. (2016,
November). Automatic Cross-Lingual Similarization
of Dependency Grammars for Tree-based Machine
Translation. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language
Processing (pp. 501-510).

Johansson, R., & Nugues, P. (2007). Extended
constituent-to-dependency conversion for English.

Jurafsky, D., & Martin, J. H. (2008). Speech and
Language Processing: International Version: an
Introduction to Natural Language Processing.
Computational Linguistics and Speech
Recognition, Pearson.

Kübler, S., McDonald, R., & Nivre, J. (2009).
Dependency parsing. Synthesis lectures on human
language technologies, 1(1), 1-127.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R.,

Bethard, S., & McClosky, D. (2014, June). The

Stanford CoreNLP natural language processing

toolkit. In Proceedings of 52nd annual meeting of

the association for computational linguistics: system

demonstrations (pp. 55-60).

Marcus, M., Santorini, B., & Marcinkiewicz, M. A.

(1993). Building a large annotated corpus of

English: The Penn Treebank.

McDonald, R., Nivre, J., Quirmbach-Brundage, Y.,

Goldberg, Y., Das, D., Ganchev, K., ... & Bedini, C.

(2013, August). Universal dependency annotation

for multilingual parsing. In Proceedings of the 51st

Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers)

(pp. 92-97).

Meng, Y., Rumshisky, A., & Romanov, A. (2017).

Temporal information extraction for question

answering using syntactic dependencies in an lstm-

based architecture. arXiv preprint

arXiv:1703.05851.

Niklaus, C., Cetto, M., Freitas, A., & Handschuh, S.

(2018). A survey on open information extraction.

arXiv preprint arXiv:1806.05599.

Nilsson, J., & Nivre, J. (2008, May). MaltEval: an

Evaluation and Visualization Tool for Dependency

Parsing. In LREC.

Nivre, J., De Marneffe, M. C., Ginter, F., Hajič, J.,
Manning, C. D., Pyysalo, S., ... & Zeman, D.

(2020). Universal dependencies v2: An evergrowing

multilingual treebank collection. arXiv preprint

arXiv:2004.10643.

Nivre, J., De Marneffe, M. C., Ginter, F., Goldberg, Y.,

Hajic, J., Manning, C. D., ... & Tsarfaty, R. (2016,

May). Universal dependencies v1: A multilingual

treebank collection. In Proceedings of the Tenth

International Conference on Language Resources

and Evaluation (LREC'16) (pp. 1659-1666).

Ika Alfina et al. / Journal of Computer Science 2020, 16 (11): 1585.1597
DOI: 10.3844/jcssp.2020.1585.1597

1597

Schuster, S., & Manning, C. D. (2016, May). Enhanced
english universal dependencies: An improved
representation for natural language understanding
tasks. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC'16) (pp. 2371-2378).

Sneddon, J. N., Adelaar, A., Djenar, D. N., & Ewing, M. C.
(2010). Indonesian reference grammar (2 nd). Crows
Nest. New South Wales, Australia: Allen & Unwin.

Straka, M., Hajic, J., & Straková, J. (2016, May). UDPipe:
trainable pipeline for processing CoNLL-U files
performing tokenization, morphological analysis, pos
tagging and parsing. In Proceedings of the Tenth
International Conference on Language Resources and
Evaluation (LREC'16) (pp. 4290-4297).

Žabokrtský, Z., & Smrz, O. (2003, April). Arabic
syntactic trees: from constituency to dependency. In
10th Conference of the European Chapter of the
Association for Computational Linguistics.

Zeman, D., Popel, M., Straka, M., Hajic, J., Nivre, J.,
Ginter, F., … & Li, J. (2017). CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to
Universal Dependencies. In Proceedings of the
CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, number
1, pages 1-19.

