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Plants acquire carbon from the atmosphere and allocate it among different organs in response 1 

to environmental and developmental constraints (Hodge, 2004; Poorter et al., 2012). One classic 2 

example of differential allocation is the relative investment into aboveground versus belowground 3 

organs, captured by the Root:Shoot ratio (R:S; Cairns et al., 1997). Optimal partitioning theory suggests 4 

that plants allocate more resources to the organ that acquires the most limiting resource (Reynolds & 5 

Thornley, 1982; Johnson & Thornley, 1987). Accordingly, plants would allocate more carbon to roots 6 

if the limiting resources are belowground, i.e. water and nutrients, and would allocate more carbon 7 

aboveground when the limiting resource is light or CO2. This theory has been supported by recent 8 

research showing that the R:S of an individual plant is modulated by environmental factors  (Poorter 9 

et al. 2012; Fatichi et al. 2014). However, understanding the mechanisms underpinning plant 10 

allocation and its response to environmental factors is an active field of research (Delpierre et al. 2016; 11 

Paul et al. 2016), and it is likely that plant size and species composition have an effect on R:S. 12 

Accounting for these sources of variation is an important challenge for modelling (Franklin et al. 2012). 13 

The hypothesis that aridity controls R:S is supported by experiments on tree seedlings, which 14 

report higher R:S ratio in response to simulated drought treatments (Lambers et al., 2008; Poorter et 15 

al., 2012). This hypothesis is also consistent with the observation that trees in arid environments tend 16 

to allocate proportionally more biomass to roots, which may improve access to soil water (Nepstad et 17 

al., 1994) and act as a protected reservoir of stored carbohydrates to facilitate rapid regrowth 18 

following disturbances such as fire that are common in arid regions (Ryan et al., 2011). However, 19 

previous meta-analyses have led to contradictory results regarding the causes of stand-level variation 20 

in R:S. Mokany et al. (2006) found precipitation was the main control on R:S values; in contrast, Reich 21 

et al. (2014) suggested that temperature was the main driver, with R:S largely unrelated to aridity. 22 

Yet, previous studies used either data from soil cores (Reich et al., 2014), or a limited amount of data 23 

on root biomass from individually excavated trees (Cairns et al., 1997; Mokany et al., 2006), making it 24 

impossible to explore individual patterns of R:S variation in response to tree size and environmental 25 

conditions. 26 

Using the largest global dataset of its kind, here we provide the first analysis of global patterns 27 

of variation in individual-tree R:S. We hypothesized that individual R:S varies with environmental 28 

conditions, namely climate and management type, and is also determined by intrinsic factors, namely 29 

tree size and species. We also aimed to rank the relative contribution of these factors to R:S variation. 30 

The global dataset of individual R:S values was compiled from whole-tree harvesting studies (Dataset 31 

S1, Figure S1). The dataset encompasses 409 sites and a total of 3,416 trees of 212 species with oven 32 

dry weight measurements of both above- and below-ground biomass, from which we computed the 33 
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R:S (Fig. 1). The destructively-sampled trees included in the database had diameter at breast height 34 

(DBH) values ranging from 0.6 to 128 cm (more details in Figure S1). We fitted linear regression 35 

models, using the natural logarithm of R:S, ln(R:S), as the response variable to reduce 36 

heteroscedasticity. The explanatory variables that we analysed were tree size, tree species, wood 37 

specific gravity, phenology (evergreen, deciduous), and clade (gymnosperm, dicot angiosperm or 38 

monocot angiosperm, i.e. palm). Additional factors in the models were bioclimatic region (tropical dry, 39 

tropical wet, non-tropical), temperature, precipitation, whether the tree was growing in a natural 40 

forest or plantation, and climatic water deficit (MWD, for mean water deficit, in mm/year), which is 41 

the deficit between monthly rainfall and potential evapotranspiration (Aragão et al., 2007). Additional 42 

details about the explanatory variables and methods are in Methods S1. We carried out a stepwise 43 

regression analysis, retaining the variables significant at 95%, and selected the best model based on 44 

AIC values. The conditional and marginal variances, R2
GLMM values, for the final model and variances 45 

for each component were calculated using the method proposed by Nakagawa & Schielzeth (2013). 46 

All statistical analyses were conducted in R (code reproduced in Note S1). 47 

The following model, with species as a random effect, explained 62% of the variance of the 48 

data (R2
GLMM-C values):  49 

ln(𝑅𝑅: 𝑆𝑆) = −1.2312 − 0.0215𝐷𝐷𝐷𝐷𝐷𝐷 + 0.0002𝐷𝐷𝐷𝐷𝐷𝐷2 − 0.0007 ∙  𝑀𝑀𝑀𝑀𝑀𝑀 − 0.1631 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + |𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆| 50 

Where DBH is in cm, MWD is in mm, plantation is a binary 1/0 dummy variable and Species is a species 51 

specific random term.  52 

The most important factor explaining global tree R:S values was tree size: DBH and DBH2 53 

jointly accounted for 33% of the variance. Mean R:S values decreased with tree size for trees with DBH 54 

up to 1 m. For instance, saplings < 2 cm DBH had a mean R:S of 0.43, while trees with DBH 25-30 cm 55 

had a value of 0.28. For trees with DBH larger than 1 m, R:S did not vary much (but the sample size for 56 

these was small, only 42 trees). Saplings and small trees presumably invest more biomass below 57 

ground to take up nutrients and water for fast growth and survival (Poorter et al., 2012). The decline 58 

in R:S with increasing DBH is also consistent with the fact that as trees age and DBH increases non-59 

conductive xylem accumulates disproportionately in aboveground tree parts. Mean water deficit 60 

accounted for 17% of the variance, and R:S declined with decreasing MWD (Fig. 2). This suggests that 61 

plants experiencing water shortage allocate more biomass belowground, in agreement with Mokany 62 

et al. (2006) and observations from experiments (Hodge, 2004; Lambers et al., 2008; Poorter et al., 63 

2012), but not with Reich et al. (2014). When MWD was included in the model, both precipitation and 64 

temperature became non-significant. MWD also explained more variance than precipitation or 65 
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temperature when these variables were fitted separately in single-factor models (Methods S1). 66 

Importantly, the relationship between R:S and both DBH and MWD was nonlinear, as has been 67 

observed previously (Mugasha et al., 2013).  68 

Many of the tested effects were not statistically significant, presumably because in some 69 

instances large variances precluded detection of true differences, and in others because of the 70 

absence of an effect. Our analysis does suggest that, after accounting for MWD, variation in R:S did 71 

not differ across bioclimatic regions. We detected no correlation or significant interaction between 72 

tree size and MWD, which suggests that the effects of these two variables are independent (Methods 73 

S1). This is an interesting contrast with the findings of Bennett et al. (2015), who determined that 74 

larger trees are more vulnerable to drought than smaller trees: the influence of chronic water deficit 75 

(as expressed by MWD) on R:S apparently does not translate to ability to respond to episodic drought. 76 

Species identity accounted for only 11% of the variance in R:S, and contrary to previous studies 77 

(Mokany et al., 2006; Reich et al., 2014), groupings of species by phenology or clade did not explain 78 

any additional variation in R:S (Figure S2), except that monocotyledons (palms) invest comparatively 79 

less biomass in roots. Species can have widely different root architectures (Lynch 1995), therefore 80 

differences in R:S values across species are not surprising. After accounting for species, wood specific 81 

gravity was not a significant predictor of R:S. Finally, trees in plantations had lower R:S than trees in 82 

natural forests (Figure S2b), although this effect explained only 2% of the variance in R:S. Plantations 83 

are sometimes fertilized, which may result in lower biomass allocation in belowground tissues in 84 

response to the greater nutrient availability. Moreover, species in plantations are typically fast-85 

growing and selected for their capacity to produce aboveground biomass quickly. Finally, plantation 86 

trees may be more sheltered and the structural support of the roots is less necessary. The remaining 87 

38% of variance that was unexplained may be due in part to soil fertility, which is known to influence 88 

R:S (Reynolds & D’Antonio, 1996; Poorter et al., 2012). Other possible sources of variance, not 89 

considered due to a lack of data here, include differences in micro-topography, soil properties, 90 

particular individual conditions like resprouting, and community structure. Further, differences in 91 

methodology for collecting root data (see S2.2.3) among studies may account for some of the variance.  92 

The main novel finding of this study is that globally, variation in individual tree R:S is largely 93 

dominated by two effects: tree size and mean water deficit, which largely support our hypothesis. The 94 

increase in R:S in response to increasing climatic water deficit occurs independently of the size 95 

dependence in R:S, which supports the hypothesis that moisture availability drives global variation in 96 

R:S. With greater aridity, trees invest comparatively more resources to acquire soil water as it becomes 97 

a more limiting resource for growth and survival, and to provide a below-ground reservoir of stored 98 
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carbon for rapid regrowth following disturbance. Plasticity in R:S has major implications for our 99 

understanding of the contribution of vegetation to the global carbon cycle and responses to climatic 100 

change. Some parts of the globe are predicted to experience drying trends, including longer dry 101 

seasons, and an increase in the frequency of extreme events and disturbances, while other regions 102 

may become wetter or less seasonal (Moss et al., 2010; IPCC, 2014). Our new results suggest that any 103 

change in water deficit or in the relative abundance of smaller trees may result in shifts in biomass 104 

allocation, with far-reaching consequences for the global carbon budget.  105 
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SUPPORTING INFORMATION 

 

Figure S1. World map with data plots and details on the dataset. 

 

Figure S2: Boxplot of R:S values for inter-group comparisons, including (a)  all the measured trees and 
(b) only trees with DBH from 10 to 50 cm and excluding plantations in panels i,ii,iii to account for 
differences in tree size and management differences.  

 

Notes S1: R code used in the analyses. 

 

Methods S1: Extended description of methods, fitted models and model diagnosis 

 

Dataset S1: Tree-by-tree R:S dataset. Also available in the figshare achieve doi <to be given> 

 

 

 

FIGURE LEGENDS 

 

Figure 1: Plot of individual root:shoot ratios (R:S) against tree diameter at breast height (DBH, in cm), 

including trees with DBH up 1 m, for a better display. Each grey point corresponds to an individual 

value. The dark-green line is the mean value of R:S at that particular DBH, and the greed shade 

illustrates the standard error. 

 

Figure 2: Plot of the natural logarithm (ln) of individual root:shoot ratios (R:S) against the mean water 

deficit (MWD), where each point corresponds to an individual value. The green line is the linear trend 



 
 

and the greed shade illustrates the standard error. Please, note this is not the actual fitted curve. 

Bottom, right: Plot of ln(R:S) against MWD, where the red points and line correspond to natural forest 

and the green ones to plantations. Bottom, left: Plot of ln(R:S) against MWD, where different colours 

represent different diameter classes (see colour codes in the graph).  

 

 

 

 

 

 


	REFERENCES
	SUPPORTING INFORMATION

