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Abstract

A tree t-spanner of a graph G is a spanning subtree T of G in which the distance between
every pair of vertices is at most t times their distance in G. Spanner problems have received
some attention, mostly in the context of communication networks. It is known that for general
unweighted graphs, the problem of deciding the existence of a tree t-spanner can be solved in
polynomial time for t = 2, while it is NP-hard for any t¿4; the case t = 3 is open, but has
been conjectured to be hard. In this paper, we consider tree spanners in planar graphs. We show
that even for planar unweighted graphs, it is NP-hard to determine the minimum t for which a
tree t-spanner exists. On the other hand, we give a polynomial algorithm for any �xed t that
decides for planar unweighted graphs with bounded face length whether there is a tree t-spanner.
Furthermore, we prove that it can be decided in polynomial time whether a planar unweighted
graph has a tree t-spanner for t = 3. ? 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A t-spanner of a graph G is a spanning subgraph H of G in which the distance
between every pair of vertices is at most t times their distance in G. We can think
of the “stretch factor” t as the relative price increase that has to be incurred for
individual connections after replacing the network G by a cheaper subnetwork H .
Spanners were �rst considered in the context of practical motivations from commu-
nication networks (see [20], who introduced spanners to synchronize asynchronous
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networks). They have also been used for simplifying geometric data structures (see
[9,11,2]). Surveys of results on the existence and e�cient constructibility can be found
in [19,22].
Depending on the objective for choosing a subnetwork, various kinds of spanners

have been considered (see [1,3,15,18,20,21] for a selection of variants). Since the main
motivation is to obtain a network of small total weight, particular attention has focused
on tree spanners, where the subnetwork H is minimal with respect to edge removal.
As Cai [6,7], and Cai and Corneil [8] showed, the problem of deciding the existence
of a tree t-spanner in an unweighted graph G can be solved in polynomial time for
t = 2; on the other hand, the problem is NP-complete for any t¿4. The case t = 3 is
still open, but it was conjectured in [8] to be NP-complete.
As noted above, spanners have been considered in the context of geometric distance

queries (see [9,11,2]). Since planar graphs form a particularly well-understood class
of sparse graphs with a number of structural and algorithmic properties that make
them interesting as spanners, the focus of those works has been on planar spanners,
where the spanning graph H is required to be planar. Also, see [5] for a proof that
it is NP-hard to determine a minimum weight planar t-spanner in a graph. They also
showed that determining a minimum weight t-spanner in a planar graph is an NP-hard
problem. Kortsarz [14] has obtained hardness results on the approximation of a related
optimization problem: He shows that �nding a t-spanner with a small number of edges
is at least as hard as approximating the set cover problem, implying a lower bound of

(log n) for an approximation factor, unless P=NP. Dodis and Khanna [12] improved
this result by showing that under the same assumption, there is a lower bound of

(2log

� n) on the approximation ratio, for �xed t¿5.
Between considering tree spanners in general graphs and planar spanners in general

graphs, it is natural to consider tree spanners in planar graphs. Not only does this allow
a better understanding of the properties of graph spanners, but results on the stretch
factors of tree spanners in planar graphs combine with bounds on the stretch factors of
planar spanners in general graphs to yield estimates on tree spanners in general graphs.
In this paper, we show that deciding the existence of a tree t-spanner in a graph G

is NP-complete, if t is part of the input, even when restricted to the situation where
G is planar and unweighted. On the other hand, we prove that this problem can be
solved in polynomial time for planar unweighted graphs with bounded face length and
�xed t.
For some purposes and some graphs, not all pairs of connections have the same

importance. This motivates the concept of (s; t)-spanners: For a partition of E(G) into
two given sets of edges E1 and E2, a tree (s; t)-spanner consists of edges in E1, and it
replaces any edge (v1; v2) ∈ E1 by a path of at most s times its length, and any edge
(v1; v2) ∈ E2 by a path of at most t times its length. We show that for �xed s and t,
the existence of a tree (s; t)-spanner in planar unweighted graphs with bounded face
length can be checked in polynomial time. By a detailed analysis of the neighborhood
structures of planar graphs with tree 3-spanners, we are able to show that a planar
graph has a tree 3-spanner, i� it is a subgraph of a planar graph with bounded face
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length that has a tree (3; 8)-spanner. This implies a polynomial algorithm for deciding
whether a planar graph G has a tree 3-spanner.
The rest of this paper is organized as follows: In Section 2, we introduce some

basic concepts. Section 3 contains the NP-completeness of deciding the existence of a
tree t-spanner in a planar graph. In Section 4, we describe the polynomial algorithm
for deciding whether a planar graph with bounded face length has a tree (s; t)-spanner.
Section 5 gives an overview of the polynomial algorithm for deciding whether a planar
graph has a tree 3-spanner. In Section 6 we conclude with some open problems.

2. Preliminaries

Throughout this paper, we use the terminology of Bondy and Murty [4]. A graph
G has edge set E(G) and vertex set V (G); we may simply write E and V when the
meaning is clear. If H is a subgraph of G, then G − H denotes the graph obtained
by deleting from G all edges of H . If G and H are graphs on the vertex set V , then
G+H is the graph obtained by adding the edges of H to G. For a pair of vertices v1
and v2 in a connected graph G, we denote the length of a shortest path from v1 to v2
by dG(v1; v2). We will concentrate on the case of unweighted graphs without loops, so
for any edge (v1; v2) ∈ E(G), we have dG(v1; v2) = 1. For a planar graph G, we write
G∗ for the dual graph. For S ⊂V , the number of the edges leaving S in the graph G
is denoted by �G(S). For S ⊂V , we denote by N (S) the set of neighbors of S, i.e.,
the set of vertices v ∈ V \ S with a w ∈ S, such that (v; w) ∈ E. For a set of vertices
S ⊆V , the subgraph induced by S is denoted by G[S].
For a real number t¿1, a subgraph H of a connected graph G is a t-spanner if

dH (v1; v2)6t · dG(v1; v2) for all v1; v2 ∈ E(G). A tree t-spanner is a t-spanner that is
a tree. The parameter t is called the stretch factor; the smallest value t for which a
graph G has a tree t-spanner is called the tree stretch index of G, denoted by �T (G).
It was shown in [8] that the following holds:

Lemma 1. A subgraph H of a connected graph G is a t-spanner; i� for all edges
(v1; v2) ∈ E(G)− E(H); we have dH (v1; v2)6t.

This allows us to consider only integer stretch factors for unweighted graphs. If the
condition dH (v1; v2)6t is satis�ed for a particular edge e=(v1; v2) ∈ E(G)−E(H), we
say that e has a short detour in H ; for the case of tree spanners T , there is a unique
corresponding shortest path, denoted by pT (e).

3. An NP-completeness result

It was shown in [8] that it is NP-complete to decide whether �T (G)6t for a general
unweighted graph, as long as t¿4. In this section, we describe our proof that it is
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Fig. 1. (a) The graph GI representing the PLANAR 3SAT instance (x1∨x3∨x4)∧( �x1∨ �x2∨x4)∧( �x3∨x4∨ �x5);
(b) the transformed graph G′

I and a spanning tree T
′ in G′

I (bold); (c) the graph GI + T
′.

NP-complete to decide �T (G)6t for a planar unweighted graph, where t is part of
the input. Our reduction is from a special subclass of 3-SAT instances, called PLANAR
3SAT, which was shown to be NP-complete by Lichtenstein [17].
A 3SAT instance I is said to be an instance of PLANAR 3SAT, if the following

bipartite graph GI is planar: Every variable and every clause in I is represented by
a vertex in GI ; two vertices are connected, if and only if one of them represents a
variable that appears in the clause that is represented by the other vertex (see Fig. 1(a)
for an example).
In the following, we describe the necessary gadgets for our hardness proof.

3.1. The basic setup

As a �rst step, the graph GI is transformed into a graph G′
I . As shown in Fig. 1,

each set of three edges adjacent to the same clause vertex is replaced by a triangle –
a so-called (Y; �)-transformation. From this graph G′

I , any spanning tree T
′ is chosen.

This spanning tree has a certain stretch factor t′, which is polynomially bounded by
the size of I .
For the second step, we add the edges of T ′ to the graph GI , as shown in Fig. 1.

This yields the graph GI + T ′.
As a third step, the variable vertices vr in G′

I + T are replaced by variable gadgets
Grvar (described in the following subsection), each with two disjoint subsets of edges
Eitrue and E

i
false; furthermore, edges adjacent to clause vertices are replaced by “path”

gadgets, and edges of T ′ are replaced by suitable “edge” gadgets. This is done in a
way that for the resulting graph G′′

I , any spanning tree T is a tree t-spanner, i�
(1) certain edges are contained in T ;
(2) for certain pairs of edges, precisely one edge is contained in T ;
(3) for each variable vr , either all edges of Ertrue are contained in T , or all edges in

Erfalse are;
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Fig. 2. (a) A forced edge; (b) a forced pair.

(4) for each clause cj, precisely one of the three adjacent path gadgets provides a
connection to an adjacent variable vertex vr , denoted by vj;

(5) for each clause cj and the adjacent variable vertices vi, the truth setting provided
by one of the sets Eitrue or E

i
false satis�es cj.

For the �rst property, we use the gadget shown in Fig. 2(a). It has been used
extensively in the proofs of [8,5]. It is easy to see that any tree t-spanner of the graph
G shown in the �gure must contain the edge e. In the following, edges forced in this
way are indicated by bold drawing.
Fig. 2(b) shows another gadget that can be used for forcing one out of two edges:

For t¿3, any tree t-spanner must contain e and precisely one of the two edges e1 and
e2.
The following subsections give a description of the remaining gadgets and their

properties.

3.2. Gadgets for variables

Consider a variable vertex vr ∈ GI . For simplicity of notation, we omit superscripts
r in this subsection.
Fig. 3 shows the gadget Gvar for representing variables. It consists of a central

“variable” vertex v, connected to “literal” vertices v1; v1; : : : ; vs vs (with s = �(v)), by
“true” edges ei = (v; vi) and “false” edges ei = (v; vi). Any vi and vi are connected by
an edge wi that is forced by two paths of length t¿3 as shown in Fig. 2(a). vi and
vi+1 (indices modulo s) are connected by a path of length t−2, containing the vertices
vi; w(i;1); : : : ; w(i; t−3); vi+1. The edge fi = (vi; w(i;1)) is not forced, all other edges of the
path are. Connections to the outside, i.e., to the rest of the graph, are at the literal
vertices.
Furthermore, variable gadgets will be used in a way that outside connections are

“long”. More precisely, for any two literal vertices with di�erent indices (i.e., vi or
vi, and vj or vj with i 6= j), a shortest path that does not use any edges in Gvar
contains at least 4 edges. If this condition is satis�ed, we say that Gvar has long
outside connections.
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Fig. 3. Variable component Gvar .

Now it is not hard to prove the following:

Lemma 2. Suppose that Gvar is contained in a graph G and has long outside connec-
tions. Then any tree t-spanner of G contains precisely one of the edges ei, ei for any
i= 1; : : : ; s; and none of the edges fi can be contained. Furthermore; the choice of ei
or ei is the same for all i= 1; : : : ; s; i.e.; if one edge ei is contained then all edges ei
are contained.

Proof. Consider a tree t-spanner T of G. Since v must be connected to the rest of the
graph, for some i, one of the edges ei, ei must be contained in T . Since wj must be
contained in T , and T is cycle-free, for any j, not both ej and ej can be contained.
Without loss of generality, consider the case where e1 is contained (the case of e1

will be treated later). If f1 was contained in T , then neither e1, nor e2, nor e2 could be
contained in T . But then pT (e2) has more than t edges, contradicting the fact that T is
a t-spanner. Therefore, f1 cannot be contained. Now consider pT (f1). Since pT (f1)
has at most t edges, it must contain a path of length 3 from v1 to v2. By assumption,
there is no such path outside of Gvar; inside of Gvar, it is easy to see that such a path
can only consist of the edges w1, e1, and e2, showing that e2 is contained in T . It
follows by induction that no fi is contained in T , but all ei are.
The case where e1 is contained in T is treated analogously: �rst we conclude that

fs cannot be contained in T , then proceed to show that eS must be contained, etc.

In the following, containment of Etrue:={ei | i = 1; : : : ; s} in a tree t-spanner will
correspond to a “true” setting of the represented variable, while containment of
Efalse:={ei | i = 1; : : : ; s} corresponds to a setting of “false”.
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Fig. 4. (a) A spanning tree T ′; (b) a representation of T ′ after introducing variable gadgets and edge gadgets.

3.3. Edge gadgets

After replacing variable vertices by variable gadgets as described in the previous
section, any edge eij ∈ T ′ between two variable vertices vi and vj is represented by the
edge gadget in Fig. 4. It consists of three edges of each of the two variable gadgets,
connected to a vertex uij by two pairs of edges e(i; j); e(i; j), and e(j; i); e(j; i). For any pair
of edges e(i; j); e(i; j), we use the gadget shown in Fig. 2(b) to make sure that precisely
one of them will be contained in a tree t-spanner. Eventually, e(i; j) will be chosen if
Eitrue is contained in T , and e(i; j) will be chosen if E

i
false is contained in T .

It is straightforward to see that in the resulting graph G̃I , all variable gadgets have
long outside connections, so Lemma 2 applies. It follows that for any tree t-spanner
T in G̃I , any edge e = (vi; vj) of T ′ is represented by a path of length 4 between vi

and vj.

3.4. Clause gadgets

The basic idea is shown in Fig. 5.
Consider a clause vertex c in the graph GI that is adjacent to the variable vertices

v1; v2; v3. In T ′, consider the three paths connecting v1 with v2, v1 with v3, and v2 with
v3. These paths must induce a subtree T̃ , consisting of three subpaths Pi, connecting
vi to a central vertex u. (Note that u= vi is possible.) Let di =dT ′(vi; u). Since T ′ has
stretch factor t′, we know that di6t′. Recall that each edge of T ′ is replaced by a set
of four edges in T , as noted in Section 3.3, so dT (vi; u) = 4di.
For each variable i, connect c to a literal vertex of Givar by a path of length

4(t′ − di) + 1 as follows: If xi appears in the clause, connect c to a literal vertex vik
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Fig. 5. Idea of the clause component, shown for (x1 ∨ x2 ∨ x3).

for a suitable ki ∈ {1; : : : ; s}. If xi appears in the clause, connect c to a literal vertex
vik .
Of the 4(t′ − di) + 1 edges in a path, all 4(t′ − di) edges that are not adjacent to

vertex c are forced by paths of length t. The remaining (unforced) edge is denoted by
gi = (c; qi).

3.5. The reduction

Using the above gadgets and properties, we claim:

Theorem 3. It is NP-complete to decide �T (G)6t for planar unweighted graphs G
and integers t.

Proof. Use the above construction, where t = 8t′ + 4, and see Fig. 5. It is clear that
the existence of a tree t-spanner T hinges on the appropriate choice of connections
gi at any clause vertex c to the adjacent vertices q1, q2, q3, and thus to the vertices
v1, v2, v3. As seen above, in any tree t-spanner, vi and vj must be connected by a
path that does not visit c and has length 4(di + dj). Therefore, not both gi and gj
can be contained in T , or there would be a cycle in T . Without loss of generality,
assume that g1 is contained in T . Suppose that the truth setting of variable 1, provided
by one of the two edge sets E1true, E

1
false, does not satisfy clause vertex c. Then in T ,

c is connected to v1 by a path of length 4(t′ − d1) + 3, which extends to a path of
length 4(t′ − d1) + 3 + 4(d1 + d2) = 4t′ + 4d2 + 3 from c to v2. Since pT (g1) has
length at most t = 8t′ + 4, there must be a path from v2 to q2 in T of length at most
t − 4t′ − 4d2 − 3 = 4t′ − 4d2 + 1. This means that the truth assignment of variable 2
must satisfy clause vertex c, showing that a tree t-spanner induces a satisfying truth
assignment of the PLANAR 3SAT instance I .



S.P. Fekete, J. Kremer /Discrete Applied Mathematics 108 (2001) 85–103 93

Fig. 6. A planar graph G (solid lines, black vertices) with a tree 2-spanner (bold edges), and the dual graph
G∗ (broken lines, white vertices) with a 3-cut tree (bold edges).

Conversely, it is straightforward to verify that a truth assignment of the PLANAR
3SAT instance I can be used to construct a tree t-spanner: Choose the corresponding
edge sets Eitrue or E

i
false, e(i; j) or e(i; j), and the connection gi for a satisfying variable to

be contained in T .

4. Planar graphs with bounded face length

In this section we show that deciding the existence of a tree t-spanner in a planar
graph with all faces of bounded length can be performed in polynomial time.
For this purpose, we introduce the notion of a c-cut tree in a graph:

De�nition 4. Let T be a spanning tree in a graph G. Removing any edge e ∈ T splits
T into two connected components, inducing a partition of the vertex set into PT (e) =
(VT (e); V ′

T (e)). We say that T is a c-cut tree in G, if for all e ∈ T , |�G(VT (e))|6c.

It is straightforward to show that the following holds (see Fig. 6 for an example).

Lemma 5. A planar graph G has a tree t-spanner; i� G∗ has a (t + 1)-cut tree.

For a proof, note that there is a 1-to-1 correspondence between edges ec in a
(t + 1)-cut tree and edges e in G \ T for a tree t-spanner. The size of the cut in-
duced by ec is one less than the path in T that connects the vertices of e in T .
The set of cuts induced by the edges of the dual (t + 1)-cut tree have a noncross-

ing, i.e., “nested” or “laminar” structure. (Nested families of objects play a role in
many problems of combinatorics and optimization, see [10] for an application in the
context of matchings.) For describing cut trees, we need additional information about
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Fig. 7. A planar graph G∗ with a 3-cut tree (bold edges), and the corresponding rooted nested family.

the relative structure of the nested sets. For this purpose, we introduce the notion
of rooted nested families that can be used for establishing the following constructive
characterization of c-cut trees:

Lemma 6. A planar graph G∗=(V ∗; E∗) has a c-cut tree; i� there is a “rooted nested
family” F ⊆ 2V∗ × V ∗ with the following properties:
(1) (V ∗; r) ∈ F for an r ∈ V ∗;
(2) r ∈ S for all (S; r) ∈ F;
(3) |�G(S)|6c for all (S; r) ∈ F;
(4) for all (S1; r1); (S2; r2) ∈ F we have S1⊆ S2; or S1⊆V ∗ \ S2;
(5) for all (S; r) ∈ F with |S|¿ 1; there are l¿1 and (Si; ri) ∈ F; 16i6l; with

S \ {r}= ⋃̇
Si and (r; ri) ∈ E∗:

Proof. See Fig. 7 for an example.
Suppose that we have a rooted nested family as described in the lemma. Consider

a vertex v = r with (V; r) ∈ F as given by condition (1). By condition (5), the set
V \ {r} can be partitioned into disjoint sets Si, with (Si; ri) ∈ F , and (r; ri) ∈ E∗.
While there is any unpartitioned Si with |Si|¿ 1, we can continue to apply condition
(5), and because of condition (2), this procedure must terminate. Clearly, the set of
directed edges (r; ri) encountered during the procedure forms a spanning arborescence
A. (Because of condition (4), there cannot be any cycles.) The spanning tree C in-
duced by A is a c-cut tree: By condition (3), any edge (r; ri) induces a cut not larger
than c.
To see the converse, consider a c-cut tree C. Now consider the following inductive

procedure:



S.P. Fekete, J. Kremer /Discrete Applied Mathematics 108 (2001) 85–103 95

While there are unmarked edges in C, there must be a vertex v that has precisely
one unmarked edge e = (v; w) adjacent to it. Marking e leaves the set of unmarked
edges connected. Removing e from C induces a partition (S; �S) of V . By assumption,
|�G∗(S)|6c. Without loss of generality, we may assume that v ∈ S, and the subgraph
CS of C induced by S does not contain any unmarked edges. If |S|¿ 1 then there
must be marked edges in S that are adjacent to v. By construction, each of these edges
ei connects v to a vertex ui ∈ S, and there is an (Si; ui) ∈ F with Si⊂ S. Furthermore,
for ui 6= uj, Si and Sj are disjoint.
If e was the last unmarked edge, then for all vertices qj adjacent to w, for some

Sj, (Sj; qj) has been added to F . Again, all these Sj are disjoint. This allows it to add
(V; w) to F and satisfy condition (1). By construction, all other conditions are also
satis�ed.
This concludes the proof.

Using the characterization from Lemma 6, we get the following result:

Theorem 7. For �xed t; it can be decided in polynomial time for planar unweighted
graphs G with bounded face length whether �T (G)6t.

Proof. Consider the existence of a rooted nested family F of G∗ as described in
Lemma 6. Since t is �xed, there are only polynomially many possible cuts in G∗ of
size not larger than t + 1, implying we only have to consider polynomially many sets
(S; r) that can be used for F . Since all faces in G have bounded length, the dual graph
G∗ has bounded degree, so there is a polynomial number of possible partitions for any
(S; r). Using dynamic programming and proceeding by increasing size of S, we can
decide in polynomial time whether there exists a rooted nested family as described in
Lemma 6.

As described in the introduction, the concept of tree t-spanners can be generalized:

De�nition 8. Let G be a graph with E(G) = E1∪̇E2. Then, a spanning tree T of G
is a tree (s; t)-spanner for G = (V; E1∪̇E2), i� T is a subgraph of (V; E1), and for all
edges (v1; v2) ∈ E1− T , we have dT (v1; v2)6s, and for all edges (v1; v2) ∈ E2− T , we
have dT (v1; v2)6t.

An analogous approach to the one for tree t-spanners can be used for obtaining
similar results for tree (s; t)-spanners: Instead of (t + 1)-cut trees, consider (t + 1;
s + 1)-cut trees, where a cut induced by an edge e is bounded by s + 1, if e ∈ E1,
and bounded by t + 1, if e ∈ E2. Similarly, we adapt the de�nition of rooted nested
families, and the resulting dynamic programming algorithm. Summarizing, we get:

Theorem 9. For �xed s and t; it can be decided in polynomial time for planar un-
weighted graphs G = (V; E1∪̇E2) of bounded face length; possibly with multi-edges;
whether there is a tree (s; t)-spanner.
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Fig. 8. Di�erent possibilities for a short detour pT (vi; vi+1) of an edge (vi; vi+1) in C − T .

5. Deciding the existence of tree 3-spanners in planar graphs

In this section, we describe the polynomial algorithm for deciding whether a pla-
nar unweighted graph G has a 3-spanner. The key idea is to add a set of edges E′

to obtain a graph G64 with face length bounded by 4, such that G64 = (V; E∪̇E′)
has a tree (3; 8)-spanner, i� G has a tree 3-spanner. The existence of a (3; 8)-spanner
in G64 can be decided in polynomial time by the algorithm from the previous sec-
tion.
The neighborhood structure of a face boundary determines which edges have to

be inserted to subdivide the corresponding face. Therefore, we begin our analysis by
exploring the neighborhood of a chordless cycle C = v0; : : : ; vq; v0; |C|¿5 of a planar
graph G with a tree 3-spanner T .
For any edge e=(vi; vi+1) in C−T , there must be a path in T that is not longer than

3 and not fully contained in C. The di�erent possibilities for such a path are shown
in Fig. 8; note that C is chordless.
Before we can derive Lemma 11, which is the �rst step in the description of the

neighborhood of C, we need the following de�nitions. (Cf. Fig. 9 for an illustration.)

De�nition 10. A path P is called weakly dominated by U ⊆N (P) if for any vertex
v ∈ P; v or both its neighbors on P are adjacent to U , and if P is not a cycle, both
of its endnodes are adjacent to U .
Now let u ∈ N (C) be a vertex that does not weakly dominate the cycle C, and

for an order induced by C, let D1; : : : ; Dr be the maximal paths of C that are weakly
dominated by u. The �rst vertex of a path Di according to the ordering is denoted by
dhi , the last by d

t
i . By de�nition, there must be a path Pi between any two Di and Di+1

that consists of at least two vertices that are non-adjacent to u. Thus, one endnode
of Pi is adjacent to dti and the other adjacent to d

h
i+1. D1; P1; : : : ; Dr; Pr is called the

u-subdivision of C. An example is shown in Fig. 9.
For any i, let P1i be the “short” path between d

t
i and d

h
i+1, i.e., (d

t
i ; Pi; d

h
i+1), while

P2i is the “long” path, i.e., (Di+1; Pi+1; : : : ; Pi−1; Di).
A vertex w ∈ N (C) is an independent C-neighbor of u, if it is adjacent to u in G

and if there is an index 16i6r such that the following conditions hold:
(1) There is a path of at most two edges in G that connects w with a vertex of Pi,

and
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Fig. 9. A vertex u in a semi-dominating tree TC , its u-partition, and the subface F(u).

(2) there are vertices whi ; w
t
i in P

1
i that are adjacent to w in G and vertices uhi ; u

t
i in

P2i that are adjacent to u in G, such that w
h
i ; w

t
i , u

h
i , and u

t
i are pairwise disjoint,

and uhi w
t
i , w

h
i u
t
i ∈ E(C) holds.

(Note that the path in 1 does not contain vertex u, since u is not adjacent to any vertex
in Pi.)
The set of all independent C-neighbors is denoted by N (C; u). A vertex w ∈ N (C)

is a C-successor of u, if there is a path w0; w1; : : : ; wk with w0 = u; wk = w, such that
for any 16i6k, the vertex wi is an independent C-neighbor of wi−1. The set of all
C-successors is denoted by D(C; u).

Lemma 11. Let G be a planar graph with a tree 3-spanner T . If C is a chordless
cycle in G; |C|¿5; then there is a subtree TC of T; such that
(1) Any vertex vi ∈ C is adjacent to TC; or both its neighbors vi−1 and vi+1 are

adjacent to the same vertex of TC . In particular; C is weakly dominated by
V (TC).

(2) w ∈ N (C; u) for every edge (u; w) ∈ E(TC).
A tree with these properties is called a semi− dominatingtree of C.

Fig. 10 shows an example. Bold lines show the semi-dominating tree.

Proof. First we show that the subgraph T̃ C of T formed by the edges of G[N (C)]
contained in a path pT (vj; vj+1); (vj; vj+1) ∈ C − T satis�es the �rst condition and is
connected.
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Fig. 10. A long chordless cycle C in G and a semi-dominating tree TC (bold).

Consider the edges in a path pT (vj; vj+1)−C; (vj; vj+1) ∈ C−T . Each of these edges
must be contained in pT (vk ; vk+1) for an edge (vk ; vk+1) ∈ ((C − T )− (vj; vj+1)), since
T cannot contain a cycle. In particular, this is true for the edges of pT (vj; vj+1) − C
incident to C. Because pT (vk ; vk+1) contains at most three edges, in this case (vk ; vk+1)
is adjacent to (vj; vj+1), or between (vj; vj+1) and (vk ; vk+1) is a path of C with at most
two edges. The latter holds i� pT (vj; vj+1) and pT (vk ; vk+1) follow the course shown
in the right part of Fig. 8 and this is the only possibility for two adjacent edges of C
to be in T . Thus, condition (1) holds for T̃ C .
Clearly, two vertices of the same path pT (vj; vj+1) are connected in T̃ C . Furthermore,

the above considerations show that the vertices of pT (vj; vj+1) are connected to the
vertices of pT (vk ; vk+1) if (vk ; vk+1) is the next edge of C that is not contained in T .
Since C is connected, it follows by induction that T̃ C is connected.
Now de�ne TC to be a minimal subtree of T̃ C that satis�es condition (1), and let

(u; w) ∈ E(TC). The edge (u; w) is contained in two paths pT (vj; vj+1) and pT (vk ; vk+1)
as stated above. Without loss of generality, let u (w) be adjacent to vj (vj+1), and
vk+1 (vk) (cf. Fig. 8). Since G is planar, u is not adjacent to an inner vertex of
the (vj+1; vk)-path P of C that does not contain vj. Minimality of TC with respect to
condition 1 implies that there are at least two vertices of P not adjacent to u, i.e., a
path Pi of the u-subdivision of C contains all inner vertices of P.
Therefore, condition (2) for an independent C-neighbor is satis�ed with vj=uhi ; vj+1=

whi ; vk+1=u
t
i , and vk=w

t
i . If w is adjacent to a vertex of Pi, it follows immediately that

w ∈ N (C; u). Otherwise, the second case of Fig. 8 must apply for w and a neighbor
x 6= u of w in TC that is adjacent to a vertex of Pi, since V (TC) weakly dominates C
and Pi has at least two nodes.
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Fig. 11. C-neighbors are unique.

In the �rst step of our algorithm for determining tree 3-spanners, we compute a
semi-dominating tree for every face boundary with more than four edges. Lemma 11
shows us that this is possible if G has a tree 3-spanner. It is shown in Lemma 13 how
to �nd a semi-dominating tree in polynomial time. This step hinges on the following
relationship between independent C-neighbors and semi-dominating trees.

Lemma 12. For any vertex u of a semi-dominating tree; the set of its neighbors in
this tree is the set of its independent C-neighbors.

Proof. By de�nition, the set of the neighbors of u is a subset of its independent
C-neighbors.
It follows from condition (1) in Lemma 11 that there must be a vertex w̃ ∈ N (Pi) of

TC for any path Pi of the u-subdivision of C. By de�nition, the neighbor w of u on
the (u; w̃)-path of TC is an independent C-neighbor of u. It follows from planarity of
G that w is an independent C-neighbor of u with respect to i, i.e., the conditions of
the de�nition of the independent neighbor are ful�lled for i. Furthermore, it is the only
independent C-neighbor of u with respect to i (see Fig. 11).

The following lemma holds for all cycles C of G, chordless or not.

Lemma 13. Let C be a cycle in a planar graph G; and u ∈ N (C). If C has a
semi-dominating tree TC containing u; then

TC = G[D(C; u)]− {(v; w): w 6∈ N (C; v)}:

Proof. It follows from Lemma 12 by an easy induction that the vertex sets of the
graphs are the same.
Condition (2) of Lemma 11 means that every edge of TC is an edge of the graph on

the right-hand side of the claimed equation. Lemma 12 shows that the edges between
u and all its C-neighbors are edges of TC . It follows by induction that the edges of
the right graph form a subset of E(TC).
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Fig. 12. Uniqueness of semi-dominating trees.

The characterization of Lemma 13 implies the uniqueness of the semi-dominating
tree. This is one reason for the “shortness” of paths replacing the inserted edges in a
tree 3-spanner:

Lemma 14. For a given cycle C; |C|¿5; that bounds a face of G; the semi-dominating
tree is uniquely determined; if it exists. Moreover; it is minimal with respect to con-
dition (1) of Lemma 11.

Proof. Let T0 and T1 be semi-dominating trees of C. From the planarity of G and
condition (1) of Lemma 11, it follows that T0 and T1 contain a common vertex, since
an appropriate contraction leads to the graph shown in Fig. 12. Applying Lemma 13,
we get uniqueness.
The second part follows from uniqueness and de�nition of TC in Lemma 11.

Now suppose we have a face F bounded by a chordless cycle C; |C|¿5. If G has a
tree 3-spanner then C must have a semi-dominating tree TC of C which can be found
by virtue of Lemma 13. In the next step, we describe how to subdivide F into smaller
faces, so that the dynamic programming algorithm from the preceding section can be
applied.
For every vertex u ∈ V (TC) and a u-subdivision of C, say, D1; P1; : : : ; Dr; Pr , we

insert a set E′(u) as follows. For any i, insert the edge (dti ; d
h
i+1) – shown by broken

lines in Fig. 9. This yields a face F(u) that is dominated by u. This face is triangulated
by further new edges. Clearly, this procedure is polynomial.
The desired properties for the edge set E′(C)=

⋃
u∈V (TC) E

′(u) are formulated in the
two following lemmas.

Lemma 15. The graph (V; E ∪ E′(C)) is planar and emerges from G by subdividing
the face F into faces with boundary length at most 4.

Proof. We show that for any edge (u; w) ∈ TC , the following properties hold:
• If D1; P1; : : : ; Dr; Pr is a u-subdivision, and Dw1 ; Pw1 ; : : : ; Dwl ; Pwl is a w-sub-division,
then there is an integer i ∈ {1; : : : ; r} such that Dw1 ; Pw1 ; : : : ; Dwl are subpaths of P1i =
(dti ; Pi; d

h
i+1), assuming we choose the numbering of D

w
1 ; P

w
1 ; : : : ; D

w
l ; P

w
l appropriately.
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Fig. 13. “Shortness” of paths replacing inserted edges.

• Moreover, the edges of E′(C) connecting the �rst vertex of Dw1 with the last vertex
of Dwl and the �rst vertex of D

u
i+1, d

h
i+1, with the last vertex of D

u
i , d

t
i , respectively,

combined with edges of C, bound a face with at most four edges.
By de�nition, w is an independent C-neighbor of u; suppose it satis�es the conditions
for an integer i. TC is minimal with respect to condition 1 of Lemma 11, as has been
shown in Lemma 14, i.e., u cannot be deleted without losing this property. Therefore,
w does not weakly dominate P2i = (Di+1; Pi+1; : : : ; Pi−1; Di), in other words, this path
contains Pwl if we choose an appropriate numbering. On the other hand, w is not
adjacent to any inner vertex of P2i , since G is planar. This implies the �rst property.
Since w is an independent C-neighbor of u with respect to i, i.e., condition (2) of

the de�nition of C-neighbors holds, the second property applies as well.
Now the lemma follows easily by induction (cf. Fig. 9).

Lemma 16. For any tree 3-spanner T of G and every edge (v; w) ∈ E′(C); we have
dT (v; w)68.

Proof. Recall that TC is a subtree of T̃ C as de�ned in the proof of Lemma 11 and
that every vertex of C lies on one of the paths pT (vj; vj+1), (vj; vj+1) ∈ C − T . For
(v; w) ∈ E′(C), there is a vertex u ∈ V (TC) with (v; w) ∈ E′(u). If we can show that v
is connected to u by a path with at most four edges, the lemma follows by symmetry.
Since there is a path pT (vj; vj+1), (vj; vj+1) ∈ C−T that contains v, there is a vertex

ũ of T̃ C with dT (v; ũ)62 (see Fig. 8).
In the following we only need to consider the case where v is adjacent to ũ: if there

is a second edge, we can contract it. Now consider the (u; ũ)-path of T . Suppose there
are at least three edges in this path. Each of these edges belongs to two paths of the
form shown in the center of Fig. 8, i.e., at least six edges of E(C)\E(T ) are involved.
Contract the subpaths of C between these edges and delete all vertices of T̃ C not

on the (u; ũ)-path of T . Applying planarity of G, we conclude that the resulting graph
must contain the graph shown in Fig. 13. It follows from planarity that we cannot have
started with a graph where v is adjacent to both u and ũ. Since this is a contradiction,
we conclude that the (u; ũ)-path of T has at most two edges, and we are done.
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After inserting the edge sets E′(C), we can apply the algorithm of the previous
section to compute a tree 3-spanner. This yields a polynomial algorithm:

Theorem 17. We can decide in polynomial time whether a planar unweighted graph
G has a tree 3-spanner.

Proof. In a �rst step, we subdivide any face into chordless faces by adding a copy of
any of its chords. Next, for every face that is bounded by a chordless cycle C with
more than four edges as described above, we insert the edge set E′(C). Note that in
the process of introducing new edges, we may create multi-edges. The resulting graph
is called G64.
As was shown in Lemma 15, the polynomial algorithm for determining the exis-

tence of a tree (3; 8)-spanner of the preceding section can be applied. Since every tree
(3; 8)-spanner of G64 is a tree 3-spanner of G, Lemma 16 implies that the algorithm
�nds a tree 3-spanner of G whenever there is one.

6. Conclusion

In this paper we have shown that for planar graphs, it is possible to decide the
existence of a tree 3-spanner in polynomial time. Our method makes strong use of
planarity, yet the resulting algorithm is rather complicated. It has been conjectured
that deciding the existence of a tree 3-spanner is an NP-complete problem, and our
experience with planar graphs seems to support this belief.
On the other hand, we could prove that deciding the existence of a tree t-spanner is

NP-complete, as long as t is part of the input. The complexity for �xed t is unclear,
but there may be a polynomial method of deciding the question, possibly using a
combination of dynamic programming and an analysis of neighborhood structures, as
we did for the case t=3. Unfortunately, this analysis appears to become rather tedious
even for t = 4.
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