
1470 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-34, NO. 12, DECEMBER 1987 

Tree-Structured Complementary Filter 
Banks Using All-Pass Sections 

PHILLIP A. REGALIA, STUDENT MEMBER, IEEE, SANJIT K. MITRA, FELLOW, IEEE, 

P. P. VAIDYANATHAN, MEMBER, IEEE, MARKKU K. RENFORS, MEMBER, IEEE, 

AND YRJij NEUVO, SENIOR MEMBER, IEEE 

Abstract -Tree-structured complementary filter banks are developed 
with transfer functions that are simultaneously all-pass complementary and 
power complementary. Using a formulation based on unitary transforms 
and all-pass functions, we obtain analysis and synthesis filter banks which 
are related through a transposition operation, such that the cascade of 
analysis and synthesis filter banks achieves an all-pass function. The 
simplest structure is obtained using a Hadamard transform, which is shown 
to correspond to a binary tree structure. Tree structures can be generated 
for a variety of other unitary transforms as well. In addition, given a 
tree-structured filter bank where the number of bands is a power of two, 
simple methods are developed to generate complementary filter banks with 
an arbitrary number of channels, which retain the transpose relationship 
between analysis and synthesis bank, and allow for any combination of 
bandwidths. The structural properties of the filter banks are illustrated 
with design examples, and multirate applications are outlined. 

I. INTRODUCTION 

D ESIGN procedures for computationally efficient uni- 
form filter banks with decimated outputs have re- 

ceived considerable attention in recent years [l]-[12]. 
Commonly preferred strategies to achieve efficiency in- 
clude using polyphase techniques or tree-structured archi- 
tectures [l]. The polyphase technique is useful in multirate 
applications, as ‘it allows the computational load of the 
filter bank to be distributed among the branches, whereas 
the tree-structured architecture affords the possibility of 
using similar or identical processing techniques within 
each stage of the tree. In addition, the frequency selectivity 

‘of tree-structured filter banks can be understood as a 
cascade of stages, which affords straightforward design 
procedures. 

The technique of Quadrature Mirror Filtering (QMF), 
as introduced in [2], allows cancellation of aliasing distor- 
tion introduced by critical sampling in multirate systems 
[l]. A variety of elegant design techniques have been 
advanced to obtain filter sets which satisfy QMF condi- 
tions [3]-[ll]. In addition to removing aliasing effects 
introduced into critically sampled subbands, some of these 
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designs allow for perfect magnitude reconstruction of the 
original signal [4], [7], [28], perfect phase reconstruction [6], 
[8], [9], or both [3], [lo], [ll]. The two-band QMF system 
has been well studied, and thus it is often convenient to 
develop mutliple-band extensions from tree-structured ar- 
chitectures of two-band QMF banks. Such filters are quite 
popular in subband coding of speech [3], [4]. 

The design of filter banks in TDM-FDM systems has 
received considerable attention as well [13]-[17]. For ex- 
ample, Claasen and Mecklenbrauker [15] have shown that 
an efficient transmultiplexer realization can be achieved 
using a tree structure of two-band filter banks. In addition, 
the use of branch filtering [18] (or directional filtering) has 
proved valuable in achieving computational efficiency in 
transmultiplexer design [16], [17]. Such filtering techniques 
may be understood as the successive cascade of power- 
complementary filter structures, resulting in a power-com- 
plementary filter bank. 

However, important applications arise for filter banks 
where the individual filters are desired to have different 
bandwidths, and where decimation and interpolation of 
the signals is not desired. For example, in audiosignal 
processors [19] octave-band filters may be preferred over a 
uniform filter bank. Similarly, crossover networks for mul- 
tiple loudspeaker audiosystems typically do not coincide 
with integer-band filters. Nonetheless, the design of non- 
uniform filter banks has received sparse attention. Imple- 
mentation techniques may include cascading low-pass and 
high-pass filters, or implementing each filter separately, 
which may not be computationally efficient strategies. 

This paper considers the properties of a class of comple- 
mentary tree-structured filter banks, which can be for- 
mulated as unitary transforms operating on all-pass func- 
tions. The transfer functions of such filter banks are 
simultaneously all-pass complementary and power comple- 
mentary [20], and the structures may be configured to 
provide an arbitrary number of channels with any desired 
combination of bandwidths. A framework is presented 
whereby a synthesis filter bank is obtained systematically 
from an analysis filter bank using a transposition oper- 
ation, such that the cascade of analysis and synthesis filter 
banks achieves an all-pass function. The formulation al- 
lows the desired properties to be structurally induced. The 
application of these complementary filter banks to multi- 
rate systems is outlined as well. 
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II. NOTATIONS 

Transfer functions for the analysis filter banks are de- 
noted by {H,(z)}, while those for the synthesis filter 
banks are denoted by {G,(z)}. All-pass functions are 
denoted by { Ai( or { ai( z)}. Vectors and matrices 
appear in bold type, with superscript T denoting vector or 
matrix transpose. The tilde notation (-) denotes para- 
conjugate transposition, that is, replacing z with z-l, and 
replacing each coefficient of a transfer function with its 
complex conjugate. For a transfer vector evaluated along 
the unit circle, or for a constant matrix, the tilde notation 
reduces to the conjugate transpose. We denote by I the 
identity matrix, and by J the permutation matrix with ones 
along the anti-diagonal (from lower left corner to upper 
right comer). The dimension of a square matrix is indi- 
cated by a subscript (e.g., I2 for the 2X2 identity matrix) 
if it is not clear from the context. For convenience below, 
row and column indices for vectors and matrices * are 
numbered starting from 0 rather than 1. 

We consider a bank of N filters {Hi(z)} or {G,(z)} 
such that the following two conditions hold: 

(i) The transfer functions are all-pass complementary: 

IHo(ej”)+H1(ej”)+ 0.. +&(e’“)l=l. (1) 

(ii) The transfer functions are power complementary: 

IH,(ej”)l*+IH,(ej”)l*+ .‘a +IH,-,(ejU)12=1 (2) 

and likewise for the transfer function set { Gi( z)}. Transfer 
function sets which are simultaneously all-pass comple- 
mentary and power complementary are termed doubly 
complementq [25]. Equation (1) is important in applica- 
tions where the output signals from the analysis bank are 
to be summed directly with no additional synthesis bank 
filtering, such as in multiple loudspeaker audiosystems. 
Equation (2) guarantees that where one filter has a pass- 
band, the others have a stophand, thereby providing good 
channel separation. ’ Note that if the transfer functions 
{ H,(z)}~~l are arranged as the elements of a column 
vector h(z), then by analytic continuation (2) is equivalent 
to I;(z)h(z) =l. 

Section III reviews the development of two-band filter 
banks. Subsequent sections then generalize the results to 
multiple-band filter banks. Although the development is 
based in the discrete time domain, the results are equally 
valid in the continuous time domain upon replacing digital 
all-pass functions with analog all-pass functions [40]. 

III. TWO-BAND FILTER BANKS 

For N = 2, a solution which satisfies the constraints of 
(1) and (2) is 

IH,(ej”)+H,(ej”)12=J~~(ejW)12+I~~(e~W)12=1. 

(3) 

The left equality in (3) imposes that H,( ej”) and Hi( ej”) 
be in phase quadrature at all frequencies. (This follows by 

‘The passband for the i th filter is taken as the frequency range for 
which IH,(e’“)l -1. 
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Fig. 1. Two-band filter banks. (a) Analysis bank. (b) Synthesis bank. 

taking H,,( ej”) and iY,(ej”) as phasors in the complex 
plane and applying the law of cosines.) As a consequence, 
both [ H,( ej”) + Hi( ej”)] and [H,( ej”) - Hi( ej”)] must 
generate the same magnitude response, namely unity in 
view of (3). Thus by analytic continuation we obtain 

Kl(4 + fw = &(z) (44 

fw - 4(z) = 4(z) (4b) 

where A,(z) and A,(z) are all-pass functions. Solving for 
H,(z) and H,(z) results in 

or, in matrix form, 

/l(z) =iRa(z) 

where 

w = Pw fwl T 
and 

44 = L‘b(4 4(41 T. 
A structural interpretation appears as Fig. l(a) (where the 
“criss-cross” denotes a scaled butterfly operation). 

Note that the matrix R/a is orthogonal 

RTR = 21 (6) 
and may be considered a 2 X 2 Hadamard or DFT matrix 
[301, [411. 

Fig. l(a) represents an analysis bank. The constraints of 
(3) are easily formed into a synthesis filter bank, too. 
Letting G,(z) and G,(z) denote the transfer functions of 
the synthesis filter bank, we define 

h(4GIwl = m,w4dz)l[~ -;I (7) 
in the form 

gT(z) =+aT(z)JRT 

where 

and 
g’(z) = k%(z) G,(z)] 

+> J= [4(z) 4(z)lT 
with structural interpretation as sketched in Fig. l(b). The 
cascade of analysis and synthesis banks achieves an all-pass 
function: 

g=(z)h(z) =$zT(~)JRTRa(z) 

=$z’(z) Ju(z) = A,(z)A,(z). (8) 

From (5) and (7) it follows that G,(z) = Ho(z), and G,(z) 
= - H,(z). Thus an equivalent representation of the anal- 
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Fig. 2. Equivalent representation of two-band filter bank. 

ysis/synthesis system of Fig. 1 is that .shown in Fig. 2, 
where the overall transfer function is 

g = b%W12- [W)12 

= W,(z)+ ill wow- ffh)l 
= 4+)4(4 

in agreement with (8). 

Additional Properties 

From (5) it follows that 

arg[ H,( ej”)] - arg[ H,( ej”)] 

= w[Ao(ej“)] +wd4(@‘)1 

2 

_ ws[Ao(ejw)] -wd4(ej‘?l 

2 
= * ?r/2, for all w. 

(9) 

w-9 
This means that the two transfer functions H,(z) and 
H,(z) exhibit phase quadrature along the unit circle for 
any pair of all-pass filters A,(z) and A,(z). The same is 
also true for the synthesizer transfer functions G,(z) and 
G,(z). We enumerate a few cases: 

Case (i): A,(z) and A,(z) are real all-pass functions 
(i.e., real-valued for real z). The representation of (5) is 
then characteristic of wave lattice filters [21], [22], although 

direct z-domain design techniques have received current 
attention [23]-[25]. By using filter structures which remain 
all-pass in spite of coefficient quantization [23], [26], [27], 
the complementary properties of (3) become structurally 
induced, and a low passband sensitivity realization of 
H,(z) and H,(z) is obtained [21]-[25]. In addition, by 
choosing H,(z) and H,(z) as a symmetric half-band filter 
pair, the structures of Fig. 1 are well suited for multirate 
filtering (i.e., QMF) applications [7], [28]. We examine 
such applications in Section VII. 

Case (ii): A,(z) and A,(z) are complex all-pass func- 
tions, with A,(z) = A,*(z *). In this case, (5) can still yield 
two real doubly complementary transfer functions in a 
low-sensitivity realization. Design techniques and multirate 
applications can be found in [28]. 

Case (iii): A,(z) and A,(z) are arbitrary all-pass func- 
tions. In this case, (5) gives rise to two complex doubly 
complementary transfer functions. 

We shall primarily be concerned with case (i) above for 
simplicity, although most of the subsequent results apply 
with minor modification to cases (ii) and (iii) as well. 

IV. MULTIPLE-BANDFILTERBANKS 

The results obtained above are easily generalized to N 
transfer functions { H,(z)} or { Gi( z)} by choosing u(z) as 
an N X 1 all-pass function vector, and R as an N X N 

unitary matrix. In particular, we shall consider Hadamard 
and DFT matrices for R, although the subsequent results 
are valid for virtually any choice of unitary matrix. 

For the Hadamard matrix, higher order matrices (N x 
N) are obtained through [30]-[32]: 

R, = R,,ioR, (11) 
where @ denotes the Kronecker product of matrices, and 
R, is the 2 x 2 Hadamard matrix as given in (5). In 
practice N is limited to a power of 2. Similarly, DFT 
matrices of dimension N X N are defined by 

J.+I 
N 
= e-i(2n/N) (12) 

It is often convenient to choose N as a power of 2, 
allowing fast radix-2 FFT algorithms to implement the 
transform of (12). Both the matrices of (11) and (12) 
satisfy 

kR = NI, 03) 
where IN is the N X N identity matrix. 

By choosing the all-pass function vector a(z) = [A,,(z) 

A,(z) * * $,-1(Z)]=, we can define N transfer functions 
h(z) = [H,(z) H,(z) * . * HN-~(z)]~ according to 

h(z) = ;R,.(z). (14) 

Similarly, N synthesis filter bank transfer functions g’(z) 
= [G,(z) G,(z) * *. GNP1(z)] can be defined by 

g’(z) = ;nT(z)JliN. 05) 
The doubly-complementary relations of the N transfer 
functions {Hi(z)} in (14) are readily shown. From (14) we 
obtain 

Jb(z) = u(z). (16) 

If we denote the column vectors of R by { ci}, then (16) 
corresponds to N scalar equations of the form 

E@(z) = A,(z), i=O,l ,...) N-l. (17) 

Equation (17) identifies N distinct all-pass complementary 
summations of the transfer functions {Hi(z)}. In particu- 
lar, if 

ci= [l 1.. . l]r, for some i (18) 

then (1) is satisfied. Hadamard, DFT, and complex 
BIFORE [34] matrices, for example, all satisfy (18). The 
power complementary property along the unit circle fol- 
lows from (13): 

N-l 

c IIIi(ej”) I2 =h”(ej”)h(ej”) = -$P(ej’)@Ra(ej“‘) 
i=o 

= ~&(eja)~(@) 

(19) 
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* 
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Fig. 3. Illustrating a binary tree structure for the all-pass vector 

Similar results can be verified for the transfer functions 
{ Gi(z)} of the synthesis filter bank. 

Note from (14) and (15) that the cascade of analysis and 
synthesis filter banks yields an overah transfer function 

gT(z)h(z) = ;aT(z)Ja(z) 

which is not all pass unless each term in the summation of 
(20) is identical. Some remedies are as follows: 

(i): In (15) the all-pass function vector ar(z)J can be 
replaced with br(z) = [B,,(z) B,(z) . . . B,-,(z)], such 
that 

Bi(z) = 
lcm(Ao(z),Al(z),...,AN-l(z)) 

Ai 

where lcm( .) denotes the least common multiple of the 
arguments. This method guarantees an overall transfer 
function gr(z)h(z) = lcm(A,(z), A,(z), . . . , ANel(z)). 
However, this brute force remedy may lead to b(z) of high 
order if the elements of a(z) are relatively prime. 

(ii): To circumvent this problem, we can restrict the 
all-pass function vector a(z) to derive from a binary tree 
structure of all-pass filters, as illustrated in Fig. 3 with a 
3-stage tree. For an n-stage tree, a(z) is recognized as the 
(left) Kronecker product of n 2 x 1 all-pass function vec- 
tors: 

and thus 

+)J= b2,-,(4 a,,-&>I 

@ b2n-3(4 a,,-&>I 

8 * * - @ [aI(z) aoWl. @lb) 
With this choice of all-pass function vector, the cascade of 

analysis and synthesis banks becomes an all-pass function: 

gT(z)h(z) = $z’(z)Ja(z) 

= ~(Ia2n-1W~2,-1(4 

8 0-e @ blWao(41) 

2n-1 

= ivo ‘it’) (22) 

where we have used the algebra of Kronecker products 
[29]. In this fashion, a synthesis bank is systematically 
obtained from an analysis bank using a transposition 
operation. The motivation behind (21) is that the Kronecker 
product composition of the all-pass vector arises naturally 
from a binary tree structure of two-band filter banks, as 
illustrated next. 

Structural Interpretations 

The above discussion is applicable when the number of 
bands is a power of two, i.e., N = 2”. We shall exemplify 
structures for eight-band (N = 23) Hadamard and DFT 
analysis filter banks, since the extension to other powers- 
of-two is straightforward. The corresponding synthesis 
filter banks are obtained using a (conjugate) transposition 
operation, followed by reversing the all-pass vector. 

From the definition of Hadamard matrices in (ll), and 
the Kronecker product composition of the all-pass vector 
in (21), we obtain for an eight-band analysis filter bank: 

h(z) =+Ra(z) 
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The last step follows directly from the ‘algebra of Kronecker (21), tree-structured filter banks can be developed for a 
products [29]. The structural interpretation of (23) is shown variety of unitary transforms, all of which yield power- 
in Fig. 4, in the form of a tree structure of two-band filter complementary transfer functions due to the inherent 
banks. This is a natural consequence of the Kronecker satisfaction of (13) for unitary transforms. 
product composition of both the Hadamard matrix and 
the all-pass function vector. 

In a similar manner, by permuting the rows of an 8 x 8 
Filter Design 

DFT matrix in bit-reversed order, a sparse matrix factori- Assuming the all-pass filters are real, it is clear that 

zation can be obtained as: using the Hadamard transform (or any real unitary trans- 

0 

PR= 

[ 1 1 -1 1 1 
[ 1 1 -j .i 1 

* 1 

[ 

e-jr/4 

1 - e-in/4 I 

0 
1 e-j3r/4 

1 - e-j3v/4 I 

1 
-1 II (24) 

where P is the bit-reversed ordering permutation matrix. Equation (24) corresponds to a decimation-in-frequency - _ 
radix-2 algorithm. By combining this with (21), an equivalent representation can be obtained as 

P/z(z) = iPRa(z) 

0 

1 
=- 

8 

[: -:1[:11:;] 

1 e-~v4 a4(z) 

1 I[ I - e-jn14 as(z) 

L 0 
[ 

1 e-j3n/4 a4(z) 

1 - e-j3n/4 I[ Ii a5 (z) 

*[ I 1 1 -1 1 11 a264 a3(4 

0 

0 

(25) 

The overall structure is that of Fig. 5, which may be 
interpreted as a modified “pruned” FFT flowgraph. Note 
that if all complex multiplications are set to unity, Fig. 5 
reduces to the Hadamard filter bank of Fig. 4 (upon 
renumbering the transfer functions). 

We point out here that, for a variety of unitary trans- 
forms, sparse matrix factorizations analogous to (24) are 
available [30]-[35], in direct correspondence with fast 
transform algorithms. Thus with the Kronecker product 
(i.e., tree-structured) composition of the all-pass vector in 

form) in (14) and (15) yields N real transfer functions for 
the analysis and synthesis banks whereas using the DFT 
gives N complex transfer functions. In most applications 
this is a drawback of complex transforms, even though an 
N/2-channel real bank can be obtained from the complex 
bank by combining the complex-conjugate channels. It is 
also seen that complex arithmetic is needed for implement- 
ing the latter stages of the tree-structured DFT filter bank 
of Fig. 5. Therefore, we shall concentrate in the following 
on filter banks based on the Hadamard transform. 
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a,(z) H&) 

a(z) HA@ 

Fig. 4. Eight-band Hadamard analysis bank. 

Fig. 5. Eight-band DFT bank. 

Fig. 6. 
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eight-channel bank. If the same approach is used for 
higher N, one of the filter pairs must have N/2 transition 
bands. Notice that the ordering of the filter stages is 
completely free. Therefore, it is advantageous to order the 
filter pairs in the analysis bank according to increasing 
overall order. This means that the filter pair with highest 
overall order is realized by ao( z) and al(z) (cf. Fig. 4). 

It is well known (see, e.g., [22], ‘[25]) that classical (e.g., 
elliptic) odd-order low-pass filters are realizable as the 
parallel connection of two all-pass filters. Such designs can 
be used for the low-pass/high-pass filter pairs in the tree 
structure. A bandpass/bandstop filter pair can be ob- 
tained through a low-pass-to-bandpass transformation of a 
low-pass prototype. However, the multiband specifications 
needed in the eight-channel bank of Fig. 6 are more 
difficult to satisfy. For example, the multiband magnitude 
response corresponding to $aO(z)k al(z)] can be ob- 
tained by applying a low-pass-to-bandpass transformation 
to a bandpass/bandstop filter pair. In this case though, 
there is control of the locations of all the transition bands 
but the transition bandwidths cannot be controlled inde- 
pendently. 

For filter banks with N > 8, the design of filter pairs 
providing the required multiband amplitude responses be- 
comes very difficult. For example, the repeated application 
of low-pass-to-bandpass transformations does not provide 
independent control on the locations of all the transition 
bands. In the following we develop alternative filter bank 
structures with an arbitrary number of channels. Using 
these techniques, it is possible to realize doubly comple- 
mentary filter banks using only low-pass designs for the 
filter pairs of each stage. 

V. FILTERBANKSWITHANARBITRARYNUMBER 
OFBANDS 

The previous section has developed tree-structured filter 
,banks for which the number of bands is a power of two, 
i.e., N = 2”, for some integer n. The temptation now is to 
extend the formulation to an arbitrary number of bands. 
One approach to obtaining an arbitrary number of bands 
is to combine an appropriate number of outputs (inputs) 
of a 2”-band doubly-complementary analysis (synthesis) 
filter bank. For example, a three-band filter bank can be 

Characteristic amplitude responses for the complementary filter 
pairs of an eight channel Hadamard bank. realized by combining two bands of a four-band filter 

bank. More generally, the process of generating a filter 
bank with M( -C 2”) new transfer functions {H{(z)} or 

Let us consider tree-structured Hadamard filter banks of 
the type of Fig. 4. The channel frequency responses of the 
overall filter bank can be expressed in terms of the 
frequency responses of the complementary filter pairs of 
the form ~[u~~-~(z)+u~~-~(z)] appearing at each stage. 
Each filter pair shapes some of the transition bands of the 
overall bank. If the N = 2” channels of the overall bank are 
designed to have distinct passbands, the N - 1 distinct 
transition bands must be shaped by the n filter pairs. It is 
then clear that, for N > 2, some of these filter pairs must 
be multiband designs. One possible set of amplitude re- 
sponses for the filter pairs &e sketched in Fig. 6 for an 

{ G;(z)} by appropriately combining N = 2” transfer func- 
tions { Hi(z)} or {G,(z)} suggests the matrix equation 

h’(z) = z%(z) = iTRu(z) (264 

for the analysis bank, and 

g’T(z) =g’(z)f= ;uT(z)Jii (26b) 
for the synthesis bank, for some M x N matrix T, as 
sketched in Fig. 7. In (26) we have ‘assumed that the 
synthesis bank and analysis bank retain a transpose rela- 
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-h’(z)- ---g’T(z) - 

Fig. 7. Generating a filter bank with fewer than N bands. 

tionship, which will be justified in the discussion that 
folIows. 

The transfer functions {Hi(z)} can always be grouped 
such that the all-pass complementary relation of (1) is 
obeyed among the new transfer functions {H;(z)}. Hence, 
we investigate under what conditions the power comple- 
mentary relation of (2) is satisfied among the {H;(z)}. 
Using (26a), the sum of magnitude squares of the {H{(z)} 
becomes 

M-l 

c (H,‘(ej”)l*=~‘(ejw)h/(ejw) 

i=O 

=-&(e")~iTR~(P). (27) 

Let 

~T=I+Q (28) 

where I is the N x N identity matrix. Then (27) becomes 

M-l 
c IH;(eq*= &(e’“)aIRe(e’“) 

i=O 

+ -$i(d“)~QRu(e~“), (29a) 

i.e., 

M-l 

c 1H/(ejw)12=1+ ~i(ej”)Qh(dw). (29b) 
i=O 

This becomes unity if and only if ,i(z)Qh(z) =O. For 
specific values of the Q matrix, this can be accomplished 
by imposing appropriate conditions on the components 
Hi(z) of the vector h(z). For example, let M = N - 1, and 
let T in (26) be (N - 1) X N of the form 

rl 0 . . . 0 01 

T-‘l. I. 
0 0 - . :I 

1 0 0 ..: 1 ; 1 
which corresponds to 

Hi’(z) = 
H,(Z), i=O,l,..., N-3 

HNpz(z)+ H,-,(z), i= N-2 

The N X N matrix Q is now 
(31) 

(32) 

where (29b) yields 

M-l 

;ICo IfVW”) I* =l+ ~~%2(4%-1b) 

+ ~~-,(z>H,-,(z)]],_,y. (33) 

If HNsl(z) and HNe2(z) are restricted to be such that 

E7,_,(z)H,_,(z)+Ei,_,(z)H,-,(z)=O (34) 

then the set of it4 transfer functions {H;(z)} indeed 
satisfies the power-complemen$ry property. Equation (34) 
states that the numerator of HNdI(z)HNe2(z) must be a 
conjugate antisymmetric polynomial, or equivalently, that 
H,-,(ej”) and H,-*(e-j”) be in phase quadrature for 
all w. 

It can be easily seen from these discussions that, given 
N transfer functions {Hi(z)} satisfying the doubly com- 
plementary property, it is possible to obtain M ( < N) 
transfer functions {H;(z)} which again satisfy the doubly 
complementary property, simply by constraining ap- 
propriate pairs in h(z) to be in phase quadrature and 
adding such pairs. 

This procedure naturally brings about the following 
question: How severe is the phase-quadrature restriction, 
from the viewpoint of realizing practically useful transfer 
functions? It will be recalled from Section III that the 
two-band filter banks of (5) and (7) yield transfer func- 
tions which exhibit phase quadrature along the unit circle, 
independent of the choice of the all-pass filters. Thus given 
a tree-structure of such two-band filter banks, one can 
systematically identify transfer function pairs in phase 
quadrature. To complete the question, we note that two 
IIR transfer functions (with the same denominator) exhibit 
phase quadrature along the unit circle if their numerators 
are linear phase with the same center of (anti)symmetry 
and of opposite parity (i.e., one a symmetric polynomial, 
the other antisymmetric). This by itself imposes only mild 
restrictions on the realizable magnitude responses (e.g., an 
antisymmetric polynomial must have a zero at z = 1 [4], 

v41). 
An alternate viewpoint can establish matrix properties 

of T such that the power complementary property of 
h’(z) or g’(z), as well as the all-pass property of 
g’T(z)h’(z), remain intact (cf. Fig. 7). We state these 
results in the following lemmas. 

Lemma I: With h’(z) = Th(z) as per (26a), let fT = I 
+ Q. Define S 2 #QR in (29a). If S is jointly symmetric 
and centro-skew-symmetric (i.e., symmetric along the 
main diagonal and skew-symmetric along the antidiago- 
nal), then the elements of h’(z) are power complementary, 
i.e., h’(z)h’(z) -1. 

The proof is in the Appendix. We remark here that the 
joint symmetric and centro-skew-symmetric property im- 
plies that 

JSJ= -s (35) 

or, since J2 = I, then equivalently JS = - SJ. The proper- 
ties of such matrices are quite analogous to those of 
doubly symmetric matrices [36], [37]. 
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Fig. 8. Four-band Hadamard filter bank for Example 1. 

Lemma 2: With T satisfying the constraints of Lemma 
1, g’r(z)/r’(z) is a scalar all-pass function if gr(z)h(z) is. 

Proof: From (26) we have 

g’T(z)h’(z) = $~~(z)Jfi~TRa(z). (36) 

Substituting fT = I + Q and applying the result of (22), 
we have 

2n-1 

g’yz)h’(z) = ivo a,(z)+ $z’(z)Jsu(z). (37) 

We now show a’(z) JSu (z) = 0. To see this, note that 

[JS]~=SJ= - JS (38) 

that is, JS is skew-symmetric. As such, by invoking a 
standard result for skew-symmetric matrices, u’(z) 
*J&z(z) = 0, and the lemma is proved. 

From the above two lemmas, it is clear that, given a 
doubly complementary analysis/synthesis filter bank pair, 
one can modify both analysis and synthesis banks to 
obtain new doubly complementary filter banks, such that 
the transfer function of the cascade remains invariant. 

VI. ILLUSTRATIVE EXAMPLES 

This section illustrates the above concepts from a struc- 
tural viewpoint. We include some simple design examples 
to enumerate the different possibilities available within the 
same structural framework. 

Example 1 

By extending Fig. 1 into a tree structure, a four-band 
filter bank shown in Fig. 8 is obtained. Following analysis 
similar to Section IV, the transfer functions for the analy- 
sis bank are found to be 

or, writing out explicitly, 

W) 
We thus obtain a four-band doubly complementary 
Hadamard filter bank. Similar results apply to the four 
transfer functions { Gi( z)} of the corresponding synthesis 
filter bank, where G,(z) = H,,(z), G,(z) = - H,(z), G*(z) 

Fig. 9. Resulting three-band filter bank obtained from that of Fig. 7 by 
“collapsing” one butterfly connection. 

Next, we combine two outputs (inputs) of the analysis 
(synthesis) filter bank to obtain a three-band filter bank. 
To maintain the power complementary relation in the 
three-band filter bank, we must combine transfer functions 
which exhibit phase quadrature along the unit circle. Let 

Hi(z) = Ho(z), H,‘(z) = H,(z), Hi(z) = H,(z)+ &(z) 
for the analysis bank. Then 

H,‘(z) 
H,‘(z) 
H;(z) I[ =o 0 1 0 0 10 0 1 0 0 1 1 

Ho(z) 
H,(z) 
H2(4 1 (404 H,(z) 

in the form 

h’(z) = z%(z). w-4 
Note that 

7 
2 H,‘(z) = t Hi(z) =a,(z)a,(z) (41) 

i=O i=O 

that is, the all-pass complementary property is left intact. 
The power complementary property follows by noting that 
H2(z) and H,(z) are the outputs of a two-band filter bank 
in the second stage of the tree, and thus exhibit phase 
quadrature for z = e . j* Fig. 9 shows the resulting three- 
band analysis and synthesis filter banks, which effectively 
is obtained from that of Fig. 8 by “collapsing” one of the 
two-point butterflies in the second stage of the tree struc- 
ture. From Fig. 9 it is easily verified that the overall 
transfer function from analysis bank input to synthesis 
bank output is 

(42) 

just as for the four-band structure of Fig. 8. Note that 
these results can also be verified from the lemmas of the 
previous section, although for this example greater intui- 
tion is gained from inspection of the structure. 

An alternate interpretation of Fig. 9 begins with a 
two-band filter as in Fig. 1. One output of the analysis 
bank is split into two bands, while the other output passes 
through an all-pass filter. Note that this interpretation is 
precisely that which leads to “compensation” paths as 
introduced in other works [3], [5], [7] on non-power-of-two 
tree-structured filter banks. By applying this idea again to 
the three-band structure of Fig. 9, we obtain additional 
four-band doubly complementary filter banks in Fig. 10. 
Clearly, the pattern may be continued to obtain an arbi- 
trary number of bands. We point out that, as three pairs of 
all-pass filters are present in Fig. 10, either structure may 
be obtained from a 8x8 Hadamard filter bank through = - H2(z), and Gs(z) = H,(z). 
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@I 
Fig. 10. Alternate four-band doubly complementary filter banks. 

the appropriate combination of transfer functions. The 
relative merits of the different possibilities are briefly 
examined next. 

Example 2 

In this example we compare different design strategies 
for a three-band analysis filter bank. In particular, we 
constrain the transition frequencies between adjacent pass- 
bands to lie at 0.271 and 0.77r, with 40-dB minimum 
stopband attenuation in each band. Upon choosing the 
structure of Fig. 9, two design strategies present them- 
selves: 

(i) Choose a,(z) and al(z) such that their sum and 
difference form a bandpass/bandstop complementary filter 
pair with half-power frequencies for either response (i.e., 
transition frequencies) at 0.27r and 0.77r. The bandstop 
output is then split into low-pass and high-pass outputs by 
choosing u2(z) and a3(z) such that their sum and dif- 
ference form a low-pass/high-pass complementary pair. 

(ii) Choose so(z) and al(z) to form a low-pass/high- 
pass complementary filter pair with transition frequency at 
0.27r. The high-pass output is then split into bandpass and 
high-pass outputs by choosing u2(z) and us(z) to form a 
low-pass/high-pass complementary filter ‘pair with a tran- 
sition frequency of 0.7~. 

For design (i), we choose a sixth-order bandpass filter, 
derived from a third-order elliptic low-pass prototype. The 
stopband rejection is chosen at 40 dB, and by choosing a 
passband ripple of 0.00043 dB, the complementary re- 
sponse also exhibits 40-dB stopband rejection. To split the 
bandstop output into low-pass and high-pass outputs, we 
choose u2(z) and u3(z) such that their sum and difference 
form a fifth-order elliptic low-pass/high-pass complemen- 
tary pair, with 40-dB stopband attenuation for either re- 
sponse. The choice of fifth order is to ensure adequate 
separation of the two passbands of the bandstop transfer 
function from the first stage of the tree. To obtain the best 
separation of these passbands, the transition band for the 
low-pass/high-pass pair of the second stage should be 
properly “centered” between the two passbands of the 
bandstop filter. If we let wi and o2 denote the half-power 
frequencies of the bandpass filter of the first stage, the 
half-power frequency o3 of the low-pass/high-pass pair of 

NoPnlaliZed FP*gue”.ay 

Fig. 11. Individual magnitude responses for Example 2, design (i). 

TABLE I 
POLE LOCATIONSFORDESIGN (i) 

0, = o.zn, o2 = 0.7% 

Filter Pair 

Bandpm- 
Bandstop 
P& 

Wt.% 

LowQass- 

(5 = 2 tan-’ &n(wl/2) tan(co,fZj - 0.3742~ 

DigitaJ Poles Allpass Functions 

2=0.6) -IO) 
0.2214 

-0.4380 f j 0.6090 

0.6592 f j 0.4742 dd 

0.1353 ij 0.4524 ok) 

Highpass 

pair 

9 

0.1872fj0.8106 

0.1120 a3m 

the second stage should be chosen according to 

w3 = 2tan-’ /tan(o,/2)tan(w2/2). 

The all-pass filters are easily found by matching their 
poles to those of the desired transfer functions, in accor- 
dance with the design procedures discussed in [22], for 
example. The poles of the elliptic transfer functions de- 
scribed above can be found via the program reported in 
[38], or through bilinearly transformed analog filter design 
equations (see [22] for more detail in this regard). The pole 
locations for the all-pass filters of this example are listed in 
Table I. Fig. 11 shows the magnitude responses for the 
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Fig. 12. Individual magnitude responses for design (ii) of Example 2. 

TABLE II 
POLE LOCATIONSFORDESIGN (ii) 

Filter Pair DigimlPolci AllpassFunctions 

LwQass- 

Highpass 
pair%?1 

WI 

I = 0.5852 f j 0.3223 

0.5095 

0.7298 f j 0.5204 

L4wpass- 

Highpass 

pti#Z 

Y 

-0.3849fj0.4019 

- 0.3249 

- 0.5 107 f j 0.6906 

three bands. The overall order of the analysis filter bank 
(i.e., the sum of the all-pass filter orders) is 13. 

For design (ii), a,(z) and al(z) are chosen such that 
their sum and difference form a fifth-order low- 
pass/high-pass complementary pair with 40-dB minimum 
stopband attenuation, and a transition frequency of 0.277. 
a*(z) and CZ~(Z) are similarly chosen, but with a transition 
frequency of 0.77r. The pole locations for these all-pass 
filters are listed in Table II. The individual magnitude 
responses are plotted in Fig. 12, and are seen to exhibit 
less overlap due to the sharper transition bands, yet the 
overall filter order is now only 12. Note also the more 
consistent stopband ripples compared to Fig. 11. Observe 
that the low-frequency response of H,( ej“) drops off quite 
rapidly for frequencies below 0.2m. This effect occurs 
because for w < 0.2a, H,(ej”) receives attenuation from 
both stages of the tree. The overall phase response 
arg[ H,(ej”) + H,(ej”) + H,(e@‘)] appears smoother for 
design (i) though, as seen from the group delay plot of Fig. 
13. 

Design (i) 

Design (ii) 

T 

1 
0.100 0.200 0300 0.400 0500 

NOrma)lfLed FrequenOy 

Fig. 13. Comparison of group delay responses between designs (i) 
and (ii). 

design strategies similar to design (ii) above, one can 
realize multiband filter banks using only low-pass-high- 
pass doubly complementary filter pairs. With such an 
arrangement, each transition frequency may be varied 
independently by adjusting the corresponding all-pass 
filters [39] while maintaining the doubly complementary 
relation of the filter bank transfer functions. 

VII. MULTIRATE STRUCTURES 

In this section we explore the usefulness of the filter 
banks developed in previous sections in systems where the 
analysis filter bank output signals are to be decimated, as 
such systems are quite popular, for example, in subband 
coding [l], [3], [4]. We consider the N-band filter bank 
system of Fig. 14. The output signals from the analysis 
filter bank are maximally decimated by a factor of N, 
coded and transmitted to the synthesis filter bank, where 
the signals are decoded, upsampled by a factor of N, and 
then filtered into a composite output signal R(z). 

In the absence of coding frrors, the most general expres- 
sion for the output signal X(z) is 

1 N-l N-l 

i(z) = 5 & X(zW$) c Hk(zW,-‘)Gk(z) (43) 
I-O k=O 

where W, = e-jZniN. Each term X(z W;‘), I # 0, repre- 
sents an aliased image of the input signal. Aliasing distor- 
tion is absent from the output signal z(z) if and only if 
the following set of relations holds: 

H,(z) ... 

Hl(zWil) -*a 

H,(z&“+~) . . * > 

Go(z) 
G,b) 

G,-',(Z) 

T(z) 
0 

!I:] , 
= (444 

0 

An interesting property of the structures of Figs. 9 and 
in the form 

10 (and their multiband extensions) is that, by following HN(z)g~z) = T(z)el (44b) 
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Fig. 14. N-band maximally decimated multirate system. 

where e, is the unit vector with a “1” in the first position, 
and T(z)/N is the overall transfer function of the (alias- 
free) multirate system. The matrix HN(z) is termed the 
aliasing component (AC) matrix corresponding to h(z) 
[12]. The subscript on the AC matrix will denote both the 
matrix dimension and the decimation factor of the analysis 
filter bank output signals. 

Given a set of analysis filter bank transfer functions 
{Hi(z)}, one might attempt to invert the AC matrix in 
(44) to solve for a set of synthesis filter bank transfer 
functions { Gi( z)} to obtain an alias-free multirate system. 
However, general procedures for inverting the AC matrix 
(if indeed its inverse exists) are not well established. To 
simplify the problem, let us make the nontrivial assump- 
tion that HN(z) is paraunitary: 

&(z)H,(z) =H,(z)tiN(z) =IN, for all z. (45) 

In this case, inversion of the AC matrix in (44) is particu- 
larly simple: 

g(z) = T(z)6.h)el. (46) 

However, by writing explicitly the paraconjugate transpose 
as 

I&?(z) =P*(l/z*) (47) 

then it is clear that with L(z) a stable recursive analysis 
bank transfer vector, g(z) obtained via (46) is not guaran- 
teed to be stable. 

Greater insight into stability is gained from the relation 

am,(z) 

tiN(z) =%‘tz) = detHN(z). (48) 

The term adjH,(z) causes no stability problems; it is 
division by det HN(z) which places poles outside the unit 
circle in the z-plane. Now, with HN(z) a stable parauni- 
tary matrix, one can show [lo] that det HN(z) is a stable 
all-pass function. Consider then the choice 

T(z) = NdetH,(z). (49) 

This results in 

g(z) = NadjH,(z)e, (50) 

which is a stable synthesis filter bank transfer vector if 
h(z) is stable. In particular, from (46) we have 

Gi(z) = T(z)H,*(l/z*), for all i (51) 

which, with stability established, implies 

(G,(ej”) I2 = N’(H,(ej“) 12, for all i, w (52) 

because T(z)/N is an all-pass function. In summary, we 
have the following result. r 

- 

Theorem I: Given a set of N analysis filter bank trans- 
fer functions {Hi(z)}, if the AC matrix HN(z) in (44) is 
paraunitary, then a set of stable synthesis filter bank 
transfer functions {G,(z)} satisfying (52) exists such that 
(i) aliasing distortion is absent from the output of the 
maximally decimated multirate system of Fig 14, and (ii) 
the overall transfer function is all pass. 

Corolluly 1: Let aliasing distortion and amplitude er- 
rors be absent from the maximally decimated multirate 
system of Fig. 14. If the analysis and synthesis filter bank 
transfer functions are related as per (51), where T(z)/N is 
a stable all-pass function, the AC matrix HN(z) is 
paraunitary. 

Propf: The vector counterpart of (51) is gr(z) = 
T(z)h(z). In view of the AC matrix formulation of (44), 
absence of aliasing distortion is equivalent to the following 
set of conditions: 

gT(z)h(zW;) =T(z)l;(z)h(zW,k) =O, 

k= 1,2,..., N-l. (53) 

The overall transfer function is then 

;g’(z)h(z) = ;T(z)l;(z)h (z) = all pass. (54) 

Since T( z)/N is all pass and i(z)h(z) is real-valued 
along the unit circle, then (54) implies i(z)h(z) = 1 for all 
I. Now, as (53) and (54) are required to hold for all z, they 
continue to hold if z is replaced by zWN, zW$, etc. As 
such, the constraints of (53) and (54) can be collected to 
form 

i(zw~)h(zW~) = (:I ~t~ez~se,for all z. (55) 

Equation (55) may be interpreted as an orthonormality 
relation between the row vectors of HN( z). Hence satisfac- 
tion of (55) is equivalent to paraunitariness of HN(z). 

Q.E.D. 
The significance of Theorem 1 is explored in greater 

detail in [lo] in the context of FIR filter banks having 
perfect reconstruction properties. For the present we ex- 
plore IIR filter banks. Accordingly, we assume that alias- 
ing cancellation and perfect magnitude reconstruction are 
desired; any constraints on phase reconstruction are re- 
laxed. 

Let us revisit the two-band filter banks of Section III, 
where 

With the outputs decimated by a factor of 2, the aliasing 
component matrix is 
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Fig. 15. (a) Two-band QMF bank. (b) Equivalent polyphase implemen- 
tation. 

whence 

~*wG(z) = :~2w-2(4 (58) 

where A*(z) is the AC matrix corresponding to the all-pass 
vector a(z). Consider the following choice of all-pass 
functions: 

Q(Z) = bo(z2), q(z) = z-%,(z2) (59) 

where b,( .) and b,(a) are all-pass functions. In effect, 
as(z) and al(z) are even and odd functions of z, respec- 
tively, so that H,(z) = H,( - z). This results in 

A2(Z)ki2(Z) = 21, (60) 

(W 
Fig. 16. (a) Tree-structured QMLkas (b) Equivalent four-band QMF 

function is all pass. By moving all the decimators (resp. 
interpolators) to the output (input) of the analysis (synthe- 
sis) filter bank, the equivalent system of Fig. 16(b) is 
obtained. By extending the pattern to an n-stage tree, an 
equivalent 2”-band analysis filter bank obeys the formula- 
tion 

which, when substituted into (58), reveals that H2(z) is 
paraunitary. We then have for the synthesis filter bank 

g(z) = 2adjH,(z)e,= 2 
[ -Hl;:y=2[ -fk!~~)] 

(61) 

and for the overall transfer function 

y = detH,(z)‘= z-%i(z2)b2(z2) = ul(z)u2(z). 

where we have allowed the possibility that different stages 
of the tree may use different all-pass function pairs. Some 
properties will be discussed for such tree structures, using 

(62) 

the four-band structure of Fig. 16 to illustrate the con- 
cepts. In particular, let a(z) and u’(z) Jdenote the all-pass 

The results of (61) and (62) agree with those obtained in function vectors for the analysis and synthesis filter banks, 

Section III, save for a scale factor of 2 introduced into the respectively. These vectors satisfy 

synthesis bank transfer functions to offset the loss in signal 
energy caused by the decimation operation. The choice of u’(z) J= &i(z) (649 

all-pass functions in (59) is known to produce symmetric 
half-band filters in the analysis and synthesis filter banks, 

tith 

and the application of such filters to multirate systems has 
been observed previously [4], [7], [28]. The structural reali- 

;qz) = z2”-1 
n-l 

i~~b2i(z2’)b2i+l(z2’~~ (64b) 

zation appears as in Fig. 15(a) which, through appropriate 
exploitation of multirate identities [l], leads to the poly- This follows since, for any all-pass function u(z): 

phase structure of Fig. 15(b). Observe that the back-to-back 1 
cascade of the two butterfly operations is a transparent H(z) = - 

44. 
connection (save for a scale factor error for l/2). In effect, 
the aliasing cancellation and perfect magnitude reconstruc- Hence, (64) states that the i th all-pass function for the 

tion properties are tied to the structure of the all-pass synthesis bank is obtained from T(z)/N by dividing out 

vector a(z), and not to R,. the i th analysis bank all-pass function, which is evident 

Consider now the (four-band) tree structure extension of from the tree construction of the all-pass vector in both 

Fig. 16(a). The cascade of R and R is a transparent analysis and synthesis filter banks. *Finally, with h(z) = 

connection, and by successive application of the two-band (l/N)R,a(z) and g’(z) = u’(z) JR,, (64) is equivalent 

QMF result, it can be verified that the multirate system is to 

free from aliasing effects, and that the overall transfer gT(z) =T(z)h(z) (65) 
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Fig. 17. Hybrid polyphase tree-structured QMF bank. 

b,(z) 

Fig. 18. Equivalent structure to Fig. 17 for a Hadamard QMF bank. 

which is the vector counterpart of (51). Since T(z)/N is 
an all-pass function, the analysis filter bank h(z) of (63) 
has a paraunitary AC matrix by Corollary 1. 

Having established the aliasing cancellation and perfect 
magnitude reconstruction results above, let us examine 
some familiar examples in the present context. We begin 
with a four-band filter bank: 

h(z) = iRa(z) 

where 

Following (59), let us choose for the all-pass functions 

q)(z) = u2(z) = b,(z2), UJZ) = q(z) = z-lb,(z2). 

(68) 

The resulting four-band filter bank is that of Fig. 16(b). By 
distributing the decimators and interpolators into the anal- 
ysis and synthesis banks, the hybrid polyphase tree strut-’ 
ture of Fig. 17 is obtained. If the matrix R is a Hadamard 
matrix, then the equivalent polyphase realization of Fig. 18 
is obtained, although similar structures can be obtained for 
R chosen as some other unitary matrix. In particular, 
consider choosing R as a column permuted Haar matrix: 2 

1 

R= ; 

I 

1 1 1 

0' 
-1 

-la . 
oa 0 -O& I 

with u(z) as per (67), the structural interpretation of Fig. 
19(a) can be obtained. Note that the magnitude filtering 
functions in the lowest two branches are identical. As such, 
we expect some simplifications may be possible. Using 
multirate signal flowgraph manipulation, the path from 
node wi to node w2 can be redrawn as Fig. 19(b), which in 

‘Such matrices are also termed Modified Walsh Hadamard Transform 
(MWHT) matrices [30]. 

turn is equivalent to Fig. 19(c). By inserting Fig. 19(c) into 
Fig. 19(a), the maximally decimated octave-band filter 
bank of Fig. 19(d) results. In a similar fashion, by choosing 
R as an 2” X 2” Haar or MWHT matrix, structural re- 
arrangement of the filter bank system can result in an 
(n + l)-band maximally decimated octave-band filter bank. 

VIII. CONCLUDING &MARKS 

This paper has considered the properties of a class of 
doubly complementary filter banks, with the structures 
subjected to two constraints. First, the analysis and synthe- 
sis banks are related through a transposition operation, 
and second, the cascade of analysis and synthesis filter 
banks achieves an all-pass function. We have demon- 
strated how these constraints lead naturally to tree-struc- 
tured filter banks. The two-band filter banks of Section III 
form useful building blocks in all structures, and we have 
shown how various tree-structured extensions may be in- 
terpreted as Hadamard, Haar, and DFT filter banks. Al- 
though tree structures of two-band filter banks result in 
power-of-two structures, simple techniques have been de- 
veloped to realize doubly complementary filter banks with 
an arbitrary number of channels. One attractive feature 
offered is that any desired frequency selectivity may be 
obtained using only lowpass designs in each stage of the 
tree. Thus filter banks with independent adjustment of the 
transition frequencies between adjacent bands become 
possible, using tunable filter building blocks [39]. 

The difficulties in filter design for the direct binary tree 
structure can be overcome by using low-pass/ 
high-pass (or bandstop/bandstop) filter pairs. We have 
seen already that in the three-channel case, there are many 
alternatives for designing the filter pairs appearing in the 
tree structure. The comparison of these alternatives, as well 
as the design of doubly complementary filter pairs with a 
prescribed type of multiband response, is a topic for future 
research. It should be noted that, in the case of maximally 
decimated uniform filter banks using the Hadamard-type 
tree structure, the required multiband responses appear 
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Fig. 19. Showing development of octave-band filter band. 

naturally due to the periodicity of the amplitude responses 
of the decimated filter stages. Therefore, the filter design 
for these maximally decimated banks can be accomplished 
very simply by using, e.g., elliptic half-band low-pass/ 
high-pass transfer functions. 

APPENDIX 

PROOF OF LEMMA 1 

From (33a), we need to show that if the N x N matrix 
S k l?QR is centro-skew-symmetric (i.e., skew-symmet- 
ric along the anti-diagonal), then 

i(z)Su(z) = 0. (Al) 

Let si, j denote the i, jth element of S. Centro-skew-sym- 
metry then implies that si, j = - sN- iPj, N- 1 -i. Thus by 
denoting 

u(z) = [&tz) A,(z) - - 4+,(~)]~ 642) 

the scalar function of (Al) may be written as 
N-l N-l-i 

a(Z)sU(Z) = C C si,j[K,(Z)Aj(Z) 

i=O j=O 

-~N-l&j(Z)AN-l-i(Z)]. (A3) 

We note the following observations: 
(1) N is a power of two, so let N = 2”. 
(2) The all-pass function vector u(z) derives from a 

binary tree structure (cf. Fig. 3), or equivalently from the 
Kronecker product formulation of (21) (repeated here for 
convenience): 

644) 

Thus each element A,(z) is the product of n all-pass 
functions a,(z). 

From observation (1) above, we may assign to each 
index i an n-bit binary word. Note that the binary word 
corresponding to N - l- i is obtained from that for i by 
inverting each bit (i.e., using a ones’ complement oper- 
ation). Let us introduce the following notation: 

[i] = binary word representation of i 

[il= binary word representation of N - 1 -; i 
= ones’ complement of [i] 

From observation (2), we identify a one-to-one corre- 
spondence between the bits in the index [i] of At,](z) and 
its all-pass factors {u,(z)} in (A2) and (A4). In particular, 
if the lth bit of [i] (counting from the right) is a zero, then 
A[,l(z) contains a factor u2,-z(z). Similarly, if the Zth bit 
is a one, the corresponding factor is u2,-i(z). We may 
then rewrite the factor in (A3) as 

Now, any bits that [i] and [ j] have in common represent a 
cancellable factor. For example, if both [i] and [j] have 
the Ith bit as a one, then ALil(z)Atjl(z) has a factor of the 
form 

52,~l(Zb21-1(z) =I* (‘w 

Similarly, ~~;I(z)A,-{z) has a factor a”2,-2(z)~2,-2(z) =l. 

We thus observe: Any bits that [i] does not have in 

common with [j], it must have in common with [ 71,’ and 
likewise with [j] and [i]. After such, after removing fac- 
tors of unity as in (A6) from both terms in (A5), we are left 
with an exact cancellation of remaining terms. Since (A3) 
is a weighted sum of terms as in (A5), then (Al) holds, 
which verifies the lemma. 
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