
Tree-structured Data Regeneration with Network
Coding in Distributed Storage Systems

Jun Li, Shuang Yang, Xin Wang, Xiangyang Xue
School of Computer Science
Fudan University, China

{0572222, 06300720227, xinw, xyxue}@fudan.edu.cn

Baochun Li
Department of Electrical and Computer Engineering

University of Toronto, Canada
bli@eecg.toronto.edu

Abstract—Distributed storage systems, built on peer-to-peer
networks, can provide large-scale data storage and high data
reliability by redundant schemes, such as replica, erasure codes
and linear network coding. Redundant data may get lost due to
the instability of distributed systems, such as permanent node
departures, hardware failures, and accidental deletions. In order
to maintain data availability, it is necessary to regenerate new
redundant data in another node, referred to as a newcomer.
Regeneration is expected to be finished as soon as possible,
because the regeneration time can influence the data reliability
and availability of distributed storage systems. It has been ac-
knowledged that linear network coding can regenerate redundant
data with less network traffic than replica and erasure codes.
However, previous regeneration schemes are all star-structured
regeneration schemes, in which data are transferred directly from
existing storage nodes, referred to as providers, to the newcomer,
so the regeneration time is always limited by the path with the
narrowest bandwidth between newcomer and provider, due to
bandwidth heterogeneity.
In this paper, we exploit the bandwidth between providers

and propose a tree-structured regeneration scheme using linear
network coding. In our scheme, data can be transferred from
providers to the newcomer through a regeneration tree, defined
as a spanning tree covering the newcomer and all the providers.
In a regeneration tree, a provider can receive data from other
providers, then encode the received data with the data this
provider stores, and finally send the encoded data to another
provider or to the newcomer. We prove that a maximum spanning
tree is an optimal regeneration tree and analyze its performance.
In a trace-based simulation, the results show the tree-structured
scheme can reduce the regeneration time by 75%-82% and
improve data availability by 73%-124%.
Index Terms—Distributed Storage System, Linear Network

Coding, Maximum Spanning Tree.

I. INTRODUCTION

Distributed storage systems store data in a large number
of storage nodes, either in the context of data centers in
cloud computing systems, or in the context of peer-assisted
online storage systems e.g., [1]. Due to the inherent lack of
reliability caused by node departures and hardware failures,
data may become temporarily or permanently unavailable in
such systems. Concerns about Quality of Service (QoS) in
storage systems hinge upon two aspects: the reliability and
availability of data. Data are reliable when data saved in the
distributed storage system are sufficient to recover the original
data. Data are available when there are enough active nodes in
the distributed storage system so that the original data can be

recovered at once. In order to provide high data reliability and
availability, distributed storage systems usually use redundant
data. The forms of redundant data include replica, erasure
codes and linear network coding.
Redundant data can provide higher availability because

there can be more active storage nodes for data recovery, when
there may be nodes temporarily unavailable. However, when
data are lost permanently in the distributed storage system, the
number of storage nodes will decrease gradually. Therefore
it is necessary to regenerate new redundant data to maintain
data availability. Regeneration is the process that a node in the
distributed storage system, referred to as a newcomer, receives
data from active storage nodes, referred to as providers, and
finally becomes a new storage node, so that the lost redundant
data are regenerated.
To ensure data reliability and availability, we expect the

regenerate time to be as little as possible. The less time
regeneration costs, the more redundant data can be preserved
in the distributed storage system with data loss. The newcomer
or the provider may also leave the system even during the
regeneration process, so less regeneration time can result in
higher probability that the regeneration is finished before any
node (newcomer or provider) leaves the system. The simplest
way to reduce the regeneration time is to reduce the network
traffic in the regeneration. Dimakis et al. [2] showed that linear
network coding can incur less regeneration traffic and the
corresponding encoding scheme is given in [3].
To our knowledge, previous regeneration schemes mainly

focused on how to generate redundant data to reduce the
regeneration traffic, but the bandwidth capacity between nodes
has not been taken into account. In this paper, we propose
a tree-structured regeneration scheme based on linear net-
work coding from the perspective of bandwidth capacity.
Conventional regeneration is a star-structured scheme, i.e. the
newcomer downloads data directly from providers. Thus the
regeneration time is limited by the path between the newcomer
and the provider with the narrowest bandwidth, if the network
of the storage system suffers from bandwidth heterogeneity. In
our tree-structured scheme, we define a regeneration tree as a
spanning tree covering the newcomer and all the providers.
In the regeneration tree, the child node sends data to its
parent node, and the parent node encodes the received data
with the data it stores and then sends the encoded data to its

parent node. If the transmission is pipelined, the bandwidth
bottleneck is the edge with the narrowest bandwidth in the tree.
We prove a maximum spanning tree is an optimal regeneration
tree.
In this paper, we present the tree-structured regeneration

scheme and analyze its performance mathematically. We first
show how the tree-structured scheme regenerates redundant
data at the newcomer. Then we prove a maximum spanning
tree is an optimal regeneration tree. By analysis based on
probability theory and order statistics, we show our scheme
can reduce the regeneration time by improving the transmis-
sion rate, and can improve the adaptability to the bandwidth
heterogeneity, while not increasing the regeneration traffic. We
evaluate our scheme by a trace-based simulation. The simula-
tion results show that our scheme can reduce regeneration time
by 75%-82% and improve data availability by 73%-124%.
The remainder of the paper is organized as follows. In

Section II we introduce the related work. We introduce some
basic concepts of distributed storage systems using linear
network coding and present the network model in Section III.
In Section IV, we present the tree-structured regeneration
scheme and analyze its performance. We show the simulation
results in Section V. Finally, Section VI concludes this paper.

II. RELATED WORK

Many papers discussed how to improve data reliability from
the perspective of redundant data. The forms of redundant data
include replica, erasure codes and linear network coding. Some
distributed storage systems use replica, such as BitVault [4].
In OceanStore [1], however, the original data are encoded at
the source node by erasure codes. Lin et al. [5] investigated
and compared some decentralized replication algorithms for
improving file availability in P2P network. Compared with
replica, erasure codes provide higher data availability, because
in the storage systems using (n, k)−erasure codes, any k nodes
of n storage nodes are sufficient to recover the original data.
However, erasure codes incur more storage space at the source
node than replica, when disseminating the encoded data [6].
What’s more, Rodrigues et al. [7] pointed out that in some
cases, the benefits from erasure codes might not be worth its
disadvantages.
Ahlswede et al. [8] introduced the idea of network coding

that the intermediate nodes can encode the data they have
received and send out the encoded data. It has been proved
that network coding can utilize the network resource optimally.
Yang et al. [9] presented a file sharing scheme based on
network coding, which used the combination network as the
network topology. Taking (n, k)−linear network coding for
example, the data are divided into k blocks, Fi, i = 1, 2, . . . , k
and n encoded blocks, B1, B2, . . . , Bn, n > k, are generated
as linear combinations of F1, F2, . . . , Fk on Galois Field Fq,

where q is the size of the Galois Field. Bj =
kP
i=1

αjiFi,

αji ∈ Fq, where (αj1, αj2, . . . , αjk)T is a coefficient vector,
j = 1, 2, . . . , k. When a node wishes to access the original
data, it has to receive m encoded blocks, m ≥ k. Then

decoding becomes solving a linear system with k unknowns
andm equations. Them encoded blocks can be decoded if and
only if the linear system is solvable, i.e. k of the m coefficient
vectors are linear independent. Random linear coding [10]
is a form of linear network coding, which encodes data
at the intermediate node linearly using randomly generated
coefficient vector. If all the coefficient vectors are randomly
generated, more than k encoded blocks may be required to
decode. However, when q is large enough, any k encoded
blocks are sufficient to decode with high probability [11].
Accendanski et al. [6] compared the performance of different
forms of redundant data, including replica, erasure codes and
random linear coding. They showed random linear coding
provided data availability no worse than erasure codes, but
saved storage cost at the source node when disseminating data
into the network.
For different forms of redundant data, the regeneration

mechanisms are different. For replica, the newcomer only
needs to download one replica from one active storage node.
Chun et al. [12] proposed a Carbonite replication algorithm
to schedule the regeneration of new replica. For erasure codes
and linear network coding, every bit of new data is encoded
from the data stored in the providers, so it will incur more
network traffic than replica. The simplest way is to recover
the original data from providers and encode the original data
into a new block. Duminuco et al. [13] proposed a new
class of erasure codes, aiming to achieve the tradeoff between
regeneration traffic and data reliability. Dimakis et al. showed
that linear network coding can reduce the network traffic
in the regeneration than erasure codes [2]. They proposed
Regeneration Codes, a new form of linear network coding,
which achieved the optimal tradeoff between storage cost
and network traffic. Wu et al. [3] showed further analysis
of the relation between storage cost and network traffic, and
presented a construction method of Regeneration Codes.
Previous works mainly considered the form of redundant

data and tried to reduce the regeneration traffic, but did not
take the bandwidth capacity between two nodes into account.
Lee et al. [14] proposed a bandwidth-aware routing scheme
in overlay networks, which measured bandwidth capacity
between hosts in the overlay networks and selected the best
paths so as to bypass the problematic path in the networks. In
this paper, we will consider the bandwidth heterogeneity and
propose a tree-structured regeneration scheme to reduce the
regeneration time and hence to improve data availability. The
primary part of our work can be found in [15].

III. PRELIMINARIES
A. Node and Redundant Data
A distributed storage system provides its service based on a

distributed network containing a large number of nodes, which
may play different roles in the system. A source node is a node
which sends data into other nodes, and a storage node is a node
which stores data for source nodes. In some distributed storage
systems, one node may function as a source node as well as a
storage node at the same time. When a source node wishes to

save data into the storage system, it generates redundant data
and sends them to one or more storage nodes. For replica, the
storage node stores one replica of the original file. For erasure
codes, the original file is divided into a number of blocks.
Redundant blocks are generated at the source node by erasure
codes, such as Reed-Solomon codes and fountain codes. Each
storage node stores one redundant block.
In a distributed storage system using linear network cod-

ing, each block saved in the distributed storage system is
generated by linear network coding. We take (n, k)−linear
network coding for example. The source node divides the
original data into k blocks, F1, F2, . . . , Fk, and encodes them
into n encoded blocks, B1, B2, . . . , Bn, which are all linear
combinations of F1, F2, . . . , Fk. The coefficient vector ofBi is
(ai1, ai2, . . . , aik)

T , aij ∈ Fq, j = 1, 2, . . . , k, i = 1, 2, . . . , n,
where q is the size of the Galois field Fq. Thus we can get⎛⎜⎝ a11 · · · a1k

...
. . .

...
an1 · · · ank

⎞⎟⎠ ·
⎛⎜⎝ F1

...
Fk

⎞⎟⎠ =

⎛⎜⎝ B1
...
Bn

⎞⎟⎠ . (1)

The coefficient vectors form an encoding matrix C,

C =

⎛⎜⎝ a11 · · · a1k
...

. . .
...

an1 · · · ank

⎞⎟⎠ . (2)

A download node is a node which wishes to access data
saved in the distributed storage system. For replica, the down-
load node needs to download data from only one storage
node. For (n, k)−erasure codes or (n, k)−linear network
coding, the download node can recover data as soon as it has
received k redundant blocks or k linear independent encoded
blocks respectively. For linear network coding, we assume the
k encoded blocks are B0

1, B
0
2, . . . ,B

0
k, {B0

1, B
0
2, . . . , B

0
k} ⊂

{B1, B2, . . . , Bn}. Let C0 be the encoding matrix formed
by the coefficient vectors of B0

1,B
0
2, . . . , B

0
k. Then decoding

becomes a linear transformation as follows:⎛⎜⎝ F1
...
Fk

⎞⎟⎠ = C 0−1

⎛⎜⎝ B0
1
...
B0
k

⎞⎟⎠ . (3)

If the coefficient vectors are randomly generated, i.e. the
system uses random linear coding, the encoding matrix C0

is non-singular with high probability when q is large enough
[11]. Conventionally q = 28, so the encoded block can be
generated byte by byte, and it is guaranteed with very high
probability that any k encoded blocks are sufficient to decode.

B. Regeneration
In distributed storage systems, redundant data can improve

data availability and provide data reliability. However, it
cannot guarantee data reliability and availability forever. Data
saved in a storage node may get lost due to accidental
deletions, hardware failures, or permanent node departures.
Therefore if data loss is detected in the storage system by a
data loss detection mechanism, such as Carbonite algorithm

proposed in [12], the distributed storage system will generate
new redundant data and save them into another node, referred
to as a newcomer.
During the regeneration, the newcomer must receive data

from one or more existing storage nodes to become a new
storage node. We define providers as storage nodes providing
data for the newcomer in the regeneration. For replica, the
newcomer needs only one provider. For erasure codes, the
newcomer must recover the original data from providers and
then encode the original data into a new redundant block.
For (n, k)−linear network coding, the newcomer also needs
to receive data from at least k providers. However, the
newcomer can directly generate a new encoded block. We
assume there are k providers. The k encoded blocks they
store are B0

1, B
0
2, . . . , B

0
k. The encoding matrix formed by

the coefficient vectors of B0
1, B

0
2, . . . , B

0
k is C0. Similar to

decoding, generating a new encoded block is also a linear
transformation, if C 0 is non-singular. Let the coefficient vector
of the new encoded block is (σ1, σ2, . . . , σk)T , σj ∈ Fq,
j = 1, 2, . . . , k. We assume that

(σ1 · · · σk)

⎛⎜⎝ F1
...
Fk

⎞⎟⎠ = (r1 · · · rk)

⎛⎜⎝ B0
1
...
B0
k

⎞⎟⎠ , (4)

where rj ∈ Fq, j = 1, 2, . . . , k. According to Eq. (3),
(r1 · · · rk) = (σ1 · · · σk)C0−1. (5)

If C0 is non-singular, (r1 · · · rk)T is a random vector if and
only if (σ1 · · · σk)T is a random vector. For random linear
coding, (r1 · · · rk)T can be randomly generated rather than
computed according to Eq. (5). Therefore the newcomer can
encode B0

1, B
0
2, . . . , B

0
k directly into a new encoded block by

the coefficient vector (r1 · · · rk)T .
Dimakis et al. [2] and Wu et al. [3] analyzed the lower

bound of network traffic in the regeneration for distributed
storage systems using linear network coding. If the size of
the original data is M bytes, and each storage node stores M

k
bytes, the minimal regeneration traffic is d

k(d−k+1)M bytes
if d providers are required, otherwise the new encoded block
will not be equivalent to other encoded blocks in decodability.
It is clear that the regeneration scheme showed in Eq. (4)
and Eq. (5) achieves the optimal regeneration traffic when the
number of providers is k.

C. Network Model
In this paper, we focus on how to regenerate new redundant

data quickly using linear network coding. The distributed
storage system uses (n, k)−linear network coding, n > k.
Thus the newcomer requires at least k providers in the regen-
eration. It will become more difficult to find more providers
in order to start the regeneration, and the regeneration is more
likely to be interrupted by node departures, when it requires
more providers. Therefore in this paper, we only discuss the
case that the regeneration scheme requires k providers. A
regeneration scheme can transfer data from k providers to the

newcomer, regenerate new redundant data and save them at
the newcomer. Different from conventional schemes, we also
consider bandwidth heterogeneity in the network.
Assume that one file has been saved in the distributed

storage system. The size of the original file is M bytes. Each
storage node stores an encoded block of Mk bytes. Our network
model focuses on the regeneration in the system. In one
regeneration, we assume k active storage nodes are required
as providers. The node set V = {V0, V1, . . . , Vk}, where V0
is the newcomer, and V1, . . . , Vk are providers. V0 receives
data from the k providers. Node departures are ignored, i.e.
the newcomer and providers are assumed to be stable during
the regeneration process. Edge set E = {(Vi, Vj)|i, j =
0, 1, . . . , k, i < j}. ω(Vi, Vj) denotes the bandwidth capacity
between Vi and Vj . Thus the weighted undirected complete
graphGk = (V,E, ω) denotes the network model of the regen-
eration, where k is the number of providers, i.e. k = |V |− 1.

30KB/s

40KB/s

50KB/s

0

1
2

30KB/s

40KB/s

50KB/s

0

1 2

Fig. 1. Comparison between the star-structured and the tree-structured
regeneration scheme in an example of the network model containing 3 nodes.

Fig. 1 shows an example of the network model described
above. (n, 2)−linear network coding is employed in this
model, n > 2. When a regeneration starts, the newcomer
receives data from 2 storage nodes. Conventionally, the new-
comer receives data from each provider directly. Fig. 1(a)
illustrates the conventional regeneration scheme. In this re-
generation scheme, the topology of newcomer and providers
is like a star, so this scheme is referred to as a star-structured
regeneration scheme in this paper. In Fig. 1(a), the newcomer
V0 receives encoded blocks directly from V1 and V2 and then
encodes them again to obtain an encoded block with a new
coefficient vector. In the star-structured regeneration scheme,
the regeneration time depends on the minimal edge connecting
to the newcomer V0. In Fig. 1, ω(V0, V1), ω(V0, V2), ω(V1, V2)
is 30KB/s, 50KB/s and 40KB/s respectively, so the bandwidth
bottleneck is (V0, V1) and the available bandwidth capacity, i.e.
the actual transmission rate during the regeneration process is
30KB/s.
In this paper, we propose a tree-structured regeneration

scheme, which constructs a spanning tree in the network model
Gk. Our regeneration scheme does not incur more regeneration
traffic than the star-structured scheme, but it can improve
available bandwidth capacity and thus reduce the regenera-
tion time. Each node in the model, no matter newcomer or
provider, can receive data from other nodes. To prevent from
increasing the regeneration traffic and thus aggravating the
bandwidth bottleneck, we assume each node can receive data
from multiple nodes, but can send data to only one node.

Encoding operation can be executed on the newcomer and
the providers, and the encoding delay is ignored, since the
transmission delay is usually much more critical. Fig. 1(b)
is an example of the tree-structured regeneration scheme. V1
sends its data to V2. V2 encodes the received data with the
data it stores and sends the encoded data to V0. As we will
show in Section IV, the bandwidth bottleneck is (V1, V2), and
the available bandwidth capacity is ω(V1, V2) = 40KB/s. We
can see the tree-structured regeneration scheme can regenerate
new redundant data faster.

IV. TREE-STRUCTURED REGENERATION SCHEME

In this section, we present our tree-structured regeneration
scheme, based on the network model above. First, we show
how the tree-structured scheme can regenerate new redundant
data at the newcomer and prove that a maximum spanning
tree is an optimal regeneration tree. Then we give the encoding
scheme for linear network coding, especially for random linear
coding. We analyze the available bandwidth capacity of the
tree-structured and star-structured regeneration scheme based
on probability theory and order statistics. We compare the
available bandwidth capacity of the two schemes at last.

A. Regeneration Tree

Lemma 1: Any spanning tree T in Gk = (V,E, ω), whose
root is V0, corresponds to one and only one regeneration
scheme in which V0 is the newcomer.

Proof: Given a spanning tree T , we can build a regener-
ation scheme as follows. For any node in T, it receives data
from its children if it is not a leaf node, encodes the received
data with the data it stores, and sends the encoded data to
its parent node if it is not the newcomer. In this case, the
newcomer can get the data or its linear combination of the
providers, and then become a new storage node.
Given a regeneration scheme of Gk = (V,E, ω), we can

build a graph T = (V,E0), where (Vi, Vj) ∈ E0 when data are
transferred on (Vi, Vj), i, j = 0, 1, 2, . . . , k, i < j. For each
edge in T , it can be mapped to one and only one provider
which sends out data on this edge, since one node can send
data to only one node and the newcomer does not send data
to other nodes. Because there are k providers, |E0| ≤ k. On
the other hand, because the newcomer can receive encoded
blocks or their linear combinations from all providers, T is a
connected graph. So |E0| ≥ k. Because |E0| = k and T is a
connected graph, T is a spanning tree of Gk.
Notice that T and Gk are both undirected graphs, but the

transmission is always directed. From the proof of Lemma 1
we can see that for each edge in T , the transmission direction
is from the child node to the parent node. In this sense, all
edges in T can be regarded as “directed”. The incoming edge
of a node is the edge whose other endpoint is the child of this
node, and the outgoing edge of a node is the edge whose other
endpoint is its parent node.
Lemma 1 shows that we can use a spanning tree to represent

a regeneration scheme of Gk. However, it does not show how

to encode the data at each provider. In Section IV-B, we will
discuss this question.
Definition 1: A regeneration tree is a spanning tree in Gk.
Lemma 2: For each edge in the regeneration tree T , the

amount of transferred data on it is M
k bytes, where M is the

size of the original file.
Proof: According to the proof of Lemma 1, each edge in

T corresponds to one and only one provider, so we give the
proof from the perspective of the providers.
For each leaf node in the regeneration tree, the size of data

it sends is M
k bytes, because the size of the data it stores is

M
k bytes.
Assume for each non-leaf node except the newcomer, the

traffic on each incoming edge is M
k bytes. The amount of data

it stores is also M
k bytes. So after linear encoding, the traffic

on its outgoing edge is M
k bytes.

Since the outgoing edges of all the providers have the same
traffic on them, we can say that the traffic on each edge is
uniform and is equal to M

k bytes.
From Lemma 2, we can see the regeneration traffic of a

tree-structured regeneration scheme isM bytes, so the optimal
regeneration traffic shown in Section III-B has been achieved.
Lemma 3: For each regeneration tree T in Gk, the regen-

eration time depends on the edge with the minimal weight.
Proof: We have known that the weight of each edge in T,

ω(Vi, Vj), i, j = 0, 1, 2, . . . , k, i < j, denotes the bandwidth
capacity between Vi and Vj . According to Lemma 2, the traffic
on each edge in T is uniform. If a node sends data after it
has received all the data from its children, it will waste a
substantial amount of time. The optimal transmission method
is to use the principle of pipelining. The node encodes and
sends data to its parent node immediately after it has received
one byte/packet from all of its children. So the bandwidth
bottleneck is the minimal edge in the regeneration tree.
From the proof of Lemma 3, we give the definition of the

available bandwidth capacity of a regeneration tree.
Definition 2: The available bandwidth capacity of a regen-

eration tree T in Gk is the weight of the minimum edge in
T .
Lemma 4: [16] In a weighted undirected graph, a minimum

(maximum) spanning tree is a bottleneck spanning tree, i.e.
the weight of whose largest (smallest) edge is the minimum
(maximum) over all spanning trees in this graph.
Theorem 1: A maximum spanning tree in Gk is a regener-

ation tree with the maximal available bandwidth capacity.
Proof: The proof is clear according to Lemma 3 and

Lemma 4.
Theorem 1 shows how to find an optimal regeneration tree

in Gk. We can see the star-structured regeneration scheme is
a special form of the tree-structured regeneration scheme and
sometimes it is the optimal. However, the tree-structured re-
generation scheme is always no worse than the star-structured
scheme.
Since the bandwidth capacity is time-sensitive, its measure-

ment should be triggered before each regeneration, after which
the regeneration tree can be constructed. However, because the

regeneration tree is spanned over the newcomer and all the
providers, the bandwidth measures are made between these
nodes rather than all nodes in the network and thus are limited.
Theorem 2: Let B(T) be the available bandwidth capacity

of a regeneration tree T in Gk. Then the regeneration time is
M

kB(T) , where M is the size of the original file.
Proof: According to Lemma 2, the amount of traffic on

each edge in T is M
k bytes. From Lemma 3, we know the

regeneration time depends on the minimal weighted edge in
T . According to the definition of B(T), the regeneration time
is

M
k

B(T) =
M

kB(T) .

B. Encoding Scheme
In Gk, assume that the encoded block stored in Vi is

B0
i, i = 1, 2, . . . , k. According to Eq. (4) and Eq. (5), if
(σ1, σ2, . . . , σk)

T is a random vector, (r1, r2, . . . , rk)T is also
a random vector. Thus (r1, r2, . . . , rk)T can be generated
randomly on the encoding nodes in a distributed fashion. Vi
is responsible to generate ri randomly, i = 1, 2, . . . , k. In one
regeneration tree, if Vi does not receive data from other nodes,
it sends riB0

i. If Vi receives data from Vi1 , Vi2 , . . . , Viin(Vi) ,
where in(Vi) is the indegree of Vi, assuming the data received

from Vij is B00
j , it sends riB

0
i +

in(Vi)P
j=1

B00
j . Therefore, the

newcomer can get
kP
i=1

riB0
i, which is equal to

kP
i=1

σiFi.

C. Available Bandwidth Capacity
We analyze the available bandwidth capacity of tree-

structured and star-structured regeneration scheme by order
statistics. First, we introduce a basic theorem of order statistics
in Lemma 5.
Lemma 5: [17] Assume X1,X2, . . . ,Xn are n independent

random variables, for each of which the cumulative distribu-
tion function is F (x) and the probability density function is
f(x). Let f(r:n)(x) denote the probability density function of
the rth variable X(r:n), X(1:n) ≥ X(2:n) ≥ · · · ≥ X(n:n). If
Xi is with continuous distribution,

f(r:n)(x) =
n!Fn−r(x)[1− F (x)]r−1f(x)

(n− r)!(r − 1)! . (6)

Let E = {e1, e2, . . . , ek(k+1)
2
} in Gk = (V,E,ω), where

ω(e1) > ω(e2) > · · · > ω(ek(k+1)
2

). The bandwidth capacity
on each edge is assumed to be different from each other, as it
realistically reflects real-world networks with high probability.
Definition 3: MST(Gk) = r if and only if the minimal edge

in the maximum spanning tree of Gk = (V,E,ω) is the rth
maximal edge of E.
Property 1: k ≤ MST(Gk) ≤Mk+1− k+1, where Mk =

k(k−1)
2 .
Proof: Let E1 = {e1, e2, . . . , ek−1}. If (V,E1) is con-

nected, it must be a maximum spanning tree of Gk. Since no
other spanning tree in Gk whose minimal edge is larger than
(V,E0), we can say r ≥ k.
Because Gk is a complete graph, it is k-edge-connected.

Thus it is always connected after removing k − 1 edges. Let

E2 = {e1, e2, . . . , eMk+1−k+1}. A maximum spanning tree of
(V,E2) is also a maximum spanning tree of Gk. Thus r ≤
Mk+1 − k + 1.
Fig. 2 illustrates the best case and the worst case of the

maximum spanning tree in G3. In Fig. 2(a), the bandwidth
bottleneck is (V2, V3), which is the 3rd largest edge in G3.
On the other hand, the bandwidth bottleneck in Fig. 2(b) is at
(V0, V3), which is the (M3+1 − 3 + 1 =)4th largest edge.

30KB/s

40KB/s

0

1

2

20KB/s

45KB/s

3

30KB/s

50KB/s

0

1

2

20KB/s

45KB/s

3

3 3

Fig. 2. Best and worst case of regeneration tree in G3.

Let Etree(Gk) be the expected value of the available
bandwidth capacity of the tree-structured regeneration scheme
of Gk. Assume the probability density function of the dis-
tribution of the weight of the edge in E is f(x) and F (x)
is the cumulative distribution function. Especially, F (0) = 0
because the bandwidth capacity is never negative in real world.
According to Lemma 5, the probability density function of
ω(ei) is

f(i:Mk+1)(x) =
Mk+1!F

Mk+1−i(x)(1− F (x))i−1f(x)
(i− 1)!(Mk+1 − i)!

. (7)

Let E(i:Mk+1) be the expected value of ω(ei),

E(i:Mk+1) =

Z +∞

0

xf(i,Mk+1)(x)dx. (8)

Let p(k+1, i) be the probability that MST(Gk) = i. Then the
expected value of the tree-structured regeneration scheme in
Gk is

Etree(Gk) =

Mk+1−k+1X
i=k

p(k + 1, i)E(i:Mk+1). (9)

Let Estar(Gk) denote the expected value of the available
bandwidth capacity of the star-structured regeneration scheme
of Gk. Since Estar(Gk) is the expected value of the weight
of the minimal edge in {(V0, Vi)|i = 1, 2, . . . , k},

Estar(Gk) =

Z +∞

0

xf(k:k)(x)dx (10)

= k

Z +∞

0

x(1− F (x))k−1f(x)dx. (11)

D. Distribution of MST(Gk)
As stated in Section IV-C, p(k+1, i) is the probability that

MST(Gk) = i in Gk = (V,E, ω). According to Property 1,
p(k + 1, i) = 0, when i < k or i > Mk+1 − k + 1.
Lemma 6 (Cayley’s formula): [18] There are kk−2 span-

ning trees in a complete graph containing n nodes.

Theorem 3: p(k+1, k) = (k+1)k−1µ
Mk+1

k

¶ in Gk = (V,E, ω).

Proof: In Gk, |V | = k+1. According to Lemma 6, there
are (k+1)k−1 spanning trees in Gk. If we select k edges from
E randomly, the probability that k edges form a spanning tree
of Gk is (k+1)k−1µ

Mk+1

k

¶ . Because MST(Gk) = k if and only if

(V, {ei|i = 1, 2, . . . , k}) is a spanning tree of Gk, this lemma
is proved.

Theorem 4: p(k+1,Mk+1−k+1) = k+1µ
Mk+1

k

¶ in Gk =

(V,E, ω).
Proof: MST(Gk) = Mk+1 − k + 1 if and only if

eMk+1−k+i, i = 1, 2, . . . , k are attached to one node in V.
Because there are k + 1 node in V, this lemma is proved.
Theorem 3 and Theorem 4 give two special cases of p(k+

1, i). For the general case, we can get p(k+ 1, i) recursively.
Theorem 5: Define Q(l, j) as the number of the connected

graphs which contain l nodes and j edges, and P (k+1, i) as
the probability that MST(Gk) = i. Thus in Gk = (V,E, ω),
if k < i < Mk+1 − k + 1,

P (k+1, i) =

kP
l=1

µ
k − 1
l − 1

¶
i−1P
j=0

Q(l, j)Q(k + 1− l, i− 1− j)µ
Mk+1 − 1
i− 1

¶ ,

(12)
and

Q(l, j) =

⎧⎪⎪⎨⎪⎪⎩
0 j < l − 1µ

Ml

j

¶
jP

i=l−1
P (l, i) l − 1 ≤ j ≤Ml

0 j > Ml

(13)

Proof: Assume (Va, Vb), a, b = 0, 1, 2, . . . , k, a < b, is
the ith maximal edge in Gk. We divide V into 2 groups, to
make Va and Vb not belong to the same one. Let V(a) be the
group containing Va, and V(b) be the group containing Vb. As
|V | = k + 1, the number of cases that V(a) contains l nodes

is
µ

k − 1
l− 1

¶
. MST(Gk) = i if and only if (V, {e1, . . . , ei})

is connected and (V, {e1, . . . , ei−1}) is not connected. Thus
(Va, Vb) is the only edge in {e1, . . . , ei} connecting V(a) and
V(b). If the number of edges in V(a) is j and the number of
edges in V(b) is k − 1− j, the number of cases that V(a) and
V(b) are all connected is Q(l, j)Q(k+1−l, i−1−j). Because
the number of cases that selecting k−1 edges fromMk+1−1
edges is

µ
Mk+1 − 1
i− 1

¶
,

P (k+1, i) =

kP
l=1

µ
k − 1
l − 1

¶
i−1P
j=0

Q(l, j)Q(k + 1− l, i− 1− j)µ
Mk+1 − 1
i− 1

¶ .

(14)

Now we consider how to get Q(l, j), which is the number
of the connected graphs which contain l nodes and j edges.
It is clear that when j < l − 1 it is impossible that the graph
is connected. It is also impossible when j > Ml, because
there are at most Ml edges in the complete graph containing
l nodes. When l − 1 ≤ j ≤ Ml, the graph is connected if
and only if MST(Gl−1)≤ j, Thus selecting j edges from Ml

edges randomly, the probability that the graph is connected is
jP

i=l−1
P (l, i). Therefore Q(l, j) =

µ
Ml

j

¶
jP

i=l−1
P (l, i).

Theorem 5 gives the formula of p(k+1, i), which is easy to
be implemented by dynamic programming. Fig. 3 illustrates
the distribution of p(k + 1, i).

0 5 10 15 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i (MST(G
k
))

p(
k+

1,
i)

 in
 G

k

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

Fig. 3. Distribution of p(k+1,i) in Gk.

E. Tree vs. Star
We compare the available bandwidth capacity of the star-

structured regeneration scheme and our tree-structured regen-
eration scheme, based on the analysis above, in the scenario
that the weight of edge in Gk = (V,E, ω) is with uniformly
distribution. If ω(Vi, Vj) is with uniformly distribution U [a, b],

E(i:Mk+1) =
(b− a)(Mk+1 − i+ 1)

Mk+1 + 1
+ a. (15)

Etree(Gk) =

Mk+1−k+1X
i=k

p(k + 1, i)E(i:Mk+1). (16)

Estar(Gk) =
(b− a)

k + 1
+ a. (17)

We assign randomly generated value with U [0KB/s,
56KB/s], U [8KB/s, 48KB/s], and U [16KB/s, 40KB/s] respec-
tively, to the weight of each edge in Gk.
Fig. 4 shows the analysis results of the available band-

width capacity in Gk, according to Eq. (15), Eq. (16) and
Eq. (17). The X-axis shows k, the number of providers in the
network model Gk. The Y-axis shows E(Gk), the available
bandwidth capacity of the corresponding regeneration scheme
in Gk. Because Estar(Gk) =

(b−a)
k+1 + a, the expected value

of the available bandwidth capacity of the star-structured
regeneration scheme decreases and converges to a, the lower
bound of uniformly distribution U [a, b], with the increasing
of k. However, the expected value of the available bandwidth

capacity of the tree-structured regeneration scheme in Gk

increases with k. Because a maximum spanning tree in Gk

contains only k edges, while there are totally Mk+1 edges, it
is probable that the weight of the minimal edge in a maximum
spanning tree is larger than at least half of all the edges. Thus
it is easy to understand why Etree(Gk) increases with k.
We notice that when the bandwidth heterogeneity, i.e. the

variance of the bandwidth distribution increases, the expected
value of the available bandwidth capacity of the tree-structured
regeneration scheme increases, but the expected value of the
available bandwidth capacity of the star-structured regener-
ation scheme decreases. Since the tree-structured regenera-
tion scheme has more chance to get the edges with higher
bandwidth capacity in the networks with stronger bandwidth
heterogeneity, the tree-structured regeneration scheme has
stronger adaptability to the bandwidth heterogeneity.

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

k (#provider in the regeneration)

E
(G

k)
(K

B
/s

)

Tree with U[0KB/s, 56KB/s]
Tree with U[8KB/s, 48KB/s]
Tree with U[16KB/s, 40KB/s]
Star with U[0KB/s, 56KB/s]
Star with U[8KB/s, 48KB/s]
Star with U[16KB/s, 40KB/s]

Fig. 4. Expected value of available bandwidth capacity in Gk with uniformly
distributions.

V. SIMULATION
In this section, we compare the tree-structured regeneration

scheme with the star-structured regeneration scheme in scenar-
ios that emulate real-world distributed storage systems, based
on the availability trace of PlanetLab [19] and the bandwidth
distribution measured in the PlanetLab network.
Our simulation is based on an event-driven simulator, which

simulates peers’ actions from an availability trace file and
bandwidth capacity between peers from bandwidth statistics
measured in the PlanetLab network. The trace is provided
by [20]. In the trace file, a node is considered to be up
at t time if and only if at least half pings in the batch of
pings immediately prior to t are sent to the node successfully.
Pings were sent every 15 minutes between all pairs of 200-
400 PlanetLab nodes from Jan. 2004 - Jan. 2005. However, in
some periods, almost all the nodes go down, probably due to
system upgrades or measurement errors, so a cleaned trace is
provided, in which these periods are removed. Lee et al. [21]
measured the bandwidth capacity between nodes in PlanetLab.
Table I shows the end-to-end bandwidth capacity statistics we
use in the simulation. The simulator simulates the bandwidth
capacity between nodes according to Table I.

TABLE I
END-TO-END BANDWIDTH CAPACITY DISTRIBUTION IN [21].

Capacity(C)(Mb/s) Number of paths Percentage(%)
0.3 ≤ C < 20 6733 30.8
20 ≤ C < 50 1910 8.74
50 ≤ C < 80 1303 5.96
80 ≤ C < 120 11744 53.72
120 ≤ C < 200 139 0.64
200 ≤ C < 500 21 0.096
500 ≤ C < 682.9 11 0.05

TABLE II
SIMULATION PARAMETERS

Tr name of the trace file (*.avt)
Ts start time (sec.)
Tf finish time (sec.)
Nall all #node
Non mean #node online
Tup average up time per node per day (sec.)

Ndown average #down per node per day
Nup average #up per node per day
rB bandwidth utilization rate
Nr repeated times
M file size (KB)
r redundancy rate

Table II shows the parameters used in the simulation. The
time of a trace file Tr starts from 0. The simulator starts
the simulation at Ts and ends at Tf . The trace provides the
time of nodes’ join/departure. During the time, there’re totally
Nall nodes and Non nodes online on average. The bandwidth
capacity between each pair of Nall nodes is generated ac-
cording to Table I. For one node on average, it joins the
networkNup times, leaves the networkNdown times, and stays
in the network for Tup time every day. The storage system
in the simulation uses (n, k)−random linear coding and the
redundancy rate r = n

k is fixed. We assume that a M KB file
is saved into n nodes randomly in the network immediately
before the simulation. Each storage node stores M

k KB.
In the simulation, in order to prolong regeneration time and

to enhance the impact of node instability relatively, we set
a parameter rB, the utilization rate of the bandwidth capacity
between all pairs of nodes. If rB = 0.1, the utilized bandwidth
of each path is at most 10% of the bandwidth capacity between
two nodes. What’s more, we sort the nodes in the trace file
according to their up/down times. In the simulation, we select
Nall most unstable nodes to attend the simulation. Thirdly, we
use a radical data loss detection mechanism in the simulation.
If a node leaves the network, we assume data in this node will
be permanently unavailable even though it returns some time
later. Whenever a node joins the network, it will be considered
as a stranger node as if it has never joined the network and
never saved any data.
When a node storing at least one encoded block leaves the

network, a regeneration is triggered. However, a regeneration
can start when two conditions are satisfied: (i) there are at
least k active storage nodes; (ii) there is at least one node
to be the newcomer, while the existing storage node can not

be a newcomer. If the two conditions are not satisfied, the
regeneration has to wait to start. If there are more than k active
storage nodes, the simulator selects k of them with widest
bandwidth to the newcomer as providers. For (n, k)−linear
network coding, the tree-structured and star-structured scheme
both require k providers, so the waiting time of regeneration
will not be different between the two schemes. If the regener-
ation is interrupted by node departures, it will be regarded as a
failed regeneration and another regeneration will be triggered.
The simulation is repeated for Nr times and the results are

average values. We measure the performance of regeneration
schemes from three aspects: (i) regeneration time: how much
time is spent from the start of a regeneration to the end;
(ii) probability of the successful regeneration: the probability
that a regeneration finishes successfully, not interrupted by the
node departures; (iii) data availability: the probability that a
file is available. According to the analysis in Section IV, the
regeneration time is M/k

rB·B , where B is the available bandwidth
capacity of the regeneration scheme. The probability that data
are available is the ratio of the available time to the total time
in the simulation. For (n, k)−linear network coding, data are
available when there are at least k active storage nodes.
We run the simulation for the tree-structured and the star-

structured regeneration scheme respectively. For the tree-
structured scheme, the regeneration tree is produced by
Kruskal’s algorithm. Table III shows the value of parameters
used in the simulation. We use the cleaned trace file pl-
app-cleaned.avt. The simulation lasts for 107 seconds (115
days 17 hours 46 minutes 40 seconds). We select 100 most
unstable nodes in the trace. The redundancy rate is 1.5, so
the system uses (1.5k, k)−random linear coding. We observe
the performance of the two regeneration schemes with the
increasing of k, and k is selected as 2, 4, . . . , 20 respectively.

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18
x 10

4

k (#provider in the regeneration)

R
eg

en
er

at
io

n
tim

e
(s

ec
.)

Tree−structured regeneration scheme

Star−structured regeneration scheme

Fig. 5. Regeneration time with parameters in Table III.

Fig. 5, Fig. 6 and Fig. 7 show the simulation results. In

TABLE III
PARAMETER’S VALUE IN THE SIMULATION

Tr Ts Tf Nall Non Tup
pl-app-cleaned.avt 2× 106 1.2× 107 100 49.92 43135.08

Ndown Nup rB Nr M r
0.137 0.135 0.01 104 107 1.5

2 4 6 8 10 12 14 16 18 20

0.65

0.7

0.75

0.8

0.85

0.9

0.95

k (#provider in the regeneration)

Pr
{r

eg
en

er
at

io
n

is
 s

uc
ce

ss
fu

l}

Tree−structured regeneration scheme

Star−structured regeneration scheme

Fig. 6. Probability of successful regeneration with parameters in Table III.

Fig. 5, we show that the tree-structured regeneration scheme
can save regeneration time by at least 75% when k ≥ 4,
and by 82% at most when k = 20. The regeneration time
also decreases with k, because the network traffic of each
path is M

k bytes. Since the regeneration time is reduced, it
is more likely to finish the regeneration successfully. Fig. 6
shows the tree-structured scheme can increase the probability
of successful regeneration by 21%-29%. With the increasing
of k, the regeneration is more possible to be interrupted.
However, the regeneration time is reduced when k increases,
so the probability of successful regeneration does not change
a lot. Fig. 7 shows when k > 2, the tree-structured scheme can
improve data availability by 73%-124% (73% when k = 20
and 124% when k = 10). What’s more, when k ≥ 10, the
data availability of the tree-structured regeneration scheme
is always more than 90%, while the availability of the star-
structured scheme is less than 60%.

VI. CONCLUSION

In this paper, we present a tree-structured regeneration
scheme for the distributed storage systems using network cod-
ing. Our mathematical analysis shows that the tree-structured
regeneration scheme can improve the available bandwidth
capacity and the adaptability to the bandwidth heterogeneity,
compared with the conventional star-structured regeneration
scheme. Our simulation results show that our scheme can

2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

k (#provider in the regeneration)

Pr
{d

at
a

is
 a

va
ila

bl
e}

Tree−structured regeneration scheme

Star−structured regeneration scheme

Fig. 7. File availability with parameters in Table III.

reduce regeneration time and improve data availability.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their helpful ad-

vices. This work was supported in part by NSFC under
Grant No. 60702054, 863 program of China under Grant No.
2006AA01Z203, Shanghai Municipal R&D Foundation under
Grant No. 07dz15004-1, the Shanghai Rising-Star Program
under Grant No. 08QA14009, and State Key Laboratory of
Integrated Service Networks under Grant No. ISN-9-06.

REFERENCES
[1] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,

R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B.
Zhao, Oceanstore: an architecture for global-scale persistent storage,
SIGPLAN Not., vol. 35, no. 11, pp. 190-201, 2000.

[2] A. Dimakis, P. Godfrey, M. Wainwright, and K. Ramchandran, Network
coding for distributed storage systems, 26th IEEE International Confer-
ence on Computer Communications, pp. 2000-2008, 2007.

[3] Y.Wu, R. Dimakis, and K. Ramch, Deterministic regenerating codes for
distributed storage, in Allerton Conference on Control, Computing, and
Communication, Urbana-Champaign, IL, 2007.

[4] Z. Zhang, Q. Lian, S. Lin, W. Chen, Y. Chen, and C. Jin, Bitvault: a
highly reliable distributed data retention platform, SIGOPS Oper. Syst.
Rev., vol. 41, no. 2, pp. 27-36, 2007.

[5] W. Lin, C. Ye, and D. Chiu, Decentralized replication algorithms for
improving file availability in p2p networks, Fifteenth IEEE International
Workshop on Quality of Service, pp. 29-37, June 2007.

[6] S. Acedanski, S. Deb, M. Medard, and R. Koetter, How good is random
linear coding based distributed networked storage? in Proc. 1st Workshop
on Network Coding, Riva del Garda, Italy, Apr. 2005.

[7] R. Rodrigues and B. Liskov, High availability in DHTs: Erasure coding
vs. replication, Proceedings of 4th International Workshop on Peer-to-
Peer Systems (IPTPS’05).

[8] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, Network information flow,
IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204-1216,
Jul 2000.

[9] M. Yang and Y. Yang, Peer-to-peer file sharing based on network
coding, ICDCS ’08. The 28th International Conference on Distributed
Computing Systems, pp. 168-175, June 2008.

[10] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, The benefits
of coding over routing in a randomized setting, Proceedings. IEEE
International Symposium on Information Theory, p. 442, 2003.

[11] C. Cooper, On the rank of random matrices, in Random Structures and
Algorithms, vol. 16, no. 2, 2000, pp. 209-232.

[12] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F.
Kaashoek, J. Kubiatowicz, and R. Morris, Efficient replica maintenance
for distributed storage systems, in NSDI’06: Proceedings of the 3rd
conference on Networked Systems Design & Implementation. Berkeley,
CA, USA: USENIX Association, 2006, pp. 4-4.

[13] A. Duminuco and E. Biersack, Hierarchical codes: How to make erasure
codes attractive for peer-to-peer storage systems, Eighth International
Conference on Peer-to-Peer Computing, pp. 89-98, 2008.

[14] S.-J. Lee, S. Banerjee, P. Sharma, P. Yalagandula, and S. Basu,
Bandwidth-aware routing in overlay networks, INFOCOM 2008. The
27th Conference on Computer Communications. IEEE, pp. 1732-1740,
April 2008.

[15] J. Li, and X. Wang, Redundancy Maintenance in P2P Storage Networks,
to appear in Journel of Computer Research and Development, Vol.
46(Suppl.), 2009.

[16] S. Skiena, The Algorithm Design Manual, Springer-Verlag, 1997.
[17] H. A. David and H. N. Nagaraja, Order Statistics. Wiley-Interscience, 3

edition, August 4, 2003.
[18] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory.

Springer, 1999.
[19] Planetlab. [Online]. Available: http://www.planet-lab.org/
[20] J. Stribling. Planetlab all pairs ping. [Online]. Available:

http://infospect.planet-lab.org/pings.
[21] S.-J. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca, Measur-

ing bandwidth between planetlab nodes, 2005, pp. 292-305. [Online].
Available: http://www.springerlink.com/content/p9uy6mgwn7k2fabw

