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Tree-Structured Regional CNN-LSTM Model for
Dimensional Sentiment Analysis

Jin Wang , Liang-Chih Yu , Member, IEEE, K. Robert Lai , and Xuejie Zhang

Abstract—Dimensional sentiment analysis aims to recognize
continuous numerical values in multiple dimensions such as the
valence-arousal (VA) space. Compared to the categorical approach
that focuses on sentiment classification such as binary classifica-
tion (i.e., positive and negative), the dimensional approach can
provide a more fine-grained sentiment analysis. This article pro-
poses a tree-structured regional CNN-LSTM model consisting of
two parts: regional CNN and LSTM to predict the VA ratings of
texts. Unlike a conventional CNN which considers a whole text
as input, the proposed regional CNN uses a part of the text as a
region, dividing an input text into several regions such that the
useful affective information in each region can be extracted and
weighted according to their contribution to the VA prediction.
Such regional information is sequentially integrated across regions
using LSTM for VA prediction. By combining the regional CNN
and LSTM, both local (regional) information within sentences and
long-distance dependencies across sentences can be considered in
the prediction process. To further improve performance, a region
division strategy is proposed to discover task-relevant phrases and
clauses to incorporate structured information into VA prediction.
Experimental results on different corpora show that the proposed
method outperforms lexicon-, regression-, conventional NN and
other structured NN methods proposed in previous studies.

Index Terms—Dimensional sentiment analysis, valence-arousal
prediction, regional CNN-LSTM model, structured parsing.

I. INTRODUCTION

S
ENTIMENT analysis refers to the use of computational lin-
guistics to analyze, process, induce and deduce subjective

texts with affective information [1]–[5]. With the proliferation
of social media content, this set of techniques raises new oppor-
tunities to study public opinion on nearly any topic. It has also
been widely used in the development of online applications for
customer reviews analysis [6], mental illnesses identification [7],

Manuscript received April 19, 2019; revised September 26, 2019; accepted
November 23, 2019. Date of publication December 11, 2019; date of current ver-
sion January 21, 2020. This work was supported in part by the National Natural
Science Foundation of China under Grants 61702443, 61966038, and 61762091,
and in part by the Ministry of Science and Technology, Taiwan, ROC, under
Grants MOST 107-2628-E-155-002-MY3, and MOST 107-2218-E-006-008.
The associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Eric Fosler-Lussier. This paper was presented in part at
the Fifty fourth Annual Meeting on Association for Computational Linguistics,
Berlin, Germany, 2016, pp. 225–230. (Corresponding author: Liang-Chih Yu.)

J. Wang and X. Zhang are with the School of Information Science
and Engineering, Yunnan University, Kunming 650000, China (e-mail:
wangjin@ynu.edu.cn; xjzhang@ynu.edu.cn).

L.-C. Yu is with the Department of Information Management, Yuan Ze
University, Taoyuan 32003, Taiwan (e-mail: lcyu@saturn.yzu.edu.tw).

K. R. Lai is with the Department of Computer Science and Engineering, Yuan
Ze University, Taoyuan 32003, Taiwan (e-mail: krlai@saturn.yzu.edu.tw).

Digital Object Identifier 10.1109/TASLP.2019.2959251

Fig. 1. Two-dimensional valence-arousal space.

hotspot detection and forecasting [8], question answering [9],
social text analysis [10], [11] and financial market prediction
[12].

Research related to affective computing theory provides two
approaches to represent an emotional state: categorical and di-
mensional [13]. The categorical approach represents emotional
states as several discrete classes such as binary (i.e., positive and
negative) or as multiple categories such as Ekman’s six basic
emotions (anger, happiness, fear, sadness, disgust, and surprise)
[14] and Plutchik’s eight emotions (Ekman’s six plus trust and
anticipation) [15]. Classification algorithms can then be used to
identify sentiment categories from texts. However, beyond the
pre-defined emotion categories, this approach cannot describe
more fine-grained differences between emotions.

The dimensional approach represents emotional states as
continuous numerical values in multiple dimensions to reflect
differences in sentiment strength or intensity. As shown in
Fig. 1, the most commonly used approach is based on the
valence-arousal space proposed by Russell et al. [16], which
can accurately represent the affective state in a 2-dimentional
continuous space. In this space, the dimension of valence refers
to the degree of positive and negative sentiment, whereas the
dimension of arousal refers to the degree of calm and excitement.
Both dimensions range from 1 (highly negative or calm) to 9
(highly positive or excited) based on the self-assessment manikin
(SAM) annotation scheme [17]. By using such a representation,
any emotional state in a subjective text can be marked as a point
in the valence-arousal coordinate plane. For example, the follow-
ing three-sentence passage is associated with a valence-arousal
rating of (2.5, 7.8), indicating a high degree of negativity and
arousal.
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(r1) A few days ago I checked into a franchise hotel.

(r2) The front desk service was terrible, and they didn’t know much

about local attractions.

(r3) I would not recommend this hotel to a friend.

Such high-arousal negative (or high-arousal positive) texts
are usually of interest and could be prioritized in product review
systems. Dimensional sentiment analysis can accomplish this
by recognizing the VA ratings of texts and rank them accord-
ingly, thus providing more intelligent and fine-grained sentiment
applications.

Recently, word embedding [18]–[21] and deep neural net-
works (NN) such as convolutional neural networks (CNN) [22],
[23], recurrent neural networks (RNN) [24], [25], gated recurrent
unit (GRU) [26], and long short-term memory (LSTM) [27],
[28] have been successfully employed for categorical sentiment
analysis. Given a variable-length text, one challenge of using
these neural networks is to compose individual word vectors into
sentence vectors of the same length for polarity classification.
One challenge of using these methods for VA prediction lies in
how to distill sentiment information from the salient words by
assigning more weight which contribute to the final prediction.
For example, the overall affective states in the aforementioned
passage are mainly determined by the bolded words, such as
terrible, didn’t know and not recommend.

To use information from words, one intuitive method is to
directly average all word vectors in each dimension [29]–[31].
Unfortunately, every word vector in these methods shared an
equal weight, making it very similar to the concept of Bag-of-
Words (BoW). In contrast, CNN uses a convolutional kernel to
extract local n-gram features and then max-pooling to select
the most salient features for prediction. However, this often
misses valuable information present in multiple facts within a
very long sentence, and may fail to capture long-distance de-
pendency. RNN, GRU and LSTM can address this limitation by
sequentially modeling texts across sentences. However, RNN,
GRU and LSTM are bias models, where the key components
in the tail of a text dominate the key components in the header,
resulting in the model always making decisions based on tail in-
formation. To capture both local and long-distance information,
an LSTM layer can be combined with a CNN layer to form
a CNN-LSTM model. Such NN-based and word embedding
methods have not been well explored for dimensional sentiment
analysis.

This study proposes a regional CNN-LSTM model consisting
of two parts, regional CNN and LSTM, to predict the VA ratings
of texts. We first construct word vectors for vocabulary words
using word embedding. The regional CNN is then used to build
text vectors for the given texts being predicted based on the
word vectors. Unlike a conventional CNN which considers a
whole text as input, the proposed regional CNN uses a part of
the text as regions, dividing an input text into several regions
such that the key components and useful affective information
in different regions can be extracted and weighted according
to their contribution to the VA prediction. For example, in the
aforementioned example text, it would be useful for the system

to emphasize the two sentences/regions (r2) and (r3) containing
negative affective information. Finally, such regional informa-
tion is sequentially integrated across regions using LSTM for VA
prediction. By combining the regional CNN and LSTM, both
local (regional) information within sentences and long-distance
dependency across sentences can be considered in the prediction
process.

To better discover the implicit structure and extracting local
salient features, we also propose a tree-structured region division
strategy. By using a constituency-based tree parser, a given
text can be divided into regions according to different tree
depths. These regions are linguistic function blocks, which could
be words, phrases, clauses, sentences, or even paragraphs. In
each region, the proposed regional CNN-LSTM will extract the
appropriate key components and learn the linguistic relations
between them to contribute to VA prediction. By using the
parser to identify regions, the structural information can be
incorporated to improve prediction performance.

Comparative experiments were conducted on four English
and Chinese corpora with annotated valence-arousal values. We
first investigate the effect of the regional division on different tree
depths of the tree-structured regional CNN-LSTM model. The
experimental results show that the proposed tree-structured re-
gional CNN-LSTM model outperformed several existing meth-
ods, such as lexicon-, regression-, and conventional NN-based
methods.

The rest of this paper is organized as follows. Section II
introduces the existing methods for predicting VA ratings of
affective texts. Section III describes the proposed tree-structured
regional CNN-LSTM model and also the strategy of regional
division on a parsed tree representation. Section IV reports the
evaluation results of the proposed method against lexicon-based,
regression-based, conventional NN and structured NN methods.
Conclusions are finally drawn in Section V.

II. RELATED WORKS

Dimensional sentiment analysis in VA space can provide more
fine-grained affective information for other sentiment applica-
tions than the traditional categorical approach. In this section,
we present a brief review of existing text VA prediction meth-
ods, including lexicon-, regression-, and conventional neural
network-based methods.

A. Lexicon-Based Methods

Lexicon-based methods assume that a text’s affective ratings
can be estimated via the composition of the affective scores of
its component words. To predict the affective rating of each text,
these methods use an affective lexicon in which affective words
are tagged with valence and arousal ratings, such as Affective
Norms of English Words (ANEW) [32].

Given the affective scores of words, one may calculate the
affective scores of a text through different composition methods.
A feasible method for composition is arithmetic mean. That is,
VA values of a text t can be predicted by the average VA values
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of each word w in this sentence, defined as,

valt =
1

n

∑

w∈t

valw (1)

where valt and valw respectively denote the valence values of
sentence t and word w.

Instead of simply using the arithmetic mean affective values
of words, Paltoglou et al. [10] used three different methods to
estimate a text’s overall sentiment score, including weighted
arithmetic mean, weighted geometric mean, and Gaussian mix-
ture model.
� Weighted arithmetic mean (wAM)

valt =
∑

w∈t

tfw × valw

/

∑

w∈t

tfw (2)

where tfw is the term frequency of word w in text t.
� Weighted geometric mean (wGM)

valt =
∑

w∈t

tfw

√

∏

w∈t
(valw)

tfw (3)

� Gaussian mixture model (GMM)

valt = argmax
x

{

∑

w∈t

N(x|µw, σ
2
w)× tfw

/

∑

w∈t

tfw

}

(4)
where N(x |µw, σ

2 w) is the probability density func-
tion of word w, following the Gaussian distribution with
mean µw and variance σ2 w), which can be derived from
the ANEW lexicon. Experimental results show that the
weighted geometric mean method outperforms other two
methods.

Although such methods can be easily implemented, they
cannot model a text or document with complex linguistic expres-
sions. For example, if a negative review contains more positive
words than negative words, it will be incorrectly classified as
positive, thus the emotional import of a text or document is
not simply the sum of emotional associations of its constituent
words.

B. Regression-Based Methods

Regression-based methods have been intensively studied for
VA prediction at both the word level [33]–[35] and the sentence
level [10], [11], [36]. At the word level, Wei et al. [33] used linear
regression to transfer VA ratings from English affective words
to Chinese words. Malandrakis et al. [34] used a kernel function
to combine the similarity between words for VA prediction. Yu
et al. [35] and Wang et al. [37] and used a weighted graph model
to iteratively determine the VA ratings of affective words.

At the sentence level, Gokcay et al., [38] proposed applying
a linear regression model on an affective lexicon to predict
the overall sentiment score of texts. The candidate texts are
decomposed into their words to lookup sentiment scores from an
affective lexicon. A list of stop-words is used to remove words
that are not found in the lexicon. The sentiment scores of the
text and the average scores of words in the text are then taken as
input to train a regression model.

Instead of simply using the mean affective values of words,
Malandrakis et al. [36] extracted n-grams, the weighted mean
and maximum affective values of constituent words as features
to train regression models. The authors also proposed a method
that extracts n-grams with affective ratings as features to predict
sentiment VA values for sentences and complete texts.

Paltoglou and Thelwall [11] predicted valence and arousal lev-
els of a sentence or document on an ordinal five-level scale, from
very negative/low to very positive/high. The authors considered
the sentiment prediction problem as both a classification and
regression. Both methods are based on BoW features. Support
vector machine (SVM) and ε-support vector regression (ε-SVR)
are then respectively used for classification and regression. Their
experimental results also show that regression techniques tend
to produce smaller scale errors.

C. Conventional Neural Network Methods

When used as the input representation of a learning system,
word and phrase embeddings have been shown to boost per-
formance in several natural language processing (NLP) tasks
[18], [19]. In composing individual word vectors into sentence
vectors, deep average networks (DAN) are commonly used to
average the word vectors in a given text [29]–[31]. However, this
approach loses word order information, making it practically
equivalent to the concept of BoW.

Other NN models for polarity classification include CNN
[22], [23], RNN [24], [25], GRU [26] and LSTM [27], [28].
In a basic CNN, a local n-gram tensor is convolved with a
set of kernels. To minimize computational complexity, CNN
uses max pooling which reduces the size of the output from
the previous convolutional layer. RNN is a powerful method
for processing text, string, and sequential data. The RNN archi-
tecture considers the information of previous words in a very
sophisticated method which allows for better representation of
texts with sequence order information. However, simple RNNs
pose training challenges due to vanishing and exploding gradient
problems. To address this issue, LSTM and GRU use multiple
gates to carefully regulate the amount of information allowed
into each hidden state. They preserve long term dependency
more effectively than basic RNNs.

These deep NN models can be further extended by stacking
multiple layers. One intuitive way is to use a hierarchical CNN-
LSTM model [39]. This model successively stacks a CNN layer,
a max-pooling layer and an LSTM layer, so that the model can
consider both local n-gram features and long dependencies. It
does not apply region divisions, where LSTM is still performed
on the sequence of the feature maps output by the max-pooling
layer.

D. Structured Representation Models

Conventional NN models only consider word order or local
dependency, rather than any structure information of text. To
learn structured representation, the tree-structured LSTM model
[40], [41] and recursive auto-encoder [42], [43] are proposed to
apply pre-specified parsing trees to build structured representa-
tions via a recursive RNN or LSTM units. However, such models
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Fig. 2. System architecture of the proposed regional CNN-LSTM model.

could not avoid the bias problem, since the words that contribute
to the prediction but lie in the leaf node at the bottom of the parse
tree will be less emphasized.

To highlight the keywords in prediction, a self-attention mech-
anism [44], [45] was used to extract domain-related information.
It can automatically learn the contribution of each hidden state,
and assign more weight to high contributors.

III. TREE-STRUCTURED REGIONAL CNN-LSTM MODEL

The procedure for using a tree-structured regional CNN-
LSTM model for VA prediction consists of two parts: the
regional CNN-LSTM model and a regional division strategy.
Instead of using the whole text as input, the regional CNN-LSTM
model divides each input text into several regions to extract
both local n-gram features within regions and long-distance
dependencies between regions. To better divide regions, a tree-
structured region division strategy is introduced such that the
linguistic structures at different tree depths (regions) can be
incorporated into the prediction process. The following subsec-
tions provide a detailed explanation of the architecture of the
regional CNN-LSTM model and regional division strategy.

A. Regional CNN-LSTM Model

Fig. 2 shows the overall framework of the proposed regional
CNN-LSTM model. First, the word vectors of the vocabulary
words are trained from a large corpus using the word vector
learning toolkit. For each given text, the regional CNN model
uses a part of the given text as a region to divide the text
into R regions, i.e., r1, . . . , ri, rj , rk, . . . , rR. In each region,
useful affective features can be extracted once the word vectors
sequentially pass through a convolutional layer and max pooling

layer. Such local (regional) features are then sequentially inte-
grated across regions using LSTM to build a text vector for VA
prediction.

1) Convolutional Layer: In each region, a convolutional
layer is first used to extract local n-gram features. All word em-
beddings are stacked in a region matrix M ∈ R

d×|V |, where |V|
is the vocabulary size of a region, and d is the dimensionality of
the word vectors. For example, in Fig. 1, the word vectors in the
regions ri = {wri

1 , wri
2 , . . . , wri

I }, rj = {wrj
1 , w

rj
2 , . . . , w

rj
J }

and rk = {wrk
1 , wrk

2 , . . . , wrk
K } are combined to form the region

matrices xri, xrj , and xrk. In each region, we use L convolu-
tional kernels to learn local n-gram features. In a window of ω
words xn:n+ω−1, a kernel Fl (1 ≤ l ≤ L) generates the feature
map yln as follows,

yln = f(W l ◦ xn:n+ω−1 + bl) (5)

where ◦ is a convolutional operator, bl denotes the weight
matrix and bias associated with the kernel Fl, ω is the length
of the kernel, d is the dimension of the word vector, and f is
the ReLU function. When a kernel gradually traverses from
x1:ω−1 to xN+ω−1:N , we get the output feature maps yl =
yl1, y

l
2, . . . , y

l
N−ω+1 of kernel Fl. Given varying text lengths

in the regions, yl may have different dimensions for different
texts. Therefore, we define the maximum length of the CNN
input in regions as the dimension N. If the input length is shorter
than N, then zero vectors will be appended. As shown in Fig. 2,
each convolutional layer takes as its input a region vector to
L different kernels with different colors, and produces feature
maps Y = {y1,y2 . . . ,yL} ∈ R

(N−ω+1)×L.
2) Max-Pooling Layer: Max-pooling subsamples the output

of the convolutional layer. The most common way to perform
pooling is to apply a max operation with a pooling size s to
the result of each kernel. The max-pooling layer can extract
the local dependency within different regions to keep the most
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salient information. The obtained region matrix is flattened to a
vector and then fed to the sequential layer.

3) Sequential Layer: To capture long-distance dependencies
across regions, the sequential layer sequentially integrates each
region vector into a text vector. Here, LSTM is introduced in the
sequential layer for vector composition. After the LSTM cell
successively traverses through all regions, the last hidden state
of the sequential layer is regarded as the text representation t for
VA prediction.

4) Linear Decoder: Since the values in both the valence
and arousal dimensions are continuous, the VA prediction task
requires a regression. Instead of using a softmax classifier, a
linear activation function (also known as a linear decoder) is
used in the output layer, defined as,

valt = Wvalt+ bval

arot = Warot+ baro (6)

where t is the text vector learned from the sequential layer, valt
and arot is the degree of valence and arousal of the target text.
W and b respectively denote the weight and bias associated with
the linear decoder.

The regional CNN-LSTM model is trained by minimizing
the mean squared error between the predicted y and actual y.
Given a training set of text matrix X = {x(1), x(2), . . . , x(m)},
and their VA ratings set y = {y(1), y(2), . . . , y(m)}, the loss
function is defined as

L(X,y) =
1

2m

m
∑

i=1

∥

∥

∥
h(x(i))− y(i)

∥

∥

∥

2

(7)

In the training phase, a back propagation (BP) algorithm with
Adam optimizer is used to learn the model parameters. Details
of the BP algorithm can be found in [46].

B. Region Division Strategy

In the regional CNN-LSTM model, region size will determine
the range of the convolutional layer to extract key component
features. Therefore, a reasonable regional division strategy will
ultimately affect prediction performance. This study proposes
two regional division strategy: sequential and tree-structured

approaches.
1) Sequential Division Strategy: One simple way is to take a

sequential approach, which considers each individual sentence
in the text as a region. For instance, if a given text contains three
sentences, they will be assigned to three regions. In each region,
an individual convolutional and max-pooling layer is applied
to extract the most important information, which is then input
into a global sequential layer containing three LSTM recurrent
units. Although this strategy is easy to implement, it will be very
imbalanced given a large sentence length margin. Since both a
very long and very short sentence will be assigned to a single
region, the key component features in the long sentence will be
more difficult to extract.

2) Tree-Structured Division Strategy: An alternative way is
to parse the given text as a tree-structured topology, which better
represents text meaning than the sequential approach. Based on
the parse tree, a given text can be divided into regions according

to different tree depths. Such regions could represent linguistic
expression function blocks, such as words, phrases, clauses,
sentences, or even an entire paragraph.

Fig. 3 uses a set of diagrams to explain the idea of dividing
regions based on a parser tree. Taking nodes at different depths of
the parser tree as the regional roots, the associated child nodes are
grouped into one region. The proposed method can benefit from
this division strategy to discover different linguistic structures
at different levels of granularity. For instance, in Fig. 3(a), the
rectangle marked with the dotted lines represents the range of a
region. By taking the node (depth = 1) as the root, the regional
CNN-LSTM model groups the whole text as a single region, and
is performed similar to a single CNN model with an LSTM unit.
As shown in Figs. 3(b) and Fig. 3(c), the nodes (respectively
depth = 2 and depth = 3) are selected as the regional roots.
Their child nodes are grouped to form regions which will be
then input into the convolutional layer. In addition, as the depth
increases, the number of tokens decreases in each region. Each
region can thus capture finer linguistic structures (e.g., clauses
and phrases). As shown in Fig. 3(d), when the maximum depth
of the tree was selected as the division criterion, every node will
be considered as the regional root. As a result, each region will
contain only a single word. The convolution that operates on one
word will become a non-linear transform for the word vector,
which is then input into the LSTM layer. In this circumstance,
the regional CNN-LSTM model performs similarly to an LSTM
model.

Compared to the sequential approach that takes individual
sentences as regions, the tree-structured approach can dynami-
cally change the model structure to extract key components at
different depths according to the tree-structured topology.

IV. EXPERIMENTS

This section first investigates the effect of the regional
division on different tree depths of the tree-structured regional
CNN-LSTM model on prediction performance. We then
evaluate the performance of the proposed model against
lexicon-, regression- , and conventional NN-based methods.

A. Dataset

This experiment used four affective corpora:
� Stanford Sentiment Treebank1 (SST) [42] contains 8,544

training texts, 2,210 test texts, and 1,101 validation texts.
Each text is rated with a single dimension (valence) in the
range of (0, 1). Although in most cases the SST is used for
classification tasks, it can still be used in regression tasks
if the user-annotated sentiment intensity is used.

� EmoBank2 [47], [48] corpus comprises 10,240 sentences
with VA annotation also using the SAM annotation scheme
[17]. Each sentence in EmoBank was annotated according
to both the emotion expressed by the writer, and the emo-
tion perceived by the reader.

1[Online]. Available: https://nlp.stanford.edu/sentiment/treebank.html
2[Online]. Available: https://github.com/JULIELab/EmoBank

https:&sol;&sol;nlp.stanford.edu&sol;sentiment&sol;treebank.html
https:&sol;&sol;github.com&sol;JULIELab&sol;EmoBank
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Fig. 3. Example of region division according to the different depths of a tree-structured representation.

� The Valence and Arousal Facebook Posts (FB) [49]
contains 2895 social media posts rated with valence and
arousal values by two psychologically-trained annotators

� Chinese Valence-Arousal Texts3 (CVAT) [50] consists of
2,009 texts collected from social forums, manually rated
with both valence and arousal dimensions in the range of
(1, 9) also using SAM.

EmoBank (both reader and writer), FB and CVAT were ran-
domly split into training, development and test sets using a 7:2:1
ratio for 5-fold cross-validation. The word vectors for English
and Chinese were respectively trained using the 840B Common
Crawl and Chinese wiki dumps4 (zhwiki) datasets trained by
GloVe toolkit.5 The dimensionality for both word vectors is 300.

B. Experimental Settings

The tree-structured regional CNN-LSTM model was imple-
mented for comparison with several existing methods, such as
lexicon-, regression- and conventional NN-based methods. The
implementation details for each method are described as follows.
� wAM and wGM: Weighted arithmetic mean (wAM) and

weighted geometric mean (wGM) are both lexicon-based
methods [10]. In these methods, the valence/arousal values
of a given text are estimated via the weighted mean of the
affective values of tokens in the text.

� AVR and MVR: Average values regression (AVR) and
maximum values regression (MVR) extract the weighted
and maximum valence/arousal value of constituent words
as features to train regression models [36].

� CNN, RNN, and LSTM: Three conventional NN methods
are introduced for comparison: CNN [22], [23], RNN [24],
[25] and LSTM [27], [40]. To enhance the performance of
the GRU and LSTM layers, we introduce a bi-directional
strategy [51]. At each time step, the hidden state of the

3[Online]. Available: http://nlp.innobic.yzu.edu.tw/resources/cvat.html
4[Online]. Available: https://dumps.wikimedia.org/
5[Online]. Available: https://nlp.stanford.edu/projects/glove/

bidirectional LSTM is the concatenation of the forward
and backward hidden states to capture both past and future
information.

� Attention LSTM: The self-attention mechanism is usually
used to improve the performance of LSTM or GRU by
automatically learning the contribution of each hidden
state, and assigning more weight to high contributors [44],
[45].

� Tree-Structured LSTM: Tree-LSTM [40], [41] uses pre-
specified parsing trees to build structured representations
via a recursive LSTM unit. This model is expected to
capture the structured information which affects the sub-
sequent prediction.

� CNN-LSTM: This method successively stacks a CNN
layer, a max-pooling layer and an LSTM layer to form
a CNN-LSTM model [39]. This model does not divide
regions, so that LSTM is performed on the sequence of the
feature maps output by the max-pooling layer.

� Two-Layer Attention LSTM (HAN): Hierarchical Atten-
tion Networks (HAN) implement two LSTM layers with
attention mechanisms applied at the word- and sentence-
level, to pay more or less attention to individual words and
sentences when composing final text representation [45].
The model takes each sentence as a region.

� Regional CNN-LSTM: The proposed method is imple-
mented using the sequential and tree-structured division
strategies presented in Section III.B. The sequential ap-
proach, denoted as Regional CNN-LSTM (Sequential),
considers each individual sentence in the text as a region,
similar to Two-layer Attention LSTM (HAN). The tree-
structured approach, denoted as Regional CNN-LSTM
(Tree), takes nodes at different depths of the parse tree
as the division criterion.

In the above methods, the valence-arousal ratings of English
and Chinese words were respectively taken from the Extended
ANEW [52] and Chinese Valence-Arousal Words (CVAW)
lexicons [50]. For the NN models, we introduce spatial dropout

http:&sol;&sol;nlp.innobic.yzu.edu.tw&sol;resources&sol;cvat.html
https:&sol;&sol;dumps.wikimedia.org&sol;
https:&sol;&sol;nlp.stanford.edu&sol;projects&sol;glove&sol;
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TABLE I
HYPER-PARAMETERS USED IN EACH CLASSIFIERS

(in CNN) and recurrent dropout (in LSTM) as a means of
regularization to prevent overfitting problems. The dropout rate
was set to 0.25. All NN methods are implemented using the
Gensim,6 TensorFlow,7 and Keras8 toolkits, with default param-
eter settings, as summarized in Table I.

C. Evaluation Metrics

Performance was evaluated using the Pearson correlation co-
efficient (r) and mean absolute error (MAE), defined as follows,
� Pearson correlation coefficient (r)

r =
1

n− 1

n
∑

i=1

(

ai − µA

σA

)(

pi − µP

σA

)

(8)

� Mean absolute error (MAE)

MAE =
1

n

n
∑

i=1

|ai − pi| (9)

where ai ∈ A and pi ∈ P respectively denote the i-th
actual value and predicted value, n is the number of test
samples, µA and σA represent the mean value and the
standard deviation of A, while µP and σP represent the
mean value and the standard deviation of P. The MAE re-
sults reflect the difference between the predicted values of
sentiment intensities and the corresponding manually rated
actual values in the four corpora. The Pearson correlation
coefficient is a measure of the linear correlation between
the actual value and the predicted value. A higher r and a
lower MAE value indicate better prediction performance.
A Whitney-Mann u-test was used to determine whether the
performance difference was statistically significant.

D. Regional Division Selection

As previously described, nodes at different depths of the
parse tree are used as the criterion for regional division. A
reasonable division strategy will ultimately improve prediction
performance. The optimal settings of the division depth were
determined using the development set of all VA datasets. Fig. 4
and 5 respectively show the prediction performance, including
MAE and r, against different division depth settings using the

6[Online]. Available: http://radimrehurek.com/gensim/
7[Online]. Available: http://www.tensorflow.org/
8[Online]. Available: https://keras.io/

TABLE II
STATISTICAL RESULTS OF PARSER TREE AND OPTIMAL

DEPTHS ON DIFFERENT DATASETS

TABLE III
RESULTS OF TREE-STRUCTURED REGIONAL CNN-LSTM WITH OPTIMAL

PARAMETERS ON THE DEVELOPMENT SET AND TEST

SET OF DIFFERENT DATASETS

tree-structured regional CNN-LSTM model for EmoBank (both
writer and reader), FB, CVAT and SST. The results presented
in Fig. 4(a) show that the optimal depth of the regional division
was at the fourth layer of the parse tree on EmoBank (reader) for
both valence and arousal. Once the optimal value is exceeded,
performance gradually decreases because the regions shrink in
size to eventually contain only a single word, indicating that
properly controlling the regional division contributes to the final
affective rating prediction.

In addition, the depth of regional division in the parse tree
is closely related to the length of the text. Table II summa-
rizes the maximum and mean numbers of tokens, and also the
maximum and mean depth for regional division of the parse
trees. As indicated, the optimal depth of division leaves each
region containing 4 or 5 words, implying phrases and clauses
which would provide more affective and structural information
conducive to the final prediction. The detailed analysis of the
structure in region is presented in following section.

Once the optimal settings of regional division depth were
obtained using the development set of SST, EmoBank (both
reader and writer), FB and CVAT, they are respectively used for
prediction with the associated test sets. Table III shows the per-
formance of the proposed tree-structured regional CNN-LSTM
with the optimal division depth on the development set (Figs. 4
and 5) and the test set of SST, EmoBank (both reader and writer),
FB and CVAT, showing the performance on the test set was very
close to that on the development set for all datasets.

http:&sol;&sol;radimrehurek.com&sol;gensim&sol;
http:&sol;&sol;www.tensorflow.org&sol;
https:&sol;&sol;keras.io&sol;
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Fig. 4. Region division selection for the tree-structured regional CNN-LSTM model.

Fig. 5. Regional Division Selection for the tree-structured regional CNN-
LSTM model on SST.

TABLE IV
COMPARATIVE RESULTS OF DIFFERENT METHODS IN SST

∗Regional CNN-LSTM (Tree) vs. Two-layer Attention LSTM (HAN) differ signifi-

cantly (p < 0.05).

E. Comparative Results

Tables V and VI respectively present the comparative results
of the regional CNN-LSTM against several methods for VA
prediction of texts in both the English and Chinese corpora.
For the lexicon-based methods, wGM outperformed wAM,
which is consistent with the results presented in [10]. Instead
of using the VA ratings of words to directly measure those
of texts, the regression-based methods learned the correlations
between the VA ratings of words and texts, thus yielding better
performance. Introducing the word embedding and deep learn-
ing techniques dramatically improved the performance of NN-
based methods (except for RNN). In the conventional NN model,
LSTM outperforms CNN and RNN due to its ability to represent
a text with sequence order information and long-distance de-
pendencies. By introducing a self-attention mechanism or tree-
structure information, both Attention LSTM and Tree-LSTM
outperformed the LSTM model. For the two-layer architecture,
Two-layer Attention LSTM (HAN) outperformed CNN-LSTM
and its results were similar to those of Regional CNN-LSTM
(Sequential) because both Two-layer Attention LSTM (HAN)
and Regional CNN-LSTM (Sequential) use each sentence as
a region. The proposed Regional CNN-LSTM (Tree) outper-
formed Two-layer Attention LSTM (HAN) with a statistically
significant performance difference (p < 0.05). This indicates
that incorporating the structural information at different tree
depths through region division can further improve prediction
performance.

Another observation is that the Pearson correlation coeffi-
cient of prediction in arousal is lower than that for the va-
lence prediction, indicating that arousal is more difficult to
predict.
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TABLE V
COMPARATIVE RESULTS OF DIFFERENT METHODS IN DIFFERENT CORPORA WITH VALENCE RATINGS

∗Regional CNN-LSTM (Tree) vs. Two-layer Attention LSTM (HAN) differ significantly (p < 0.05).

TABLE VI
COMPARATIVE RESULTS OF DIFFERENT METHODS IN DIFFERENT CORPORA WITH AROUSAL RATINGS

∗Regional CNN-LSTM (Tree) vs. Two-layer Attention LSTM (HAN) differ significantly (p < 0.05)

TABLE VII
COMPARISON OF THE REGIONAL STRUCTURE AT DIFFERENT PARSE TREE DEPTHS

F. Structured Analysis

To investigate the effect of regional division in the tree-
structured regional CNN-LSTM model, we summarized some
interesting structures discovered by regional division. As shown
in Table VII, much more successful, an interesting look, tough

to watch and a fantastic movie are important and task-relevant

phrases for affective rating prediction. It is also observed that
region length divided using parse tree is flexible.

Based on the explicit structure annotation provided by the
parser, the regional division strategy tends to discover interesting
and task-relevant phrases. Table VIII lists more examples of
different types found by regional division. With the predefined
structures, the obtained noun and prepositional phrases, are
usually expressive, task-relevant, and longer than verb phrases.



590 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

TABLE VIII
REGIONAL DIVISION EXAMPLES IN THE STRUCTURED

REGIONAL CNN-LSTM MODEL

TABLE IX
STATISTICS OF REGIONAL DIVISION IN THE TEST SET OF EACH CORPUS

In addition to grammatical phrases, the proposed regional divi-
sion strategy can also detect some special phrases and interesting
clauses, including both attributive and adverbial clauses.

In addition, the comparative results in Tables V and VI
show that the tree-structured regional CNN-LSTM model out-
performed other structured models, indicating that the divided
structure may be more task-relevant and advantageous than those
obtained by self-attention or parser tree composition.

Table IX presents the statistics of the structures discovered
by regional division, including the mean number of regions and
tokens per phrase. The mean number of tokens in each region
is stable across different datasets, proving the observation that
regions with 4 or 5 words allow for the discovery of task-relevant
structures and better sentence representations for dimensional
sentiment analysis.

V. CONCLUSION

This study presents a tree-structured regional CNN-LSTM
model to predict the VA ratings of texts. The proposed model can
capture both local (regional) information within sentences and
long-distance dependencies across regions. To further investi-
gate the implicit structures, we propose a regional division strat-
egy to identify regions at different depths of a predefined parser

tree so that the structural information can be further incorporated
to improve prediction performance. Experimental results show
that the proposed method outperforms regression-, conventional
NN-based and structured methods from previous studies. In
addition, the proposed model can discover task-relevant and
advantageous regions, which are linguistic grammar blocks,
such as phrases and clauses.

Future work will attempt to apply a more intelligent method to
discover linguistic regions by using reinforcement learning. We
will also generalize the idea of regional division and structure
discovery to other tasks and domains.
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