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The performance of computationally inexpensive model selection criteria in the context of tree-
structured subgroup analysis is investigated. It is shown through simulation that no single model se-
lection criterion exhibits a uniformly superior performance over a wide range of scenarios. Therefore,
a two-stage approach for model selection is proposed and shown to perform satisfactorily. Applied ex-
ample of subgroup analysis is presented. Problems associated with tree-structured subgroup analysis
are discussed and practical solutions are suggested.
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1. Introduction

Subgroup analysis refers to analysis that is aimed at uncovering
possible variation in treatment effect in different patient sub-
groups such as male/female, young/old etc. The question to be
answered by this type of analysis is—for whom does treatment
work best? There are varying views regarding the conduct of
subgroup analysis (Bulpitt 1988, Gail and Simon 1985, Yusuf
et al. 1991). However, in the following, we will restrict ourselves
to exploratory subgroup analysis.

Ciampi, Negassa and Lou (1995) first presented tree-
structured subgroup analysis using the RECursive Partition and
Amalgamation (RECPAM) algorithm. The general goal of tree-
structured subgroup analysis is to partition patients into groups
on the basis of similarity of their response to treatment. The
partitioning is based on baseline characteristics such as patient
demographics and clinical measurements. In the original pre-

sentation by Ciampi, Negassa and Lou (1995), it was assumed
that the hazard of patients receiving the new treatment is propor-
tional to the hazard of those receiving the standard treatment.
Under this setup, the parameter of interest is the coefficient of
the Cox proportional hazards model (Cox 1972) associated with
treatment. The final tree structure, selected on the basis of a spe-
cific model selection criterion, provides treatment effect within
each terminal node, i.e., subgroup.

Subgroup tree construction in RECPAM is not based on a for-
mal test of significance of interaction effect between treatment
and covariates. Just as in tree-structured analysis for prognos-
tic classification, it is based on a maximally selected statistic
as described by various authors including Zhang and Singer
(1999), Ciampi et al. (1991), Ciampi, Negassa and Lou (1995),
LeBlanc and Crowley (1992, 1993), Davis and Anderson (1989),
and Segal (1988), i.e., regardless of statistical significance. In the
case of prognostic classification, the maximally selected statistic
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compares equality of survival experience between the resulting
partitions. In contrast, in the case of subgroup analysis, the max-
imally selected statistic compares whether the treatment effect is
the same across the resulting partitions, i.e., subgroups (Ciampi,
Negassa and Lou 1995). In other words, it is based on an op-
timal value of a criterion statistic for assessing heterogeneity
of treatment effect between the resulting subgroups. Nonethe-
less, a formal test of statistical significance of this heterogeneity
would be useful to guard against spurious findings of variation
in treatment effect.

In this paper, we will investigate model selection in tree-
structured subgroup analysis based on RECPAM. Section 2 deals
with performance indicators, and design of simulation. Results
of the simulation are presented in Section 3, and an applica-
tion example is presented in Section 4. Finally, in Section 5, we
discuss the implications of our findings.

2. Subgroup analysis tree construction

The observations are assumed to be of the form:

(ti , δi , xi , zi ), i = 1, . . . , N

where x denotes treatment, t time-to-event of interest, δ cen-
soring indicator, and z vector of covariates—potential effect
modifiers. The aim of this analysis is to identify, in terms of
z, subgroups across which treatment effect varies substantially.

The split criterion or test statistic at a node, i.e., a subset of the
entire data that can be partitioned, is the partial likelihood ratio
statistic (LRS) based on the Cox partial likelihood (Cox 1972)
comparing the model:

h(t, x, Q(z)) = exp {(γ0x)[1 − Q(z)] + (γ1x)Q(z)}h(t/Q(z))

(2.1)

with the simple model:

h(t, x, Q(z)) = exp {γ x}h(t/Q(z)) (2.2)

where Q(z) is indicator of response to a simple question (i.e.,
requiring a yes/no response) concerning the covariate z. For in-
stance, the question could be “ Is z < c?” for a continuous
covariate z, with Q(z) = 1 assigned to a “yes” response. Ac-
cordingly, h(t/Q(z)) is the subgroup specific baseline hazard
rate; subgroups being defined by Q(z).

In equation (2.1), γ0 and γ1 are regression coefficients of treat-
ment within each subgroup as defined by Q(z). In contrast, γ in
equation (2.2) is an overall regression coefficient of treatment
under the assumption of homogeneity. Model (2.2) assumes that
the effect of x is the same in the resulting sister nodes, i.e., nodes
descending from the same parent node. Notice that both models,
(2.1) and (2.2), take into account the potential prognostic effect
of Q(z) through allowing the baseline hazard to vary across the
resulting subgroups, i.e., through h(t/Q(z)). Thus, the partial
LRS only measures the amount of information that Q(z) carries
about the variation of treatment effect.

It is assumed that the underlying model, generating the data,
is a tree structure given by:

h(t, x, z) = exp {(γ1x)I1(z) + (γ2x)I2(z)

+ · · · + (γpx)Ip(z)}hi (t) (2.3)

where Ii (z) is an indicator for the i th terminal node, i.e., a node
that cannot be split any further, with a baseline hazard hi (t).
Our interest is in the regression coefficient of log-hazard rate on
treatment, i.e., γi , as derived from the Cox proportional hazards
model restricted to the i th subgroup, i = 1, . . . , p. Accordingly,
equation (2.3) simplifies to:

h(t, x, z) = exp(γi x)hi (t); i = 1, . . . , p (2.4)

The LRS as a split criterion is computationally expensive. In
the case of prognostic classification, we have implemented a
closed form estimator at the tree growing stage in order to avoid
iterations (Negassa et al. 2000). The same closed from estima-
tor was employed in enhancing the computational efficiency of
subgroup analysis in RECPAM.

2.1. Minimally biased tree selection criteria

Depending on the stopping rule employed, the largest tree could
become excessively large to lend itself to a meaningful inter-
pretation. Moreover, the largest tree is prone to overfit bias,
i.e., it usually contains spurious splits. In order to deal with
these problems, RECPAM has a pruning algorithm similar to
Breiman et al.’s CART (1984). Pruning is the process of gen-
erating a sequence of nested sub-trees; starting with the largest
tree by sequentially closing sister nodes, i.e., nodes descending
from the same parent node, and ending with the root node. Once
the sequence of nested sub-trees is generated, we need to select
the minimally biased sub-tree from this sequence. Currently,
two general approaches are used for selecting the minimally bi-
ased tree: (i) computationally inexpensive criteria, such as, AIC
(Akaiki 1974), and (ii) computationally intensive, such as, cross-
validation. LeBlanc and Crowley (1993) compared some of the
computationally intensive approaches. Negassa et al. (2000)
reported on the performance of computationally inexpensive
model selection approaches in the context of prognostic clas-
sification. However, the performance of these computationally
inexpensive approaches remains unknown in the case of sub-
group analysis.

In this paper, we report on the performance of four model
selection approaches in the context of tree-structured subgroup
analysis: (i) cross-validation (CV) and (ii) the 1 Standard Er-
ror (1SE) rule as described by Breiman et al. (1984), (iii) the
minimum Akaike Information Criterion (AIC) (Akaike, 1974),
and (iv) the elbow approach as described by Ciampi, Negassa
and Lou (1995). The elbow approach is equivalent to the tree
selection rule proposed by Segal (1988). It consists of choosing
a sub-tree in the pruning sequence corresponding to a point be-
yond which the measure of adequacy starts to change sharply.
Ciampi, Negassa and Lou (1995) implemented this approach
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using AIC as an adequacy measure. The intent is to eliminate
residual overfitting, i.e., bias that remains after applying the min-
imum AIC criterion. Information loss (IL) defined as the LRS
comparing a sub-tree with the largest tree in the pruning se-
quence (Ciampi et al. 1991) is another measure of adequacy. IL
is a measure of the amount of information lost by dropping part
of the largest tree. We think that IL would provide a better graph-
ical means of determining the minimally biased tree because it
changes monotonically with the pruning sequence.

We have previously formalized the “sharp change” in order
to minimize the subjectivity associated with the elbow approach
(Negassa et al., 2000). Specifically, we employed consecutive
differences in IL (i.e., ILk+1 − ILk) and their ratios [i.e., (ILk+1

− ILk )/ (ILk − ILk−1)], where the subscript k indexes sub-trees
in the pruning sequence, as a means of identifying the “sharp
change.” We propose choosing the sub-tree in the pruning se-
quence that corresponds to the very first point where the local
maximum of the ratio of consecutive differences (RCD) coin-
cides with a “non-trivial change” in IL. Based on limited sen-
sitivity analysis, we selected a minimum of 5 as the cut-off for
“non-trivial change” in IL (Negassa et al., 2000). RCD is anal-
ogous to the criterion proposed by Krzanowski and Lai (1988)
for determining the number of groups in a data set using sum of
squares clustering.

2.2. Evaluation of the performance of the various tree
selection criteria: Correct recovery, optimism and
relative inefficiency

We employed the following criteria for evaluating performance:

(i) The proportion of correct recovery of the underlying struc-
ture, i.e., the “true” data- generating tree. This entails recov-
ering the correct partitioning of the predictor space based
on the identification of the terminal nodes of the “true” tree.

(ii) Optimism and relative inefficiency; to be outlined below.

As described earlier, pruning produces a sequence of nested
sub-trees, i.e., nested models. In RECPAM, the adequacy of the
kth sub-tree in the pruning sequence Tk is measured by the ob-
served information content I Ĉ(Tk)—a measure of the amount
of information contained in Tk regarding treatment effect hetero-
geneity. It is computed as the partial LRS comparing a sub-tree
Tk with the root node or the null model. Thus, I Ĉ(Tk) always
increases with tree size, leading to overfit bias.

Following the outline of Efron (1983), we introduced the no-
tion of optimism in evaluating performance. We define opti-
mism as the difference between the observed information con-
tent of the largest tree T0; one in which splitting terminates
only when observations within a node are sufficiently similar
or a node contains small number of observations, and the in-
formation content of the “true” underlying structure Ttrue, i.e.,
o p̂ = I Ĉ(T0) − I C(Ttrue). It is a random variable with expec-
tation ω0. The quantity ω0 is the average optimism under the
knowledge of the correct model. We also introduce I Ĉ(Tsel) as
the observed information content of Tsel , i.e., a sub-tree selected

as minimally biased from the pruning sequence by a specific
model selection criterion such as minimum AIC. Likewise the
corresponding expected optimism, i.e., the average optimism un-
der applying a given model selection criterion, ˆωsel is obtained
as E[o p̂sel = I Ĉ(T0)− I Ĉ(Tsel)]. The discrepancy between ω̂sel

and ω0 is the residual bias associated with that specific model
selection criterion.

If a model selection criterion performs well then the infor-
mation content of a tree selected by employing such a crite-
rion will be a good estimator of the information content of
the “true” underlying structure. Therefore, mean square error,
MSE = E[I Ĉ(Tsel)− I C(Ttrue)]2, would be an appropriate crite-
rion to assess how well, on average, I Ĉ(Tsel) estimates I C(Ttrue).
A convenient overall summary of performance based on MSE
is the relative inefficiency (REL) index (Efron 1983). REL is a
measure of performance of model selection criterion relative to
two scenarios: (i) selecting the correct tree—best scenario and
(ii) selecting the largest tree—worst scenario:

REL = MSE − MSEic

MSEzero − MSEic
(2.5)

where MSEzero is the mean square error of I Ĉ(T0) (i.e., obtained
under the assumption that ω0 = 0) and MSEic is the mean
square error of the “ideal constant” estimator, ICic = IC(T0) −
ω0

∼= I C(Ttrue). These are the “worst case” and the “best case”
scenarios, respectively, against which performance is assessed.
Large REL is indicative of poor performance.

2.3. Design of simulation

A total of 600 data sets were generated, with 150 replicates (each
with a different random number seed) for each of the four com-
binations of censoring levels (0 or 50%) and presence/absence
of underlying structure. The sample size was fixed at 600.

Data for each individual consisted of survival time, an in-
dicator of censoring, a binary treatment indicator variable and
three relevant covariates according to which treatment effect is
assumed to vary: one continuous variable, one binary indicator
variable and one ordinal variable with five levels. In addition, an
individual also has three nuisance covariates (i.e., related to nei-
ther treatment nor survival experience): one dichotomous, one
ordinal, and one continuous.

Survival times were generated from the exponential distribu-
tion. In addition to a complete survival time t , a censoring time
c from the same distribution as the survival time was gener-
ated. If λT (x) and λC are the hazards for the event time, con-
ditional on treatment, and censoring time distributions, respec-
tively, then the proportion censored in the i th leaf is given by
Pi = 1 − Prob(t < c) = λiC/λiC + λiT (x). We simulated the
censored survival time for the kth individual (k = 1, 2, . . . , ni )
in the i th leaf by generating two exponential deviates, Tik with
hazard λiT (x) and Cik with hazard λiC . The response variables
for the kth individual are, therefore, the pair (Yik, δik), where
Yik = min(Tik, Cik) and δik = 1 if Tik = Yik , and 0 otherwise.
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Fig. 1. Simulation Structure: “True” tree

The simulation is designed to produce three patient sub-
groups: (1) those for whom the new treatment is beneficial (RH
= 0.33), (2) those for whom the new treatment is harmful (RH
= 3.0) and (3) those who do not differentiate between the new
and standard treatment (RH = 1). The “true” structure, used to
generate the data, is shown in Fig. 1.

3. Results

3.1. Comparison of the various model selection criteria

When growing a tree, we employed a stopping rule of a minimum
of 50 subjects per node, a minimum of 25 events per node,
and a minimum of five subjects per treatment category within a
node. As a tree grows larger and larger, leaf-specific treatment
effect estimates become increasingly imprecise; stopping rules
are employed to avoid this problem.

3.1.1. Simulations with underlying structure

Figure 2 shows results for the case where there is an underlying
structure with 0% censoring. The elbow approach exhibited a
slightly better performance than cross-validation in identifying
the correct structure (56% versus 50%, upper panel). On the
other hand, the minimum AIC approach selected structures that
were consistently too large while the 1SE rule trees that were
too small. Correct recovery by these two criteria was less than
20%. With 50% censoring, the elbow approach performed, again
slightly better than cross-validation (38% versus 32% correct
recovery, lower panel).

Table 1 presents performance in terms of bias, mean square er-
ror and relative inefficiency (REL). Table 1, upper panel, shows
that bias associated with cross-validation and the elbow ap-
proach was comparable. In contrast, bias associated with mini-
mum AIC and the 1SE rule was substantial. Considering REL
as an overall measure of performance, the elbow approach gives
the best performance.

3.1.2. Simulations without underlying structure

Under without structure and 0% censoring, the best performance
was given by the 1SE rule, followed by cross-validation (Fig. 3,
upper panel). The elbow approach tended to select trees with
small number of leaves with a mode at the root node, corre-
sponding to the “correct” solution. In contrast, the minimum
AIC criterion provided large trees with very low proportion of
correct recovery. A similar pattern was observed under 50%
censoring (Fig. 3, lower panel).

Consistent with these results, Table 1 (lower panel) indi-
cates best performance by the 1SE rule, then followed by cross-
validation. The negative REL associated with the 1SE rule indi-
cates performance superior to the “ideal constant.”

3.1.3. Two-stage approach

The above results of our simulation study revealed that there was
not a single model selection criterion that was uniformly superior
over the range of scenarios considered. The general trend is:
(i) the elbow approach gives the best performance whenever
there is a structure in the data set, (ii) the 1 SE rule gives the
best performance whenever there is no-structure in the data set,
and (iii) cross-validation is consistently the second best. This
observation suggests a two-stage approach to model selection.
The first stage involves using a relatively conservative selection
criterion to minimize the risk of claiming a structure when there
is none, and the second stage involves, provided there is an
indication of a structure from first stage, using a reasonably
relaxed selection criterion to maximize the chance of identifying
the correct structure when there is one.

Under the without structure scenario, the two-stage approach
provided the best performance when the 1SE rule was applied
at the first stage (see Table 1, end of lower panel). This was to
be expected given the results in the previous section.

In the with structure and 0% censoring scenario (see Table 1,
end of upper panel), when cross-validation is followed by the
elbow approach, the performance of the two-stage approach is
exactly the same as using the elbow approach by itself. Given the
results in Section 3.1.1, this was expected too. In the case of 50%
censoring, this two-stage approach still showed an improvement
in terms of reducing bias but suffered from increased variance.
This was reflected in the larger REL (see Table 1, end of upper
panel) compared to 0% censoring. In contrast, when the 1SE
rule is employed at the first stage, there was an improvement in
terms of bias reduction. This improvement was markedly coun-
terbalanced by large variation. A similar pattern was observed
under 50% censoring.

An intuitive explanation of why the two-stage approach works
better is that the two-stage approach reduces inaccuracy (in terms
of MSE) without compromising too much on bias. This is best
illustrated in Table 1 (upper panel) where the inaccuracy asso-
ciated with the two-stage approach is smaller than that of CV
and its bias is also smaller than or equal to that for the elbow
approach. Moreover, in the case of without structure scenario,
both inaccuracy and bias associated with the two-stage approach
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Fig. 2. Number of leaves by method of tree selection: The true structure has four leaves

are smaller than that of both CV and the elbow approach alone.
In other words, our choice of the two-stage approach is based
on a “minimax strategy”; it avoids large inaccuracy (in terms
of MSE) of CV in the scenario with structure, as well as higher
MSE of the elbow approach when there is no structure (Table 1)
and as such minimizes the large errors. Also in terms of correct
recovery, our experience suggests that CV does correctly reveal
whether there is a structure or not; but tends to prune too much,
while the elbow approach reveals the correct structure, if there

is one, but is not as good as CV at deciding whether there is a
structure (see Figs. 2 and 3). It is this tendency of CV to prune
too much, when there is a structure, contributing to its large in-
accuracy as pruning an informative split impacts tree adequacy
measures substantially as compared to adding/retaining a noise
split.

In view of the above results, we recommend the use of cross-
validation at the first stage. If cross-validation indicates presence
of a structure in the data, i.e., selection of a sub-tree with at least
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Table 1. Bias, mean square error and relative inefficiency by method of model selection

Bias Mean square error (MSE) Relative inefficiency (REL)

Method of model selection 0%* 50% 0% 50% 0% 50%

With structure scenario
CV 7.07 6.91 336.41 264.52 0.4127 0.3145
Elbow 7.85 7.14 296.94 236.83 0.0444 0.2391
Minimum AIC 14.28 15.8 414.31 395.91 0.6392 0.6724
1SE rule 10.85 9.09 483.71 328.60 0.8410 0.4890
Two-stage with CV 7.85 6.78 296.94 251.89 0.0444 0.4167
Two-stage with 1SE 6.85 1.08 373.55 408.49 0.2151 1.8315

Without structure scenario
CV 3.19 2.89 55.91 44.63 0.0571 0.0347
Elbow 6.37 5.33 97.13 77.19 0.1466 0.1161
Minimum AIC 17.04 15.73 330.45 286.44 0.6528 0.6500
1SE rule 0.93 0.91 7.80 9.56 −0.0473 −0.0531
Two-stage with CV 2.61 2.6 43.32 39.40 0.0291 0.0402
Two-stage with 1SE 0.8 1.4 9.0 408.49 0.0001 0.0053

∗Level of censoring.

two leaves, then we recommend employing the elbow rule at the
second stage to determine the optimal tree size. Otherwise, we
recommend stopping at the first stage; concluding absence of
structure, i.e., no treatment by covariate interaction.

4. Application to the veteran administration
lung cancer trial data set

To illustrate our approach, we analyzed data from the Veteran
Administration Lung Cancer Trial (Kalbfleisch and Prentice
1980). The data set consists of 137 subjects, with 6.6% cen-
soring, and eight variables: time-to-event in days, censoring in-
dicator (dead/alive), performance status at randomization, time
from diagnosis to randomization (in months), age (in years),
prior therapy, treatment (standard/new) and histological type of
tumor (squamous, large, small, adenocarcinoma).

In a crude analysis, using Cox proportional hazards
model, the treatment effect was not statistically signifi-
cant [R Ĥ = 1.02, 95%CI(0.71, 1.45), p = 0.93]. Adjustment
for other covariates did not change the result [RĤ =
1.33, 95%C I (0.88, 1.99), p = 0.17]. However, we are inter-
ested in exploring the possibility of a treatment by covariate in-
teraction, searching for subgroups of patients for whom the new
treatment is better than the standard treatment or vice versa.

In growing the tree, we employed a stopping rule of a mini-
mum number of 13 observations per node, a minimum of 7 events
per node (i.e., minimum node size ≈10% and minimum event
size ≈5% of the total sample size) and a minimum of 5 subjects
per treatment category within a node. The largest tree had eight
leaves and cross-validation selected the root node. In contrast,
the elbow rule selected a sub-tree with three terminal nodes. The
patterns of information loss and the ratio of consecutive differ-
ences (RCD) in information loss are shown in Fig. 4. The first

(from right to left) local maximum of RCD is associated with
a moderate change in information loss, 4.69, and corresponds
to a sub-tree with five terminal nodes. However, this change is
below the cut-point of 5 for an important change (Negassa et al.,
2000) and, therefore, it was discarded.

In Fig. 4, the second local maximum of RCD coincided with
the first non-trivial jump of 5.2 in information loss. This cor-
responds to the sub-tree with three terminal nodes. Neverthe-
less, cross-validation suggested absence of structure in the data
set hence our two-stage approach would also lead to the same
conclusion.

For illustration purpose, we considered interpretation of the
tree identified by the elbow rule. The treatment effects and asso-
ciated 95% CIs within each subgroup were [4.11, (1.43, 11.80)],
[1.39, (0.84, 2.30)], and [0.45, (0.13, 1.61)] in subgroups 1, 2
and 3, respectively. The resulting tree is shown in Fig. 5.

We need to be cautious not to over-interpret the results
obtained from this subgroup analysis. This is because these
subgroups are not a priori defined and some of the resulting treat-
ment effect estimates are quite imprecise. We carried out a chi-
square test for heterogeneity of treatment effect (Schmoor, Ulm
and Schumacher 1993) across these three subgroups and found
a statistically significant heterogeneity [χ2

(2) = 6.99, p = 0.03].
However, the fact that the groups are identified a posteriori, in-
duces inflation of type I error rate and interpretation requires
caution.

Even though the above result seems interesting at face value,
it would be more informative to assess the influence of other
prognostic factors within each subgroup (i.e., prognostic factors
that did not appear in the tree-structure). We adjusted treatment
effect for performance status, months from diagnosis and prior
therapy within each subgroup. The adjustment changed only the
magnitude of treatment effect in the first two subgroups (see
Table 2). The change in the regression coefficient of treatment
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Fig. 3. Number of leaves by method of tree selection: No structure, i.e., the true structure consists of the root node

ranged between 5.14–31.37%. Performance status and months
from diagnosis were previously identified as important prognos-
tic factors (Ciampi, Negassa and Lou 1995).

After adjustment, there was not evidence for significant het-
erogeneity [χ2

(2) = 3.75, p = 0.15]. This result illustrates the
importance of taking into account prognostic factors in conduct-
ing subgroup analysis.

5. Discussion

None among the selection criteria evaluated achieves uniform
superiority over the range of scenarios considered in this study.
Our simulation reveals that the two-stage approach where cross-
validation is employed at the first stage, and then is followed by
the elbow approach, performs the best. We believe that the two-

stage strategy offers a sensible compromise between increasing
the chance of identifying the correct structure if there exists one,
and minimizing the risk of claiming one when actually there is
none. In addition, the formalization of the elbow rule by pro-
viding an operational definition of “sharp change” reduces the
subjectivity associated with graphical assessment and enhances
reproducibility of results.

As illustrated by the example, tree-structured subgroup anal-
ysis as implemented in RECPAM (Ciampi, Negassa and Lou
1995) has an important limitation that can be easily corrected.
At the tree-construction step, while searching for the best split,
the effect of other covariates is totally ignored—except for the
covariate on which the splitting is being performed. This may
result in a spurious variation in treatment effect. Therefore, we
suggest that within each resulting subgroup the distributions of
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Table 2. Treatment effect after adjusting for prognostic factors

Leaf (from left to
right in Fig. 5) β̂(SE) p-value RĤ 95% CI

1 0.97 (0.62) 0.116 2.64 (0.79, 8.83)
2 0.41 (0.26) 0.114 1.51 (0.91, 2.52)
3 −0.84 (0.73) 0.247 0.43 (0.10, 1.79)

Fig. 4. Patterns of Information Loss (IL) and Ratio of Consecutive
Differences (RCD): Veteran Administration Lung Cancer Data Set

Fig. 5. Subgroup Analysis: Veteran Administration Lung Cancer Data
Set

important prognostic covariates between treatment categories
should be compared and, if necessary, adjusted for. The extent
of change in the regression coefficient of treatment after adjust-
ment helps assessing the robustness of the resulting structure.

One of the problems in conducting exploratory subgroup anal-
ysis is scarcity of data; negatively impacting the reliability of
effect estimates. In most cases, epidemiological studies and clin-
ical trials are planned with enough power to detect only main
effects of interest. Therefore, data driven subgroups are likely to

be small in size. This may yield wide confidence intervals asso-
ciated with the subgroup specific estimates of treatment effect,
as demonstrated in the case of the veteran administration data.
The second issue concerns selecting the covariates for subgroup
analysis. This would not be a problem if the investigator has an
a priori idea as to how to form these subgroups on the basis
of clinical experience (this is referred to as “proper subgroups”
by Yusuf et al. 1991). In this case, there might not be a need
for tree-structured analysis, since it would suffice to estimate
treatment effect, properly adjusted for potential confounders,
within each subgroup, using standard Cox regression. More-
over, if the investigator has a well-formulated hypothesis with
respect to a heterogeneous treatment effect, then appropriate
statistical power can be ensured at the planning stage. This will
also avoid the aforementioned problem of small terminal-node
sizes. However, specifying subgroups at the design stage is very
rare in practice, and the interest is often in detecting unexpected
interactions. In such instances, the tree-growing algorithm for
subgroup analysis is the appropriate approach and it handles the
selection of variables in an “objective” manner, i.e., by maximiz-
ing split criterion. The third issue is the role of other important
prognostic covariates in the relationship between treatment and
outcome. This can be addressed in the same manner as in the
case of the veteran administration lung cancer data. Once bias as
a possible explanation is ruled out, the structure can be judged
with respect to its clinical plausibility, since a chain of clini-
cal statements define the subgroups. Finally, we would like to
emphasize that substantively interesting findings of subgroup
analysis should be considered as mostly suggestive of the very
hypotheses that should be confirmed in an independent data set.
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