
UC San Diego
UC San Diego Previously Published Works

Title
TreeCluster: Clustering biological sequences using phylogenetic trees.

Permalink
https://escholarship.org/uc/item/1cr5c0zg

Journal
PloS one, 14(8)

ISSN
1932-6203

Authors
Balaban, Metin
Moshiri, Niema
Mai, Uyen
et al.

Publication Date
2019

DOI
10.1371/journal.pone.0221068
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1cr5c0zg
https://escholarship.org/uc/item/1cr5c0zg#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE

TreeCluster: Clustering biological sequences

using phylogenetic trees

Metin BalabanID
1, NiemaMoshiriID

1, Uyen Mai2, Xingfan Jia3, Siavash Mirarab4*

1 Bioinformatics and Systems Biology Graduate Program, UC San Diego, La Jolla, CA 92093, United States
of America, 2Computer Science and Engineering, UC San Diego, La Jolla, CA 92093, United States of

America, 3Department of Mathematics, UC San Diego, La Jolla, CA 92093, United States of America,
4Department of Electrical and Computer Engineering, UC San Diego, La Jolla, CA 92093, United States of

America

* smirarab@ucsd.edu

Abstract

Clustering homologous sequences based on their similarity is a problem that appears in

many bioinformatics applications. The fact that sequences cluster is ultimately the result of

their phylogenetic relationships. Despite this observation and the natural ways in which a

tree can define clusters, most applications of sequence clustering do not use a phylogenetic

tree and instead operate on pairwise sequence distances. Due to advances in large-scale

phylogenetic inference, we argue that tree-based clustering is under-utilized. We define a

family of optimization problems that, given an arbitrary tree, return the minimum number of

clusters such that all clusters adhere to constraints on their heterogeneity. We study three

specific constraints, limiting (1) the diameter of each cluster, (2) the sum of its branch

lengths, or (3) chains of pairwise distances. These three problems can be solved in time that

increases linearly with the size of the tree, and for two of the three criteria, the algorithms

have been known in the theoretical computer scientist literature. We implement these algo-

rithms in a tool called TreeCluster, which we test on three applications: OTU clustering for

microbiome data, HIV transmission clustering, and divide-and-conquer multiple sequence

alignment. We show that, by using tree-based distances, TreeCluster generates more inter-

nally consistent clusters than alternatives and improves the effectiveness of downstream

applications. TreeCluster is available at https://github.com/niemasd/TreeCluster.

Introduction

Homologous molecular sequences across different species or even within the same genome

can show remarkable similarity due to their shared evolutionary history. These similarities

have motivated many applications to first group the elements of a diverse set of sequences into

clusters of set of sequences with high similarity for use in subsequent steps. The precise mean-

ing of clusters depends on the application. For example, when analyzing 16S microbiome data,

the standard pipeline is to use Operational Taxonomic Units (OTUs), which are essentially

clusters of closely related sequences that do not diverge more than a certain threshold [1–3].

Another example is HIV transmission inference, a field in which a dominant approach is to
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cluster HIV sequences from different individuals based on their similarity (again using a

threshold) and to use these clusters as proxies to define clusters of disease transmission [4, 5].

Shared evolutionary histories, which is the origin of similarity among homologous

sequences, can be shown using phylogenetic trees. The phylogenetic tree can be inferred from

sequence data, [6, 7] and recently developed methods can infer approximate maximum-likeli-

hood (ML) phylogenetic trees in sub-quadratic time, enabling them to scale to datasets of even

millions of sequences [8]. Moreover, accurate alignment of datasets with hundreds of thou-

sands of species (a prerequisite to most phylogenetic reconstruction methods) is now possible

using divide-and-conquer methods [9, 10].

Most existing sequence clustering methods use the pairwise distances among sequences as

input but do not take advantage of phylogenetic trees. For example, the widely-used UCLUST

[2] searches for a clustering that minimizes the Hamming distance of sequences to the cluster

centroid while maximizing the Hamming distance between centroids. Several other clustering

methods have been developed for various contexts, such as gene family circumscription [11,

12] and large protein sequence databases [13].

Using phylogenies for clustering has two potential advantages. i) Since phylogenies explic-

itly seek to infer the evolutionary history, phylogeny-based clustering has the potential to not

only reflect evolutionary distances (i.e., branch lengths) but also relationships (i.e., the tree

topology). Recall also that branch lengths in a phylogeny are model-based “corrections” of

sequence distances in a statistically-rigorous way [7, 14], and therefore, may better reflect

divergence between organisms. ii) When inferred using subquadratic algorithms, the tree can

eliminate the need to compute all pairwise distances, which can improve speed and scalability.

Moreover, a phylogeny often has to be inferred for purposes other than clustering and thus

typically is readily available. However, despite these potentials, to our knowledge, no system-

atic method for phylogeny-guided clustering exists. Built for analyzing HIV transmissions,

ClusterPicker [15] clusters sequences based on their distances while using the phylogenetic

tree as a constraint; however, it still uses sequence (not tree) distances and scales cubically with

respect to number of sequences in the worst case.

Given a rooted phylogenetic tree, if the tree is ultrametric (that is, distances of all the leaves

to the root are identical), clustering sequences based on the tree can proceed in an obvious

fashion: the tree can be cut at some distance from the root, thereby partitioning the tree into

clusters (Fig 1A). This approach extends in natural ways to unrooted ultrametric trees by first

rooting the tree at the unique midpoint and proceeding as before. However, inferred phyloge-

netic trees are rarely ultrametric. Different organisms can evolve with different rates of evolu-

tion, and even when the rates are identical (leading to an ultrametric true tree), there is no

guarantee that the inferred trees will be ultrametric. Given a non-ultrametric (and perhaps

unrooted) tree, the best way to cluster sequences is not obvious (Fig 1B).

One way to approach tree-based clustering is to treat it as an optimization problem. We can

define problems of the following form: “find the minimum number of clusters such that some

criteria constrain each cluster.” Interestingly, at least two forms of such optimization problems

have been addressed as early as the 1970s by the theoretical computer science community, in

the context of proving more challenging theorems. The tree partitioning problem is to cut a

tree into the minimum number of subtrees such that the maximum path length between two

nodes in the same subtree [17] or the sum of all edge weights in each subtree [18] is con-

strained by a given threshold. Both problems can be solved exactly using straightforward lin-

ear-time algorithms; however, to our knowledge, these algorithms are mostly ignored by

bioinformaticians.

Here, we argue that a fast and efficient tree-based clustering approach can be beneficial to

several questions in bioinformatics. In this paper, we introduce a family of tree partitioning

TreeCluster: Clustering biological sequences using phylogenetic trees
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problems and describe linear-time solutions for three instances of the problem (two of which

correspond to the aforementioned max and sum problems with known algorithms). We then

show that tree-based clustering can result in improved downstream biological analyses in

three different contexts: defining microbial OTUs, HIV transmission clustering, and divide-

and-conquer multiple sequence alignment.

Materials andmethods

Algorithms

Problem definition. Let T = (V, E) be an unrooted binary tree represented by an undi-

rected acyclic graph with vertices V (each with degree one or three), weighted edges E, and

leafset L � V. We denote the path length between leaves u and v on T with dT (u, v) or simply

d(u, v) when clear by context. The weight of an edge (u, v) (i.e., its branch length) is denoted

by w(u, v).

A clustering of the leaves of the tree T can be defined by cutting a subset of edges C� E.

We define a partition {L1, L2� � �, LN} of L to be an admissible clustering if it can be obtained by

removing some edge set C from E and assigning leaves of each of the resulting connected com-

ponents to a set Li (note: N� |C| + 1).

For a given tree T, let fT : 2
L ! R be a function that maps a subset of the leafset L to a real

number. The purpose of fT is to characterize the diversity of elements at the leaves within each

cluster, and it is often defined as a function of the edge weights in the cluster. For example, it

can be the diameter of a subset: fT = maxu,v2L dT(u, v). We define a family of problems that

seek to minimize the number of clusters while each cluster has to adhere to constraints defined

using fT. More formally:

Definition 1 (Min-cut partitioning problem family). Given a tree T with leafset L and a real

number α, find an admissible partition {L1. . .LN} of L that satisfies 8i, fT� α and has the mini-

mum cardinality (N) among all such clusterings.

A natural way to limit the diversity within a cluster is to constrain all pairwise distances

among members of the cluster to be less than a given threshold:

Definition 2 (Max-diameter min-cut partitioning problem). The Min-cut partitioning problem

(Definition 1) is called Max-diameter min-cut partitioning problem when fT ¼ max
u;v2L

dðu; vÞ.

One potential disadvantage of max diameter min-cut partitioning is its susceptibility to out-

liers: the largest distance within a cluster may not be always an accurate representation of the

Fig 1. When the phylogenetic tree is ultrametric, clustering is trivial. For a threshold α, cut the tree at a

2
height (A). When the tree is not

ultrametric, it is not obvious how to cluster leaves (B). In both cases, a set of cut edges defines a clustering.

https://doi.org/10.1371/journal.pone.0221068.g001
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degree of diversity in the cluster. A natural choice that may confine the effect of outliers is the

following:

Definition 3 (Sum-length min-cut partitioning problem). The Min-cut partitioning problem

is called Sum-length min-cut partitioning problem when fT ¼
X

ðu;vÞ2edgesðTjLÞ

wðu; vÞ where T|L is

the tree T restricted to a subset of leaves L.

We also study a third problem, which we will motivate later:

Definition 4 (Single-linkage min-cut partitioning problem). The Min-cut partitioning prob-

lem is called Single-linkage min-cut partitioning problem when fT ¼ max
S�L
f min
u2S;v2L�S

dðu; vÞg.

Next, we will show linear-time algorithms for the Max-diameter, Sum-length, and Single-

linkage min-cut partitioning problems. All three algorithms use variations of the same greedy

algorithm and two of them (max and sum) have already been described in the theoretical com-

puter science literature. Nevertheless, we reiterate the solutions using consistent terminology

and provide alternative proofs of their correctness.

Linear-time solution for Max-diameter min-cut partitioning. A linear-time solution for

the Max-diameter min-cut partitioning problem was first published by Parley et al. [17] (with

all edge weights equal to 1). We present Algorithm 1, which is similar to the Parley et al. algo-

rithm (but adds branch lengths), and we give an alternative proof. The algorithm operates on

To, which is an arbitrary rooting of T at node o. We denote the subtree rooted at an internal

node u as U. Let the two children of u be called ul and ur, and let the tree rooted by them be Ul

and Ur. We use wl and wr to denote w(u, ul) and w(u, ur), respectively, when clear by context.

Algorithm 1: Linear-time solution for Max-diameter min-cut partitioning
Input: A tree To = (V, E) and a threshold α
1 B(v)  0 for v 2 V
2 for u 2 post order traversal of internal nodes of To do
3 if B(ul) + wl + B(ur) + wr > α then
4 if B(ul) + wl � B(ur) + wr then
5 E  E − {(u, ur)}
6 B(u)  B(ul) + wl
7 else
8 E  E − {(u, ul)}
9 B(u)  B(ur) + wr
10 else
11 B(u)  max(B(ul) + wl, B(ur)+ wr)
12 return Leafsets of every connected component in To

For a cut set C of the tree, we define B(C, u) to be the length of the path from u to the most

distant connected leaf inU in the clustering defined by C. The algorithm uses a bottom-up tra-

versal of the tree and for each node u that we visit, we may decide to cut one of its child edges.

Thus, at each stage, a current clustering Cu is defined; we use B(u) a shorthand for B(Cu, u).

When we arrive at node u, one or more new paths form between the two treesUr andUl. Among

those paths, the longest one has the length B(ul) +wl + B(ur) +wr. If this value exceeds the thresh-

old, we break either (u, ur) or (u, ul), depending on which minimizes B(u). Note that the algo-

rithm always cuts at most one child edge of every node, and thus, B(u) is always well-defined.

Theorem 1. Let A(u) be the minimum number of clusters under U, each with a diameter less

than α (i.e., A(o) is the objective function). Algorithm 1 computes a clustering with the minimum

A(o) for the rooted tree To. In addition, among all possible such clusterings, the algorithm picks

arg minC B(C, o).

Corollary 1. Let C0 be the cut set obtained by running Algorithm 1 on an arbitrary rooting To

of tree T. C0 optimally solves the Max-diameter min-cut partitioning problem.

The proof of the theorem and the corollary are both given in S1 Appendix.

TreeCluster: Clustering biological sequences using phylogenetic trees
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Linear solution for the Sum-length min-cut partitioning problem. A linear-time algo-

rithm that partitions trees into the fewest clusters, each with total node weights less than or

equal to α, has been previously published by Kundu et al. [18]. In order to solve the Sum-

length min-cut partitioning problem, we present an altered version of the original algorithm

that works on edge (instead of node) weights and that focuses on binary trees. Algorithm 1

with two simple modifications solves the Sum-length min-cut partitioning problem optimally

(see Algorithm A in S1 Appendix). The first modification is that we define the auxiliary vari-

able B(C, u) to denote the sum of weights of all descendent edges connected to u at the stage it

is processed by the algorithm. Secondly, in the bottom-up traversal of internal nodes of To, for

node u, w.l.o.g, let B(ul) + wl� B(ur) + wr. If the sum of branch lengths in the combined sub-

tree exceeds α, we break the edge (u, ul). Unlike Algorithm 1, where B(ul) + wl + B(ur) + wr�

α, here, B(u) is set to B(ul) + wl + B(ur) + wr. The proof for the correctness of the algorithm is

analogous to that of Algorithm 1 and is given in S1 Appendix.

Single-linkage min-cut partitioning. We now address the Single-linkage min-cut parti-

tioning problem (Definition 4), which can be considered a relaxation of the Max-diameter

min-cut partitioning. To motivate this problem, first consider the following definition.

Definition 5 (Single-linkage clustering).We call a partition of L to be a Single-linkage clus-

tering when for every a; b 2 L, a and b are in the same cluster if and only if there exists a chain

H ¼ c
0
; c

1
; . . . ; cm; cmþ1, where a = c0 and b = cm+1, and for every 0� i�m, we have d(ci, ci+1)

� α.
Thus, every pair of nodes is put in the same cluster if (but not only if) their distance is

below the threshold (the rest follows from transitivity). The next result (proved in S1 Appen-

dix.) motivates the choice of fT in Definition 4.

Proposition 1. The optimal solution to the Single-linkage min-cut partitioning problem (Def-

inition 4) is identical to the Single-linkage clustering of Definition 5.

Algorithm 2 shows a linear-time solution to the Single-linkage min-cut partitioning prob-

lem. For each node u, the algorithm first finds the closest leaf in the left and right sub-trees of

u via post-order traversal, and it then finds the closest leaf outside the sub-tree rooted at u via

pre-order traversal. Then, on a post-order traversal, it cuts each child edge iff the minimum

distance of leaves under it to leaves under its sibling and to any leaf outside the node both

exceed the threshold. The following theorem states the correctness of the algorithm (proof is

given in S1 Appendix).

Algorithm 2: SINGLE-LINKAGE Single-linkage min-cut partitioning
1 minBelow[u]  minAbove[u]  1 for v  V
2 for u2 post order traversal of To do
3 if u in L then
4 minBelow[u]  0;
5 else
6 minBelow[u]  min(minBelow[ul] + wl, minBelow[ur] + wr);
7 for u 2 pre order traversal of To do
8 if u 6¼ o then
9 minAbove[u]  min(minBelow[s] + w(v, s), minAbove[v] + w(v, v));
10 for u 2 post order traversal of internal nodes of To do
11 if minBelow[ul] + wl + minBelow[ur] + wr > α and

minBelow[ul] + wl + minAbove[u]> α then
12 E  E\(u, ul)
13 if minBelow[ul] + wl + minBelow[ur] + wr > α and

minBelow[ur] + wr + minAbove[u]>α then
14 E  E\(u, ur)
15 if minBelow[ul] + wl + minAbove[u] > α and

minBelow[ur] + wr + minAbove[u] > α then

TreeCluster: Clustering biological sequences using phylogenetic trees
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16 E  E\(v, u)
17 return Leafsets of every connected component in To

Theorem 2. The partitioning computed by Algorithm 2 optimally the solves Single-linkage

min-cut partitioning problem (Definition 5).

Clade constraint for rooted trees. So far, we have focused on unrooted trees. This choice

is partially driven by the fact that phylogenetic reconstruction tools predominantly use time-

reversible models of sequence evolution (e.g. GTR [19]) and therefore output an unrooted

tree. Nevertheless, researchers have developed various methods for rooting trees [20, 21],

including accurate and linear-time methods such as MV rooting [16]. When a rooted tree is

available, each “monophyletic clade,” i.e., group of entities that includes all descendants of

their common ancestor, is a biologically meaningful unit. Thus, we may want to constrain

each cluster to be a clade. These “clade” constraints make clustering easier: our algorithms can

be easily altered to ascertain that each cluster is also a clade. Specifically, in Algorithm 1, when

we have B(ul) + wl + B(ur) + wr> α, we simply need to cut both (u, ul) and (u, ur) (instead of

cutting only the longer one). This small modification allows the Max-diameter, Sum-length,

and Single-linkage min-cut partitioning problems to be solved in linear time while imposing

the clade constraint.

Centroid (representative) sequence. Many sequencing clustering methods produce a

representative sequence per cluster, often one that is used internally by the algorithm. Our

clustering approach is representative-free. However, if a representative is needed for down-

stream applications, several choices are available. For example, one can in linear-time find the

midpoint or balance point of a cluster [16] (i.e., the node that minimizes variance of root to tip

distances); then, the leaf closest to the midpoint or balance point can be used as the representa-

tive. Another alternative is to use the consensus sequence among all sequences belonging to a

cluster (i.e., choosing the most frequent letter for each site). Constructing and using a consen-

sus sequence may be preferable to using one of the given sequences as the centroid [22]. A

third alternative that we explore in our results is to use ancestral sequence reconstruction. For

each subtree defined by a cluster, we first root it at its balance point. Then, we perform maxi-

mum likelihood ancestral state reconstruction (ASR) and use the reconstructed root sequence

as the centroid.

TreeCluster software

We implemented linear-time algorithms for min-cut partitioning problem subject to Max-

diameter, Sum-branch, Single-linkage, and other clustering criteria, with and without clade

constraints in a freely-available open source tool called TreeCluster. TreeCluster takes a new-

ick tree and a threshold value as input and returns clusters in a formatted text file. TreeCluster

uses treeswift [23] package for fast tree operations.

Three applications of TreeCluster

While sequence clustering has many applications, in this paper, we highlight three specific

areas as examples.

Application 1: OTU clustering. Biological Problem. For microbiome analyses using 16S

sequences generated from whole communities, the standard pipeline uses operational taxo-

nomic units (OTUs). Sequences with similarity at or above a certain threshold (e.g. 97%) are

grouped into OTUs, which are the most fine-grained level at which organisms are distin-

guished. All sequences assigned to the same OTU are treated as one organism in downstream

analyses, such as taxonomic profiling, taxonomic identification, sample differentiation, or

machine learning. The use of a similarity threshold instead of a biological concept of species is

TreeCluster: Clustering biological sequences using phylogenetic trees
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to avoid the notoriously difficult problem of defining species for microbial organisms [24, 25].

Futher, the use of clusters of similar sequences as OTUs can provide a level of robustness with

respect to sequencing errors.

Most applications of OTUs are closed-reference: a reference database of known organisms

is selected, and OTUs are defined for reference sequences using methods such as UCLUST [2]

and Dotur [3]. These methods cluster sequences based on a chosen threshold of similarity,

often picking a centroid sequence to represent an OTU. Reads from a 16S sample are then

compared to the OTUs, and the closest OTU is found for each read (judging distance by

sequence similarity). Once all reads are processed for all samples, an OTU table can be built

such that rows represent samples, columns represent OTUs, and each cell gives the frequency

of an OTU in a sample. This table is then used in downstream analyses. Several large reference

databases exist for these OTU-based analyses [26–28]. One of these databases, popularized

through pipelines such as Qiita [29], is Greengenes [28].

Regardless of the downstream application of an OTU table, one would prefer the OTUs to

be maximally coherent (i.e., internally consistent) so they represent organisms as faithfully as

possible. We will focus our experiments on the closed-reference OTU picking methods and

the Greengenes as the reference library. However, note that open-reference OTU picking and

sub-operational-taxonomic-unit (sOTU) methods [30–32] also exist and involve a similar

need for sequence clustering.

Existing methods. Despite the availability of hierarchical clustering tools for OTU cluster-

ing [3, 33], non-hierarchical clustering methods [2, 34] are more widely used, perhaps due to

their lower computational demand. Two prominent methods are UCLUST [2] and CD-HIT

[34], which share the same algorithmic strategy: for a given threshold α, UCLUST determines

a set of representative sequences dynamically by assigning query sequences into representative

sequences (centroids) such that, ideally, the distance between each query and its assigned cen-

troid is less than α while distances between centroids is more than α. UCLUST is a heuristic

algorithm, and the processing order of the queries may affect the resulting clustering. CD-HIT

differs from UCLUST primarily in its strategy for computing distances.

Formulation as min-cut partitioning. We define OTUs by solving the Min-diameter,

Sum-Length, or Single-linkage min-cut partitioning problems using a chosen threshold α and

an inferred ML phylogeny. Each cluster in the resulting partition is designated as an OTU.

Experiments. We evaluate the quality of tree-based OTU clustering by comparing it to

UCLUST as used by Greengenes [28]. We run TreeCluster on the phylogenetic tree of 203,452

sequences in the Greengenes v13.5 database in three modes: max, sum, and single-linkage. We

use the following 20 thresholds: [0.005, 0.05] with a step size of 0.005, and (0.05, 0.15] with a

step size of 0.01. For single-linkage, we only go up to 0.1 because, above this threshold, the

number of clusters becomes much smaller than other methods.

From the same Greengenes database, we extract OTU clusters for all available sequence

identity thresholds up to 0.15 (i.e., 0.03, 0.06, 0.09, 0.12, and 0.15). We measure the quality of a

clustering {L1, . . ., LN} by its weighted average of average pairwise distance per cluster (which

we call cluster diversity for shorthand), given by the following formula:

mðfL
1
; . . . ; LNgÞ ¼

P

N

k¼1

jLkj

P

i;j2Lk

dði;jÞ

jLk j
2

P

N

k¼1

jLkj

¼
1

n

X

N

k¼1

X

i;j2Lk

dði; jÞ

jLkj
ð1Þ

where n denotes the number of sequences clustered. We compute distance d(i, j) between

two elements using two methods: tree distance, which is the path length on the inferred
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phylogenetic tree, and sequence-based Hamming distance. Hamming distances are computed

pairwise from the multiple sequence alignment of all 203,452 sequences in the Greengenes

database and ignore any site that includes a gap in the pairwise alignment. Clearly, cluster

diversity alone is insufficient to judge results (singletons have zero diversity). Instead, we

compare methods at the same level of clustering with respect to their diversity. Thus, as we

change the threshold α, we compare methods for choices of the threshold where they result in

(roughly) equal numbers of clusters. Given the same number of clusters, a method with lower

cluster diversity is considered preferable.

We measure the quality of a representative sequence set using two metrics. For a clustering

{L1, . . ., LN}, let {L1, . . ., LN0} denote all non-singleton clusters. The first metric is the average of

average distance to the centroid per cluster, formally defined as:

nðg; fL
1
; . . . ; LN0gÞ ¼

1

N 0

X

N0

k¼1

X

i2Lk

dði; gðLkÞÞ

jLkj
ð2Þ

where g is a function that maps a cluster to a (representative) sequence. The second metric is

the average of maximum distance to the representative per cluster, formally defined as:

xðg; fL
1
; . . . ; LN0gÞ ¼

1

N 0

X

N0

k¼1

max
i2Lk

dði; gðLkÞÞ ð3Þ

We define these metrics on the set of non-singleton clusters because a trivial clustering which

assigns many singletons will trivially have a very low value for ν and ξ (near zero).

Greengenes database is distributed with precomputed representative sequence sets. For

centroid selection for TreeCluster, we consider two methods g: consensus and ASR. We per-

form ASR using TreeTime [35] under GTR model. We use RAxML 8 [36] to infer GTR model

parameters from the Greengenes multiple sequence alignment of representative sequences at

15 percent threshold. We compute distance d(i, j) between two elements using Hamming

distance.

Application 2: HIV transmission cluster analyses. Biological Problem. HIV evolves

rapidly, so phylogenetic relationships between sequences contain information about the his-

tory of transmission [37]. The ability to perform phylogenetic analyses of HIV sequences is

critical for epidemiologists who design and evaluate HIV control strategies [38–42]. The

results of these analyses can provide information about the genetic linkage [43] and transmis-

sion histories [44], as well as mixing across subpopulations [45]. A recent advancement in

computational molecular epidemiology is the use of transmission clustering to predict at-risk

individuals and epidemic growth: infer transmission clusters from pairwise sequence dis-

tances, monitor the growth of clusters over time, and prioritize clusters with the highest

growth rates [46]. In this monitoring framework, two natural questions come about: What is

the optimal way to infer transmission clusters from molecular data, and how can transmission

cluster inference be performed more efficiently?

Existing methods. We focus on two popular tools that perform such clustering. Cluster

Picker [4] is given a distance threshold, a phylogenetic tree, and sequences. It clusters individu-

als such that each cluster defines the leaves of a clade in the tree, the maximum pairwise

sequence-based distance in each cluster is below the threshold, and the number of clusters is

minimized. HIV-TRACE is a tool that, given a distance threshold and sequences, clusters indi-

viduals such that, for each pair of individuals u and v, if the Tamura-Nei 93 (TN93) distance

[47] between u and v is below the threshold, u and v are placed in the same cluster [5]. Both

methods scale worse than linearly with the number of sequences (quadratically and cubically,
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respectively, for HIV-TRACE and Cluster Picker), and for large datasets, they can take hours,

or even days, to run (however, HIV-TRACE enjoys trivial parallelism and is fast in practice).

Formulation as min-cut partitioning. Transmission clustering is similar to our problem

formulation in that it involves cutting edges such that the resulting clusters (as defined by the

leafsets resulting from the cuts) must adhere to certain constraints. Both Cluster Picker and

HIV-TRACE utilize pairwise distances computed from sequences, but when reformulated to

utilize tree-based distances from an inferred phylogeny, Cluster Picker becomes analogous to

our Max-diameter min-cut partitioning (with an added constraint that clusters must define

clades in the phylogeny), and HIV-TRACE becomes analogous to the Single-linkage min-cut

partitioning.

Experiments. To evaluate the effectiveness of HIV transmission clustering, we first simulate

HIV epidemic data using FAVITES [48]. For the simulation parameters, we use the parameters

described in Moshiri et. al. [48] to model the San Diego HIV epidemic between 2005 and

2014. However, we deviate from the original parameter set in one key way: originally, all HIV

patients were sequenced at the end time of the epidemic, yielding an ultrametric tree in the

unit of time, but to better capture reality, we instead sequence each patient the first time they

receive Antiretroviral Treatment (ART). In our simulations, we vary two parameters: the

expected time to begin ART as well as the expected degree of the social contact network, which

underlies the transmission network. Higher ART rates and lower degrees both result in a

slower epidemic and change patterns of phylogenetic branch length [48]. The complete

FAVITES parameter set can be found in the supplementary materials (List A in S1 Appendix).

We infer phylogenies from simulated sequences under the GTR+Γ model using FastTree-II

[8], and we use the MinVar algorithm to root the trees using FastRoot [49].

We use HIV-TRACE [5] as well as multiple clustering modes of TreeCluster to infer trans-

mission clusters. We were unable to use Cluster Picker [4] due to its excessive running time.

For HIV-TRACE, we use a clustering threshold of 1.5% as suggested by its authors [46].

Because HIV-TRACE estimates pairwise sequences distances under the TN93 model, [47]

which tend to be underestimates of phylogenetic distance estimated under the GTR model, we

use a clustering threshold of 3% for Single-Linkage TreeCluster. The default Cluster Picker

threshold for Max-diameter clustering is 4.5% [4], so we use this as our clustering threshold

for Max-Diameter TreeCluster (both with and without the Clade constraint). For Sum-length

TreeCluster (with and without the Clade constraint), we simply double the Max-diameter

threshold and use 9%. In addition to using these default thresholds, we also test a wide range

of thresholds for each transmission clustering method for robustness.

We measure cluster growth from year 8 to year 9 of the simulation and select the 1,000

highest-priority individuals, where individuals are prioritized in descending order of respec-

tive cluster growth. To measure the risk of a given individual u, we count the number of HIV

transmission events u! v between years 9 and 10. To measure the effectiveness of a given

clustering, we average the risk of the selected top 1,000 individuals. Higher numbers imply the

ability to prevent more transmissions by targeting a fixed number of individuals (1,000) and

are thus desirable. As a control, we also show the mean number of transmissions per popula-

tion, which is what a random selection of 1,000 individuals would give in expectation (we call

this “expected” risk).

Application 3: Divide-and-conquer multiple sequence alignment. Algorithmic idea.

Tree-based clustering has also been used for multiple sequence alignment (MSA) using divide-

and-conquer. To solve the MSA problem using divide-and-conquer, the tree structure can be

used to divide sequences into smaller subsets (i.e., clusters), which can each be aligned sepa-

rately and then merged. The phylogeny and the MSA can be inferred simultaneously by iterat-

ing between tree and MSA inference, and this technique has been used in algorithms such as

TreeCluster: Clustering biological sequences using phylogenetic trees
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SATe [50, 51] and PASTA [52]. Divide-and-conquer has been proven to be particularly

useful for MSA of very large datasets [9, 10, 50]. We note that not all MSA tools use divide-

and-conquer and that we only study the usage of min-cut partitioning in divide-and-conquer

methods. We examine the effectiveness of min-cut partitioning in PASTA [52], a scalable

software which infers both MSAs and trees for ultra-large datasets (tested for up to 1,000,000

sequences).

PASTA first builds a quick-and-dirty estimate of the phylogeny that is used as a guidance to

cluster the sequences. In its “divide” phase, PASTA clusters the input sequences into subsets so

that each subset contains less diverse sequences than the full set. Then, an accurate (but often

computationally demanding) method is run on the subsets to infer the MSA and/or the tree.

Finally, the results on the subsets are merged using various techniques. The accuracy of the

output depends not only on the accuracy of the base method used on the subsets and the merg-

ing method, but also on the effectiveness of the method used to divide the tree into subsets

[51].

PASTA computes an initial alignment using HMMs implemented in HMMER [53] and

an initial tree using FastTree-II [8]; then, it performs several iterations (3 by default) of the

divide-and-conquer strategy described before using MAFFT [54] for aligning subsets and

using a combination of OPAL [55] and a technique using transitivity for merging subalign-

ments. A tree is generated using FastTree-II at the end of each iteration, which is then used

as the guide tree for the next iteration. The method has shown great accuracy on simulated

and real data, especially in terms of tree accuracy, where it comes very close to the accuracy

obtained using the true alignment, leaving little room for improvement. However, in terms

of the alignment accuracy, it has substantial room for improvement on the most challenging

datasets.

The clustering used in PASTA is based on the centroid-edge decomposition. Given the

guide tree (available from the previous iteration), the decomposition is defined recursively:

divide the tree into two halves, such that the two parts have equal size (or are as close in size as

possible). Then, recurse on each subtree until there are no more than a given number of leaves

(200 by default) in each subset.

Formulation as min-cut partitioning. The centroid edge decomposition involves cutting

edges and includes a constraint defined on the subsets. However, it is defined procedurally

and does not optimize any natural objective function. The min-cut partitioning can produce a

decomposition similar to the centroid decomposition in its constraints but different in out-

come. We set all edge weights of the guide tree to 1 and solve the Sum-length min-cut parti-

tioning problem with threshold α = 2m − 2; the result is a partition such that no cluster has

more thanm leaves and the number of subsets is minimized. Thus, this “max-size min-cut par-

titioning” is identical to centroid decomposition in its constraints but guarantees to find the

minimum number of clusters.

Experiments. To evaluate how our new decomposition impacts PASTA, we run PASTA

version 1.8.3 on two datasets, and for each, we compare the accuracy of the two decomposition

strategies: centroid and max-size min-cut partitioning. Other parameters (including maxi-

mum subset size) are all kept fixed for both decomposition strategies. We used two datasets

both from the original PASTA paper: 10 replicates of a simulated RNAsim dataset with 10,000

leaves and a set of 19 real HomFam datasets with 10,099 to 93,681 protein sequences. The

RNASim is based on a very complex model of RNA evolution. Here, the true alignment,

known in simulations, is used as the reference. For HomFam, since the true alignment is not

known, following previous papers, we rely on a very small number of seed sequences with a

hand-curated reliable alignment as reference [9, 56]. In both cases, we measure alignment

error using two standard metrics computed using FastSP [57]: SPFN (the percentage of
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homologies in the reference alignment not recovered in the estimated alignment) and SPFP

(the percentage of homologies in the estimated alignment not present in the reference).

Results

Results for Application 1: OTU clustering

On the Greengenes dataset, as we change the threshold between 0.005 and 0.15, we get between

181, 574 and 10, 112 clusters (note that singletons are also counted). The cluster diversity has a

non-linear relationship with the number of clusters: it drops more quickly with higher thresh-

olds where fewer clusters are formed (Fig 2A and S1 Fig). Comparing the three objective

Fig 2. Comparing Greengenes and TreeCluster. (A) Cluster diversity (Eq 1) for Greengenes and TreeCluster versus the number of
OTUs. Cluster diversity is measured both with respect to hamming distance and tree-based distance. The threshold α is shown for all
data points corresponding to Greengenes and for some points of TreeCluster. See S1 Fig for comparison to other TreeCluster modes.
(B) Average-average (ν) and average-maximum (ξ) distance to the centroid for Greengenes and TreeCluster versus the number of
clusters. TreeCluster centroids are computed using ancestral state reconstruction or using consensus.

https://doi.org/10.1371/journal.pone.0221068.g002
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functions that can be used in TreeCluster, we observe that Max-diameter and Sum-length

have similar trends of cluster diversity scores, whereas Single-linkage min-cut partitioning

has substantially higher diversity compared to the other two methods (S1 Fig). This pattern is

observed regardless of whether tree distances or sequence distances are used, but differences

are larger for tree distances. Finally, note that, even though tree distances are, as expected,

larger than sequence distances (S2 Fig), the cluster diversity is lower when computed using

tree distances, showing that clusters are tight in the phylogenetic space.

Compared to the default Greengenes OTUs, which are defined using UCLUST, Max-

diameter min-cut partitioning defines tighter clusters for tree-based scores (Fig 2A). When

distances between sequences are measured in tree distance, the cluster diversity score for

Greengenes OTUs is substantially lower for all thresholds, and the gap is larger for higher

thresholds. For example, the cluster diversity of Greengenes OTUs is three times higher than

TreeCluster OTUs for α = 0.15. When distances between sequences are measured in Hamming

distance, Greengenes and TreeCluster perform similarly for low threshold values (e.g. α = 0.03

for Greengenes, which is similar to α = 0.02 for TreeCluster in terms of the number of clus-

ters). However, when the number of OTUs is reduced, remarkably, TreeCluster outperforms

Greengenes OTUs by up to 1.4-fold (e.g. α = 0.15). This is despite the fact that UCLUST is

working based on sequence distances and TreeCluster is not.

Size of the largest cluster in Greengenes is larger compared to TreeCluster (Table 1). For

example, for α = 0.09, both methods have similar number of clusters (22,090 and 23,631 for

Greengenes and TreeCluster, respectively) but the size of largest cluster in Greengenes is three

times that of TreeCluster (1,659 versus 540). On the other hand, for the same threshold value,

the number of singleton clusters comprises 48% of all clusters for Greengenes whereas only

27% of the clusters are singletons for TreeCluster. Thus, GreenGenes has more clusters that

are very small or very large, compared to TreeCluster.

Computed using either consensus or ASR method, representative sequences in TreeCluster

are closer to other sequences of the cluster than Greengenes (Fig 2B). Using ASR representa-

tive sequences performs slightly worse than consensus centroids according to the ν score (e.g.

ν = 0.062 and ν = 0.057, respectively when α = 0.15). When evaluated using ξ score, ASR repre-

sentative sequences perform slightly better than consensus in all threshold levels (e.g. ξ = 0.03

and ξ = 0.04 respectively when α = 0.005) and the gap again widens as the number of clusters

increases. Both types of centroids computed using TreeCluster perform better than Green-

genes representative sequences according to both metrics, and the gap increases as the thresh-

old α increases (e.g. up to 1.7-fold when α = 0.15 for ν).

Results for Application 2: HIV dynamics

Comparing various TreeCluster modes, regardless of the parameters that we vary, Sum-length

TreeCluster consistently outperforms the other clustering methods, and the inclusion of the

Clade constraint has little impact on effectiveness (Fig 3). Compared to a random selection

of individuals, the risk of selected individuals can be substantially higher; for example, with

expected time to begin ART set to 1 year, the expected risk is 0.55 transmissions, whereas the

average risk of the top 1,000 individuals from Sum-length clusters is 0.85. In all the conditions,

a close second to TreeCluster Sum-length is TreeCluster Max-diameter. Other methods, how-

ever, are substantially less effective than these two modes of TreeCluster.

When varying expected time to begin ART and expected degree, Single-linkage TreeClus-

ter and HIV-TRACE consistently perform lower than the other approaches, with Single-

linkage TreeCluster typically performing around the theoretical expectation of a random

selection and HIV-TRACE performing slightly better (Fig 3a and 3b). Moreover, these
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patterns are not simply due to the chosen thresholds: even when the threshold is changed to

control the number of clusters, Single-linkage TreeCluster and HIV-TRACE consistently

perform worse than expected by random selection (Fig 3c). The effectiveness of Sum-length

and Max-diameter TreeCluster are maximized when they create 2,000–5,000 and 2,000–

3,000 clusters, respectively.

Results for Application 3: Improving PASTA

First, we notice a substantial improvement of PASTA 1.8.3 comparing to the original version

published in 2015 [52], especially for RNASim where alignment accuracy improved by about

3%. This was due to major updates of the PASTA software and the dependent tools. When we

replace centroid decomposition with Max-size min-cut partitioning in PASTA, the alignment

error reduces substantially for the RNASim dataset, but less so on the HomFam dataset (Fig

4). On the RNAsim data, mean SPFN drops from 0.12 to 0.10, which corresponds to a 17%

reduction in error. These drops are consistent across replicates and are substantial given the

fact that the only change in PASTA was to replace its decomposition step with our new cluster-

ing algorithm, keeping the rest of the complex pipeline unchanged. In particular, the method

to align subsets, to merge alignments, and to infer trees, were all kept fixed. On the HomFam

dataset, too, errors decreased, but the reductions were not substantial (Fig 4b). Based on these

results, we have now changed PASTA to use Max-size min-cut partitioning by default.

Discussion

Several theoretical and practical issues should be further discussed.

Fig 3. Effectiveness of transmission clustering. Effectiveness is measured as the average number of individuals
infected by the selected 1,000 individuals. The horizontal axis depicts the expected time to begin ART (A), the expected
degree (i.e., number of sexual contacts) for individuals in the contact network (B), and the number of clusters using
various thresholds (C).

https://doi.org/10.1371/journal.pone.0221068.g003

Table 1. Number of singleton clusters (σ), total number of clusters (S), and maximum cluster size (max) for TreeCluster and GreenGenes for various thresholds. In
the Greengenes database, OTU definitions for thresholds α = 0.015 and α = 0.045 are not available.

TreeCluster-Max-Diameter GreenGenes-UCLUST

α σ S max σ S max

0.015 86387 123456 47 (n.a) (n.a) (n.a)

0.03 42510 77263 96 70415 99322 527

0.045 24795 54068 171 (n.a) (n.a) (n.a)

0.06 15257 39809 305 26485 46256 894

0.09 6396 23631 540 10560 22090 1659

0.12 3003 15052 808 4153 10544 2131

0.15 1525 10112 1209 1735 5088 3765

https://doi.org/10.1371/journal.pone.0221068.t001
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Mean-diameter min-cut partitioning

Some of the existing methods, such as Cluster Picker [4], can define their constraints based on

mean pairwise distance between nodes. Similar to those, we can define a variation of the min-

cut partitioning problem in which fT ðLÞ ¼
1

�

jLj
2

�

X

i;j2L

dði; jÞ. Unfortunately, this “Mean-diame-

ter” min-cut partitioning problem can only be solved in linear time using our greedy algorithm

if we also have clade constraints (Algorithm B in S1 Appendix). As demonstrated by the coun-

terexample given in S3 Fig, the greedy algorithm fails if we do not have clade constraints. More

generally, the use of mean as function fT (�) creates additional complexity, and whether it can

be solved in linear time remains unclear. Whether mean diameter is in fact a reasonable crite-

rion is not clear. For example, it is possible that the mean diameter of a cluster is below the

threshold while the mean diameter of subclusters embedded in that cluster are not; such sce-

narios may not make sense for downstream applications.

Set of optimal solutions

It is possible that multiple distinct partitions with equal number of clusters are all optimal

solutions to any of our min-cut partitioning problems. Moreover, as the example given in

Fig 5 shows, the number of optimal solutions can be exponential with respect to number of

leaves in a binary phylogenetic tree. This observation renders listing all optimal solutions

potentially impractical as there may be too many of them. However, finding a way to summa-

rize all optimal partitions remains interesting and can have practical utility. We do not

currently have such a summarization approach. However, as shown in Lemma A of S1

Appendix, although the optimal solution space is potentially exponentially large, one can eas-

ily determine the set of all edges that could appear in any of the optimal solutions. Thus, we

could find absolutely unbreakable edges that will not be cut in any optimal clustering of the

data.

Fig 4. Alignment error for PASTA using the centroid and the mincut decompositions.We show Sum of Pairs False Negative (SPFN) and
Sum of Pairs False Psotive (SPFP) computed using FastSP [57] over two datasetes: the simulated RNASim dataset (10 replicates) and the
biological HomFam dataset (19 largest families; all 20 largest, except “rhv” omitted due to the warning on the Pfam website). We show boxplots
in addition to mean (red dot) and standard error (red error bars).

https://doi.org/10.1371/journal.pone.0221068.g004
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Choice of criterion

Among the three methods that we discussed, we observed that Max-diameter and Sum-diame-

ter are consistently better than the Single-linkage. This observation makes intuitive sense.

Single-linkage can increase the diversity within a cluster simply due to the transitive nature

of its criterion. Thus, a very heterogeneous dataset may still be collapsed into one cluster, sim-

ply due to transitivity. Our desire to solve the Single-linkage problem was driven by the fact

that a similar concept is used in HIV-TRACE, arguably the most widely used HIV clustering

method. However, we did not detect any advantage in this type of clustering compared to

Max-diameter or Sum-length; thus, our recommendation is to use these two criteria instead.

Between the two, Max-diameter has the advantage that its α threshold is easier to interpret.

Finally, ASR-based selection of representative sequences outperformed consensus sequences,

but we note that computing consensus sequences is much easier and faster.

Running time

We focused on comparing the effectiveness of TreeCluster to other methods, but we note

that its running time also compares favorably to other clustering methods (once the tree is

inferred). For example, on a real HIV dataset, we ran HIV-TRACE, Cluster Picker, and

TreeCluster for subsets of the data ranging from 100 to 5,000 sequences (Fig 6). On the largest

set with 5,000 leaves, the running time of TreeCluster did not exceed 2 seconds. In contrast,

the sequence-based HIV-Trace required close to a minute (which is still quite fast), but Cluster

Picker needed more than an hour. Even on the Greengenes dataset with more than 200,000

leaves, TreeCluster performed clustering in only 30 seconds. The high speed of TreeCluster

makes it possible to quickly scan through a set of α thresholds to study its impact on the out-

comes of downstream applications.

We note that these numbers do not include the time spent for inferring the tree, which

should also be considered if the tree is not already available (note that in many applications a

tree is inferred for other purposes and is readily available). For example, based on previous

Fig 5. An example showing that number of minimal clusterings under a diameter threshold can be exponential of number of leaves.When
the threshold is 3.5, each unit has to be split into two clusters, and there are thus three equally-optimal ways of splitting. The minimum number
of clusters is therefore 2n. The total number of distinct optimal solutions is 3n, whereas there are 3n leaves.

https://doi.org/10.1371/journal.pone.0221068.g005
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studies, MSA and tree inference on datasets with 10,000 sequences can take close to an hour

using PASTA and 12 CPUs. Around a third of this time is spent on tree inference (e.g., see Fig

4 of [9]) and the rest is spent on the estimating alignment, which is also needed by most alter-

native clustering methods.

Conclusion

We introduced TreeCluster, a method that can cluster sequences at the tips of a phylogenetic

tree using several optimization objective functions. We showed that our linear-time algorithms

can be used in several downstream applications, including OTU clustering, HIV transmission

clustering, and divide-and-conquer alignment. Using the tree to build the clusters increases

their internal consistency and improves downstream analyses.

Supporting information

S1 Fig. Comparison of various TreeCluster modes and Greengenes. Clustering quality of

Greengenes and various TreeCluster modes, where quality is measured as average pairwise dis-

tance within a cluster (the lower the better). The horizontal axis shows the number of clusters

for a given method and a threshold value. TreeCluster OTUs based on Max-diameter and

Sum-length options outperform Single-linkage option as well as Greengenes OTUs. Computa-

tion of Hamming distance based cluster diversity for α� 0.7 did not complete within 24 hours

and had to be terminated.

(PDF)

Fig 6. Execution times of Cluster Picker, HIV-TRACE, and TreeCluster in log-scale. Execution times (in seconds)
are shown for each tool for various values of n sequences, with 10 replicates for each n. The full dataset was obtained by
downloading all HIV-1 subtype B pol sequences (HXB2 coordinates 2,253 to 3,549) from the Los Alamos National
Laboratory (LANL) database. All programs were run on a CentOS 5.8 machine with an Intel Xeon X7560 2.27 GHz
CPU.

https://doi.org/10.1371/journal.pone.0221068.g006
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S2 Fig. Tree distance versus Hamming distance.On 16S data, the relationship between tree

distances and Hamming distances cannot be established using the Jukes-Cantor formula (red

curve).

(PDF)

S3 Fig. An example showing that Mean-diameter min-cut partitioning is not conforming

locality when α = 72, so it cannot be solved by a greedy algorithm analogous to Algorithm

1.When a greedy algorithm is at the stage where it processes u, it makes the decision for cut-

ting its children edges (u, v) and (u, a) based on the information available at the subtree rooted

by u. When α = 72, (A) T1 and (B) T2 require different cut-sets ({(u, v)} and {(u, a)} respec-

tively) for the optimal Mean-diameter partitioning despite the fact that the subtree rooted by u

remains unchanged in T1 and T2.

(TIFF)

S1 Appendix. Proofs and supplementary algorithms.

(PDF)
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